
HAL Id: hal-00801952
https://hal.science/hal-00801952

Submitted on 18 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometric optics expansions for linear hyperbolic
boundary value problems and optimality of energy

estimates for surface waves.
Antoine Benoit

To cite this version:
Antoine Benoit. Geometric optics expansions for linear hyperbolic boundary value problems and
optimality of energy estimates for surface waves.. Differential and integral equations, 2014, 27 (5/6),
pp.531-562. �hal-00801952�

https://hal.science/hal-00801952
https://hal.archives-ouvertes.fr


Geometric optics expansions for linear hyperbolic

boundary value problems and optimality of

energy estimates for surface waves.

Antoine Benoit
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Abstract

In this article we are interested in energy estimates for initial boundary
value problem when surface waves occur that is to say when the uniform
Kreiss Lopatinskii condition fails in the elliptic region or in the mixed
region. More precisely we construct rigorous geometric optics expansions
for elliptic and mixed frequencies and we show using those expansions
that the instability phenomenon is higher in the case of mixed frequencies
even if the uniform Kreiss Lopatinskii condition does not fail on hyperbolic
modes. As a consequence this result allow us to give a classification of
weakly well posed initial boundary value problems according to the region
where the uniform Kreiss Lopatinskii condition degenerates.

AMS subject classification : 35L04, 78A05

1 Introduction

In this article we will construct rigorous geometric optics expansions for solu-
tions to a linear hyperbolic initial boundary value problem (ibvp in short) with
constant coefficients.
The uniform Kreiss-Lopatinskii condition (UKL in short) is the main point in
the study of initial boundary value problem. Indeed it is a necessary and suf-
ficient condition for strong well-possedness of the ibvp. This condition due to
Kreiss in [9] means that in the normal modes analysis no stable mode satisfies
the homogeneous boundary conditions. In this article we are interested in ibvp
for which this condition is not satisfied and fails for some ”boundary” frequen-
cies. The description of those frequencies will be made precise in section 2.2.
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Geometric optics expansions for the ibvp are also highly linked to the structure
of the resolvent matrix of the ibvp for boundary frequencies. Let us recall that
thanks to the block structure of the resolvent equation (see theorem 2.1,[4], [3])
we know that there are four different kinds of frequencies, namely : elliptic,
hyperbolic, mixed or glancing.
There are already many articles about geometric optics expansions for ibvp
according to the frequency of oscillations in the source term, the fact that
the ibvp is characteristic or not, the stability assumption on the boundary
... For instance, on the one hand, under the uniform Kreiss-Lopatinskii con-
dition (UKL), Williams treats in [17] the case of a noncharacteristic ibvp for all
possible frequencies, and Lescarret [11] deals with characteristic problems for
a mixed-frequency. On the other hand, Marcou [12] and Coulombel-Guès [7]
build expansions without UKL but for an elliptic frequency and a hyperbolic
frequency respectively.
In this paper we are interested in noncharacteristic ibvp, when UKL fails in the
elliptic region or in the mixed region of the boundary of the frequencies set (see
section 2.1 for more details). So this paper will generalize Marcou’s work to non
homogenous problems and generalize Lescarret’s work to problems for which
UKL is violated. To some extent this paper will conclude the construction of
geometric optics expansion for weakly well-posed ibvp.
The main consequence of the geometric optics expansions will be to describe
the influence of the region in which UKL fails on the energy estimate that we
have on the solution of the ibvp.
Indeed, in [9] Kreiss shows that UKL is a necessary and sufficient condition for
the strong well-possedness of the corresponding ibvp in L2. The corresponding
energy estimate associated to the solution u is of the form :

γ‖u‖2L2
γ

+ ‖u|xd=0‖2L2
γ
≤ C

(
1

γ
‖f‖2L2

γ
+ ‖g‖2L2

γ

)
,

where f is the source term in the interior and g the source term on the boundary.
Then, Sablé-Tougeron showed in [16] that if UKL fails at the order one in the
elliptic region of the boundary of the space of frequencies, it is possible to
consider solutions in a weaker sense. That is to say that there exists a unique
solution of the ibvp that satisfies an energy estimate with a loss of one derivative
on the boundary.
At last Coulombel treated in a more recent work cases where UKL is violated in
the mixed region and in the hyperbolic region and showed two different energy
estimates ([6] [5] ). In the mixed region he proved that there is a loss of one
derivative on the boundary (as in Sablé-Tougeron’s work) and also a loss of half
a derivative in the interior. Whereas when UKL fails in the hyperbolic region,
there is a loss of one derivative both on the boundary and in the interior.
The question is to know whether those energy estimates are sharp.
In 2010, using geometric optics expansion for an ibvp with a failure of UKL in
the hyperbolic region Coulombel-Guès [7] proved that the corresponding energy
estimate is sharp.
This paper will treat two of the three remaining behaviours for the failure of
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UKL, that is to say elliptic and mixed case. And we will be able to show the
optimality of the energy estimates found by Sablé-Tougeron and Coulombel. In
particular, our work shows that away from glancing points, the only possible
failure of the UKL that allows for a homogeneous ibvp to be well-posed is in
the elliptic region. This makes rigorous the discussion in ([3] , chapter 7) see
also [15].

2 Notations, assumptions and main results.

2.1 Notations.

In this article we will consider ibvps in the half-space

Rd+ :=
{
x = (x′, xd) ∈ Rd \ xd ≥ 0

}
and will we also note for T > 0, ΩT := ]−∞;T ] × Rd+ and finally the spatial
boundary of ΩT will be denoted by ωT .
Our typical ibvp will read :

L(∂)uε := ∂tu
ε +

∑d
j=1Aj∂ju

ε = fε in ΩT ,

Buε|xd=0 = gε in ωT ,

uε|t≤0 = 0,

(1)

where the Aj are square matrices of dimension N with real coefficients and B
is a real matrix of dimension p × N . The value of p will be made precise in
assumption 2.3.
The superscript ε is sometimes used in order to highlight the main frequency of
oscillations of the source terms and the solution in (1).
Energy estimates require the introduction of weighted Sobolev spaces. For s
real and γ > 0 we will denote by Hs

γ(ΩT ) the weighted Sobolev space defined
as follows :

Hs
γ(ΩT ) =

{
u ∈ D′(ΩT ) \ e−γtu ∈ Hs(ΩT )

}
,

and we also define Hs
γ(ωT ) and L2

xd
(Hs

γ(ωT )) in the same spirit.
We introduce a partition of the frequencies space :

Ξ =
{
ζ = (σ = γ + iτ, η) ∈ C× Rd−1, γ ≥ 0

}
,

Ξ0 = {ζ ∈ Ξ, γ = 0} .

Let A(ζ) be the resolvent matrix obtained after Fourier-Laplace transformation
in the evolution equation of (1) :

A(ζ) = −A−1
d

σI + i

d−1∑
j=1

ηjAj

 . (2)

We denote by E−(ζ) the stable subspace of A(ζ), and E+(ζ) the unstable sub-
space.
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Thanks to Hersh’s lemma (see [3] page 125) we know that for all σ such that
Re σ > 0, A(ζ) does not have any purely imaginary eigenvalue and that
dimE−(ζ) = p.
However if Reσ is zero, Hersh’s lemma is not true anymore and has to be substi-
tuted by the following result which is due to Kreiss [9] and adapted by Métivier
[13] for constantly hyperbolic operators that is to say the following assumption
is satisfied.

Assumption 2.1 There exist an integer q ≥ 1, real valued analytic functions
λ1, ..., λq on Rd \ {0}and positive integers ν1, ..., νq such that :

∀ξ ∈ Sd−1, det

τ +

d∑
j=1

ξjAj

 =

q∏
k=1

(τ + λk(ξ))νk ,

with λ1(ξ) < ... < λq(ξ) and the eigenvalues λk(ξ) of
∑d
k=1Ak are semi-simple.

Theorem 2.1 [Block structure] If the ibvp (1) satisfies assumption 2.1 then for
all ζ in Ξ there is a neighborhood V of ζ in Ξ, an integer L ≥ 1, a partition
N = ν1 + ...+ νL such that all νi ≥ 1, and a regular invertible matrix T defined
on V such that we have :

∀ζ ∈ V, T (ζ)−1A(ζ)T (ζ) = diag (A1(ζ), ...,AL(ζ)) ,

where the size of Ai(ζ) is νi, and Ai(ζ) satisfies one of the following properties
:
i) All elements in the spectrum of Ai(ζ) have a strictly negative real part .
ii) All elements in the spectrum of Ai(ζ) have a strictly positive real part .
iii) νi = 1, Ai(ζ) ∈ iR, ∂γAi(ζ) ∈ R \ {0}
iv) νi > 1, ∃ki ∈ iR such that

Ai(ζ) =

ki i 0
. . . i

0 ki

 ,
and the coefficient in the down left corner of ∂γAi(ζ) ∈ R \ {0}.

Thanks to this theorem we are able to describe the four kinds of frequencies ζ
in Ξ0.

Definition 2.1 Let :
• E be the set of elliptic frequencies, that is to say the set of ζ in Ξ0 such that
theorem 2.1 is satisfied with one block of type i) and consequently also one of
type ii) only.
• H be the set of hyperbolic frequencies, that is to say the set of ζ in Ξ0 such
that theorem 2.1 is satisfied with blocks of type iii) only.
• EH be the set of mixed frequencies, that is to say the set of ζ in Ξ0 such that
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theorem 2.1 is satisfied with one block of each type i) and consequently also one
of type ii) and at least one of type iii), but no block of type iv)
• G be set the of glancing frequencies, that is to say the set of ζ in Ξ0 such that
theorem 2.1 is satisfied with at least one block of type iv).

We have the following partition of Ξ0 :

Ξ0 = E ∪ EH ∪H ∪ G.

The analysis in [[9],[13]] shows that E±(ζ) admit a continous extension for the
frequencies in Ξ0. Moreover if, ζ ∈ Ξ0 \ G then we can write

CN = E−(ζ)⊕ E+(ζ),

and
E±(ζ) = Ee±(ζ)⊕ Eh±(ζ), (3)

where Ee−(ζ) (resp. Ee+(ζ)) is the generalized space associated to the eigenvalues

of A(ζ) of negative (resp. positive) real part, and Eh±(ζ) are sums of eigenspaces
of A(ζ) associated to some purely imaginary eigenvalues of A(ζ).

In fact, it is possible to give a precise decomposition of Eh±(ζ). Let iωm be a
purely imaginary eigenvalue of A(ζ), then

det(τI +A(η, ωm)) = 0.

Using the constant hyperbolicity of L(∂) (see assumption 2.1), there is an index
km such that

τ + λkm(η, ωm) = 0, (4)

with λkm(η, ωm) smooth.

Definition 2.2 The set of causal (resp. noncausal) indeces C (resp. NC) is
defined by : m is in C (resp. NC) if and only if for λkm defined in (4) we have
∂ηdλkm(η, ωm) > 0 (resp. ∂ηdλkm(η, ωm) < 0).
vm := ∇λkm(η, ωm) is called the group velocity associated to the phase τ+η.x′+
ωmxd.

With such notations, we have

Lemma 2.1 For all ζ ∈ (EH ∪H)

Eh−(ζ) = ⊕m∈CkerL(τ , η, ωm),

Eh+(ζ) = ⊕m∈NCkerL(τ , η, ωm),

where for all ξ in Rd+1, L(ξ0, ..., ξd) = ξ0I +
∑d
j=1 ξjAj.

We refer to [7] for the proof.
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Definition 2.3 Set Π±e := Π±e (ζ) the projector on Ee±(ζ) associated to the de-
composition (3).
Set Πm := Πm(ζ) the projector on kerL(ζ, ωm) and Qm := Qm(ζ) the partial
inverse of L(ζ, ωm) satisfying :{

QmL(ζ, ωm) = I −Πm,
ΠmQm = QmΠm = 0.

2.2 Assumptions.

Let us deal with non characteristic ibvps with constant multiplicity that is
assumption 2.1 and the following assumption are checked.

Assumption 2.2 The matrix Ad is invertible.

The assumptions on the boundary condition are summarized in the following
one :

Assumption 2.3 B is a matrix of maximal rank p, with p ≥ 1 the number of
positive eigenvalues of Ad counted with multiplicity.

Our last assumption explains how the uniform Kreiss-Lopatinskii condition de-
generates. There are two distincts cases depending on the region of degeneration
:

Assumption 2.4 • The Kreiss-Lopatinskii condition is satisfied, that is to say
for all ζ ∈ Ξ \ Ξ0, kerB ∩ E−(ζ) = {0}.
• Let ζ ∈ Ξ0 such that kerB ∩ E−(ζ) 6= {0} then ζ ∈ E and there exist such
frequencies.
• Moreover let ζ ∈ E such that kerB∩E−(ζ) 6= {0}, then there is a neighborhood
V of ζ in Ξ, a regular basis (E1, ..., Ep)(ζ) of E−(ζ), a regular and invertible
matrix P (ζ) of size p and at last a regular real valued function θ such that we
can write :

∀ζ ∈ V, B [E1, ..., Ep] (ζ) = P (ζ)diag(γ + iθ(ζ), 1, ..., 1).

Assumption 2.5 • The Kreiss-Lopatinskii condition is satisfied.
• Let ζ ∈ Ξ0 such that kerB ∩ E−(ζ) 6= {0} then ζ ∈ EH and such frequencies
exist.
• Let ζ ∈ EH such that kerB ∩ E−(ζ) 6= {0} then :
� E−(ζ) ∩ kerB = Ee−(ζ) ∩ kerB.
� There is a neighborhood V of ζ in Ξ, a regular basis (Ee1 , ..., E

e
p−r)(ζ) of

Ee−(ζ),an inversible and regular matrix P (ζ) of size p and finally a regular real
valued function θ such that :

∀ζ ∈ V, B
[
Ee1 , ..., E

e
p−r, E

h
1 , ..., E

h
r

]
(ζ) = P (ζ)diag(γ + iθ(ζ), 1, ..., 1),

where (Eh1 , ..., E
h
r )(ζ) is a regular basis of Eh−(ζ).
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Assumptions 2.4 and 2.5 correspond to situations where the uniform Kreiss-
Lopatinskii condition breaks down because of surface waves that have exponen-
tial decay with respect to the normal variable xd. It is equivalent to assume
that a Lopatinskii determinant vanishes at the order one for elliptic or mixed
frequencies (see [2], [16] ). However, assumption 2.5 considers a situation where
hyperbolic modes also occur, even though they are not responsible for the break-
down of the uniform Kreiss-Lopatinskii condition.
One example of an ibvp which satisfies the assumption 2.4 is the onset of
Rayleigh waves for the equations of elastodynamics. That is to say that when
UKL fails in the elliptic area one can see waves which are localized along the
boundary.
One example of physical interest we know of an ibvp which satisfies the as-
sumption 2.5 is the liquid-vapor phase transition model especially studied by
Benzoni-Gavage in [1] and later on by Coulombel in [6]. We provide in section 5
with another such example arising from the linearization of the Euler equations
on a fixed domain.

Until the end we will work under one and only one of the two previous as-
sumptions.

Now thanks to one of these assumptions we can describe the form of the source
terms we are interested in.

Definition 2.4 • Let Pos be the set of oscillating profiles ie functions u(t, x,Xd)
in C∞(ΩT × R+) which can be written :

u(t, x,Xd) =

M∑
m=1

eiωmXdum(t, x),

with (ω1, ..., ωM ) ∈ RM , (u1, ..., uM ) ∈ (H+∞(ΩT ))M .
• The set of functions U(t, x,Xd) in H+∞(ΩT×R+) for which there is a positive
δ such that eδXdU(t, x,Xd) is in H+∞(ΩT × R+), will be denoted by Pev and
will be the set of evanescent profiles.
• To conclude, the set of profiles P is defined as follows P = Pos ⊕ Pev.

Source terms used in the geometric optics expansion will not be the same under
assumption 2.4 or under assumption 2.5. We shall be more specific later on.
To conclude this section we define the useful following vectors :

Definition 2.5 Under assumption 2.4 or 2.5 there exists :
• a vector e ∈ CN \ {0} such that E−(ζ) ∩ kerB = Ee−(ζ) ∩ kerB = vect(e).
• A vector b ∈ Cp \ {0} such that b.Bw = 0, for all w ∈ E−(ζ).

• E−(ζ) = vect(e)⊕ Ĕ−(ζ) and B is an isomorphism from Ĕ−(ζ) to b⊥.

2.3 Main results.

As mentioned in the introduction energy estimates depend on the region in
which the uniform Kreiss-Lopatinskii condition fails. In the case of a frequency
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ζ that satisfies the assumption 2.5 we will need the extra assumption :

Assumption 2.6 If ζ satisfies 2.5, then Eh+(ζ) is non trivial.

Let us recall the different energy estimates :

Theorem 2.2 [16] [Sablé-Tougeron] Under assumptions 2.1-2.2-2.3-2.4, for

all f in L2(ΩT ), g ∈ H
1
2 (ωT ) that vanish for t ≤ 0, then there is a unique

solution u ∈ L2(ΩT ) of the ibvp (1) which moreover admits the following energy
estimate :

‖u‖2L2
γ(ΩT ) + ‖u|xd=0‖2

H
− 1

2
γ (ωT )

≤ C

γ2

(
‖f‖2L2

γ(ΩT ) + ‖g‖2
H

1
2
γ (ωT )

)
, (5)

with γ sufficiently large and where C is independent of γ.
[6] [Coulombel] Under assumptions 2.1-2.2-2.3-2.5-2.6, for all f in L2

xd
(H

1
2 (ωT )),

g ∈ H 1
2 (ωT ) that vanish for t ≤ 0, then there is a unique solution u ∈ L2(ΩT )

of the ibvp (1) which moreover admits the following energy estimate :

‖u‖2L2
γ(ΩT ) + ‖u|xd=0‖2

H
− 1

2
γ (ωT )

≤ C

γ2

(
1

γ
‖f‖2

L2
xd

(H
1
2
γ (ωT ))

+ ‖g‖2
H

1
2
γ (ωT )

)
, (6)

with γ sufficiently large and where C is independent of γ.

The estimates (5)-(6) are true for γ above a threshold γ0, and it is possible to
avoid the dependency in γ by multiplying C by eγ0T . So we can rewrite (5)-(6)
under the more pleasant form :

‖u‖2L2(ΩT ) + ‖u|xd=0‖2
H−

1
2 (ωT )

≤ CT
(
‖f‖2L2

xd
(Hs(ωT )) + ‖g‖2

H
1
2 (ωT )

)
,

with s = 0 for (5) and s = 1
2 for (6), f, g, u zero for t < 0.

Our first result is that one can make a geometric optics expansion if ζ satisfies
assumption 2.4 or 2.5. The oscillating source terms fε, gε are made precise in
(9) under assumption 2.4 and (9) under assumption (24).

Theorem 2.3 Under assumptions 2.1-2.2-2.3-2.4, one can find a geometric
optics expansion (Un)n∈N of the ibvp (1) which satisfy equations (11) (see below).
Moreover, setting uεN0,app

the truncated geometric optics expansion defined by :

uεN0,app =

N0∑
n=0

ei
ϕ
ε εnUn, (7)

then the error beetween uεN0,app
and the exact solution uε of (1) is an O(εN0+ 3

2 )
in H∞ε (see 4.1).
Under assumptions 2.1-2.2-2.3-2.5, one can find a geometric optics expansion
(Un)n∈N of the ibvp (1) which satisfy equations (26)-(27) (see below).
Such that the error beetween uεN0,app

and the exact solution uε of (1) is an

O(εN0+1) in H∞ε (see 4.1).
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The two following theorems show that energy estimates (5) and (6) are sharp :

Theorem 2.4 Under assumptions 2.1-2.2-2.3-2.4, let s > 0. We assume that
for all f in L2(ΩT ), g ∈ Hs(ωT ) vanishing for t ≤ 0, there is a unique solution
u in L2(ΩT ) of the ibvp (1) with the energy estimate :

‖u‖2L2(ΩT ) ≤ CT
(
‖f‖2L2(ΩT ) + ‖g‖2Hs(ωT )

)
,

then necessarily s ≥ 1
2 .

Theorem 2.5 Under assumptions 2.1-2.2-2.3-2.5-2.6, let s1, s2 > 0. We as-
sume that for all f in L2

xd
(Hs1(ωT )), g ∈ Hs2(ωT ) vanishing for t ≤ 0, there is

a unique solution u in L2(ΩT ) of the ibvp (1) with the energy estimate :

‖u‖2L2(ΩT ) ≤ CT
(
‖f‖2L2

xd
(Hs1 (ωT )) + ‖g‖2Hs2 (ωT )

)
, (8)

then necessarily s1 ≥ 1
2 and s2 ≥ 1

2 .

Theorem 2.5 indicates that the existence of hyperbolic outgoing modes has a
serious impact on the stability properties of (1). In particular, strong well-
possedness of (1) for g ≡ 0, as considered in [[3], chapter 7] can not occur if such
modes are present. This result gives a rigorous justification to the discussion in
[[3] pages 205-207]. We refer to section 5 for further comments and consequences.

3 Geometric optics expansions.

Let ϕ(t, x′) = τt+ η.x′, with (τ , η) a frequency that satisfies assumption 2.4 or
assumption 2.5.

3.1 Geometric optics expansions under assumption 2.4.

This section gives a rigorous construction of geometric optics expansions when
UKL fails in the elliptic area. It is a generalization of Marcou’s work in the
case of a non-homogenous boundary condition. Indeed, in this paper we are
interested in the influence of a non-homogenous boundary condition on the
energy estimate.
Moreover, the case of an elliptic frequency will be a good preparatory work for
the case of a mixed frequency in the next paragraph.

Remark Hereinafter as no confusion is possible we will set Πe
± = Π±.

From now to the end of the paragraph, we will deal with source terms fε and
gε of the form,

fε(t, x) = ei
ϕ
ε fev

(
t, x,

xd
ε

)
, (9)

gε(t, x′) = εei
ϕ
ε g(t, x′),
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with amplitudes fev in Pev and g in H+∞(ωT ),both zero for negative times.
We also take an ansatz of the form,

uε(t, x) =
∑
n≥0

εnei
ϕ
ε Un

(
t, x,

xd
ε

)
, (10)

where for all n > 0, Un is an element of Pev.
Taking such ansatz allows us to treat elliptic modes in one piece as in Lescarret’s
work [11]. Thus, in comparison to Williams’s method in [17] see also [8] it is
unnecesary to assume that the stable part of A(ζ) is diagonalizable, moreover
it does not require to solve in an approximate way transport equations with
complex coefficients.
Plugging the ansatz (10) in the ibvp (1), the following cascade of equations
appears : 

L(∂X)U0 = 0,
L(∂X)Un + L(∂)Un−1 = δn,1f, ∀n ≥ 1,
BUn|xd=Xd=0

= δn,1g,∀n,
Un|t≤0

= 0,∀n

(11)

where δn,p is the Kronecker’s symbol and :

L(∂X) := Ad
(
∂Xd −A(ζ)

)
.

Lemma 3.1 Let

PevU(Xd) := eXdA(ζ)Π−U(0), (12)

QevF (Xd) :=

∫ Xd

0

e(Xd−s)A(ζ)Π−A
−1
d F (s)ds−

∫ +∞

Xd

e(Xd−s)A(ζ)Π+A
−1
d F (s)ds.

(13)

Then for all F in Pev, the equation

L(∂X)U = F,

has a solution U in Pev. Moreover, one can write any such solution U under
the following form :

U = PevU + QevF.

proof : Pev and Qev defined in (12)-(13) are explicitly given by Duhamel’s
formula.

Using lemma 3.1, the cascade of equations (11) can be rewritten equivalently as
follows : 

PevU0 = U0,
BU0|xd=Xd=0

= 0 ,

U0|t≤0
= 0

(14)
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and for higher order terms :
(I − Pev)Un = Qev(δn,1fev − L(∂x)Un−1) ,
BUn|xd=Xd=0

= δn,1g ,

Un|t≤0
= 0 ,

∀n ≥ 1. (15)

3.1.1 Determining the leading order term U0.

Using PevU0 = U0 in the boundary condition of (14) one has to solve the fol-
lowing system for the principal term :

PevU0 = U0 ,
BΠ−U0(t, x′, 0, 0) = 0 ,
U0|t≤0

= 0 .
(16)

Thanks to equation (12), the first equation implies that in order to know U0 it is
sufficient to know its trace on {Xd = 0}. Unfortunately, the boundary condition
does not determine this trace but a double trace on {Xd = xd = 0}. Moreover,
this equation can not be solved easily due to the degeneracy of UKL on E−(ζ).
We will start by determining the double trace U0(t, x′, 0, 0). Let

Π−U0(t, x′, 0, 0) = α0(t, x′)e, (17)

with e given in definition 2.5, α0 a scalar function.
The determination of α0 follows Marcou’s method described in [12], which is
here adapted to a non homogenous boundary condition.
Equations satisfied by the term U1 are (see (15)) :

(I − Pev)U1 = Qev(fev − L(∂x)U0) ,
BU1|xd=Xd=0

= g ,

U1|t≤0
= 0 .

(18)

Injecting, the first equation written for xd = Xd = 0 in the boundary condition
and after multiplying by the vector b (given in definition 2.5), we are led to :

b.BQev(fev − L(∂x)U0)|xd=Xd=0 = b.g .

However by definition of Qev (see (13)), we can develop the left-hand side of the
previous equation as follows :

b.BQev(fev−L(∂x)U0)|xd=Xd=0 = b.B

∫ +∞

0

e−sA(ζ)Π+A
−1
d (−fev+L(∂x)U0(s))ds.

We thus obtain

b.B

∫ +∞

0

e−sA(ζ)Π+A
−1
d L(∂x)U0(s)ds = b.

(
g +B

∫ +∞

0

e−sA(ζ)Π+A
−1
d fev(s)ds

)
:= g̃0.

11



Once more developing the left-hand side and using the equality (17) we have
the final equation :

b.B

∫ +∞

0

e−sA(ζ)Π+A
−1
d L(∂x)U0(s)ds = b.BIt∂tα0 +

d−1∑
j=1

b.BIj∂jα0 ,

where we set : {
It =

∫ +∞
0

e−sA(ζ)Π+A
−1
d esA(ζ)e ds,

Ij =
∫ +∞

0
e−sA(ζ)Π+A

−1
d Aje

sA(ζ)e ds.
(19)

So it is clear that α0 satisfies the transport equationb.BIt∂t +

d−1∑
j=1

b.BIj∂j

α0 = g̃0.

It does not seem obvious that the coefficients of this equation are real. So we
can not conclude that this equation is well-posed yet. To do that, we will need
to make the It, Ij more explicit which is possible thanks to the following lemma.

Lemma 3.2 [Marcou] Set It = I0, ∂η0 = ∂t then for all j ∈ {0, ..., d− 1},

Ij = Π+∂ηjΠ−(ζ)e,

where we use the notation η0 = τ .

proof : This proof is the same as in [[12], lemma 6.3] . We recall it here for the
sake of completeness.
Let µ be an eigenvalue of A(ζ)Π−, we have Reµ < 0 and moreover esµ is an

eigenvalue of esA(ζ)Π− ; applying Dunford’s formula we can write :

esA(ζ)Π− =
1

2iπ

∫
Γ−

esz(A(ζ)− z)−1 dz,

where Γ− is a closed simple curve included in the complex half-plane with neg-
ative real part, surronding the eigenvalues of A(ζ)Π−.
As Π−e = e, we have

Ij =
1

2iπ

∫
Γ−

(∫ +∞

0

es(z−A(ζ))Π+ ds

)
A−1
d Aj(A(ζ)− z)−1 dz e.

On the other hand we can explicitely compute∫ +∞

0

es(z−A(ζ))Π+ ds =
[
es(z−A(ζ))Π+(z −A(ζ))−1

]+∞
0

= Π+(A(ζ)− z)−1.

12



Setting A0 = I we have,

Ij = Π+

(
1

2iπ

∫
Γ−

(A(ζ)− z)−1A−1
d Aj(A(ζ)− z)−1dz

)
e

= Π+

(
1

2iπ

∫
Γ−

∂ηj
(
(A(ζ)− z)−1

)
dz

)
e

= Π+∂ηjΠ−(ζ)e

�

Thanks to the stability assumption 2.4 one can write in a neighborhood of ζ the
equality :

Be(ζ) = β(ζ) (γ + iθ(ζ)) e(ζ), (20)

with e, σ, β smooth such that
e(ζ) = e ,
θ(ζ) = 0 ; θ(ζ) ∈ R ,
β(ζ) 6= 0 .

Using lemma 3.2, we also have in a neighborhood of ζ,

b.BI = b.BΠ+(ζ)∂Π−(ζ)e.

Differentiating the identity Π−(ζ)e(ζ) = e(ζ) in a neighborhood of ζ then com-
posing on the left by Π+(ζ) in order to avoid the second term we have :

Π+(ζ)∂Π−(ζ)e = ∂e(ζ).

Now differentiating (20) in ζ we obtain :

B∂e(ζ) = iβ(ζ)∂θ(ζ)e.

Therefore we have proved the following proposition :

Proposition 3.1 The function α0 defined in (17) is a solution of the real trans-
port equation {

iβ(ζ)b.e
(
∂τθ(ζ)∂tα0 +∇ηθ(ζ).∇xα0

)
= g̃0 ,

α0|t≤0
= 0 ,

(21)

thus α0 is uniquely determined and it is nonzero if and only if g̃0 is. Moreover
α0 has the same regularity as g̃0 (ie H+∞(ωT )). By the equation (17), the same
properties are also true for Π−U0(t, x′, 0, 0).

We readily observe that g̃0 is nonzero if we choose a nonzero g and fev ≡ 0.
This explains the scaling of gε in order to have an O(1) solution uε in L∞(ΩT ).
The double trace Π−U0(t, x′, 0, 0) is now fully determined. To conclude the con-
struction of U0 it is sufficient to note that in U0(t, x,Xd) = PevU0(t, x,Xd), xd is

13



a parameter. Consequently we can arbitrary lift the double trace Π−U0(t, x′, 0, 0)
in a simple one Π−U0(t, x, 0). For instance, set as in [11] :

U0(t, x,Xd) = α0(t, x′)χ(xd)e
XdA(ζ)e,

where χ ∈ C∞c (R) checking χ(0) = 1.

Remark We stress that from now on the geometric optics expansion is not
uniquely determined. Indeed it highly depends on the function χ.
But following Métivier’s work [14] we can show that this dependency is only an
error term of upper order in ε. Indeed, by Taylor’s expansion in xd :

U0(t, x,Xd) = U0(t, x′, 0, Xd) + xdV (t, x,Xd),

where V is a function in Pev, as well as W := XdV . For Xd = xd
ε :

U0(t, x,Xd) = U0(t, x′, 0,
xd
ε

) + εW (t, x,
xd
ε

).

Consequently the difference beetwen two functions U0 lifted by two different
functions χ is at most a term of order one in ε.

3.1.2 Second term in the WKB expansion.

The construction of the second term of the expansion is very similar to that of
the first one. Indeed the only modifications come from the fact that U1 is not
polarized so that we have to consider the unpolarized part and that there is a
little change in the source term of the transport equation (21).
Let us recall that the second term satisfies equation (15). But thanks to the
previous section from now U0 is known, so the first equation of (15) allows to
determine the unpolarized part of U1.
Thus to complete the construct of U1 it is sufficient to determine is polarized
part that is to say PevU1. But reiterating the arguments of the previous section,
to do that it is sufficient to know the trace Π−U1(t, x, 0).
Let us start by determining the double trace Π−U1(t, x′, 0, 0).
Plugging this double trace in the boundary condition of (15) we obtain :

BΠ−U1(t, x′, 0, 0) = g −Qev(fev − L(∂x)U0)|xd=Xd=0. (22)

As noticed in the introduction of this paragraph there is a little difference with
the first term. Indeed, ”a priori” the left side of the previous equation is not
zero so we can not deduce that Π−U1(t, x′, 0, 0) is in kerB ∩ E−(ζ).
So let us decompose,

Π−U1(t, x′, 0, 0) = α1(t, x′)e+ v1(t, x′), (23)

where α1 is a scalar function and v1(t, x′) is in Ĕ−(ζ) (notation of definition
2.5).
The boundary condition (22) can now be rewritten as follows :

v1(t, x′) = B−1

|Ĕ−(ζ)

(
g −Qev(fev − L(∂x)U0)|xd=Xd=0

)
,
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which determines in a unique way v1 in H+∞(ωT ), zero for negative times.
At this moment it is sufficient to determine α1 to know the double trace
Π−U1(t, x′, 0, 0). In order to do so, one can reiterate the construction described
in paragraph 3.1.1 to exhibit a transport equation on α1. We end up with :

Proposition 3.2 The function α1 defined in (23) is solution of the transport
equation {

iβ(ζ)b.e
(
∂τθ(ζ)∂tα1 +∇ηθ(ζ).∇xα1

)
= g̃1 ,

α1|t≤0
= 0 ,

with g̃1 := −b.BQevL(∂x)
(

(I −Π−)U1|xd=Xd=0
+ v1

)
Mimicking the end of paragraph 3.1.1 we have to extend Π−U1(t, x′, 0, 0) to all
positive xd. Thus we can set

U1(t, x,Xd) = χ(xd)e
XdA(ζ) (α1(t, x′)e+ v(t, x′))+Qev(fev−L(∂x)U0)(t, xd, Xd).

3.1.3 Higher order terms and summary.

It is clear that the process of the previous sections allows us to determine the
(n+ 1)th term if we already know the terms uppon the nth. Indeed let us sum-
marize this method :
� If we know the nth term, equation (15) determines the unpolarized part of the
(n+ 1)th term.
� (12) implies that to know the polarized part it is sufficient to know
Π−Un+1(t, x, 0). We begin by computing the double trace Π−Un+1(t, x′, 0, 0).
� To do so, we decompose Π−Un+1(t, x′, 0, 0) in a component on kerB which
depends on a scalar function αn+1 and a component on Ĕ−(ζ) which is deter-
mined algebraically by the boundary condition.
� For αn+1 we write the equations for the (n + 2)th term and Marcou’s work
allows to show that αn+1 is solution of a real transport equation. So at this
stage Π−Un+1(t, x′, 0, 0) is known.
� To conclude it is sufficient to lift the double trace Π−Un+1(t, x′, 0, 0) in a
”simple” trace Π−Un+1(t, x, 0).
Thus we have shown the following proposition :

Proposition 3.3 Under assumptions 2.1-2.2-2.3-2.4, one can find a geometric
optics expansion (Un)n∈N of the ibvp (1) which satisfy equations (11), where all
Un belong to Pev.

3.2 Geometric optics expansion under assumption 2.5.

From now on the frequency ζ will satisfy assumption 2.5 raher than assumption
2.4. So we will have to include highly oscillating terms in the geometric optics
expansion. The philosophy of the construction will be the same but we will have
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to be more careful about the resolution of boundary conditions.
We choose source terms fε and gε under the form,

fε(t, x,Xd) = ei
ϕ
ε (εfos(t, x,Xd) + fev(t, x,Xd)) , (24)

gε(t, x′) = εei
ϕ
ε g(t, x′),

with fos =
∑M
m=1 e

iωmXdfosm in Pos, f
ev in Pev and g in H+∞(ωT ), both zero

for the negative times.
Let us consider the ansatz

uε(t, x) =
∑
n≥0

εnei
ϕ
ε Un

(
t, x,

xd
ε

)
, (25)

where for all integer n, Un ∈ P is decomposed as

Un(t, x,Xd) := Uosn + Uevn =

M∑
m=1

eiωmXdun,m + Uevn .

Injecting the ansatz (25) in the ibvp (1) we obtain the cascade of equations :
L(∂X)U0 = 0,
BU0|xd=Xd=0

= 0,

U0|t≤0
= 0 ,

(26)

for the principal term. For higher order terms :
L(∂X)Un + L(∂x)Un−1 = δn,1f

ev + δn,2f
os,

BUn|xd=Xd=0
= δn,1g ,

Un|t≤0
= 0 ,

∀n ≥ 1. (27)

The following lemma which is just a generalization of lemma 3.1, gives us a
solution of the equation L(∂X)U = F with F in P .

Lemma 3.3 [11] There are projectors P, Pi, a partial inverse Q such that for
all profiles F ∈ P , the equation :

L(∂X)U = F (28)

admits a solution U in P if the following compatibility condition PiF = 0 is
satisfied. In that case, this solution U can be written :

U = QF + PU.

In particular on Pev, P = Pev, Q = Qev and Pi is zero. On Pos, Pi = Pios = Pos.
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We refer to [11] for a complete proof but since it will be useful we give below
the expression of Pos, and Qos :

PosV = PiosV =

M∑
m=1

eiXdωmΠmVm, (29)

QosV =

M∑
m=1

eiXdωmQmVm,

where V =
∑M
m=1 e

iωmXdVm.
Using lemma 3.3, (26) and (27) can be rewritten as follows :

PU0 = U0,
PiL(∂x)PU0 = 0,
BU0|xd=Xd=0

= 0 ,

U0|t≤0
= 0 .

(30)

and 
(I − P)Un = Q(δn,2f

os + δn,1f
ev − L(∂x)Un−1) ,

PiL(∂x)Un = Piδn,1fos + Piδn,1fev ,
BUn|xd=Xd=0

= δn,1g ,

Un|t≤0
= 0 .

∀n ≥ 1. (31)

The first equations in (30)-(31) are due to the particular form of the solution of
(28), and the second come from the compatibility condition PiF = 0.
We see that the first term U0 has to satisfy the conditions (30) of polarization
and propagation together with some boundary conditions. Decomposing on the
profiles spaces Pev and Pos it follows:

PevUev0 = Uev0 ,
PosUos0 = Uos0 ,
PiosL(∂x)PosUos0 = 0,
PievL(∂x)PevUev0 = 0,

B
[
Uos0 + Uev0|Xd=0

]
|xd=0

= 0 ,

Uos0|t≤0
= Uev0|t≤0

= 0 .

(32)

However, thanks to the relation Piev = 0 given by lemma 3.3 the fourth equation
of (32) is a tautology. Since this lemma also gives the relation Pios = Pos one
can reformulate the third equation of (32) :

PosL(∂x)PosUos0 = 0.

So we see that the evolution equations on the oscillating terms and on the
evanescent terms are just linked by the boundary condition. Consequently one
can hope to solve the evolution equations independently for the oscillating and
the evanescent terms. Let us start by determining the principal oscillating term.
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3.2.1 Leading order oscillating term.

Thanks to the decomposition given in lemma 2.1 and (29) we will identify each
term in the expansion of Uos0 :

Πmu0,m = u0,m ,
ΠmL(∂x)u0,m = 0 ,

B
[∑M

m=1 u0,m + Uev0|Xd=0

]
|xd=0

= 0 ,

u0,m|t≤0
= 0 ,

∀m ∈ {1,M} . (33)

Let us recall the classical lemma due to Lax :

Lemma 3.4 [10] Under assumption 2.1, the following equality is true

ΠmL(∂x)Πmu0,m = (∂t + vm.∇x)u0,m,

where vm = ∇λkm(η, ωm) is the group velocity associated to λkm defined in (4)
.

Distinguish two cases according to the set in which m lies.
First case : m ∈ NC
The group velocity vm is outgoing thus the transport equation associated to
(33) is : {

(∂t + vm.∇x)u0,m = 0 ,
u0,m|t≤0

= 0 ,

and can be explicitely solved by integration along the characteristics. Conse-
quently u0,m as solution of a homogeneous transport equation is zero and the
same remains true for its trace on {xd = 0}.
Second case : m ∈ C
Conversely when m is causal the phenomenon is incoming so the transport
equation has to take the boundary condition into account; thus it reads :

(∂t + vm.∇x)u0,m = 0 ,

B
[∑

m∈C Πmu0,m + (PevUev0 )|Xd=0

]
|xd=0

= −B
∑
m∈NC Πmu0,m = 0 ,

u0,m|t≤0
= 0 .

Focusing on the left-hand side of the boundary condition, we obtain :∑
m∈C

Πmu0,m|xd=0
+ Πe

−U
ev
0 (t, x′, 0, 0) ∈ vect{e.}

So in order to satisfy the boundary condition, we need{
Πmu0,m|xd=0

= 0 , ∀m ∈ C
Πe
−U

ev
0 (t, x′, 0, 0) = α0(t, x′)e ,

(34)
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where α0 is a scalar function.
Consequently the transport equation for a causal term reads :

(∂t + vm.∇x)u0,m = 0 ,
u0,m|xd=0

= 0 ,

u0,m|t≤0
= 0 ;

one more time, one can solve it explicitly and show that u0,m and the trace on
{xd = 0} are zero.

3.2.2 Principal term for the evanescent part.

For the principal evanescent term we have to solve the same cascade of equations
as in the previous paragraph (see (16)), that is to say :

PevUev0 = Uev0 ,
BΠe
−U

ev
0 (t, x′, 0, 0) = 0 ,

Uev0|t≤0
= 0 .

(35)

So we will try to apply the method described in paragraph 3.1.1 up to a few
modifications.
As before, equations for the higher order evanescent term Uev1 read :

(I − Pev)Uev1 = Qev(fev − L(∂x)Uev0 ),

B
[
Uos1 + Uev1|Xd=0

]
|xd=0

= g,

Uev1|t≤0
= 0.

(36)

The only change is that now oscillating terms of order one appear in the bound-
ary condition. Since we do not know those terms, Marcou’s method can not be
applied at this stage.
However, in paragraph 3.2.1 we managed to determine oscillating terms without
any consideration on the evanescent ones, so we will try to do that once more.

3.2.3 Second oscillating terms in the WKB expansion.

Using the cascade of equations (31) for the oscillating part, we obtain
(I − Pos)Uos1 = −Qos(L(∂x)Uos0 ),
PosL(∂x)Uos1 = fos,
BU1|xd=Xd=0

= g,

Uos1|t≤0
= 0 .

(37)

Since from now we know that Uos0 is zero, the first equation allows to determine
the unpolarized part of Uos1 and it is zero. So it is sufficient to determine the
polarized part of Uos1 , to do that combining the first and the second equations
of (37) it follows :

PosL(∂x)PosUos1 = fos.
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Reiterating the arguments of paragraph 3.2.1, we exhibit the following transport
equation on Πmu1,m :{

(∂t + vm.∇x)Πmu1,m = fosm ,
Πmu1,m|t≤0

= 0 ,
,m ∈ NC. (38)

And for m ∈ C :
(∂t + vm.∇x)Πmu1,m = fosm ,

B
(∑

m∈C Πmu1,m|xd=0
+ Uev1 (t, x′, 0, 0)

)
= g −B

∑
m∈NC Πmu1,m|xd=0

Πmu1,m|t≤0
= 0 ,

(39)
(38) is a transport equation which determines in a unique way Πmu1,m = u1,m

and its trace on {xd = 0} for all m in NC. We stress that u1,m is not zero unless
the source terms meet specific requirements.
We have to be more careful with causal terms. Indeed, as said at the end of
paragraph 3.2.2, evanescent and oscillating terms both appear in the boundary
condition.
Let us decompose the evanescent term in its polarized and unpolarized parts.
The boundary condition in (39) now reads :

B

(∑
m∈C

Πmu1,m|xd=0
+ Πe

−U
ev
1 (t, x′, 0, 0)

)
= g −B

∑
m∈NC

Πmu1,m|xd=0

− BQev(fev − L(∂x)Uev0 ),(40)

where we used :
(I − Pev)Uev1 = Qev(fev − L(∂x)Uev0 ).

The main point is that one more time the vector∑
m∈C

Πmu1,m|xd=0
+ Πe

−U
ev
1 (t, x′, 0, 0),

which appears on the left-hand side of (40) is an element of E−(ζ).
Thus after multiplying by the vector b defined in definition 2.5 we obtain the
following compatibility condition :

b.BQev(fev − L(∂x)Uev0 ) = b.

(
g −B

∑
m∈NC

Πmu1,m|xd=0

)
. (41)

Moreover thanks to the definition 2.5 one can find w1 in Ĕ−(ζ) such that the
following decomposition is satisfied :∑

m∈C
Πmu1,m|xd=0

+ Πe
−U

ev
1 (t, x′, 0, 0) = α̃1(t, x′)e+ w1(t, x′). (42)
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Applying B, (39) implies that w1 is given by the formula :

w1(t, x′) = B−1

|Ĕ−(ζ)

(
g −B

∑
m∈NC

Πmu1,m|xd=0
−BQev(fev − L(∂x)Uev0 )

)
,

(43)
showing that w1 is known if and only if Uev0 is determined.

3.2.4 End of the construction of the evanescent term.

The compatibility condition (41) will allow to apply Marcou’s method (see 3.1.1)
indeed it reads :

b.BQev(fev − L(∂x)Uev0 )|xd=Xd=0 = b.

(
g −B

∑
m∈NC

u1,m|xd=0

)
:= g̃0(t, x′),

where all source terms on the right-hand side are known. So one can show the
following proposition

Proposition 3.4 The function α0 defined in (34) is solution of the transport
equation {

iβ(ζ)b.e
(
∂τθ(ζ)∂tα0 +∇ηθ(ζ).∇xα0

)
= g̃0 ,

α0|t≤0
= 0 ,

(44)

Thus α0 is determined in a unique way. It is zero if and only if g̃0 is zero, and it
has the same regularity as g̃0. Thanks to (34) it is the same for Πe

−U
ev
0 (t, x′, 0, 0).

Reiterating the end of the analysis of paragraph 3.1.1, it is sufficient to lift
Πe
−U

ev
0 (t, x′, 0, 0) to obtain a solution of (35). A typical example is

Uev0 (t, x,Xd) = α0(t, x′)χ(xd)e
XdA(ζ)e, (45)

with χ ∈ C∞c (R) such that χ(0) = 1.

3.2.5 End of the construction for causal terms.

After the choice of χ, the principal evanescent term is determined. So, it is the
same for w1 defined in (42) and it is explictly given by the formula (43).
However, w1 is in Ĕ−(ζ) so it can be decomposed as follows :

w1 = vh1 + ve1,

with vh1 an element of Eh−(ζ), ve1 in a supplementary space of Eh−(ζ) in Ĕ−(ζ).

We emphasize that ve1 and vh1 are known since w1 is known from equation (43).
By identification on those spaces we obtain the two equations :{ ∑

m∈C u1,m|xd=0
= vh1 .

Πe
−U

ev
1 (t, x′, 0, 0) = α1(t, x′)e+ ve1(t, x′)

.
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Consequently the transport equation (39) can be rewritten as follows :
(∂t + vm.∇x)Πmu1,m = fosm ,∑
m∈C Πmu1,m|xd=0

= vh1
Πmu1,m|t≤0

= 0 ,
,m ∈ C.

and it is now possible to determine u1,m for all causal m, by integration along
the characteristics.

3.2.6 Second evanescent term.

The method to build the second evanescent term is similar to the method for
the first one.
Taking equation (36), since Uev0 is now known it is sufficient to determine the
polarized part that is to say Πe

−U
ev
1 (t, x, 0).

Decomposing as follows :

Πe
−U1(t, x′, 0, 0) = α1(t, x′)e+ ve1(t, x′),

where ve1(t, x′) ∈ Ĕ−(ζ) is given by the boundary condition.
Consequently it is sufficient to know α1. To do that we will need to deal with
equations on the third evanescent term and since it contains oscillating terms
we will need to know them as well. As before, noncausal terms are easy to
determine since they satisfy outgoing transport equations. For causal terms we
have to decompose the boundary condition for n = 2 as in sections 3.2.3 and
3.2.4, one can show that α1 is the solution of the transport equation :{

iβ(ζ)b.e
(
∂τθ(ζ)∂tα1 +∇ηθ(ζ).∇xα1

)
= g̃1 ,

α1|t≤0
= 0 .

So it is now sufficient to extend the double trace Π−Uev1 (t, x′, 0, 0) for the posi-
tive xd. For instance, we can set :

Uev1 (t, x,Xd) = χ(xd)e
XdA(ζ) [α1(t, x′)e+ v(t, x′)]+Qev(fev−L(∂x)Uev0 )(t, x,Xd).

3.2.7 Higher order terms.

Let us summarize the construction of the higher order terms.
� The first equation of (31) gives the unpolarized parts of Uosn+1 and Uevn+1. So
one more time it is sufficient to determine the polarized part.
� For noncausal oscillating terms , the second equation of (31) and Lax’s lemma
lead to an outgoing transport equation :{

(∂t + vm.∇x)Πmun+1,m = Fm ,
Πmun+1,m|t≤0

= −(I −Πm)un+1,m|t≤0
= 0 ,

where Fm is a function depending on (I−Πm)un+1,m and possibly on the oscil-
lating source terms. Integrating along the characteristics, noncausal oscillating
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terms are determined.
� The boundary condition for the causal oscillating and the evanescent terms
reads as follows :

B

(∑
m∈C

Πmun+1,m|xd=0
+ Πe

−U
ev
n+1

)
= −B

( ∑
m∈NC

un+1,m|xd=0

+ ((I − Pev)Uevn+1)|xd=Xd=0

−
∑
m∈C

(I −Πm)un+1,m|xd=0

)
.

Decomposing as in (42) allows to determine un+1,m|xd=0
thanks to Lax’s lemma.

� To determine the transport coefficient on the boundary of Uevn+1 we write
the boundary condition for Uevn+2 , after the determination of the noncausal
oscillating terms of order n+ 2 it reads :

B

(∑
m∈C

Πmun+2,m|xd=0
+ Πe

−U
ev
n+2

)
= G+ B(QevL(∂x)Uevn+1|xd=Xd=0

)
with G a function depending on the traces of un+2,m, (I − Πm)un+2,m and
possibly of the source terms on the boundary. Composing by b gives a compat-
ibility condition on Uevn+1|xd=Xd=0

and Marcou’s method allows to write it as a

transport equation which permits to determine αn+1.
Thus we have shown the following proposition :

Proposition 3.5 Under assumptions 2.1-2.2-2.3-2.5, one can find a geometric
optics expansion (Un)n∈N of the ibvp (1) which satisfy equations (26)-(27).

4 Proof of the main theorems.

4.1 Justification of the expansion.

The aim of this section is to show that the two geometric optics expansions built
in previous sections converge to the exact solution of (1).
Since proofs are very similar in both cases we will just give it in the case of the
geometric optics expansion under assumption 2.5.
We give the following definition :

Definition 4.1 For all integer N and for all (uε)ε of H+∞(ΩT ), we say that
(uε)ε is O(εN ) in H+∞

ε (ΩT ) if for all α ∈ Nd+1 there is a positive constant Cα
such that

∀ε ∈ ]0, 1] , ε|α|‖∂αuε‖L2(ΩT ) ≤ CαεN .

We will also need the following proposition in view of justifying the geometric
optics expansion :
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Proposition 4.1 Let U be a fonction in Pev then U(t, x, xdε ) and

(L(∂x)U(t, x,Xd))|Xd=
xd
ε

are O(ε
1
2 ) in L2(ΩT ).

proof : Since U is in Pev, there is δ such that eδXdU(t, x,Xd) is inH∞(ΩT×R+)
so (xd, Xd) 7→ U(·, ·, xd, Xd)e

δXd ∈ L∞xd,Xd(L2(ωT )). We have,

‖U|Xd=
xd
ε
‖2L2(ΩT ) =

∫ +∞

0

∫
]−∞,T ]×Rd−1

|eδ
xd
ε U(t, x,

xd
ε

)e−δ
xd
ε |2dtdx′dxd

=

∫ +∞

0

‖eδ
xd
ε U(·, ·, xd,

xd
ε

)‖2L2(ωT )e
−2δ

xd
ε dxd

≤ ‖Ueδ·‖L∞xd,Xd (L2(ωT ))

∫ +∞

0

e−2δ
xd
ε dxd,

≤ Cε.

Let ∂y be a differential operator, y in {t, x1, ..., xd} we have :

‖ (∂yU(·, ·, Xd))|Xd=
xd
ε
‖2L2(ΩT ) =

∫ +∞

0

e−2δ
xd
ε ‖eδ

xd
ε ∂yU(·, ·, xd,

xd
ε

)‖2L2(ωT )dxd,

as the assessment Xd equals xd
ε is made after the derivative.

Since eδXd∂yU(t, x,Xd) is in H∞(ΩT×R+) we can work as for the first assertion
to show that

‖ (∂yU(·, ·, Xd))|Xd=
xd
ε
‖2L2(ΩT ) ≤ Cε,

and we conclude by the triangle inequality.

�

We have to prove the following result to complete the proof of theorem 2.3.

Theorem 4.1 Under assumptions 2.1-2.2-2.3-2.5, uN0
app − uε is an O(εN0+1)

in H+∞
ε (ΩT ), where we recall that uN0

app is defined in (7) .

proof : The remainder uN0+2
app − uε satisfies the system : L(∂)

(
uN0+2
app − uε

)
= εN0+2ei

ϕ
ε

(
L(∂x)UosN0+2 + L(∂x)UevN0+2

)
B
(
uN0+2
app − uε

)
= 0

u(t < 0) = 0

Thanks to proposition 4.1 and by interpolation between spaces L2(ωT ) and

H1(ωT ) one can show that for all index N , L(∂x)UevN is O(1) in L2
xd

(H
1
2 (ωT )).

The same kind of argument also shows that L(∂x)UosN isO(ε−
1
2 ) in L2

xd
(H

1
2 (ωT )).

Thus in terms of powers of ε the limiting term is the oscillating one.
Using the energy estimate (6), we obtain

‖uN0+2
app − uε‖L2(ΩT ) ≤ CεN0+ 3

2 ,
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For all α, tangential derivatives ∂αt,x′ are estimated directly by differentiation of
the ibvp (1), so we have :

‖∂αt,x′
(
uN0+2
app − uε

)
‖L2(ΩT ) ≤ εN0+2‖∂αt,x′

(
ei
ϕ
ε L(∂x)UN0+2

)
‖L2(ΩT ).

Thanks to Leibniz’s formula it comes :

‖∂αt,x′
(
ei
ϕ
ε L(∂x)UN0+2

)
‖L2(ΩT ) ≤ 1

ε|α|
‖L(∂x)UN0+2‖L2(ΩT )

+ ‖∂αt,x′ (L(∂x)UN0+2) ‖L2(ΩT )

≤ C

ε|α|
.

Consequently,
ε|α|‖∂αt,x′

(
uN0+2
app − uε

)
‖L2(ΩT ) ≤ CεN0+ 3

2 .

Using the evolution equation, we can write the xd-derivative of uN0+2
app − uε as a

linear combination the tangential derivatives. Thus the previous estimate still
holds if we add derivatives in xd. Consequently we have shown that uN0+2

app −uε

is O(εN0+ 3
2 ) in H+∞

ε (ΩT ).
It is now easy to show that uN0+2

app − uN0
app is O(εN0+1) in H+∞

ε (ΩT ) and we
conclude by the triangle inequality.

�

4.2 Optimality of energy estimate, proof of theorem 2.5

Once again since proofs are very similar in both cases we just describe here the
proof of theorem 2.5. We will need the following lemma :

Lemma 4.1 Let U0 be as in (45), then U0(t, x, xdε ) is O(ε
1
2 ) in L2(ΩT ). This

property is sharp in the sense that if there is κ > 0 such that U0 is an O(ε
1
2 +κ)

in L2(ΩT ), then U0 is zero in L2(ΩT ).

proof : The first assertion has already been proved in proposition 4.1.
To show the second assertion we will use the fact that for all w ∈ Ck, M ∈
Mk(C) we have

|eMw|2 ≥ e−2‖M‖|w|2.
So, if vε = U0

(
t, x, xdε

)
‖vε‖L2(ΩT ) ≥ ‖α0‖2L2

(∫ +∞

0

χ(xd)
2e
−2xd
ε ‖A(ζ)‖|e|2 dxd

) 1
2

,

by change of variable u = xd
ε it comes

‖vε‖L2(ΩT ) ≥ ε
1
2Cα0,e

(∫ +∞

0

χ(εu)2e−2u‖A(ζ)‖du

) 1
2

,

≥ Cα0,e,χ,A(ζ)ε
1
2 .
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�

proof : (theorem 2.5) We argue by contradiction and assume s1 = 1
2 − δ,

δ ∈
]
0, 1

2

[
.

Let gε ≡ 0, and consider source terms

fε = εei
ϕ
ε fos

(
t, x,

xd
ε

)
,

fos
(
t, x,

xd
ε

)
= ψ(t, x)eiωm0

xd
ε eh+, (46)

where eh+ ∈ kerL(iζ, iωm0
) \ {0}, which is possible from assumption 2.6.

So by interpolation between spaces L2(ωT ) and H
1
2 (ΩT ),

‖fε‖L2
xd

(Hs1 (ωT )) ≤ Cε
1
2 +δ,

the energy estimate (8) allows to show that uε is O(ε
1
2 +δ) in L2(ΩT ). Using

the geometric optics expansion given by theorem 2.3 and thanks to the triangle
inequality, one shows that U0 = Uev0 the first term in the expansion is O(ε

1
2 +δ)

in L2(ΩT ).
But,

U0 = Uev0

(
t, x,

xd
ε

)
= α0(t, x′)χ(xd)e

xd
ε A(ζ)e,

implies that for α0 nonzero, Uev0 is O(ε
1
2 ) in L2(ΩT ). This result is sharp thanks

to lemma 4.1. Therefore α0 is zero. But, α0 is solution of the transport equation
(44) with :

g̃0 = −b.B

( ∑
m∈NC

u1,m|xd=0

)
.

The argument to conclude is the same as in [7]. For m ∈ NC, u1,m is solution
of the transport equation :{

(∂t + vm.∇x)u1,m = δm,m0ψ(t, x)eh+ ,
u1,m|t≤0

= 0 ,

so the only nonzero amplitude is u1,m0 and it is computable by integration along
the characteristics.
Let us choose ψ in (46) such as the source term −b.Bu1,m0|xd=0

is nonzero. It

implies that α0 is nonzero and we have thus proved s1 ≥ 1
2 .

Once more we argue by contradiction so we suppose that s2 = 1
2 − δ, δ ∈

]
0, 1

2

[
.

Let fε ≡ 0 and choose now

gε(t, x′) := εei
ϕ
ε ψ(t, x′)b,

with b as in definition 2.5 and ψ ∈ C∞c . Reiterating the same kind of interpo-
lation arguments described in the first part of the proof and using the estimate
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(8) one can show that uε is O(ε
1
2 +δ) in L2(ΩT ). The geometric optics expansion

tells us that
‖uε − ei

ϕ
ε Uev0 ‖L2(ΩT ) ≤ Cε.

So, Uev0 is an O(ε
1
2 +δ) in L2(ΩT ), consequently once again α0 is zero. But, α0

is the solution of the transport equation (44) with

g̃0 = ψ|b|2,

and we can choose ψ such that is not g̃0 zero.So, α0 as a solution of the nontriv-
ial transport equation (44) is not zero which is the desired contradiction. So we
proove that necessarily s2 ≥ 1

2 .

�

5 Consequences

5.1 Classification and well-posed homogeneous ibvp.

The first consequence of theorems 2.4-2.5 is to show rigorously the intuition
in the beginning of [[3], chapter 7] and [15]. It says that the only well-posed
homogeneous ibvp, that is ibvp of the form (1) with gε ≡ 0 and that satisfy the
estimate :

‖u‖L2(ΩT ) ≤ CT ‖f‖L2(ΩT ),

meet on of the following conditions :
i) UKL is satisfied.
ii) UKL fails in the elliptic region E .
iii) UKL fails in the glancing region G under some dimension restriction.
Indeed, if UKL fails in the mixed or in the hyperbolic area then necessarily there
is a loss of at least half a derivative in the domain ΩT , so the homogeneous ibvp
is not well-posed.
If UKL fails in the elliptic region, thanks to theorem 2.4 the energy estimate is
:

‖u‖2L2(ΩT ) + ‖u|xd=0‖2
H−

1
2 (ωT )

≤ CT
(
‖f‖2L2(ΩT ) + ‖g‖2

H
1
2 (ωT )

)
,

and the only way to have strong well-posedness is that there is no loss of deriva-
tive on the boundary that is to say g = 0.
Moreover theorems 2.4-2.5 and the optimality of energy estimate when UKL
fails in the hyperbolic region given by [7] allow the following classification of
weakly well-posed ibvp when UKL fails outside the glancing area.
When UKL fails for an elliptic frequency then the energy estimate is :

‖u‖2L2(ΩT ) + ‖u|xd=0‖2
H−

1
2 (ωT )

≤ CT
(
‖f‖2L2(ΩT ) + ‖g‖2

H
1
2 (ωT )

)
,
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for a mixed frequency, we see that a loss of half a derivative appears in the
interior of the domain :

‖u‖2L2(ΩT ) + ‖u|xd=0‖2
H−

1
2 (ωT )

≤ CT
(
‖f‖2

L2
xd

(H
1
2 (ωT ))

+ ‖g‖2
H

1
2 (ωT )

)
.

At last, [7] show that the worst case occurs for hyperbolic frequencies for which
we lose one derivative in the interior and one derivative on the boundary :

‖u‖2L2(ΩT ) + ‖u|xd=0‖2L2(ωT ) ≤ CT
(
‖f‖2L2

xd
(H1(ωT )) + ‖g‖2H1(ωT )

)
. (47)

5.2 Boundary conditions for linearized Euler equations.

Theorems 2.4-2.5 allow to describe areas where one can impose a maximal dis-
sipative boundary condition for linearized Euler equations. Indeed this system
is both symmetric and constantly hyperbolic so we can study the question of
dissipative boundary conditions. Let us recall that the boundary conditions are
maximal dissipative if the following is true :

∀v ∈ kerB, 〈Adv, v〉 ≤ 0,

It is known (see [3] chapter 3) that a symetrizable ibvp with a maximal dissi-
pative boundary condition admits an energy estimate without loss of derivative
in the interior.
Moreover for linearized Euler equations the elliptic area is empty so we have :

Ξ0 = EH ∪H ∪ G.

Consequently thanks to theorem 2.5 and the optimality of the energy estimate
(47) proved in [7], the only possibility to have a maximal dissipative boundary
conditions that does not satisfy UKL is that the Lopatinskii determinant van-
ishes at a glancing point.
We deal with the linearized isentropic Euler equations in dimension 2 for an
outgoing subsonic fluid. This correspond to the problem : ∂tU +A1∂1U +A2∂2U = f ,

BU|x2=0 = 0 ,
U|t=0 = 0,

(48)

with :

A1 =

 0 −1 0
−1 0 0
0 0 0

 , A2 =

M 0 −1
0 M 0
−1 0 M

 ,
where M ∈ ]−1, 0[ denotes the Mach number.
We suppose that B reads :

B =
[
1 b2 b3

]
,
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with b2, b3 ∈ R. We denote by D the set of (b2, b3) ∈ R2 such that B defines
a maximal dissipative boundary condition and by G̃ the set of (b2, b3) ∈ R2

such that UKL fails in the glancing region. G̃ is easily computable (similar
computations can be found in [[2],chapter 14]) and is given by :

G̃ =

{
(b2, b3) ∈ R2 \ b2 = ± 1 +Mb3√

1−M2

}
= Γg+ ∪ Γg−.

We introduce ∆(σ, η) a Lopatinskii determinant associated to the ibvp (48).
The other possibilities of behaviour for a boundary condition (see [2]) are a bit
more difficult to compute, we enumerate all the possible cases below

Γ0 :=
{

(b2, b3) ∈ R2 \∆(1, 0) = 0
}

=
{

(b2, b3) ∈ R2 \ b3 = 1
}

Γw :=
{

(b2, b3) ∈ R2 \ ∃ζ ∈ EH,∆(ζ) = 0
}

=
{

(b2, b3) ∈ R2 \ b3 = −M,Γg− < b2 < Γg+
}

Γs :=
{

(b2, b3) ∈ R2 \ ∃ζ ∈ H,∆(ζ) = ∂σ∆(ζ) = 0
}

=
{

(b2, b3) ∈ R2 \ b3 > −M, b22 + b23 = 1
}

SU :=
{

(b2, b3) ∈ R2 \ ∃ζ ∈ Ξ \ Ξ0, ζ 6= (1, 0),∆(ζ) = 0
}

=
{

(b2, b3) ∈ R2 \ b3 > −M, b22 + b23 < 1
}

SS :=
{

(b2, b3) ∈ R2 \ ∀ζ ∈ Ξ,∆(ζ) 6= 0
}

=
{

(b2, b3) ∈ R2 \ b3 < −M,Γg− < b2 < Γg+
}

∪
{

(b2, b3) ∈ R2 \ b3 > −
1

M
,Γg+ < b2 < Γg−

}
All other parameters (b2, b3) give rise to problems in the so-called WR class,
that is for which the Lopatinskii determinant vanishes exactly at first order in
the hyperbolic region H.

Remark The transitions described above are those predicted in [2]. The set
Γw contain frequencies which satisfy the assumption 2.5 and assumption 2.6.

It has already been mentioned in the begining of this paragraph that

D ⊂ G̃ ∪ SS.

But for (b2, b3) ∈ G̃ the matrix associated to the quadratic form 〈A2X,X〉 is

M =

M (
1 + (1+Mb3)2

1−M2

)
± (1+Mb3)2√

1−M2

± (1+Mb3)2√
1−M2

(
M(1 + b23) + 2b3

)
 ,

and it is easy to see that det(M) < 0 which means that 〈A2X,X〉 is nonpositive.
In other words D ∩ G̃ is empty.
For (b2, b3) ∈ SS the matrix associated to the quadratic form 〈A2X,X〉 is

M′ =

[
M
(
1 + b22

)
b2 (1 +Mb3)

b2 (1 +Mb3)
(
M(1 + b23) + 2b3

)] .
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Since M
(
1 + b22

)
< 0, 〈A2X,X〉 is nonpositive for all X if and only if det(M′) ≥

0 that is to say :

b22(M2 − 1) + (Mb3 + 1)2 + (M2 − 1) ≥ 0.

The boundary of D is a hyperbola, included in SS, for which the corresponding
boundary conditions are maximal dissipative though not stricly dissipative. As
predicted by theorem 2.5, Γw does not meet D.
We summarize the above discussion in the following scheme.
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[16] M. Sablé-Tougeron. Existence pour un problème de l’élastodynamique Neu-
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