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 in the periodic case for the p-Laplacian to a general nonlinear framework and a non-periodic distribution of fibers.

Introduction and setting out of the problem

Composites comprising traces of materials with extreme physical properties have been investigated by several authors over the past decades in various contexts, such as diffusion equations [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effect[END_REF][START_REF] Briane | A new approach for the homogenization of high-conductivity periodic problems. Application to a general distribution of one directional fibers[END_REF][START_REF] Caillerie | A perturbation problem with two small parameters in the framework of the heat conduction of a fiber reinforced body[END_REF][START_REF] Fenchenko | Asymptotic behavior of solutions of differential equations with a strongly oscillating coefficient matrix that does not satisfy a uniform boundedness condition[END_REF][START_REF] Khruslov | Homogenized models of composite media[END_REF], fluid mechanics [START_REF] Briane | Homogenization of the Stokes equations with high-contrast viscosity[END_REF], electromagnetic theory [START_REF] Bouchitte | Homogenization of a wire photonic crystal: the case of small volume fraction[END_REF], linearized elasticity [START_REF] Bellieud | A notion of capacity related to linear elasticity[END_REF][START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects[END_REF]. The common feature of this body of work is the emergence of a concentration of energy in a small region of space surrounding the strong components. This extra contribution is characterized by a local density of the geometric perturbations in terms of an appropriate capacity depending on the type of equations.

In this paper, we determine the effective electric properties of an electrified composite whereby a set of extremely thin fibers with very large permittivities is embedded in a matrix with permittivity of order 1. This study may as well concern various steady-state situations in Physics like heat diffusion for instance. It is interesting to refer to Electricity where capacity has a specific meaning. A similar problem has been studied by one of the authors with G. Bouchitté [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effect[END_REF] in the periodic quasilinear case for fibers of circular cross section. In what follows, we investigate the non periodic case and consider a more general non linear framework and also fibers with arbitrarily shaped cross sections. This is worthwhile because fibers stem from draw plates and therefore are likely to display anisotropic behaviors governed by general convex functions. Let us notice that in the linear case, M. Briane and J. Casado-Díaz [START_REF] Briane | Compactness of sequences of two-dimensional energies with a zeroorder term. Application to three-dimensional nonlocal effects[END_REF] obtained nonlocal effects with fibers the cross section of which is merely a bounded connected open subset of R 2 . Dropping the assumption of periodicity is a challenging task which may lead to quite different effective problems when composites with high contrast are considered. In our specific study, the effective problem turns out to show the same general features as in the periodic case, provided the fibers are not too closely spaced (see (1.6)).

We turn now to a more detailed introduction of the paper. Let O = " O × (0, L), where " O is a bounded smooth open subset of R 2 . We consider the boundary value problem in Electrostatics

(P ε )                        min u∈u0+W 1,p Γ 0 (O) F ε (u) -ˆO q b u dx - ˆΓ1 q s u dH 2 , W 1,p Γ0 (O) = ϕ ∈ W 1,p (O) : ϕ = 0 on Γ 0 , Γ 0 ⊂ ∂O, H 2 (Γ 0 ) > 0, Γ 1 = ∂O \ Γ 0 , (q b , q s ) ∈ L p (O) × L p (Γ 1 ), u 0 ∈ C 1 (O), Å 1 
p + 1 p = 1 ã , F ε (u) = ˆO\Tr ε f (∇u) dx + λ ε ˆTrε g(∇u) dx.
(1.1)

The solution u ε to (P ε ) describes the electric potential of an electrified fibered composite insulator, where the distributions of body and surface charges are denoted by q b and q s . The non periodic set T rε occupied by the fibers is defined in terms of a bounded domain S ⊂ R 2 with a Lipschitz boundary, of two small positive parameter ε, r ε such that 0 < r ε < < ε < < 1, and of a finite family (ω j ε ) j∈Jε (J ε ⊂ N) of points in " O. We set

Ω ε = ω j ε ∈ R 2 , j ∈ J ε ⊂ " O, (1.2) 
T rε := j∈Jε T j rε , T j rε := S j rε × (0, L), S j rε := (ω j ε + r ε S).

(1.

3)

The parameter r ε describes the size of the sections of the fibers, which are homothetical to S, whereas the parameter ε accounts for the local density of the distribution of the fibers in O through the function n ε defined by

n ε (x) := z∈Iε ( J z ε ) 1 Y z ε (x 1 , x 2 ), J z ε := j ∈ J ε , ω j ε ∈ Y z ε , Y z ε := εz + εY, Y := [-1/2, 1/2) 2 , I ε := ¶ z ∈ Z 2 , Y z ε ⊂ " O © , (1.4) 
where A denotes the cardinal of a set A. Given x ∈ O, the scalar n ε (x) is the number of points of Ω ε included in the cell Y z ε such that (x 1 , x 2 ) ∈ Y z ε and z ∈ I ε , if this cell exists at all. Therefore, n ε (x) is an approximation of the number of fibers included in the parallelepiped Y z ε × (0, L) containing x. The assumption 0 ≤ n ε (x) ≤ N in O, N ∈ N, n ε n weak star in L ∞ (O), (1.5) ensures that the fibers do not concentrate in some lower dimensional subset of O (see Remark 3.1 (ii)).

We also suppose that min j,j ∈Jε,j =j

|ω i ε -ω j ε | > R ε , dist(Ω ε , ∂ " O) > 5 √ 2ε, (1.6) 
for some sequence of positive reals (R ε ) satisfying

r ε R ε ε, 1 γ (p) ε (R ε ), γ (p) ε (t) := t 2-p ε 2 if p = 2, γ (2) ε (t) := 1 ε 2 | log t| .
(1.7)

The hypothesis (1.6) guarantees that each fiber is separated by a sufficient distance from the other fibers and from the lateral boundary of O (the constant "5 √ 2" in (1.6) is chosen in order to get (6.37)). The periodic case corresponds to Ω ε = {εz, z ∈ I ε } and n ε given by n ε (x) = 1 if x ∈ z∈Iε Y z ε × (0, L), n ε (x) = 0 otherwise. With no loss of generality, we assume that

0 ∈ " O, D ⊂ S, (1.8) 
where D denotes the open unit ball of R 2 . The density of electric energy is given in terms of a sequence of positive reals (λ ε ) and of two strictly convex functions f , g satisfying a growth condition of order p ∈ (1, +∞) of the type

a|ξ| p ≤ f (ξ), g(ξ) ≤ b|ξ| p ∀ξ ∈ R 3 , (a, b > 0). (1.9) 
We suppose that lim ε→0 λ ε r 2 ε |S| ε 2 = k ∈ (0, +∞], (1.10) thus the density of electric energy is assumed to take large values in the fibers. For simplicity, we suppose that (see Remark 3.1 (iii))

u 0 = 0, if k = +∞. (1.11)

Notations

For any weakly differentiable function ϕ : R N → R (N ∈ {2, 3}), we set

" ∇ϕ := (∂ 1 ϕ, ∂ 2 ϕ, 0). (2.1)
We denote by f ∞,p the "p-recession" function of f , defined by f ∞,p (ξ) := lim sup t→+∞ f (tξ) t p ∀ξ ∈ R 3 .

(2.2)

Our results are obtained under the hypothesis:

∃α > 0, ∃β ∈ (0, p), |f (ξ) -f ∞,p (ξ)| ≤ α (1 + |ξ| β ) ∀ξ ∈ R 3 . (2.3) 
For any α ∈ R, we set sgn(α) := 1 if α ≥ 0, sgn(α) := -1 if α < 0.

(2.4)

For all couples (U, V ) of open subsets of R 2 such that U ⊂ V and for all α ∈ R, we set cap f (U, V ; α) = inf P f (U, V ; α),

P f (U, V ; α) : inf ߈V f Ä " ∇ϕ ä dx 1 dx 2 : ϕ ∈ W 1,p 0 (V ); ϕ = α in U ™ . (2.5) 
The letter C denotes different constants whose precise values may vary. We employ the usual convention ∞.0 = 0. We denote the Lebesgue measure on R N by L N , the Hausdorff k-dimensional measure on R N by H k , the space of Radon measures on O by M(O), the space of Borel functions on O by L 0 (O), respectively.

Main result

We assume that the sequence (γ The effective behavior depends on the order of magnitude of the parameter γ (p) . A critical case occurs when 0 < γ (p) < +∞. Then, a gap between the mean potential of the constituent parts of the composite may appear, giving rise to a concentration of electric energy stored in a thin region of space enveloping the fibers. The effective electric energy then takes the form of a sum of three terms like

Φ(u, v) = ˆO f (∇u) dx + Φ cap (v -u) + Φ f ibers (v). (3.2) 
The function u stands for the weak limit in W 1,p (O) of the sequence (u ε ) of the solutions to (1.1), and v represents a local approximation of the effective potential in the fibers. More precisely the function nv, where n is defined by (1.5), is the weak- * limit in M(O) of the sequence of measures (u ε µ ε ), being µ ε the measure defined by

µ ε := ε 2 r 2 ε |S| 1 Tr ε (x)L 3 O . (3.3)
The functional Φ f ibers accounts for the effective electric energy stored in the fibers and is given by

Φ f ibers (v) = ˆO g hom (∂ 3 v)ndx, (3.4) 
where n and g hom : R → R are respectively defined by (1.5) and g hom (a) := min g(q) : q ∈ R 3 , q 3 = a .

(3.5)

The second term of Φ describes the last mentioned concentration of energy in terms of the gap between the effective potential in the fibers and in the matrix. We obtain

Φ cap (v -u) = ˆO c f (S; v -u)ndx,
where

c f (S; α) = c f (S; sgn(α))|α| p , c f (S; ±1) = lim ε→0 c f ε (S; ±1), c f ε (S; ±1) := 1 ε 2 cap f ∞,p (r ε S, " O; ±1). (3.6) 
The sequences (c f ε (S; ±1)) are assumed to be convergent if p = 2. A study of cap f (see Section 5) yields

c f (S; ±1) =      γ (p) cap f ∞,p (S, R 2 ; ±1) if p < 2, γ (2) c f ∞,2 (±1) if p = 2, +∞ if p > 2, (3.7) 
for some positive reals c f ∞,2 (±1) independent of S (see Remark 3.1 (iv)). We prove that the limiting problem in a variational sense associated with (1.1) is given by

(P hom ) : min ß F hom (u) -ˆO q b u dx - ˆΓ1 q s u dH 2 : u ∈ u 0 + W 1,p Γ0 (O) ™ , (3.8) 
where

F hom (u) = inf {Φ(u, v) : v ∈ L p (O)} , Φ(u, v) =        ˆO f (∇u) dx + ˆO c f (S; v -u)ndx + k ˆO g hom (∂ 3 v)ndx if (u, v) ∈ u 0 + W 1,p Γ0 (O) × V p , +∞ otherwise, V p := ¶ v ∈ L 0 (O), vn ∈ L p (O) : ∂ 3 vn ∈ L p (O), vn = u 0 n on Γ 0 ∩ " O × {0, L} © .
(3.9) 

lim ε→0 ß F ε (u ε ) -ˆO q b u ε dx - ˆΓ1 q s u ε dH 2 ™ = F hom (u) -ˆO q b u dx - ˆΓ1 q s u dH 2 . (3.10)
Assume in addition that γ (p) > 0 and let µ ε be the measure defined by (3.3). Then the sequence of measures

(u ε µ ε ) weak * converges in M(O) to nvL 3 O ,
where n is defined by (1.5) and v is the unique element of V p , given by (3.9), such that F hom (u) = Φ(u, v). Remark 3.1. (i) If γ (p) = 0, the variables u, v are independent and the effective energy simply reads

F hom (u) = ˆO f (∇u) dx + C, C := inf v∈Vp k ˆO g hom (∂ 3 v)dx (γ (p) = 0). If γ (p) = +∞ (in particular if p > 2), the functional Φ(u, v) takes infinite values unless u = v, hence F hom (u) = ˆO f (∇u) dx + k ˆO g hom (∂ 3 u) ndx (γ (p) = +∞),
and the effective energy is that of the matrix augmented by a permittivity term in the direction of the fibers. If 0 < γ (p) < +∞, the effective electric energy is not a local functional. This means that it can not be written as the integration over O of a density of electric energy of the form h(x, u(x), ∇u(x), ...). By introducing the additional state variable v, we can write the effective energy under the form of a local functional of the couple (u, v). This internal or hidden state variable is the limit of a suitable scaling of the electric potential in the sole fibers and accounts for the micro-structure. The total effective electric energy is that of a body totally filled up by the matrix material augmented by a term which is the infimal convolution of the last mentioned permittivity term supplied by the distribution of fibers and a bonding term depending on the gap of electric potentials in the matrix and in the fibers. This bonding term describes a concentration of electric energy in the matrix in the immediate vicinity of the fibers, which may occur only when p ≤ 2. It induces a total effective energy lower than Φ(u, u). The structure of Φ stems from the contribution of each term entering the decomposition:

F ε (u) = ˆO\(D Rε ×(0,L)) f (∇u) dx + ˆ(D Rε ×(0,L))\Tr ε f (∇u) dx + λ ε ˆTrε g(∇u) dx, (3.11) 
where, given (R ε ) satisfying (1.7), the set D Rε × (0, L) is the R ε -neighborhood of the fibers defined by (6.3). The set (D Rε × (0, L)) \ T rε is a small portion of the matrix surrounding the fibers where electric energy may concentrate due to the gap between the mean electric potentials in the fibers and in the matrix. This will provide a limit capacitary term associated with f ∞,p ( " ∇u) on R ε D \ r ε S. The contribution of O \ (D Rε × (0, L)) is obvious and the contribution of the fibers is classical (see [START_REF] Acerbi | A variational definition for the strain energy of an elastic string[END_REF][START_REF] Licht | A non local energy functional in pseudo-plasticity[END_REF]).

(ii) The extension of our results to the case when the sequence (n ε ) is not bounded in L ∞ (O) but only in L 1 (O) and weak- * converges in M(O) to some measure µ is a challenging mathematical problem. The effective energy stored in the fibers is then likely to be simply deduced from (3.4) by substituting dµ for ndx. As regards the concentration of electric energy around the fibers, we expect it to take the form Φ cap (v -u) = ´cf (S; v -u)dµ 0 for some suitable measure µ 0 absolutely continuous with respect to µ and satisfying µ 0 (E × (0, L)) = 0 for all sets E ⊂ "

O such that cap f (E, " O; 1) = 0. Similar classes of measures arise in the study of Dirichlet problems on varying domains [START_REF] Maso | Γ-convergence and µ-capacities[END_REF], [START_REF] Maso | New results on the asymptotic behavior of Dirichlet problems in perforated domains[END_REF], [START_REF] Maso | Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains[END_REF]. Computing this measure µ 0 , if possible in terms of µ, seems to be a big task.

(iii) The simplifying assumption (1.11) ensures that the effective electric energy stored in the fibers vanishes if k = +∞. An alternative is to assume that u 0 takes the same values on the intersection of the opposite bases of O with Γ 0 .

(iv) If p = 2, the constants c f ∞,2 (±1) are simply defined by

c f ∞,2 (±1) = 1 γ (2) lim ε→0 cap f ∞,2 (r ε S; " O) ε 2 if 0 < γ (2) < +∞, c f ∞,2 (±1) = 1 otherwise. (3.12)
These constants can not be explicitely determined in terms of cap f ∞,2 . However, they can be calculated

if f (.) = 1 2 |.| 2 (see (5.20, 5.36)): c 1 2 |.| 2 (±1) = π.
(iv) The phenomenon observed in the critical case does not appear in dimension 2 whenever the sequence of conductivities (λ ε ) is supposed to be uniformly bounded from below. Indeed, M. Briane and J. Casado-Díaz showed [START_REF] Briane | Nonlocal effects in two-dimensional conductivity[END_REF][START_REF] Briane | Asymptotic behaviour of equicoercive diffusion energies in two dimension[END_REF] that in that case the nature of the problem is preserved through the homogenization process.

4 Conjecture for the case of a random distribution of fibers

In this section, we indicate a possible generalization of the periodic model to the case of parallel fibers randomly distributed in accordance with a stationary point process. In the model under consideration, the cross sections are not uniformly (i.e., periodically) distributed but their distribution is periodic in law i.e., the probability of presence of the sections is invariant under a suitable group (τ z ) z∈Z 2 defined below. In the stochastic homogenization framework, the distribution of the sections is then said to be statistically homogeneous. We are going to give some precisions on this model. Let us first define the discrete dynamical system (Ω, P P P , (τ z ) z∈Z 2 ) that models the distribution of the sections of the fibers. Given d > 0, we set

Ω := (ω i ) i∈N : ω i ∈ R 2 , |ω k -ω l | ≥ d for k = l , (4.1) 
and denote by Σ the trace of the Borel σ-algebra of (R 2 ) ∞ on Ω. We equip Ω with the group (τ z ) z∈Z 2 defined by

τ z ω = ω -z,
where ω -z must be understood as (ω i -z) i∈N , and we denote by F the σ-algebra made up of all the events of Σ which are invariant under the group (τ z ) z∈Z 2 . We assume the existence of a probability measure P P P on (Ω, Σ) for which (τ z ) z∈Z 2 is a measure preserving transformation, i.e., P P P #τ z = P P P for all z ∈ Z 2 , where P P P #τ z denotes the pushforward of the probability measure P P P by the map τ z . For any measurable function X : Ω → R, we denote by E E E F X its conditional expectation given F, i.e., the unique F-measurable function satisfying ˆE E E E F X dP P P = ˆE X dP P P for every E ∈ F.

Note that E E E F X is τ z -invariant (hence periodic) and that under the additional ergodic hypothesis which asserts that F is trivial, that is made up of events with probability measure 0 or 1, E E E F X is constant and nothing but the expectation E E E(X) := ´Ω X dP P P . Note also that the following asymptotic independance hypothesis lim |z|→+∞ P P P (E ∩ τ z E ) = P P P (E)P P P (E ), (

is a stronger but more intuitive condition yielding ergodicity.

The random set of fibers is defined by

T rε (ω) := j∈Jε(ω) T j rε , T j rε := (εω j + r ε S) × (0, L), J ε (ω) := ¶ j ∈ N, ω j ∈ " O © . (4.3) 
We will denote by (P ε (ω)) the problem associated with the random functional F ε (ω, .).

Consider the random function

n 0 : Ω → N, ω → n 0 (ω) := # ¶ i ∈ N : ω i ∈ " Y © , " Y := [0, 1[ 2 . (4.4)
In all likelyhood, the conditional expectation E E E F n 0 (ω) is the only additional corrector of the limit energy obtained in the periodic case. More precisely let us denote by Φ(ω, .) the random functional:

Φ(ω, u, v) =        ˆO f (∇u) dx + E E E F n 0 (ω) k ˆO g hom (∂ 3 v) dx + E E E F n 0 (ω) ˆO c f (S; v -u)dx; if (u, v) ∈ u 0 + W 1,p Γ0 (O) × V p , +∞ otherwise, (4.5) 
and set F hom (ω, u) = inf {Φ(ω, u, v) : v ∈ L p (O}. Then one may reasonably conjecture that Conjecture 4.1. Under the assumptions stated above, when ε tends to 0, the unique random solution u ε (ω) to the problem (P ε (ω)), deduced from (1.1) by substituting (4.3) for (1.3), almost surely weakly converges in W 1,p (O) toward the unique solution u(ω) to

(P(ω)) min ß F hom (ω, u) -ˆO q b u dx - ˆΓ1 q s u dH 2 : u ∈ u 0 + W 1,p Γ0 (O) ™ .
Moreover,

lim ε→0 ß F ε (ω, u ε ) -ˆO q b u ε dx - ˆΓ1 q s u ε dH 2 ™ = F hom (ω, u) -ˆO q b u dx - ˆΓ1 q s u dH 2 ,
and, if

γ (p) > 0, v ε (ω) := ε 2 r 2 |D| 1 Tr ε (ω) u ε (ω) almost surely weak * converges in M(O) to some v(ω)
belonging to V p such that F hom (ω, u) = Φ(ω, u(ω), v(ω)). Furthermore, under the ergodic hypothesis (for instance under condition (4.2)), there holds E E E F n 0 (ω) = E E En 0 so that the functionals Φ, F hom and the functions u and v are deterministic.

We hope to treat the mathematical analysis in a forthcoming paper.

Study of the capacity cap f

Given a strictly convex function f : R 3 → R satisfying a growth condition of order p ∈ (1, +∞) of the type (1.9), our main objective in this section is to analyze the behavior with respect to certain small subsets of R 2 of the mapping cap f defined by (2.5). A similar study has already been performed in the setting of linear elasticity in [6, Section 3]. In [START_REF] Maso | Capacity theory for monotone operators[END_REF], G. Dal Maso and I.V. Skrypnik have studied the capacity for monotone operators which are closely related to the ones considered in our paper. Also, their study has been extended to pseudo-monotone operators by J. Casado Díaz in [START_REF] Casado-Díaz | The capacity for pseudomontone operators[END_REF]. Further results concerning capacities and many references on this subject may be found for instance in [START_REF] Adams | Function Spaces and Potential Theory, Grundlehren der mathematischen Wissenschaften[END_REF][START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF][START_REF] Frehse | Capacity methods in the theory of partial differential equations[END_REF][START_REF] Maz | Sobolev Spaces[END_REF][START_REF] Ziemer | Weakly Differentiable functions[END_REF].

In what follows, the letter U denotes a non-empty bounded connected Lipschitz open subset of R 2 and V an open subset of R 2 such that U ⊂ V . The proof of the following Lemma is similar to that of [6, Lemma 1]:

Lemma 5.1. The problem (2.5) has a minimizing sequence in D(V ).

If p < 2, we denote by K p (V ) the set of functions ψ ∈ L p * (V ) (p * := 2p 2-p ) for which all the partial derivatives ∂ 1 ψ, ∂ 2 ψ (in the sense of distributions) belong to L p (V ). It is easy to check that, equiped with the norm

|ψ| K p (V ) := ňV |ψ| p * dx ã 1 p * + ňV |∇ψ| p dx ã 1 p , (5.1) 
the space K p (V ) is a reflexive Banach space. Therefore the closure of D(V ) in K p (V ), which will be denoted by K p 0 (V ), is also a reflexive Banach space. Gagliardo-Nirenberg-Sobolev inequality (see for instance [10, Theorem 9.9]), namely

ˆV |ψ| p * dx ≤ C ˆV |∇ψ| p dx ∀ψ ∈ K p 0 (V ) (p < 2), (5.2) 
holds true whatever the choice of the open set V , with a constant C depending only on p (we can take for instance C = p 2-p but this constant is not optimal, see [10, footenote, p. 278]), unlike Poincaré inequality in W 1,p 0 (V ), which may fail to hold when V is unbounded. The space K p 0 (V ) coincides with W 1,p 0 (V ) if V is bounded and may be strictly larger otherwise. There holds

K p 0 (R 2 ) = K p (R 2
). The next lemma marks a noteworthy difference between the case p < 2 and the case 2 ≤ p: if p ≥ 2, the infimum problem P f (U, V ; α) (see (2.5)) is not achieved in general if V is unbounded (see Remark 5.1), whereas P f (U, V ; α) is always achieved, if p < 2, provided we substitute K p 0 (V ) for W 1,p 0 (V ) in (2.5).

Lemma 5.2. (i) Assume that p < 2, and let α ∈ R. Then the problem

P f K p 0 (U, V ; α) : inf ψ∈Kα(U,V ) ˆV f (∂ 1 ψ, ∂ 2 ψ, 0)dx, K α (U, V ) := {ψ ∈ K p 0 (V ), ψ = α in U } , (5.3) 
has a unique solution and

cap f (U, V ; α) = min P f K p 0 (U, V ; α). (5.4) 
Moreover, the solution ψ to (5.4) satisfies, for a.e. x ∈ V ,

0 ≤ ψ(x) ≤ α if α ≥ 0; α ≤ ψ(x) ≤ 0 if α ≤ 0. ( 5.5) 
(ii) Assume that 2 ≤ p and that V is bounded in one direction, and let α ∈ R. Then the problem (2.5) has a unique solution.

Proof. (i) By (2.5) and Lemma 5.1, we have

cap f (U, V ; α) = inf ߈V f (∂ 1 ψ, ∂ 2 ψ, 0)dx, ψ ∈ K α (U, V ) ∩ D(V ) ™ . (5.6)
By repeating the argument of the proof of [6, Lemma 2], we find that

K α (U, V ) ∩ D(V ) K p (V ) = K α (U, V ), (5.7) 
where

K α (U, V ) ∩ D(V ) K p (V )
denotes the closure of K α (U, V ) ∩ D(V ) in K p (V ). Since f is convex and satisfies the growth condition (1.9), the functional

ψ → ´V f (∂ 1 ψ, ∂ 2 ψ, 0)dx is continuous on K p 0 (V ). We deduce that cap f (U, V ; α) = inf ߈V f (∂ 1 ψ, ∂ 2 ψ, 0)dx, ψ ∈ K α (U, V ) ™ = inf P f K p 0 (U, V ; α). (5.8)
By (1.9) and Gagliardo-Nirenberg-Sobolev inequality there holds, for all ψ ∈ D(V ) (extending

ψ to R 2 by setting ψ = 0 in R 2 \ V ) ňV |ψ| p * dx ã 1 p * = ňR 2 |ψ| p * dx ã 1 p * ≤ C ňR 2 |∇ψ| p dx ã 1 p = C ňV |∇ψ| p dx ã 1 p ≤ C ňV f (∂ 1 ψ, ∂ 2 ψ, 0)dx ã 1 p , (5.9) 
yielding (see (5.1))

|ψ| p K p (V ) ≤ C ˆV f (∂ 1 ψ, ∂ 2 ψ, 0)dx ∀ψ ∈ D(V ).
(5.10) By Lemma 5.1, there exists a minimizing sequence (ψ n ) in D(V ) to Problem (2.5). By (5.10), the sequence (ψ n ) is bounded in the reflexive Banach space K p 0 (V ), hence weakly converges in K p 0 (V ), up to a subsequence, to some ψ. As each function ψ n belongs to the convex strongly closed (hence weakly closed) subset K α (U, V ) of K p (V ), we infer that ψ also belongs to K α (U, V ). The functional ϕ → ´V f (∂ 1 ϕ, ∂ 2 ϕ, 0)dx is convex and strongly continuous on K p 0 (V ), hence weakly lower semi-continuous. We deduce that

cap f (U, V ; α) = lim inf n→+∞ ˆV f (∂ 1 ψ n , ∂ 2 ψ n , 0)dx ≥ ˆV f (∂ 1 ψ, ∂ 2 ψ, 0)dx ≥ inf P f K p 0 (U, V ; α).
Taking (5.8) into account we infer that ψ is a solution to (5.4). The uniqueness of this solution follows from the strict convexity of f . The "markovian" property (5.5) results from the last mentioned uniqueness, and from the fact that for any ψ ∈ K α (U, V ), the function defined by

ψ := (ψ ∨ 0) ∧ α if α ≥ 0 and ψ := (ψ ∧ 0) ∨ α if α < 0 belongs to K α (U, V ) and satisfies ´V f (∂ 1 ψ, ∂ 2 ψ, 0) ≤ ´V f (∂ 1 ψ, ∂ 2 ψ, 0)dx. (ii) If 2 ≤ p and V is bounded in one direction, by Poincaré inequality in W 1,p 0 (V ) we have |ψ| p W 1,p 0 (V ) ≤ C ˆV |∇(ψ)| p dx ≤ C ˆV f (∂ 1 ψ, ∂ 2 ψ, 0)dx ∀ψ ∈ W 1,p 0 (V ).
(5.11)

Then we repeat the argument of the case p < 2, substituting (5.11) for (5.10), W 1,p 0 (V ) for K 0 (V ), and

¶ ψ ∈ W 1,p 0 (V ), ψ = α in U © for K α (U, V ).
The next Lemma, whose proof is straightforward, states that the map (f, U, V, α) → cap f (U, V ; α) is convex with respect to α, decreasing with respect to V and increasing with respect to U and f .

Lemma 5.3. (i) The map α ∈ R → cap f (S, V ; α) is convex. (ii) Let V 1 and V 2 be two open subsets of R N such that U ⊂ V 1 ⊂ V 2 . Then cap f (U, V 1 ; α) ≥ cap f (U, V 2 ; α).
(5.12)

(iii) Let U 1 and U 2 be two bounded connected open subsets of R 2 such that U 1 ⊂ U 2 ⊂ V . Then cap f (U 1 , V ; α) ≤ cap f (U 2 , V ; α). ( 5 

.13)

(iv) There holds

cap λf (U, V ; α) = λcap f (U, V ; α) ∀ λ > 0. (5.14)
In addition, if f 1 , f 2 : R 3 → R are two strictly convex functions satisfying a growth condition of order p ∈ (1, +∞) of the type (1.9) and if

f 1 ≤ f 2 in R 3 , then cap f1 (U, V ; α) ≤ cap f2 (U, V ; α). (5.15) 
In the following lemma, we investigate the continuity properties of cap f (U, V ; α) with respect to U and V .

Lemma 5.4.

Let (V n ) be an increasing sequence of open subsets of R 2 such that U ⊂ V 1 and +∞ n=1 V n = V . (i) We have lim n→+∞ cap f (U, V n ; α) = cap f (U, V ; α).
(5.16)

Furthermore there holds, if 0 ∈ V , lim λ→0 cap f Å U, 1 λ V ; α ã = cap f U, R 2 ; α .
(5.17)

(ii) Assume that p < 2, and let ψ n be the unique solution to

P f K p 0 (U, V n ; α) (see (5.3)) extended to V by setting ψ n = 0 in V \ V n . Then (ψ n ) converges weakly in K p (V ) to the unique solution to P f K p 0 (U, V ; α).
(iii) Assume that 2 ≤ p and that V is bounded in one direction, and let ψ n be the solution to P f (U, V n ; α) (see (2.5) and Lemma 5.2 (ii)), extended to V in the same way. Then (ψ n ) converges weakly in W 1,p 0 (V ) to the unique solution to

P f (U, V ; α). (iv) If p < 2 and if (U n ) is an increasing sequence of bounded open subsets of R 2 such that +∞ n=1 U n = U , then lim n→+∞ cap f (U n , V ; α) = cap f (U, V ; α) ∀α ∈ R.
(5.18)

Proof. (i) Let us fix t > 0. By Lemma 5.1, there exists ψ ∈ D(V ) such that ψ = α in U and ´V f (∂ 1 ψ, ∂ 2 ψ, 0)dx ≤ cap f (U, V ; α) + t. Let us fix n 0 ∈ N such that sptψ ⊂ V n0
. By (5.12) there holds,

for all n ≥ n 0 : cap f (U, V n ; α) ≤ cap f (U, V n0 ; α) ≤ ´V f (∂ 1 ψ, ∂ 2 ψ, 0)dx.
Taking again (5.12) into account, we deduce

cap f (U, V ; α) ≤ lim inf n→+∞ cap f (U, V n ; α) ≤ lim sup n→+∞ cap f (U, V n ; α) ≤ cap f (U, V ; α) + t.
By the arbitrary choice of t, Assertion (5.16) is proved. If 0 ∈ V , we can assume without loss of generality that D ⊂ V . Since the sequence (nD) is increasing, we deduce from (5.16) that lim n→+∞ cap f (U, nD; α) = cap f U, +∞ n=1 nD; α = cap f (U, R 2 ; α). Taking (5.12) into account, we then easily infer that lim λ→0 cap f U, 1 λ D; α = cap f (U, R 2 ; α). By (5.12) there holds cap f (U, R

2 ; α) ≤ cap f (U, 1 λ V ; α) ≤ cap f (U, 1 λ D; α)
. By passing to the limit as λ → 0 in the third term of the last double inequality, we obtain (5.17). (ii) If p < 2 and ψ n is the solution to P f K p 0 (U, V n ; α), then by (5.10) we have

|ψ n | p K p (V ) = |ψ n | p K p (Vn) ≤ C ˆVn f (∂ 1 ψ n , ∂ 2 ψ n , 0)dx = Ccap f (U, V n ; α).
It then follows from (5.16) that lim sup

n→+∞ |ψ n | p K p (V ) ≤ C(cap f (U, V ; α)) < +∞.
Therefore the sequence (ψ n ) is bounded in K p (V ) and converges weakly in K p (V ), up to a subsequence, to some function ψ. As each function ψ n (extended by 0 to V ) belongs to the weakly closed subset

K α (U, V ) of K p (V ) (see (5.3)), we deduce that ψ also belongs to K α (U, V ), hence (see (5.4)) ˆV f (∂ 1 ψ, ∂ 2 ψ, 0)dx ≥ cap f (U, V ; α).
On the other hand, by (5.16) and by the weak lower semi-continuity in

K p 0 (V ) of the functional ϕ → ´V f (∂ 1 ϕ, ∂ 2 ϕ, 0)dx, we have cap f (U, V ; α) = lim n→+∞ cap f (U, V n ; α) = lim n→+∞ ˆVn f (∂ 1 ψ n , ∂ 2 ψ n , 0)dx = lim n→+∞ ˆV f (∂ 1 ψ n , ∂ 2 ψ n , 0)dx ≥ ˆV f (∂ 1 ψ, ∂ 2 ψ, 0)dx.
Therefore, ψ is the solution to P f K p 0 (U, V ; α). (iii) Same argument as in the proof of Lemma 5.2 (ii). (iv) Let ψ n be the unique solution to Lemma 5.2). By (5.10) and (5.13), there holds

P f K p 0 (U n , V ; α) (see
|ψ n | K p (V ) ≤ Ccap f (U n , V ; α) ≤ Ccap f (U, V ; α), hence (ψ n ) is bounded in K p (V )
and converges weakly, up to a subsequence, to some function ψ. Since each ψ n belongs to K p 0 (V ), we have ψ ∈ K p 0 (V ). Moreover, it is easy to check that ψ = α in U , therefore ψ ∈ K α (U, V ) (see (5.3)). We deduce from (5.13) and from the weak lower semi-continuity in

K p 0 (V ) of the map ϕ → ´V f (∂ 1 ϕ, ∂ 2 ϕ, 0)dx that cap f (U, V ; α) ≥ lim sup n→+∞ cap f (U n , V ; α) ≥ lim inf n→+∞ cap f (U n , V ; α) = lim inf n→+∞ ˆV f (∂ 1 ψ n , ∂ 2 ψ n , 0)dx ≥ ˆV f (∂ 1 ψ, ∂ 2 ψ, 0)dx ≥ cap f (U, V ; α). Assertion (5.18) is proved.
In the next Lemma, we investigate the case when f is positively homogeneous of degree p. Next properties (5.19) are easily deduced from Lemma 5.4 and from the change of variable formula. Formula (5.20) is deduced from the explicit computation performed in [7, p. 432] of the radial solution to the problem associated with cap

1 p |•| p r ε D, R ε D; α .
Lemma 5.5. Assume that f is positively homogeneous of degree p and let λ > 0, α ∈ R. Then

cap f (λU, V ; α) = λ 2-p cap f Å U, 1 λ V ; α ã if λU ⊂ V, cap f (U, V ; α) = |α| p cap f (U, V ; sgn(α)).
(5. [START_REF] Maso | Γ-convergence and µ-capacities[END_REF])

If f (.) = 1 p | • | p , then cap 1 p |•| p r ε D, R ε D; α =            2π p p-2 p-1 R p-2 p-1 ε -r p-2 p-1 ε p-1 |α| p if p = 2, π log(Rε/rε) α 2 if p = 2.
(5.20)

Proof. Let us fix t > 0. By Lemma 5.1, there exists ψ ∈ D(V ) such that ψ = α in λU and cap f (λU, V ; α)

+ t ≥ ´V f (∂ 1 ψ, ∂ 2 ψ, 0)dx. The function ϕ(y) := ψ(λy) belongs to D 1 λ V and satis- fies ϕ = α in U and (∂ 1 ϕ, ∂ 2 ϕ, 0)(y) = λ(∂ 1 ψ, ∂ 2 ψ, 0)(λy)
. By applying the change of variables formula, taking the positive homogeneousness of degree p of f into account, we obtain

cap f (λU, V ; α) + t ≥ ˆV f (∂ 1 ψ, ∂ 2 ψ, 0)(x)dx = λ 2 ˆ1 λ V f (∂ 1 ψ, ∂ 2 ψ, 0)(λy)dy = λ 2-p ˆ1 λ V f (∂ 1 ϕ, ∂ 2 ϕ, 0)(y)dy ≥ λ 2-p cap f Å U, 1 λ V ; α ã .
By the arbitrary choice of t, we deduce that cap f (λU, V ; α) ≥ λ 2-p cap f U, 1 λ V . The inverse inequality can be proved in a similar way. The first line of (5.19) is established. The second line of (5. [START_REF] Maso | Γ-convergence and µ-capacities[END_REF]) is obtained in a analogous manner, by setting ϕ(y) := 1 |α| ψ(y).

The next Lemma illustrates the contrasting behavior of the capacity cap f in the case p < 2 and in the case 2 ≤ p.

Lemma 5.6. We have

cap f (U, R 2 ; α) > 0 ∀α ∈ R \ {0} if 1 < p < 2, cap f (U, R 2 ; α) = 0 ∀α ∈ R if 2 ≤ p < +∞.
(5.21)

Proof. Assume that p < 2 and let ψ be the solution to

P f K 0 p (U, R 2 ) (see Lemma 5.
2). Then ψ = α in U hence, since α = 0 there holds ψ = 0 (recall that U = ∅). Therefore by (5.10) we have

cap f (U, R 2 ; α) = ˆR2 f (∂ 1 ψ, ∂ 2 ψ, 0)dx ≥ C|ψ| K p (R 2 ) > 0.
Suppose now that p ≥ 2 and fix r > 0 such that U ⊂ rD. By (1.9), (5.13), (5.14), (5.15), (5.17), and (5.20), we have

cap f (U, R 2 ; α) ≤ cap b|.| p (U, R 2 ; α) = pbcap 1 p |.| p (U, R 2 ; α) ≤ pbcap 1 p |.| p (rD, R 2 ; α) = lim R→+∞ pbcap 1 p |.| p (rD, RD; α) =      lim R→+∞ pb π log( R r ) α 2 = 0 if p = 2, lim R→+∞ pb 2π p p-2 p-1 R p-2 p-1 -r p-2 p-1 p-1 |α| p = 0 if 2 < p.
In the next two lemmas, we investigate the asymptotic behavior of cap f (r ε U ; R ε D), being (r ε ), (R ε ) any bounded sequences of positive reals such that r ε R ε . Then, we establish (3.7). We start with the case p = 2: Lemma 5.7. Assume that p = 2, let U be a bounded connected Lipschitz open subset of R 2 such that 0 ∈ U , and let (r ε ) and (R ε ) be any sequences of positive reals such that r ε R ε ε. Then, (i) for all α ∈ R \ {0}, there holds

lim ε→0 1 ε 2 cap f (r ε U, R ε D; α) = lim ε→0 1 ε 2 cap f ∞,p (r ε U, R ε D; α) = ® γ (p) if γ (p) ∈ {0, +∞}, γ (p) cap f ∞,p (U, R 2 ; α) if 0 < γ (p) < +∞, (5.22) 
where γ (p) is defined by (3.1).

(ii) For all α ∈ R \ {0}, there holds

lim ε→0 1 ε 2 cap f ∞,p (r ε U, " O; α) = ® γ (p) if γ (p) ∈ {0, +∞}, γ (p) cap f ∞,p (U, R 2 ; α) if 0 < γ (p) < +∞. (5.23)
Proof. (i) It is easy to check that f ∞,p also verifies the growth condition (1.9). Hence by (5.14) and (5.15) there holds

pa ε 2 cap 1 p |.| p (r ε U, R ε D; α) ≤ 1 ε 2 cap h (r ε U, R ε D; α) ≤ pb ε 2 cap 1 p |.| p (r ε U, R ε D; α) (h ∈ {f, f ∞,p }). (5.24)
Let us fix r, R > 0 such that rD ⊂ U ⊂ RD. By (5.13) we have cap

1 p |.| p (r ε rD, R ε D; α) ≤ cap 1 p |.| p (r ε U, R ε D; α) ≤ cap 1 p |.| p (r ε RD, R ε D; α).
(5.25)

Thanks to (5.20), we can easily verify that

lim ε→0 1 ε 2 cap 1 p |.| p (r ε rD, R ε D; α) = lim ε→0 1 ε 2 cap 1 p |.| p (r ε RD, R ε D; α) = γ (p) if γ (p) ∈ {0, +∞}. (5.26)
The estimate (5.22) is proved in the case γ (p) ∈ {0, +∞} (in particular if p > 2). Assume that 0 < γ (p) < +∞ (hence p < 2). Since f ∞,p is positively homogeneous of degree p, we can apply Lemma 5.5: we infer from (3.1), (5.17) and (5.19) that

lim ε→0 1 ε 2 cap f ∞,p (r ε U, R ε D; α) = lim ε→0 r 2-p ε ε 2 cap f ∞,p Å U, R ε r ε D; α ã = γ (p) cap f ∞,p (U, R 2 ; α).
The proof of Lemma 5.7 (i) is achieved provided we show that lim ε→0 ∆ ε = 0, where

∆ ε := 1 ε 2 cap f ∞,p (r ε U, R ε D; α) - 1 ε 2 cap f (r ε U, R ε D; α). (5.27)
First we prove that lim sup ε→0 ∆ ε ≤ 0. To that aim, we consider the solution ϕ to

P f K p 0 (r ε U, R ε D; α) (see (5.3)). There holds ϕ ∈ K α (r ε U, R ε D; α) and ˆRεD f (∂ 1 ϕ, ∂ 2 ϕ, 0)dx = cap f (r ε U, R ε D; α); ˆRεD f ∞,p (∂ 1 ϕ, ∂ 2 ϕ, 0)dx ≥ cap f ∞,p (r ε U, R ε D; α). (5.28)
We deduce from (2.3), (5.27) and (5.28) that

∆ ε ≤ 1 ε 2 ˆRεD (f ∞,p (∂ 1 ϕ, ∂ 2 ϕ, 0) -f (∂ 1 ϕ, ∂ 2 ϕ, 0))dx ≤ α 1 ε 2 ˆRεD (1 + |∂ 1 ϕ, ∂ 2 ϕ, 0| β )dx ≤ C R 2 ε ε 2 + C 1 ε 2 ňR εD |∂ 1 ϕ, ∂ 2 ϕ, 0| p dx ã β p R 2 ε 1-β p .
(5.29)

On the other hand, by (1.9), (5.14), (5.15) and (5.20), there holds

ˆRεD |∂ 1 ϕ, ∂ 2 ϕ, 0| p dx ≤ C ˆRεD f (∂ 1 ϕ, ∂ 2 ϕ, 0)dx = Ccap f (r ε U, R ε D; α) ≤ Ccap |.| p (r ε U, R ε D; α) ≤ Cr 2-p ε .
(5.30) Joining (3.1), (5.29) and (5.30), we infer

∆ ε ≤ C R 2 ε ε 2 + C 1 ε 2 r 2-p ε β p R 2 ε 1-β p ≤ C R 2 ε ε 2 + Cγ (p) ε (r ε ) R 2 ε r 2-p ε 1-β p .
It follows that lim sup ε→0 ∆ ε ≤ 0 (because 0 < γ (p) < +∞, p < 2, β < p). By repeating the same argument, considering the solution to P f ∞,p

K p 0 (r ε U, R ε D; α) instead of that of P f K p 0 (r ε U, R ε D; α)
, we find that lim inf ε→0 ∆ ε ≥ 0. The proof of (5.22) is achieved.

(ii) By (1.9), (5.14) and (5.15) there holds

pa ε 2 cap 1 p |.| p (r ε U, " O; α) ≤ 1 ε 2 cap f ∞,p (r ε U, " O; α) ≤ pb ε 2 cap 1 p |.| p (r ε U, " O; α). (5.31) 
Let us fix two positive reals

d 1 , d 2 such that d 1 D ⊂ " O ⊂ d 2 D.
Then by (5.12) we have

1 ε 2 cap 1 p |.| p (r ε U, d 2 D; α) ≤ 1 ε 2 cap 1 p |.| p (r ε U, " O; α) ≤ 1 ε 2 cap 1 p |.| p (r ε U, d 1 D; α).
(5.32) By (5.20) there holds

lim ε→0 1 ε 2 cap 1 p |.| p (r ε U, d 2 D; α) = lim ε→0 1 ε 2 cap 1 p |.| p (r ε U, d 1 D; α) = γ (p) if γ (p) ∈ {0, +∞}.
(5.33) Joining (5.31)-(5.33), we get

lim ε→0 1 ε 2 cap f ∞,p (r ε U, " O; α) = γ (p) if γ (p) ∈ {0, +∞}.
If 0 < γ (p) < +∞, we infer from (3.1), (5.17) and (5.19) that

lim ε→0 1 ε 2 cap f ∞,p (r ε U, " O; α) = lim ε→0 r 2-p ε ε 2 cap f ∞,p Å U, 1 r ε " O; α ã = γ (p) cap f ∞,p (U, R 2 ; α).
Assertion (5.23) is proved.

The case p = 2 is appreciably more involved. (i) There holds

C 1 γ (2) ε (r ε ) ≤ cap f ∞,2 (r ε S, R ε D; ±1) ε 2 ≤ C 2 γ (2) ε (r ε ) Å = C 2 1 ε 2 | log r ε | ã , C 1 γ (2) ε (r ε ) ≤ cap f ∞,2 (r ε S, " O; ±1) ε 2 ≤ C 2 γ (2) ε (r ε ), (5.34) 
for some positive constants C 1 , C 2 .

(ii) Assume that 0 < γ (2) < +∞ and that the sequences

Å cap f ∞,2 (rεS, O;±1) ε 2 ã are convergent. Let c f ∞,2 (1) 
and c f ∞,2 (-1) be defined by

c f ∞,2 (±1) := 1 γ (2) lim ε→0 cap f ∞,2 (r ε S, " O; ±1) ε 2 . (5.35) Then c f ∞,2 (1 
) and c f ∞,2 (-1) are positive reals, are independent of S, and satisfy

lim ε→0 cap f ∞,2 (r ε S, R ε D; ±1) ε 2 = γ (2) c f ∞,2 (±1). 
(5.36)

Proof. See Section 8.2.

Remark 5.1.

(i) If p ≥ 2 and α ∈ R \ {0}, then the infimum for problem P f U, R 2 ; α (see (2.5)) is not achieved. Otherwise, should ψ ∈ W 1,p 0 (R 2 ) be a minimum, then by (1.9) and the second line of (5.21), |∇ψ| p L p (R 2 ;R 2 ) ≤ C ´R2 f (ψ)dx = Ccap f (U, R 2 ; α) = 0, hence ψ = 0, in contradiction with the fact that ψ = α in U . This lack of solution is similar to Stokes' paradox in fluid Mechanics [START_REF] Stokes | On the effect of the internal friction of fluids on the motion of pendulums[END_REF]. (ii) If V = R 2 , weighted Sobolev spaces provide an interesting alternative approach to the questions of existence of a solution to P f U, R 2 ; α (see [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF] for more details on this subject ). Indeed, it can be shown that

(cap f (U, R 2 ; α) =) inf P f U, R 2 ; α = min ߈R 2 f (∂ 1 ψ, ∂ 2 ψ, 0)dx, ψ ∈ W 1,p µp (R 2 ), ψ = α in U ™ ,
where W 1,p µp (R 2 ) is the weighted Sobolev space defined by

W 1,p µp (R 2 ) := ¶ ψ ∈ L p µp (R 2 ), (∂ 1 ψ, ∂ 2 ψ, 0) ∈ L p (R 2 ; R 3 ) © ,
being µ p the measure on R 2 given by

µ p = 1 w p (x) L 2 , w 2 (x) = (1 + |x| 2 ) 1 + log(1 + |x| 2 ) 2 , w p (x) = (1 + |x|) p otherwise.
The property cap f (U, R 2 ; α) = 0 if p ≥ 2, stated in Lemma 5.6, can be recovered from the fact that if α = 0, then the constant function ψ = α belongs to W 1,p µp (R 2 ) if and only if p ≥ 2.

6 Technical preliminaries and a priori estimates

The proof of Theorem 3.1 rests on an extensive investigation into the asymptotic behavior of the sequence of the solutions to (P ε ) and, more generally, of sequences (u ε ) satisfying

sup ε>0 F ε (u ε ) < +∞. ( 6.1) 
A commonly used method consists in introducing auxiliary sequences designed to characterize the comportment of the diverse constituents of the composite. The delicate step lies in the analysis of the behavior of the fibers. An interesting approach consists in investigating the sequence (u ε µ ε ), where µ ε denotes the measure with support included in the fibers defined by (3.3). To that aim, given a sequence (R ε ) satisfying (1.7), we introduce the operators . Rε , . rε , . ε defined on L p ((0, L); W 1,p (O)) by setting

ϕ Rε (x) := j∈Jε ϕ j Rε (x 3 )1 D j Rε (x 1 , x 2 ), ϕ j Rε (x 3 ) := ∂D j Rε ϕ(s 1 , s 2 , x 3 ) dH 1 (s 1 , s 2 ), ϕ rε (x) := j∈Jε ϕ j rε (x 3 )1 D j Rε (x 1 , x 2 ), ϕ j rε (x 3 ) := ∂D j rε ϕ(s 1 , s 2 , x 3 ) dH 1 (s 1 , s 2 ), ϕ ε (x) := z∈Iε Ç Y z ε ϕ(s 1 , s 2 , x 3 )ds 1 ds 2 å 1 Y z ε (x 1 , x 2 ), (6.2) 
where

D j Rε = ω j ε + R ε D, D Rε = j∈Jε D j Rε , (6.3) 
and analogously for D j rε . The series of estimates stated below will take a crucial part in the proof of Theorem 3.1 (the proof of Lemma 6.1 is situated at the end of Section 6). Lemma 6.1. There exists a constant C such that for all ϕ ∈ L p ((0, L); W 1,p ( " O)),

ˆ| ϕ Rε -ϕ rε | p dµ ε ≤    C γ (p) ε (rε) ´O | " ∇ϕ| p dx, if p ≤ 2, C γ (p) ε (Rε) ´O | " ∇ϕ| p dx, if p > 2, ˆ| ϕ ε -ϕ rε | p dµ ε ≤ C γ (p) ε (r ε ) ˆO | " ∇ϕ| p dx, ˆ| ϕ ε -ϕ Rε | p dµ ε ≤ C γ (p) ε (R ε ) ˆO | " ∇ϕ| p dx, ˆY z ε ×(0,L) |ϕ -ϕ ε | p dx ≤ Cε p ˆY z ε ×(0,L) | " ∇ϕ| p dx ∀z ∈ I ε , ˆ|ϕ -ϕ rε | p dµ ε ≤ Cr p ε ˆ|" ∇ϕ| p dµ ε , (6.4)
where "

∇ and γ ii

) If f ε µ ε f µ, then lim inf ε→0 ˆj(f ε ) dµ ε ≥ ˆj(f )
dµ for all convex and lower semi-continuous functions j on R satisfying a growth condition of order p. In addition

lim inf ε→0 ˆ|f + ε | p dµ ε ≥ ˆ|f + | p dµ, lim inf ε→0 ˆ|f - ε | p dµ ε ≥ ˆ|f -| p dµ. (6.5) 
Proof. The proof of this lemma is given in [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effect[END_REF] with j = 1 p | • | p but the duality argument can be extended to any convex lower semi-continuous function satisfying a growth condition of order p. Assertion (6.5) results from the fact that if f + ε µ ε gµ and f ε µ ε f µ, then g ≥ f + µ-a.e., which can be easily checked by using positive continuous test functions (notice that in general, g = f + ).

The main results of Section 6 are stated in the next Proposition, where the asymptotic behavior of several sequences associated with some sequence (u ε ) satisfying (6.1) is specified. Proposition 6.1. Assume (1.9), (1.10), (3.1), (7.1). Let (u ε ) be a sequence in W 1,p (O) satisfying (6.1) and let (µ ε ), ( u ε Rε ) and ( u ε ε ) be defined by (3.3), (6.2). Then the next estimates hold true

ˆO |u ε | p + |∇u ε | p dx ≤ C, ˆ|∇u ε | p + |u ε | p + | u ε rε | p + | u ε Rε | p dµ ε ≤ C, (6.6) 
and there exists u ∈ u 0 + W 1,p Γ0 (O) and v ∈ V p such that, up to a subsequence, the next convergences take place

u ε u weakly in W 1,p (O) u ε µ ε nvL 3 O , ∂ 3 u ε µ ε n∂ 3 vL 3 O weak * in M(O), u ε Rε µ ε nuL 3 O , u ε rε µ ε nvL 3 O weak * in M(O).
(6.7)

In addition, v = u if γ (p) = +∞ (in particular when p > 2).
Proof. The first line of (6.6) follows from (6.1), from the Dirichlet condition on Γ 0 and from Poincaré inequality. We deduce that, up to a subsequence,

u ε u weakly in W 1,p (O), (6.8) 
for some u ∈ W 1,p (O). We infer from the weak continuity of the trace mapping in W 1,p (O) that u ∈ u 0 + W 1,p Γ0 (O). It follows from the fourth line of (6.4) that the sequence ( u ε ε ) defined by (6.2) strongly converges to u in L p (O). We deduce then from (1.5) that

u ε ε n ε un weakly in L p (O). (6.9) 
For each z ∈ I ε , there holds

{z ∈ I ε , Y z ε ∩ Y z ε = ∅} ≤ 9
, therefore each set Y z ε has a non empty intersection with at most 9|n ε | L ∞ (O) different sets S j rε (see (1.4)). We then infer from (1.5), (3.3), (6.2), and (6.9) that

ˆ| u ε ε | p dµ ε = j∈Jε ˆO z∈Iε Y z ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 p 1 Y z ε (x 1 , x 2 ) ε 2 r 2 ε |S| 1 S j rε (x 1 , x 2 )dx = z∈Iε {j∈Jε,S j rε ∩Y z ε =∅} ˆL 0 Y z ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 p ε 2 r 2 ε |S| L 2 (S j rε ∩ Y z ε )dx 3 ≤ 9|n ε | L ∞ (O) z∈Iε ˆL 0 ε 2 Y z ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 p dx 3 = 9|n ε | L ∞ (O) ˆO | u ε ε | p dx ≤ C. (6.10)
On the other hand, by (1.5) and (3.3) we have

µ ε nL 3 O weak * in M(O). (6.11) 
By applying Lemma 6.2, taking (6.10) and (6.11) into account, we deduce that there exists f ∈ L 0 (O) such that f n ∈ L p (O) and that, up to a subsequence,

u ε ε µ ε f nL 3 O weak * in M(O). (6.12) 
Testing the convergences (6.9) and (6.12) with a given ϕ ∈ D(O), taking the estimate | ϕ ε -ϕ| ≤ Cε in O into account (this estimate is satisfied provided ε is sufficiently small, see (1.4), (6.2)), we get

lim ε→0 ˆO ϕ ε u ε ε n ε dx = ˆO ϕundx; lim ε→0 ˆ ϕ ε u ε ε dµ ε = ˆO ϕf ndx.
We prove below that

lim ε→0 ˆO ϕ ε u ε ε n ε dx - ˆ ϕ ε u ε ε dµ ε = 0. (6.13)
We deduce that ´O ϕundx = ´O ϕf ndx and then, by the arbitrary choice of ϕ, that f n = un a.e. in O. Therefore,

u ε ε µ ε nuL 3 O weak * in M(O). (6.14) 
By (1.9), (1.10), (3.3), and (6.1), we have

ˆ|∇u ε | p dµ ε ≤ C. (6.15)
From (3.1), (6.4), (6.6), and (6.10), we derive

ˆ|u ε | p + | u ε rε | p + | u ε Rε | p dµ ε ≤ C,
which, joined with (6.15), yields (6.6). We deduce from (1.7), the third line of (6.4), and (6.14), that

u ε Rε µ ε nuL 3 O weak * in M(O). (6.16) 
By (6.6) and Lemma 6.2,

u ε rε µ ε nvL 3 O , u ε µ ε nv 1 L 3 O , ∂ 3 u ε µ ε nwL 3 O weak * in M(O), (6.17) 
for some (v, v 1 , w) ∈ (L p (O)) 3 . It follows from the estimate stated in the fifth line of (6.4) that nv = nv 1 a.e. in O. (6.18) To show that

nw = n∂ 3 v a.e. in O and nv = nu 0 on Γ 0 ∩ " O × {0, L}), (6.19) 
it suffices (as in [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effect[END_REF]) to pass to the limit in ´ϕ∂ 3 u ε dµ ε by integrating by parts with first ϕ ∈ D(O), next ϕ of the form ϕ

(x) = θ(x 1 , x 2 )ψ(x 3 ) with θ ∈ D(O 0 ), O 0 = {(x 1 , x 2 ) ∈ ω : (x 1 , x 2 , 0) ∈ Γ 0 }, ψ(0) = 1, ψ(L) = 0 and finally θ ∈ D(O L ), O L = {(x 1 , x 2 ) ∈ ω : (x 1 , x 2 , L) ∈ Γ 0 }, ψ(0) = 1, ψ(L) = 0.
Collecting (6.8), (6.16), (6.17), (6.18), (6.19), the convergences (6.7) are proved. It remains to notice that the first line of (6.4) yields v = u when p > 2 or γ (p) = +∞: introducing an additional state variable to account for the asymptotic behavior of the electric potential in the fibers is not necessary! Proof of (6.13). By (1.3), (1.4), (3.3), and (6.2) there holds

ˆO ϕ ε u ε ε n ε dx = ˆ ϕ ε u ε ε dµ ε , if T rε ∩ z∈Iε ∂Y z ε × (0, L) = ∅, (6.20) 
hence in this case there is nothing to prove. However, the equality (6.13) may fail to hold in the general case, because the border of some cells Y z ε can possibly intersect some of the sections of the fibers. To circumvent this difficulty, we introduce the operator . 1,ε defined by (see (1.4))

ϕ 1,ε := z∈Iε Ç Y z ε ϕ(s 1 , s 2 , x 3 )ds 1 ds 2 å 1 G z ε (x 1 , x 2 ), G z ε := Ñ Y z ε ∪ j∈J z ε S j rε é \ j∈Jε\J z ε S j rε . (6.21) 
We deduce from (3.3), (6.2) and (6.21) that

ˆ ϕ 1,ε u ε 1,ε dµ ε = j∈Jε ˆL 0 ˆSj rε ϕ 1,ε u ε 1,ε ε 2 r 2 ε |S| dx = z∈Iε j∈J z ε ˆL 0 ˆSj rε ϕ 1,ε u ε 1,ε ε 2 r 2 ε |S| dx = z∈Iε j∈J z ε ˆL 0 ˆSj rε Ç Y z ε ϕ(s 1 , s 2 , x 3 )ds 1 ds 2 å Ç Y z ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 å ε 2 r 2 ε |S| dx = z∈Iε j∈J z ε ˆL 0 ˆY z ε Ç Y z ε ϕ(s 1 , s 2 , x 3 )ds 1 ds 2 å Ç Y z ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 å dx = z∈Iε ˆL 0 ˆY z ε Ç Y z ε ϕ(s 1 , s 2 , x 3 )ds 1 ds 2 å Ç Y z ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 å J z ε dx = ˆO ϕ ε u ε ε n ε dx. (6.22)
By (6.22), the proof of (6.13) is achieved provided we establish that

lim ε→0 ˆO ( ϕ 1,ε u ε 1,ε -ϕ ε u ε ε ) dµ ε = 0. (6.23)
To that aim, we notice that since ϕ ∈ D(O), by (6.2) and (6.21) the following estimate holds true:

| ϕ 1,ε -ϕ ε | ≤ Cε. (6.24)
We deduce that

ˆO ( ϕ 1,ε u ε 1,ε -ϕ ε u ε ε ) dµ ε ≤ ˆO | ϕ 1,ε || u ε 1,ε -u ε ε |dµ ε + ˆO | u ε ε || ϕ 1,ε -ϕ ε |dµ ε ≤ C ˆO | u ε 1,ε -u ε ε |dµ ε + Cε ˆO | u ε ε |dµ ε . (6.25)
We prove below that

ˆO | u ε 1,ε -u ε ε |dµ ε ≤ Cε, (6.26 
)

ˆO | u ε ε |dµ ε ≤ C. (6.27)
Since Assertion (6.23) results from (6.25), (6.26), and (6.27), Assertion (6.13) is proved.

Proof of (6.26). By (1.4), (3.3), there holds

ˆO | u ε 1,ε -u ε ε |dµ ε = z∈Iε j∈J z ε ε 2 r 2 ε |S| ˆL 0 ˆSj rε | u ε 1,ε -u ε ε |dx. (6.28) 
By (6.21), the function u ε 1,ε takes constant values on each set S j rε ×{x 3 }, whereas the function u ε ε , defined by (6.2), may take up to four different values on S j rε × {x 3 } if S j rε ∩ ∂Y z ε = ∅ and j ∈ J z ε . For each z ∈ I ε , we denote by Z z ε the union of the cells Y z ε whose adherence has a non empty intersection with Y z ε . The set Z z ε is the subset of ε(z + [-1, 2[ 2 ) defined by

Z z ε := k∈Az Y z+k ε , A z := (Z 2 ∩ [-1, 1] 2 ) ∩ k ∈ Z 2 , z + k ∈ I ε . (6.29)
Let us fix z ∈ I ε . For each j ∈ J z ε and for a.e. x 3 ∈ (0, L), we have

ε 2 r 2 ε |S| ˆSj rε | u ε 1,ε -u ε ε |(x 1 , x 2 , x 3 )dx 1 dx 2 = k∈Az ε 2 r 2 ε |S| ˆSj rε ∩Y z+k ε Ç Y z ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 å - Ç Y z+k ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 å dx 1 dx 2 ≤ k∈Az ε 2 Ç Y z ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 å - Ç Y z+k ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 å ≤ C k∈Az ˆZz ε Ç Y z ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 å - Ç Y z+k ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 å dx 1 dx 2 .
Noticing that #A z ≤ 9, we infer

ε 2 r 2 ε |S| ˆSj rε | u ε 1,ε -u ε ε |(x 1 , x 2 , x 3 )dx 1 dx 2 ≤ C k∈Az ˆZz ε u ε (x 1 , x 2 , x 3 ) - Ç Y z ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 å + u ε (x 1 , x 2 , x 3 ) - Ç Y z+k ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 å dx 1 dx 2 ≤ C k∈Az ˆZz ε u ε (x 1 , x 2 , x 3 ) - Ç Y z+k ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 å dx 1 dx 2 ≤ k∈Az C k ε ˆZz ε " ∇u ε (x 1 , x 2 , x 3 ) dx 1 dx 2 ≤ Cε ˆZz ε " ∇u ε (x 1 , x 2 , x 3 ) dx 1 dx 2 .
(6.30)

The next to last inequality in (6.30) is deduced from a change of variables in Poincaré-Wirtinger inequality

´]-1,2[ 2 ϕ - ffl k+]0,1[ 2 ϕds 1 ds 2 dx 1 dx 2 ≤ C k ´]-1,2[ 2 |∇ϕ|dx 1 dx 2 in W 1,1 (] -1, 2[ 2 )
. Noticing that by (1.4) and (1.5) there holds J z ε ≤ N , we deduce from (6.28), and (6.30) that

ˆO | u ε 1,ε -u ε ε |dµ ε ≤ Cε z∈Iε J z ε ˆL 0 ˆZz ε " ∇u ε dx ≤ Cε z∈Iε ˆL 0 ˆZz ε " ∇u ε dx. (6.31) 
By (6.29), each set Y z ε is included in at most 9 distinct sets Z z ε , therefore by (6.6) we have

ε z∈Iε ˆL 0 ˆZz ε " ∇u ε dx ≤ 9ε z∈Iε ˆL 0 ˆY z ε " ∇u ε dx ≤ 9ε ˆO " ∇u ε dx ≤ Cε ňO " ∇u ε p dx ã 1 p ≤ Cε.
(6.32)

The estimate (6.26) follows from (6.31) and (6.32).

Proof of (6.27). By (3.3), (6.2), (6.6), and (6.29), there holds

ˆO | u ε ε |dµ ε = z∈Iε j∈J z ε ε 2 r 2 ε |S| ˆL 0 ˆSj rε | u ε ε |dx = z∈Iε j∈J z ε k∈Az ε 2 r 2 ε |S| ˆL 0 ˆSj rε ∩Y z+k ε Y z+k ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 dx ≤ C z∈Iε k∈Az ˆL 0 ˆY z+k ε u ε (s 1 , s 2 , x 3 )ds 1 ds 2 dx 3 ≤ C ˆO |u ε |dx ≤ C,
because A z and J z ε are uniformely bounded. Assertion (6.27) is proved. Proof of Lemma 6.1. By (3.3) and (6.2), we have

ˆ| ϕ Rε -ϕ rε | p dµ ε = j∈Jε ε 2 r 2 ε |S| ˆL 0 ˆSj rε | ϕ Rε -ϕ rε | p dx = j∈Jε ε 2 ˆL 0 ϕ j Rε (x 3 ) -ϕ j rε (x 3 ) p dx 3 = j∈Jε ε 2 R 2 ε |D| ˆL 0 ˆDj Rε | ϕ Rε -ϕ rε | p dx, (6.33) 
because ϕ j rε (x 3 ) and ϕ j Rε (x 3 ) take constant values on D j Rε × {x 3 }. The next inequality is proven in [7, Lemma A4]:

∀(R, α) ∈ R + × (0, 1], ∀ψ ∈ W 1,p (D R ), ˆDR ψ - ∂D αR ψ dH 1 p dx ≤ C R p h(α) ˆDR |∇ψ| p dx, h(α) = α 2-p if 1 < p < 2, h(α) = 1 1 + | log α| if p = 2, h(α) = 1 if p > 2.
(6.34) By (6.34) there holds, for a.e. x 3 ∈ (0, L) and all j ∈ J ε ,

ˆDj Rε | ϕ Rε -ϕ rε | p (x 1 , x 2 , x 3 )dx 1 dx 2 ≤ C ˆDj Rε |ϕ -ϕ Rε | p (x 1 , x 2 , x 3 )dx 1 dx 2 + C ˆDj Rε |ϕ -ϕ rε | p (x 1 , x 2 , x 3 )dx 1 dx 2 ≤    C R p ε h( rε Rε ) ´Dj Rε " ∇ϕ p (x 1 , x 2 , x 3 )dx 1 dx 2 , if p ≤ 2, CR p ε ´Dj Rε " ∇ϕ p (x 1 , x 2 , x 3 )dx 1 dx 2 , if p > 2.
(6.35)

The first line of (6.4) follows from (3.1), (6.33), and (6.35). Similarly, denoting by ϕ z ε (x 3 ) the constant value taken by ϕ ε in Y z ε × {x 3 }, we get (see (6.2))

ˆ| ϕ ε -ϕ rε | p dµ ε = z∈Iε j∈J z ε ˆL 0 ϕ z ε (x 3 ) -ϕ j rε (x 3 ) p ε 2 dx 3 = z∈Iε j∈J z ε ˆL 0 Y z ε (ϕ(x 1 , x 2 , x 3 ) -ϕ j rε (x 3 ))dx 1 dx 2 p ε 2 dx 3 ≤ C z∈Iε j∈J z ε ˆL 0 ˆY z ε ϕ(x 1 , x 2 , x 3 ) -ϕ j rε (x 3 ) p dx.
(6.36)

Noticing that by (1.4) and (1.6), we have

Y z ε ⊂ D j √ 2ε ⊂ Q z ε ⊂ " O ∀z ∈ I ε , ∀j ∈ J z ε , Q z ε := ε(z + 5Y ), (6.37) 
we infer from (6.2), (6.34) that for a.e. x 3 ∈ (0, L), all z ∈ I ε and all j ∈ J z ε , there holds

ˆY z ε ϕ -ϕ j rε p (s 1 , s 2 , x 3 )ds 1 ds 2 ≤ ˆDj √ 2ε ϕ -ϕ j rε p (s 1 , s 2 , x 3 )ds 1 ds 2 ≤ C ε p h rε ε ˆDj √ 2ε " ∇ϕ p (s 1 , s 2 , x 3 )ds 1 ds 2 ≤ C ε p h rε ε ˆQz ε " ∇ϕ p (s 1 , s 2 , x 3 )ds 1 ds 2 .
(6.38) By (1.5) we have

J z ε ≤ N ∀z ∈ I ε . (6.39)
By (6.37) and (6.39), there holds

{z∈Iε, J z ε =∅} ˆL 0 ˆQz ε " ∇ϕ p dx ≤ 25 ˆO " ∇ϕ p dx.
We deduce from (6.36) and (6.38) that

ˆ| ϕ ε -ϕ rε | p dµ ε ≤ C ε p h rε ε z∈Iε ˆL 0 ˆQz ε " ∇ϕ p dx ≤ C γ (p) ε (r ε ) ˆO | " ∇ϕ| p dx,
hence the second line of (6.4) is proved. The third one is obtained in the same way and the fourth one is straightforward. The fifth one is easily derived by choosing (R, α) = (r ε , 1) in (6.34).

Proof of the main result

The demonstration of Theorem 3.1 is based on the Γ-convergence method (for precise details about this method, we refer the reader to [START_REF] Attouch | Variational Convergence for Functions and Operators[END_REF][START_REF] Attouch | Variational Analysis in Sobolev and BV Spaces: Application to PDEs and Optimization[END_REF][START_REF] Maso | An introduction to Γ-convergence[END_REF]). The "lowerbound" and the "upperbound" stated respectively in Proposition 7.1 and Proposition 7.2, indicate in particular that the sequence of functionals (F ε ) Γconverges with respect to the strong topology of L p (O) to the functional F hom defined by (3.9). The proof of Theorem 3.1 is deduced in the following manner from the two last mentioned propositions and from the a priori estimates established in Proposition 6.1:

7.1 Proof of Theorem 3.1.

We will only prove Theorem (3.1) in the most interesting case

γ (p) > 0. (7.1)
Let (u ε ) be the sequence of the solutions to (1.1). By (1.11), and since u 0 is continuous on O (see (1.1)), there holds

F ε (u ε ) -´O q b u ε dx -´Γ1 q s u ε dH 2 ≤ F ε (u 0 ) -´O q b u 0 dx -´Γ1 q s u 0 dH 2 ≤ C. As ´O q b u ε dx + ´Γ1 q s u ε dH 2 p ≤ CF ε (u ε )
, we deduce that (u ε ) satisfies (6.1). Therefore, we can apply Proposition 6.1 and, after possibly extracting a subsequence, assume that (u ε ) converges weakly in W 1,p (O) to some u, and that the sequence (u ε µ ε ) weak * converges in M(O) to vL 3 O for some v ∈ V p . We just have to prove that (u, v) is the solution to (3.8). To that aim, we first apply Proposition 7.1, to get

lim inf ε→0 F ε (u ε ) -ˆO q b u ε dx - ˆΓ1 q s u ε dH 2 ≥ Φ(u, v) -ˆO q b udx - ˆΓ1 q s udH 2 . (7.2)
By Proposition 7.2, there exists a sequence (ϕ ε ) such that,

ϕ ε u strongly in L p (O), ϕ ε µ ε vnL 3 O weak * in M(O), lim sup ε→0 F ε (ϕ ε ) ≤ Φ(u, v). (7.3)
Since u ε is the solution to (1.1), there holds

F ε (u ε ) -ˆO q b u ε dx - ˆΓ1 q s u ε dH 2 ≤ F ε (ϕ ε ) -ˆO q b ϕ ε dx - ˆΓ1 q s ϕ ε dH 2 . (7.4)
We infer from (7.2), (7.3), (7.4) and from the weak continuity on W 1,p (O) of the linear form ϕ → ´O q b ϕdx -´Γ1 q s ϕdH 2 that Φ(u, v) -ˆO q b udx -ˆΓ1 q s udH 2 ≤ min(P hom ), hence (u, v) is the unique solution to (P hom ) (the uniqueness results from the strict convexity of f and g).

Lower bound

Proposition 7.1. Under the assumptions of Theorem 3.1, for all (u, v) ∈ (u 0 + W 1,p Γ0 (O)) × V p and for all sequence (u ε ) in u 0 + W 1,p Γ0 (O) which weakly converges in W 1,p (O) toward u and such that (u ε µ ε ) weak * converges in M(O) to vnL 3 O , we have

lim inf ε→0 F ε (u ε ) ≥ Φ(u, v). (7.5)
Proof. We can suppose that lim inf ε→0 F ε (u ε ) < +∞, otherwise there is nothing to prove. Accordingly, after possibly extracting a subsequence, we can assume that (6.1) is verified and that the estimates (6.6) and the convergences (6.7) established in Proposition 6.1 take place. We choose a suitable sequence (R ε ) of positive reals satisfying (1.7) (the choice of (R ε ) will be made more precise in Lemma 8.2), and establish (see below) that

lim inf ε→0 ˆO\(D Rε ×(0,L)) f (∇u ε ) dx ≥ ˆO f (∇u) dx, (7.6) lim inf ε→0 λ ε ˆTrε g(∇u ε ) dx ≥ k ˆO g hom (∂ 3 v) ndx, (7.7) lim inf ε→0 ˆ(D Rε ×(0,L))\Tr ε f (∇u ε ) dx ≥ ˆO c f (S; v -u) ndx, (7.8) 
where g hom and c f are defined by (3.5) and (3.6). Collecting (7.6), (7.7), (7.8) we obtain (7.5) which, joined with (6.7), achieves the proof of Proposition 7.1.

Proof of (7.6). By (1.7) and ( 6.3) we have |D Rε × (0, L)| → 0, hence the sequence 1 O\(D Rε ×(0,L)) ∇u ε weakly converges in L p (O; R 3 ) toward ∇u. Assertion (7.6) then follows from the weak lower semicontinuity in L p (O; R 3 ) of the functional q → ´O f (q) dx.

Proof of (7.7). If k < +∞, by (1.10), (3.5), (6.7) and Lemma 6.2, we have:

lim inf ε→0 λ ε ˆTrε g(∇u ε ) dx ≥ lim inf ε→0 λ ε r 2 ε |S| ε 2 ˆghom (∂ 3 u ε ) dµ ε ≥ k ˆO g hom (∂ 3 v) ndx.
Otherwise, if k = +∞, it is enough to notice that λ ε ´Trε g(∇u ε ) dx is bounded from below by 0.

Proof of (7.8). If γ (p) = +∞ (in particular if p > 2), there is nothing to prove because then, by Proposition 6.1, v = u. From now on, we assume that 0 < γ (p) < +∞ (hence p ≤ 2). First, we show (see Lemma 8.1) that there exists an approximation (Ê u ε ) of u ε piecewise constant in x 3 satisfying

λ ε ˆTrε | " ∇Ê u ε | p dx ≤ λ ε ˆTrε |∇u ε | p dx, ˆO | " ∇Ê u ε | p dx ≤ ˆO |∇u ε | p dx, ˆ| Ê u ε rε | p + | Ê u ε Rε | p dµ ε ≤ C, Ê u ε rε µ ε nvL 3 O , Ê u ε Rε µ ε nuL 3 O weak * in M(O), lim inf ε→0 ˆ(D Rε ×(0,L))\Tr ε f (∇u ε ) dx ≥ lim inf ε→0 ˆ(D Rε ×(0,L))\Tr ε f ∞,p ( " ∇Ê u ε ) dx. (7.9) 
Next, we fix a positive real δ satisfying 1 < δ < 2, (

and define the set S -r δ ε rε by setting (U, α) = (S rε , r δ ε ) in

U -α := {(x 1 , x 2 ) ∈ U, dist ((x 1 , x 2 ), ∂U ) > α} , U +α := (x 1 , x 2 ) ∈ R 2 , dist ((x 1 , x 2 ), ∂U ) < α ∪ U. (7.11) 
Notice that by (1.8) we have, for ε small enough (see (6.3)),

D j rε ⊂ S j,-r δ ε rε ∀ j ∈ J ε . (7.12) 
We prove (see Lemma 8.3) that for a suitable choice of the sequence (R ε ) satisfying (1.7) (the choice of this sequence is determined by Lemma 8.2), there exists an approximation Û

u ε of Ê u ε verifying Û u ε = Û u ε rε = Ê u ε rε on S -r δ ε rε × (0, L), Û u ε = Û u ε Rε = Ê u ε Rε on ∂D Rε × (0, L), ˆ(D Rε ×(0,L))\Tr ε f ∞,p ( " ∇Ê u ε ) dx ≥ ˆ(D Rε ×(0,L))\(S -r δ ε rε ×(0,L) f ∞,p ( " ∇Û u ε ) dx + o(1). (7.13) 
The properties of Û u ε allow us to make good use of the capacitary problem (2.5). More precisely, by (6.2) and (7.13), for each (j, (7.11)). Therefore there holds, for all j ∈ J ε and for a.e. x 3 ∈ (0, L) (see (2.5))

x 3 ) ∈ J ε × (0, L), the function Û u ε takes the constant value Ê u ε j Rε (x 3 ) on ∂D j Rε × {x 3 } and the constant value Ê u ε j rε (x 3 ) on ∂S j,-r δ ε rε × {x 3 } (see
ˆDj Rε \S j,-r δ ε rε f ∞,p ( " ∇Û u ε )(x) dx 1 dx 2 ≥ cap f ∞,p S j,-r δ ε rε , D j Rε ; Ê u ε j rε (x 3 ) -Ê u ε j Rε (x 3 ) .
We deduce that

ˆ(D Rε ×(0,L))\S -r δ ε rε ×(0,L) f ∞,p ( " ∇Û u ε ) dx ≥ ˆL 0 j∈Jε ˆDj Rε \S j,-r δ ε rε f ∞,p ( " ∇Û u ε ) dx 1 dx 2 dx 3 ≥ ˆL 0 j∈Jε cap f ∞,p S j,-r δ ε rε , D j Rε ; Ê u ε j rε (x 3 ) -Ê u ε j Rε (x 3 ) dx 3 . (7.14) 
Because f ∞,p is positively homogeneous of degree p, we can apply (5.19) and, for each (j, x 3 ) ∈ J ε ×(0, L), obtain (see (2.5), (7.11))

cap f ∞,p S j,-r δ ε rε ,D j Rε ; Ê u ε j rε -Ê u ε j Rε = r 2-p ε cap f ∞,p S -r δ-1 ε , (R ε /r ε )D; Ê u ε j rε -Ê u ε j Rε = r 2-p ε ε 2 ε 2 r 2 ε |S| ˆSj rε cap f ∞,p S -r δ-1 ε , (R ε /r ε )D; Ê u ε j rε -Ê u ε j Rε dx 1 dx 2 . (7.15) 
Let us fix a bounded Lipschitz domain S such that

S ⊂ S. (7.16) 
For small ε's, there holds S ⊂ S -r δ-1 ε , therefore by (3.3), (5.13), (7.14), and (7.15) we have

ˆ(D Rε ×(0,L))\S -r δ ε rε ×(0,L) f ∞,p ( " ∇Û u ε ) dx ≥ r 2-p ε ε 2 ˆcap f ∞,p S , (R ε /r ε )D; Ê u ε rε -Ê u ε Rε dµ ε . (7.17) 
We then distinguish two cases. Case p < 2. Collecting (3.1), (5.12), (7.9), (7.13), and (7.17), we deduce that

lim inf ε→0 ˆ(D Rε ×(0,L))\Tr ε f (∇u ε ) dx ≥ γ (p) lim inf ε→0 ˆO cap f ∞,p S , R 2 ; Ê u ε rε -Ê u ε Rε dµ ε .
By applying Lemma 6.2 (ii) to the convex function j(.) = cap f ∞,p S, R 2 ; • which, for p < 2, has a growth of order p (see Lemma 5.3 and (5.19), (5.21)), taking (6.7) and (6.11) into account, we infer

lim inf ε→0 ˆ(D Rε ×(0,L))\Tr ε f (∇u ε ) dx ≥ γ (p) ˆO cap f ∞,p S , R 2 ; v -u ndx, (7.18) 
for all Lipschitz domain S satisfying (7.16). Fixing an increasing sequence (S n ) n∈N of Lipschitz domains such that S n ⊂ S and n∈N S n = S, substituting S n for S in (7.18) and passing to the limit as n → +∞, thanks to (5.13), (5.18) and to the Monotone Convergence Theorem, we get (7.8).

Case p = 2. We fix two positive reals r, R such that

rD ⊂ S ⊂ RD, (7.19) 
and specify the choice of S by setting S := rD.

By (8.19) we have R r R ε ≤ R ε , therefore we infer from (5.12), (5.13), (5.19), and (7.19) that

cap f ∞,2 (r ε rD, R ε D; ±1) = cap f ∞,2 Å r ε RD, R ε R r D; ±1 ã ≥ cap f ∞,2 Å r ε S, R ε R r D; ±1 ã ≥ cap f ∞,2 (r ε S, R ε D; ±1) . (7.21) 
We deduce from (3.6), (3.7), (5.36), and (7.21) that lim inf

ε→0 cap f ∞,2 (r ε rD, R ε D; ±1) ε 2 ≥ γ (2) c f ∞,2 (±1). (7.22) 
By (5.19) and (7.17) , there holds

ˆ(D Rε ×(0,L))\S -r δ ε rε ×(0,L) f ∞,p ( " ∇Û u ε ) dx ≥ cap f ∞,2 r ε rD, R ε D; 1 ε 2 ˆ|( Ê u ε rε -Ê u ε Rε ) + | 2 dµ ε + cap f ∞,2 r ε rD, R ε D; -1 ε 2 ˆ|( Ê u ε rε -Ê u ε Rε ) -| 2 dµ ε . (7.23) 
Thanks to (6.7), (6.11), and (7.22), by passing to the limit inferior in (7.23), taking (3.6), (3.7) and the lower semi-continuity property (6.5) into account, we obtain

lim inf ε→0 ˆ(D Rε ×(0,L))\S -r δ ε rε ×(0,L) f ∞,p ( " ∇Û u ε ) dx ≥ γ (2) ˆO Ä c f ∞,2 (1) 
|(v -u) + | 2 + c f ∞,2 (-1)|(v -u) -| 2 ä ndx = ˆO c f (S; v -u)ndx. (7.24) 
Joining (7.9), (7.13), (7.24), Assertion (7.8) is proved.

Upper bound

Proposition 7.2. Under the assumptions of Theorem 3.1, for all (u, v) ∈ W 1,p Γ0 (O) × V p , there exists a sequence (u ε ) such that

u ε u strongly in L p (O), u ε µ ε vnL 3 O weak * in M(O), lim sup ε→0 F ε (u ε ) ≤ Φ(u, v). (7.25) 
Proof. By density and diagonalization arguments, (see [7, pp. 424-429] for more details), we are reduced to prove that for all (u, v)

∈ (C 1 (O)) 2 such that Φ(u, v) < +∞, (7.26) 
there exists a sequence (u ε ) in W 1,p (O) (thanks to the truncature argument employed in [7, p. 428], we can forget the boundary constraint on Γ 0 ) such that

u ε u strongly in L p (O), u ε µ ε vnL 3 O weak * in M(O), lim sup ε→0 ˆO\Tr ε f (∇u ε )dx + λ ε ˆTrε g(∇u ε )dx ≤ Φ(u, v). (7.27) 
Accordingly, let us fix (u, v) ∈ (C 1 (O)) 2 satisfying (7.26). By (1.9), (3.5) and the strict convexity of g, there exists a unique field ϕ ∈ C(O; R 2 ) such that

g(ϕ 1 (x), ϕ 2 (x), ∂ 3 v(x)) = g hom (∂ 3 v(x)) ∀x ∈ O. (7.28) 
We fix any sequence (R ε ) satisfying (1.7). We denote by θ ε : " O → R the unique solution to the problem

min ߈ O f ∞,p ( " ∇θ(x 1 , x 2 )) dx 1 dx 2 , θ ∈ W 1,p ( " O), θ = 1 in S rε , θ = 0 in " O \ D Rε ™ .
Since f ∞,p is positively homogeneous of degree p, by (2.5) and (5.19) there holds, for all j ∈ J ε and

α ∈ R, ˆDj Rε f ∞,p (α " ∇θ ε ) dx 1 dx 2 = cap f ∞,p Ä S j rε , D j Rε ; α ä = cap f ∞,p (r ε S, R ε D; α) = r 2-p ε cap f ∞,p (S, R ε /r ε D; sgn(α)) |α| p . (7.29) 
We set

u ε (x) = θ ε (x 1 , x 2 )χ ε (x) + (1 -θ ε (x 1 , x 2 ))u(x), (7.30) 
where

χ ε (x) = j∈Jε S j rε v(s 1 , s 2 , x 3 ) ds 1 ds 2 + Ç S j rε ϕ(s 1 , s 2 , x 3 ) ds 1 ds 2 å (x 1 -(ω j ε ) 1 + x 2 -(ω j ε ) 2 ) 1 D j Rε (x 1 , x 2 ). (7.31) 
It is easy to check that the convergences stated in (7.27) hold true. We have

ˆO\Tr ε f (∇u ε )dx + λ ε ˆTrε g(∇u ε )dx := I ε1 + I ε2 + I ε3 ; I ε1 = ˆO\(D Rε ×(0,L)) f (∇u)dx, I ε2 = ˆ(D Rε ×(0,L))\Sr ε ×(0,L) f Ä (χ ε -u) " ∇θ ε + (1 -θ ε )∇u + θ ε ∇χ ε ä dx, I ε3 = λ ε ˆTrε g ∇χ ε dx. (7.32)
The proof of ( 

I ε3 ≤ k ˆO g hom (∂ 3 v)ndx. (7.35)
The proof of (7.33) is straightforward. Proofs of (7.34). Assuming first that γ (p) < +∞ (hence p ≤ 2 and (θ ε ) is bounded in W 1,p ( " O)) and applying (8.22) to (h, A) = (f, D Rε × (0, L) \ S rε × (0, L)), noticing that by (1.5) there holds 1) and |θ ε | ≤ 1 (see (5.5)), we get

|D Rε | ≤ C r 2 ε ε 2 = o(
I ε2 - ˆ(D Rε ×(0,L))\Sr ε ×(0,L) f Ä (χ ε -u) " ∇θ ε ä dx = o(1), (7.36) 
and then deduce from (8.11) that

I ε2 - ˆ(D Rε ×(0,L))\Sr ε ×(0,L) f ∞,p (χ ε -u) " ∇θ ε dx = o(1). (7.37)
It follows from (7.37), (8.22) and the estimate (see (7.31)) 

|(χ ε -u)(x) -(v -u)(ω j ε , x 3 )| ≤ CR ε in D j Rε × (0, L), ∀j ∈ J ε , that I ε2 - j∈Jε ˆ(D j Rε ×(0,L))\Sr ε ×(0,L) f ∞,p ((v -u)(ω j ε , x 3 ) " ∇θ ε ) dx = o(1
ˆ(D j Rε ×(0,L))\S j rε ×(0,L) f ∞,p ((v -u)(ω j ε , x 3 ) " ∇θ ε )dx = j∈Jε ˆL 0 cap f ∞,p S rε , R ε D; (v -u)(ω j ε , x 3 ) dx 3 = r 2-p ε ε 2 ˆcap f ∞,p S, R ε /r ε D; ζ ε (x) dµ ε , (7.39) 
where 

ζ ε (x) := j∈Jε (v -u)(ω j ε , x 3 )1 D j Rε (x 1 , x 2 ). ( 7 
-(v -u)| ≤ Cε holds true in D Rε × (0, L), because v -u is continous. We deduce that cap f ∞,p S, V ; ζ ε (x) -cap f ∞,p S, V ; v -u ≤
I ε2 ≤ γ (p) ˆO cap f ∞,p S, V ; v -u ndx. (7.42)
Let us substitute V n for V in (7.42), where (V n ) denotes an increasing sequence of bounded open subsets of R 2 such that S ⊂ V 1 and n∈N V n = R 2 . Noticing that by (5.12) and (5.16) there holds cap f ∞,p S, 

V n ; v - u ≤ cap f ∞,p S, V 1 ; v -u and lim n→+∞ cap f ∞,p S, V n ; v -u = cap f ∞,p S,
I ε2 ≤ γ (p) lim n→+∞ ˆO cap f ∞,p S, V n ; v -u ndx = γ (p) ˆO cap f ∞,p S, R 2 ; v -u ndx = ˆO c f (S; v -u) ndx. (p < 2) (7.43)
The proof of (7.34) is achieved in the case p < 2, 0 < γ (p) < +∞. Case p = 2, γ (2) < +∞. By (7.39) and by the second line of (5.19), we have

j∈Jε ˆ(D j Rε ×(0,L))\S j rε ×(0,L) f ∞,p ((v -u)(ω j ε , x 3 ) " ∇θ ε ) dx = cap f ∞,2 r ε S, R ε D; 1 ε 2 j∈Jε ˆ|ζ ε | 2 1 ζε>0 dµ ε + cap f ∞,2 r ε S, R ε D; -1 ε 2 j∈Jε ˆ|ζ ε | 2 1 ζε<0 dµ ε .
(7.44) By (5.36) there holds 

lim ε→0 cap f ∞,2 r ε S, R ε D; ±1 ε 2 = γ (2) c f ∞,2 ( 
||ζ ε | 2 1 ζε>0 -|v -u| 2 1 v-u>0 | ≤ Cε in D Rε × (0, L), ||ζ ε | 2 1 ζε<0 -|v -u| 2 1 v-u<0 | ≤ Cε in D Rε × (0, L). ( 7 
I ε2 = γ (2) c f ∞,2 (1) ˆO |v -u| 2 1 v-u>0 ndx + γ (2) c f ∞,2 (-1) ˆO |v -u| 2 1 v-u<0 ndx = ˆO c f (S, v -u) ndx. (p = 2)
The proof of (7.34) is achieved in the case p = 2, 0 < γ (2) < +∞. Case γ (p) = +∞. We choose a sequence (R ε ) satisfying, besides (1.7), the estimate

R p ε γ (p) ε (r ε ) 1.
(7.47) By (7.26) there holds u = v and by (7.31) we have |χ ε -u| < CR ε in D Rε . Taking (1.9) into account, we infer that 

ˆ(D Rε ×(0,L))\Sr ε ×(0,L) f Ä (χ ε -u) " ∇θ ε ä dx ≤ CR p ε ˆO | " ∇θ ε | p dx ≤ CR p ε γ (p) ε (r ε ). ( 7 
λ ε ˆTrε g(∇χ ε ) dx = lim sup ε→0 λ ε r 2 ε |S| ε 2 ˆg(ϕ, ∂ 3 v) dµ ε = k ˆO g(ϕ, ∂ 3 v)ndx = k ˆO g hom (∂ 3 v) ndx.
Otherwise, if k = +∞, then by (7.26) we have ∂ 3 v = 0, therefore ϕ = 0 (because by (1.9) there holds g(0) = 0) and χ ε = 0. Accordingly, I ε3 = 0 and (7.35) is proved.

8 Appendix.

8.1 Some technical lemmas related to the lower bound Lemma 8.1. Assume that 1 < p < 3, and let (u ε ) be a sequence satisfying (6.1), (6.7). Then there exists a sequence (Ê u ε ) verifying (7.9).

Proof. We fix two sequences (a ε ) and (b ε ) of positive reals such that 

1 a ε b ε , a ε b 2 ε R 2 ε ε 2 . ( 8 
= l 0,ε < l 1,ε < • • • < l mε,ε < l mε+1,ε = L and Å k - 1 4 ã a ε ≤ l k,ε ≤ Å k + 1 4 ã a ε , m ε ∼ L a ε , ˆHε |∇u ε | p dx ≤ C b ε a ε ˆO |∇u ε | p dx (= o(1)), ˆHε | u ε rε | p + | u ε Rε | p dµ ε ≤ C b ε a ε ˆ| u ε rε | p + | u ε Rε | p dµ ε (= o(1)), H ε := D Rε × mε k=1 Å l k,ε - 1 2 b ε ; l k,ε + 1 2 b ε ã ∩ O. (8.2)
Then, given a sequence (ϕ ε ) ⊂ D(0, L) such that

ϕ ε = 1 in (0, L) \ mε k=1 Å l k,ε - 1 2 b ε ; l k,ε + 1 2 b ε ã , ϕ ε = 0 on mε+1 k=0 {l k,ε }, 0 ≤ ϕ ε ≤ 1, |ϕ ε | < C b ε , (8.3) 
we set

Ê u ε (x 1 , x 2 , x 3 ) := mε+1 k=1 Ç (l k-1,ε ;l k,ε ) ϕ ε (s 3 )u ε (x 1 , x 2 , s 3 )ds 3 å 1 (l k-1,ε ;l k,ε ) (x 3 ), (8.4) 
and claim that the sequence (Ê u ε ) defined by (8.4) satisfies (7.9). By Jensen's inequality and (2.1) we have, since 0

≤ ϕ ε ≤ 1, ˆTrε | " ∇Ê u ε | p dx = mε+1 k=1 ˆSrε ˆ(l k-1,ε ;l k,ε ) (l k-1,ε ;l k,ε ) ϕ ε (s 3 ) " ∇u ε (x 1 , x 2 , s 3 )ds 3 p dx = mε+1 k=1 ˆSrε ˆ(l k-1,ε ;l k,ε ) (l k-1,ε ;l k,ε ) " ∇u ε (x 1 , x 2 , s 3 ) p ds 3 dx ≤ ˆTrε |∇u ε | p dx,
which proves the first inequality of the first line of (7.9). The second one is obtained in the same way.

Since the sequence (u ε ) satisfies (6.1), we can apply Proposition (6.1). We infer from (6.6) and (8.4) that

ˆ| Ê u ε rε | p + | Ê u ε Rε | p dµ ε ≤ C. (8.5)
The estimate stated in the second line of (7.9) is proved. By applying Lemma 6.2, we deduce from (6.11) and (8.5) that

Ê u ε rε µ ε wnL 3 O weak- * in M(O), (8.6) 
up to a subsequence, for some measurable function w such that wn ∈ L p (O). We have to prove that wn = vn a.e. in O. By (6.7), the sequence ( u ε rε µ ε ) weak- * converges in M(O) to vnL 3 O . Since the support of (1 -ϕ ε ) u ε rε is included in H ε and since by (8.3) there holds 0 ≤ ϕ ε ≤ 1, we infer from (6.6), (8.1) and the third line of (8.2) that the sequence ((1 -ϕ ε ) u ε rε µ ε ) weak- * converges in M(O) to 0. It then follows that

ϕ ε u ε rε µ ε vnL 3 O weak- * in M(O). (8.7) 
Let us fix ψ ∈ C(O) and set On the other hand, by Fubini Theorem, (6.2) and (8.4) there holds

ψ ε (x) := mε+1 k=1 Ç (l k-1,ε ;l k,ε ) ψ(x 1 , x 2 , s 3 )ds 3 å 1 (l k-1,ε ;l k,ε ) (x 3 ). ( 8 
Ê u ε j rε (x 3 ) = Ç (l k-1,ε ;l k,ε ) ϕ ε (s 3 ) u ε j rε (s 3 )ds 3 å ∀x 3 ∈ (l k-1,ε ; l k,ε ), ∀j ∈ J ε ,
therefore, by (3.3), (6.2), (8.4), and (8.8), we have

ˆψε ϕ ε u ε rε dµ ε = j∈Jε ε 2 r 2 ε |S| ˆSj rε ×(0,L) ψ ε (x)ϕ ε (x 3 ) u ε j rε (x 3 )dx = j∈Jε mε+1 k=1 ε 2 r 2 ε |S| ˆSj rε dx 1 dx 2 ˆ(l k-1,ε ;l k,ε ) Ç (l k-1,ε ;l k,ε ) ψ(x 1 , x 2 , s 3 )ds 3 å ϕ ε (x 3 ) u ε j rε (x 3 )dx 3 = j∈Jε mε+1 k=1 ε 2 r 2 ε |S| ˆSj rε dx 1 dx 2 ˆ(l k-1,ε ;l k,ε ) dx 3 Ç (l k-1,ε ;l k,ε ) ψ(x 1 , x 2 , s 3 )ds 3 å Ç (l k-1,ε ;l k,ε ) ϕ ε (s 3 ) u ε j rε (s 3 )ds 3 å = j∈Jε mε+1 k=1 ε 2 r 2 ε |S| ˆSj rε ×(l k-1,ε ;l k,ε ) ψ ε (x) Ê u ε j rε (x 3 )dx = ˆψε Ê u ε rε dµ ε . (8.10) 
Joining (8.9) and (8.10), we deduce that ´O ψvndx = ´O ψwndx and then, by the arbitrary choice of ψ, infer that nv = nw a.e. in O and that the convergence (8.6) takes place for the entire sequence ( Ê u ε rε µ ε ). The first of the two convergences stated in the third line of (7.9) is proved. The second one is obtained in the same manner. Let us prove the lower bound stated in the fourth line of (7.9). By (2.3) and Hölder's inequality, for any measurable subset A ⊂ R 3 , there holds

ˆA |f ∞,p (ϕ) -f (ϕ)| dx ≤ α ˆA(1 + |ϕ| β )dx ≤ α Å |A| + |A| 1-β p |ϕ| β p L p (A) ã ∀ϕ ∈ L p (A),
for some positive reals α , β ∈ (0, p), therefore

ˆ(D Rε ×(0,L))\Tr ε |f ∞,p (∇u ε ) -f (∇u ε )| dx ≤ C Ñ R 2 ε ε 2 + Å R 2 ε ε 2 ã 1-β p |∇u ε | β p L p ((D Rε ×(0,L))\Tr ε ) é , (8.11) 
yielding, by (6.6), 

lim ε→0 ˆ(D Rε ×(0,L))\Tr ε |f ∞,p (∇u ε ) -f (∇u ε )| dx = 0. ( 8 
(x) = ϕ ε (x 3 )u ε (x) in O \ H ε and |ϕ ε | ≤ C
bε , hence by (1.9) there holds 

ˆ(D Rε ×(0,L))\Tr ε |f ∞,p (∇u ε ) -f ∞,p (∇(ϕ ε (x 3 )u ε (x)))|dx ≤ ˆHε |f ∞,p (∇u ε )| + |f ∞,p (∇(ϕ ε (x 3 )u ε (x)))|dx ≤ C ˆHε |∇u ε | p + u ε (x) b ε p dx. ( 8 
ňH ε |u ε (x)| p * dx ã 1 p * ≤ ňO |u ε (x)| p * dx ã 1 p * ≤ C|u ε | W 1,p (O) , 1 p * = 1 p - 1 3 . ( 8 
ˆHε u ε (x) b ε p dx ≤ 1 b p ε ňH ε |u ε (x)| p * dx ã p p * L 3 (H ε ) (1-p p * ) ≤ C b p ε |u ε | p p * W 1,p (O) Å R 2 ε ε 2 b ε a ε ã p 3 ≤ C Å R 2 ε ε 2 1 a ε b 2 ε ã p 3 . (8.15)
We deduce from the second line of (8.2), (8.13) and (8.15) that

ˆ(D Rε ×(0,L))\Tr ε |f ∞,p (∇u ε ) -f ∞,p (∇(ϕ ε (x 3 )u ε (x)))|dx ≤ C b ε a ε ˆO |∇u ε | p dx + C Å R 2 ε ε 2 1 a ε b 2 ε ã p 3 ,
and then from (6.6) and (8.1) that

lim ε→0 ˆ(D Rε ×(0,L))\Tr ε |f ∞,p (∇u ε ) -f ∞,p (∇(ϕ ε (x 3 )u ε (x)))|dx = 0. ( 8.16) 
Since ϕ ε = 0 on mε+1 k=0 {l k,ε }, we have

(l k-1,ε ;l k,ε ) ∂ 3 (ϕ ε (s 3 )u ε (x 1 , x 2 , s 3 )) ds 3 = 0 ∀k ∈ {1, ..., m ε + 1},
therefore by (2.1) and (8.4) there holds, for all k ∈ {1, ..., m ε + 1} and all x 3 ∈ (l k-1,ε ; l k,ε ),

(l k-1,ε ;l k,ε ) ∇(ϕ ε (s 3 )u ε (x 1 , x 2 , s 3 )) ds 3 = (l k-1,ε ;l k,ε ) " ∇(ϕ ε (s 3 )u ε (x 1 , x 2 , s 3 )) ds 3 = " ∇ Ç (l k-1,ε ;l k,ε ) ϕ ε (s 3 )u ε (x 1 , x 2 , s 3 ))ds 3 å = " ∇Ê u ε (x 1 , x 2 , x 3 ).
(8.17)

We deduce from Jensen's inequality and (8.17) that

ˆ(D Rε ×(0,L))\Tr ε f ∞,p (∇(ϕ ε (s 3 )u ε (x 1 , x 2 , s 3 ))) dx 1 dx 2 ds 3 = ˆDRε \Sr ε dx 1 dx 2 mε+1 k=1 ˆ(l k-1,ε ;l k,ε ) f ∞,p (∇(ϕ ε (s 3 )u ε (x 1 , x 2 , s 3 ))) ds 3 ≥ ˆDRε \Sr ε dx 1 dx 2 mε+1 k=1 (l k,ε -l k-1,ε )f ∞,p Ç (l k-1,ε ;l k,ε ) ∇(ϕ ε (x 3 )u ε (x 1 , x 2 , s 3 )) ds 3 å = ˆDRε \Sr ε dx 1 dx 2 mε+1 k=1 ˆ(l k,ε ,l k-1,ε ) f ∞,p ( " ∇Ê u ε (x 1 , x 2 , x 3 ))dx 3 = ˆ(D Rε ×(0,L))\Tr ε f ∞,p ( " ∇Ê u ε ) dx. (8.18)
The estimate stated in the last line of (7.9) results from (8.12), (8.16) 

ˆ(D Rε \D Rε/2 )×(0,L) |∇u ε | p dx = 0, R r R ε ≤ R ε if p = 2 and 0 < γ (2) < +∞. ( 8 

.19)

Proof. We fix a sequence of positive real numbers (Q ε ) satisfying

r ε Q ε ε, 1 γ (p) ε (Q ε ) (respectively, Q ε R ε if p = 2 and 0 < γ (2) < +∞).
where γ ε (.) is defined by (1.7) (if p < 2 and r ε ε 2 2-p , we can set for instance

Q ε = ε h with 1 < h < 2 2-p
and choose any sequence (Q ε ) such that r ε Q ε ε otherwise). Next, we choose a sequence of positive integers (q ε ) such that lim ε→0 q ε = +∞, r ε rε ) × (0, L). Accordingly, by (3.3), the last line of (6.4), (6.6), and (7.9), we have ˆ(Sr ε \S -r δ ε rε )×(0,L)

2 qε Q ε ε (respectively, r ε 2 qε Q ε R ε if p = 2 and 0 < γ (2) < +∞). For each ε > 0, the family of sets (D 2 m Qε \ D 2 m-1 Qε ) m∈N,1≤m≤qε , where D 2 m Qε is defined by setting R ε = 2 m Q ε in (6.3), is disjoint, therefore qε m=1 ˆ(D 2 m Qε \D 2 m-1 Qε )×(0,L) |∇u ε | p dx ≤ ˆO |∇u ε | p dx ≤ C, because (u ε ) is bounded in W 1,p (O). Hence, for each ε > 0, there exists an integer m ε such that 1 ≤ m ε ≤ q ε and ˆ(D 2 mε Qε \D 2 mε-1 Qε )×(0,L) |∇u ε | p dx ≤ C q ε . The sequence (R ε ) defined by R ε = 2 mε Q ε satisfies (1.
f ∞,p ( " ∇Û u ε ) dx ≤ C r 2 ε ε 2 ˆÄ| " ∇Ê u ε | p + |Ê u ε -Ê u ε rε | p /r δp ε ä dµ ε ≤ C Ä 1 + r p(1-δ) ε ä r 2 ε ε 2 ˆ|" ∇Ê u ε | p dµ ε ≤ C Ä 1 + r p(1-δ) ε ä r 2 ε ε 2 ˆ|∇u ε | p dµ ε ≤ Cr 2-p ε ε 2 r p(2-δ) ε .
Since we have assumed that γ (p) < +∞ and 1 < δ < 2 (see (1 The estimate stated in the second line of (7.13) results from (8.28) and (8.29).

Remark 8.1. De Giorgi's slicing argument [START_REF] Giorgi | Sulla convergenza di alcune successioni d'integrali del tipo dell'aera[END_REF] is based on the following observation: if for each ε > 0, (A i ε ) i∈{1,...,lε} denotes a family of disjoint µ-measurable subsets of a set A equipped with a measure µ, and if (f ε ) is a sequence in L 1 µ (A) such that |f ε | L 1 µ (A) ≤ C, then for each ε > 0, there exists i ε ∈ {1, ..., l ε } such that ´Aiε ε |f ε |dµ ≤ C lε . This argument is especially useful when non uniformly integrable sequences bounded in L 1 µ are considered. We employ this argument in the proof of Lemma 8.1 to establish the existence of the set H ε satisfying (8.2) and in the proof of Lemma 8.2.

Proof of Lemma 5.8

The assertion (i) of Lemma 5.8 is simply obtained by repeating the proof of Lemma 5.7 (i): the first line of (5.34) follows from (3.1), (5.20), (5.24), (5.25) and the second line is obtained in a similar manner.

To prove the assertion (ii), we fix two sequences of positive reals (r ε ) and (R ε ) satisfying (1.7), (3.1). By (5.34), the sequence

Å cap f ∞,2
(rεS,R ε D;±1) ε 2 ã is bounded from above and below by positive reals, hence after possibly extracting a subsequence we can suppose that lim ε→0 cap f ∞,2 (r ε S, R ε D; ±1) ε 2 = γ (2) c(±1), (8.30) for some positive reals c(±1). The proof of Lemma 5.8 is achieved provided we show that c(±1) = c f ∞,2 (±1), (8.31) and that the reals c f ∞,2 (±1) are independent of S. To that aim, we establish the two lemmas. The proofs of lemmas 8.4 and 8.5 are situated at the end of Section 8.2. Since γ (2) < +∞, we have r ε << ε 2 << ε, hence the sequence R ε := ε 2 satisfies (1.7). Noticing that by (5.19) there holds cap f ∞,2 (r ε S, ε 2 D; ±1) = cap f ∞,2 ε 3 r ε S, ε 5 D; ±1 , and setting rε := ε 3 r ε , we deduce from Lemma 8.5 that lim ε→0 cap f ∞,2 (r ε S, ε 2 D; ±1) 2) c(±1).

ε 2 = lim ε→0 cap f ∞,2 (r ε S, ε 5 D; ±1) ε 2 = γ (
(8.33)

The assumption γ (2) < +∞ also implies that r ε << ε 3 , hence by (1.7) there holds lim ε→0 γ (2) ε (r ε ) = lim O ⊂ 1 ε D provided ε is small enough, hence by (5.12) there holds:

cap f ∞,2 (r ε S, R ε D; ±1) ε 2 ≥ cap f ∞,2 (r ε S, " O; ±1) ε 2 ≥ cap f ∞,2 (r ε S, 1 ε D; ±1) ε 2
.

By passing to the limit as ε → 0 in the last inequalities, thanks to (5.35), (8.30) and (8.37), we get γ (2) c(±1) ≥ γ (2) c f ∞,2 (±1) ≥ γ (2) c(±1), and infer (8.31). It remains to show that c f ∞,2 (1) and c f ∞,2 (-1) are independent of the choice of S. To that aim, we fix two positive reals r, R such that rS ⊂ D ⊂ RS. By (5.13) and (5.19), there holds cap f ∞,2 (r ε S,

R ε r D; ±1) ε 2 ≤ cap f ∞,2 (r ε D, R ε D; ±1) ε 2 ≤ cap f ∞,2 (r ε S, R ε R D; ±1) ε 2
.

By (8.32), the first and third terms of the above double inequality converge to γ (2) c f ∞,2 (±1), therefore

c f ∞,2 (±1) = 1 γ (2) lim ε→0 cap f ∞,2 (r ε D, R ε D; ±1) ε 2 .
The proof of Lemma 5.8 is achieved.

Proof of Lemma 8.4. We revisit the proofs of propositions = γ (2) c"(±1), (8.42) for some positive reals c"(±1). We just have to prove that c"(±1) = c(±1). To this purpose, we repeat the argument of the proof of Lemma 8.4, substituting (8.42) for (8.30): we find that the conclusions of propositions 7.1 and 7.2 also hold true for the last mentioned subsequence if we replace Φ c by Φ c" . It follows that Φ c = Φ c" , hence c(±1) = c"(±1).

ε

  (r ε )) defined by (1.7) is convergent and setγ (p) := lim ε→0 γ (p) ε (r ε ) ∈ [0, +∞]. (3.1)

Lemma 5 . 8 .

 58 Assume that p = 2, let S be a bounded connected Lipschitz open subset of R 2 such that 0 ∈ S, and let (r ε ) and (R ε ) be any sequences of positive reals satisfying (1.7), (3.1).

Lemma 6 . 2 .

 62 are defined, respectively, by (2.1) and (3.1).The next Lemma states a lower bound inequality for convex functionals on measures. Let O be an open subset of R N and let µ ε and µ be bounded Radon measures in O such that µ ε weak * converges in M(O) toward µ and f ε a sequence of µ ε -measurable functions such that sup ε ´O |f ε | p dµ ε < +∞. Then i) the sequence of measures (f ε µ ε ) is weak * relatively compact in M(O) and every cluster point ν is of the form ν = f µ for some f ∈ L p µ .

  .7), (3.1), (7.10)), we inferlim ε→0 ˆ(Sr ε \S -r δ ε rε )×(0,L) f ∞,p ( " ∇Û u ε ) dx = 0.(8.29)

Lemma 8 . 4 .Lemma 8 . 5 .

 8485 Assume (8.30) and let Φ c denote the functional defined by substituting c(±1) for c f ∞,2 in (3.7). Then the results deduced from propositions 7.1 and 7.2 by substituting Φ c for Φ hold true. Assume(8.30). Thenlim ε→0 cap f ∞,2 (r ε S, R ε D; ±1) ε 2 = γ (2) c(±1) for all sequence (R ε ) satisfying (1.7).(8.32) 

ε→0 1 ε 2 |

 2 log(ε 3 r ε )| = lim ε→0 1 ε 2 | log r ε | = γ(2) . (8.34)Moreover, we haverε ε 5 ε and γ (2) ε (ε 5 )> >1.(8.35)By(8.34) and (8.35), the sequences (r ε ) and (ε 5 ) (in place of (r ε ) and (R ε )) satisfy the assumptions of Lemma 5.8. By (8.33), the assertion deduced from (8.30) by substituting (r ε , ε 5 ) for (r ε , R ε ) holds true. Therefore we can apply Lemma 8.5 with (r ε , ε 5 ) in place of (r ε , R ε ). We obtainlim ε→0 cap f ∞,2 (ε 3 r ε S, R ε D; ±1) ε 2 = γ (2) c(±1) for all (R ε ) s.t. rε R ε ε and γ (2) ε (R ε ) > > 1.(8.36)Choosing R ε = ε 2 in (8.36), taking(5.19) into account, we inferlim ε→0 cap f ∞,2 (r ε S, 1 ε D; ±1) ε 2 = lim ε→0 cap f ∞,2 (ε 3 r ε S, ε 2 D; ±1) ε 2 = γ (2) c(±1). (8.37) By (1.8) we have R ε D ⊂ "

F 2 ã

 2 the limit inferior as ε → 0 in Formula(7.23), which also holds true, thanks to(8.38) we findlim inf ε→0 ˆ(D Rε ×(0,L))\S -r δ ε rε ×(0,L) f ∞,p ( " ∇Û u ε ) dx ≥ γ (2) ˆO c(1)|(v -u) + | 2 + c(-1)|(v -u) -| 2 ndx, ε (u ε ) ≥ Φ c (u, v). (8.40) As regards Proposition 7.2), we set R ε = R ε . Then, substituting (8.30) for (7.45) and repeating the argument of the proof of Proposition 7.2, we find that lim sup ε→0F ε (u ε ) ≤ Φ c (u, v).(8.41)Lemma 8.4 is proved.Proof of Lemma 8.5. Let us fix a sequence (R " ε ) satisfying (1.7). By Lemma 5.8 (i), the estimates deduced from (5.34) by substituting R " ε for R ε are satisfied. Hence the sequenceÅ cap f ∞,2(rεS,R " ε D;±1) ε is bounded from above and below by positive reals. After possibly extracting a subsequence we can assume that besides (8.30), the following estimate is satisfied: lim ε→0 cap f ∞,2 (r ε S, R " ε D; ±1) ε 2

  .40)We distinguish then two cases. Case p < 2, γ (p) < +∞. Let us fix some bounded open subset V of R 2 such that S ⊂ V . For small ε's there holds V ⊂ R ε /r ε D, hence by (5.12) there holds cap f ∞,p S, R ε /r ε D; ζ ε (x) ≤ cap f ∞,p S, V ; ζ ε (x) ,

	therefore by (3.1), (7.38) and (7.39) we have, since 0 < γ (p) < +∞,	
	lim sup	I ε2 ≤ γ (p) lim sup	ˆcap f ∞,p	S, V ; ζ ε (x) dµ ε .	(7.41)
	ε→0	ε→0			
	By Lemma 5.3 (i), the mapping cap f ∞,p S, V ; . is locally Lipschitz continuous and by (7.40) the es-
	timate |ζ ε				

  Cε in D Rε and then infer from (6.11) and (7.41) that

	lim sup
	ε→0

  If k < +∞, noticing that by(7.31) there holds |∇χ ε -(ϕ 1 , ϕ 2 , ∂ 3 v)| ≤ cr ε in T rε , we

	.48)
	It follows then from (7.36), (7.48), and (7.47) that lim ε→0 I ε2 = 0.
	Proof of (7.35). deduce from (1.10), (6.11), and (7.28) that
	lim sup
	ε→0

  .1)By means of De Giorgi's slicing argument (see Remark 8.1), we can choose for each ε a finite sequence (l k,ε ) k∈{1,...,mε} such that 0

  .8) It is easy to check that |ψ -ψ ε | L ∞ (O) ≤ Ca ε 1 (see (8.1), (8.2)), consequently by (8.6) and (8.7) we have lim ε→0 ˆψε ϕ ε u ε rε dµ ε = ˆO ψvndx, lim ε→0 ˆψε Ê u ε rε dµ ε = ˆO ψwndx.

	(8.9)

  .13) Since 1 < p < 3, the space W 1,p (O) is continuously imbedded in L p * (O) (see[START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations Universitext[END_REF] Corollary 9.14]), therefore

  and(8.18).The proof of the next Lemma relies on De Giorgi's slicing argument (see Remark 8.1).

Lemma 8.2. Let (u ε ) be a bounded sequence in W 1,p (O), and let (R ε ) be an arbitrary sequence satisfying (1.7). Let r, R be two positive reals such that rD ⊂ S ⊂ RD. Then, there exists a sequence (R ε ) satisfying (1.7) and lim sup ε→0

  Rε ×(0,L))\Tr ε f ∞,p " ∇Ê u ε -f ∞,p " ∇Û u ε dx = 0. (8.28)On the other hand, by (1.9), (8.20) and (8.21) there holdsf ∞,p ( " ∇Û u ε ) ≤ C | " ∇Ê u ε | p + |Ê u ε -Ê u ε rε | p /r δp ε in (S rε \ S

	then deduce from (8.19) that				
	lim ε→0	| " ∇(Ê u ε -Û u ε )| p Eε = 0;	lim ε→0	| " ∇Ê u ε | p Eε = 0,	(8.27)
	and infer from (8.24) and (8.27) that			
	lim ε→0 ˆ(D -r δ ε	

[START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effect[END_REF] 

and

(8.19)

.

Lemma 8.3

. Assume that 0 < γ (p) < +∞, let (u ε ) be a sequence satisfying (6.1), (R ε ) a sequence of positive reals verifying (1.7) and (R ε ) a sequence of positive reals satisfying (1.7) and

(8.19) 

in accordance with Lemma 8.2. Let Ê u ε be defined by

(8.4)

. Then, there exists an approximation Û u ε of Ê u ε verifying (7.13).

  [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effect[END_REF].1 and 7.2, substituting the assumption (8.30) for(5.36). Starting with Proposition 7.1, we fix some positive reals r and R verifying rD ⊂ S ⊂ RD and choose, in accordance with Lemma 8.2, a sequence (R ε ) satisfying (1.7) and(8.19). The proof then remains unchanged until formula(7.22) which, by virtue of (8.30) becomes lim inf ε→0 cap f ∞,2 (r ε rD, R ε D; ±1) ε 2 ≥ γ(2) c(±1).
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Proof. Fixing a positive real δ such that 1 < δ < 2 and two functions ζ ε , ξ ε ∈ C ∞ (O) such that

where the set

is defined by (7.11), we set

The function Û u ε coincides with Ê u ε Rε on ∂D Rε × (0, L) and with Ê u ε rε on S -r δ ε rε × (0, L), hence by (6.2)

× (0, L), as stated in the first line of (7.13). Let us recall (see [START_REF] Dacorogna | Direct method in the calculus of variations[END_REF]Proposition 2.32]) that any convex function h on R 3 satisfying (1.9) also verifies

hence by Hölder inequality, for any bounded measurable set A ⊂ R 3 and all ϕ, ϕ ∈ L p (A), there holds

Applying (8.22) to h = f ∞,p and A = (D Rε × (0, L)) \ T rε , setting

we infer

On the other hand, by (8.20) and (8.21) we have

The next estimate is obtained in a similar way as the fifth estimate of (6.4):

Joining (8.4), (8.25) and (8.26), we obtain