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Abstract Let ϕ : A → B be a flat morphism of Artin local rings with the
same embedding dimension. Denote by mA the maximal ideal of A. Bart de
Smit asked whether any finite B-module that is A-flat is B-flat. We prove the
conjecture in embedding dimension one or two. In embedding dimension n, we
prove the conjecture under an additional assumption on B/mAB.

Keywords Flatness · Artin rings · complete intersections · Gorenstein rings

1 Introduction

Notations and conventions

All rings are commutative rings with unit. If A is a local ring, its maximal
ideal and residue field are always denoted by mA and κ(A). If M is an A-
module, the minimal number of generators of M is denoted by µA(M). We
will say that an element of M is a minimal generator of M if it is part of a
minimal system of generators for M . The embedding dimension of A is the
dimension of the κ(A)-vector space mA/m

2
A. It is denoted by edim (A). Note

that edim (A) is equal to µA(mA). A morphism ϕ : A → B of local rings is a
complete intersection morphism (resp. a Gorenstein morphism) if B/mAB is a
complete intersection ring (resp. a Gorenstein ring). (Unlike [EGA] IV 19.3.6,
a complete intersection morphism is not necessarily flat. Note also that a
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Gorenstein or complete intersection morphism between local rings is local by
definition, since Gorenstein or complete intersection local rings are not null.)

Statement of the conjecture and results

Let us first consider a very easy example. Take A = k[x]/(x2) and B =
A[u]/(u2 − x) ≃ k[u]/(u4) (where k is a field). Let M be a finite B-module,
that is free over A. Let (e1, . . . , en) be an A-basis ofM and let U be the matrix
of multiplication by u. We can write U = U0 + U1x where U0 and U1 have
coefficients in k. Then the relation U2 = x.Id yields

{

U2
0 = 0

U0U1 + U1U0 = Id .

Using these relations, it is an easy exercise in linear algebra over a field to
verify that n is necessarily even, and that M is actually free over B.

In the 1990’s, Bart de Smit raised a question: could the following general-
ization be true?

Conjecture 1.1 (de Smit) Let ϕ : A→ B be a flat morphism of Artin local
rings with the same embedding dimension. Then every B-module M that is
flat and of finite type over A, is flat over B.

Remark 1.2 Note that, since the maximal ideal of an Artin local ring is nilpo-
tent, a morphism between to such rings is necessarily local. Recall also the
following from [Bo] (chap. II, §3, no2, corollary 2 of proposition 5). Let M be
a module over a Noetherian local ring A, and assume that M is of finite type
or that A is Artin. Then it is equivalent to say that M is flat, projective, or
free. The case where M is of finite type is well-known, the case where A is
Artin follows from 2.1 (iv).

To explain the results contained in our paper, we propose the following
definition.

Definition 1.3 Let ϕ : A→ B be a local morphism of Noetherian local rings.
We say that ϕ is a de Smit morphism if every B-module M that is flat and of
finite type over A is flat over B.

Our first observation is that a morphism satisfying the hypothesis of de
Smit’s conjecture is necessarily a complete intersection morphism (see 2.5),
hence a Gorenstein morphism. We introduce below another class of morphisms,
which we call nice morphisms. The precise definition is given in 4.5. We then
prove the following results:

Theorem 1.4 (see 4.7) A nice and Gorenstein morphism of Artin local rings
is de Smit.

Theorem 1.5 (see 4.10) Let ϕ : A→ B be a complete intersection morphism
of Noetherian local rings. Assume that edim (B) < edim (A). Then the only
B-module (of finite type over A if A is not Artin) that is flat over A is zero.
In particular ϕ is nice and de Smit.
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Theorem 1.6 (see 5.1, 5.11 for (i), see 5.12 for (ii) and 5.13 for (iii))
Let ϕ : A → B be a complete intersection morphism of Artin local rings.
Assume that A and B have same embedding dimension n and that one of the
following holds.

(i) The embedding dimension n is 0, 1 or 2.
(ii) n = 3 and there is a minimal generator u of mB that divides (in B) an

element of mAB \mBmAB ( i.e. a minimal generator of mAB, for instance
the image of a minimal generator of mA if ϕ is flat, see 2.5).

(iii) Let B0 = B/mAB. For some minimal system of generators u = (u1, . . . , ul)
of mB0

, there is an upper triangular u-Wiebe matrix for B0 (the definition
of Wiebe matrices is recalled in 5.2).

Then ϕ is nice (hence de Smit).

Remark 1.7 The additional assumption given in embedding dimension 3 (in
(ii)) can be replaced by any of the equivalent conditions given in lemma 5.6.
The authors initially hoped that this condition would always hold. This is
unfortunately not the case as we can see in example 6.1.3. In practice, this
condition is used to reduce the statement to embedding dimension n−1 (see the
lemma 5.7). Actually, the condition given in (iii) more or less means that the
condition discussed above ”recursively holds”. There is a Maple file available
on the web page of the first author for testing whether this condition does, or
does not, hold (in the case n = 3, ϕ being given with explicit equations, and
with the assumption that A and B have residue field equal to C).

Example 1.8 If in de Smit’s conjecture 1.1 we drop the condition edim (A) =
edim (B), then there are trivial counter-examples. For instance let A be a field
and let B = A[ε]/(ε2). Then the ideal (ε) of B is obviously flat over A, and
not flat over B.

The text is organised as follows: the first paragraph is devoted to basic con-
sequences of Nakayama’s lemma and to basic facts on embedding dimension
and complete intersection rings of dimension zero (§2). There is nothing origi-
nal in this section, but we remark that the hypotheses of de Smit’s conjecture
imply that B is a relative complete intersection of dimension zero over A. The
discussion of de Smit’s conjecture is carried out in the following. First (§3)
we introduce the notion of weakly torsion-free modules and give an equivalent
condition for flatness over B in these terms (see 3.7 and 3.9). Then (§4) we
define and study the flatness in first order over a Noetherian local ring A. It is
weaker than flatness, and equivalent to flatness if m2

A = 0 (see 4.3). We prove
the conjecture for embedding dimension less than two and the other results
of 1.6 in §5. At last, we discuss some examples, some generalizations of de
Smit’s conjecture and possible applications (§6).

2 Flatness and complete intersections

We prove in this section that a morphism that satisfies the hypothesis of the
conjecture 1.1 is always a complete intersection morphism. Let us first recall
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briefly the following useful lemma and give some consequences (note that M
is not necessarily of finite type).

Lemma 2.1 ([Bo] chap. II, §3, no2, prop. 4 and 5) Let A be a ring, a
an ideal that is contained in the radical of A, and M an A-module. Assume
that a is nilpotent or that M is of finite type.

(i) If M = aM then M = 0.
(ii) Let N be a submodule of M . Then M = N + aM implies M = N .
(iii) Let (xi)i∈I be a family of elements of M , the images of which generate the

A/a-module M/aM . Then the xi’s generate M .
(iv) Let (xi)i∈I be a family of elements of M , the images of which form a basis

of the A/a-module M/aM . Assume that M is flat over A. Then the xi’s
form a basis of M .

Remark 2.2 In the whole paper, the finiteness assumption on the module M
is only used in Nakayama’s lemma. Thus it is useless if A is Artin, and in this
case we can remove the sentence “of finite type over A” in the definition 1.3 of
de Smit morphisms.

Corollary 2.3 Let ϕ : A→ B be a local morphism of Noetherian local rings.
Let M be a B-module, flat over A. Assume that M is of finite type over B or
that A is Artin. Then the following conditions are equivalent.

(i) The module M is flat over B.
(ii) The module M/mAM is flat over B/mAB.

Proof (i) ⇒ (ii) is obvious, since M/mAM is isomorphic to M ⊗B (B/mAB).
Conversely, let (fi)i∈I be a family of elements of M , the images of which in
M/mAM form a basis of M/mAM over B/mAB. We will prove that the fi’s
form a basis of M over B. We already know that they generate M (use 2.1
with the ideal a = mAB). Let us consider the short exact sequence

0 K B(I) ψ
M 0

where ψ is given by (λi) 7→
∑

λifi and K is its kernel. Since M is flat over
A, this sequence remains exact after applying the functor .⊗A (A/mA). Thus
K⊗A (A/mA) = 0. Applying 2.1 to the B-module K and the ideal mAB (note
that if M is of finite type over B, then I is finite and K is of finite type over
B as well) we deduce that K = 0, proving that ψ is an isomorphism. ⊓⊔

Corollary 2.4 To prove the conjecture 1.1, we can assume that the maximal
ideal mA of A is a square-zero ideal.

Proof Assume that the conjecture is true with the additional hypothesis m2
A =

0. Let M be an A-flat B-module. Using our assumption and tensoring by
A/m2

A, we see that M/m2
AM is a flat (B/m2

AB)-module. Now tensoring by
A/mA, we deduce that M/mAM is flat over B/mAB. Hence M is flat over B
owing to 2.3. ⊓⊔
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Proposition 2.5 Let ϕ : A→ B be a flat local morphism of Noetherian local
rings.

(i) The B/mAB-module mAB/m
2
AB is free, and

rkB/mAB
mAB

m
2
AB

= dimκ(B)
mAB

mBmAB
= edim (A).

(ii) We have edim (A) ≤ edim (B).
(iii) Assume moreover that edim (B) ≤ edim (A) + 1. Then ϕ is a complete

intersection morphism.

Proof (i) First we note that, as B is flat over A, we have canonical isomor-
phisms:

mAB/m
2
AB ≃ (mA/m

2
A)⊗A B

≃ (mA/m
2
A)⊗κ(A) (B/mAB)

so that mAB/m
2
AB is free of rank edim (A) over B/mAB. We also have

(

mAB

mB.(mAB)

)

≃ (mAB)⊗B κ(B)

≃ (mAB)⊗B (B/mAB)⊗(B/mAB) κ(B)

≃ (mAB/m
2
AB)⊗(B/mAB) κ(B)

so that the dimension of mAB
mB .(mAB) over κ(B) is also equal to edim (A).

(ii) and (iii). If A and B are Artin, the ideal mAB is mB-primary and we
can apply [Va], 2.1 and 2.3. In the general case, we will see that the same
proofs (more or less) still work. First we replace ϕ by its composition with
the natural map from B into its completion for its mB-adic topology. This
affects neither the hypothesis, nor the conclusions. We are thus reduced to the
case where B is a complete Noetherian local ring. With the Cohen structure
theorem for complete Noetherian local rings we now have a surjective map
π : R → B where R is a regular local ring with edim (B) = edim (R). Write
I = π−1(mAB) and J = π−1(m2

AB). We have I ⊃ J ⊃ I2 and R/I ≃ B/mAB.
Owing to (i), we also have that I/J ≃ mAB/m

2
AB is a free R/I-module of

rank r = edim (A). Since every ideal in a regular local ring has finite projective
dimension, we conclude with [Va], Theorem 1.1 that I = (x1, . . . , xr)+J , where
(x1, . . . , xr) is a regular sequence in R. As obviously r ≤ dim(R) = edim (R),
we obtain (ii).

With the remark in [Va] before its corollary 1, we also know that the module
I/(x1, . . . , xr) has finite projective dimension over R/(x1, . . . , xr).

In the case edim (A) = edim (B), that is, in the case r = edim (R), the
sequence (x1, . . . , xr) is a maximal regular sequence in R. This implies that
dim(R/(x1, . . . , xr)) = 0 and, as in [Va], proof of theorem 2.3, we observe that
the ideal of finite projective dimension I/(x1, . . . , xr) of R/(x1, . . . , xr) must
be null (remember that a nonnull ideal of finite projective dimension always
contains a regular element). Thus I = (x1, . . . , xr), so that R/I ≃ B/mAB is a
complete intersection of dimension zero. In the case edim (B) = edim (A) + 1,
we refer to [Va] and its proof of Theorem 2.3 again to reach the conclusion. ⊓⊔
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3 Weakly torsion-free modules

Let ϕ : A→ B be a Gorenstein morphism of Artin local rings. Let us consider
a B-module M that is flat over A. We will give a necessary and sufficient
condition for the module M to be flat over B (3.9). For that purpose, we
introduce the notion of weakly torsion-free modules.

Definition 3.1 Let R be a local ring and M be an R-module. We say that
M is weakly torsion-free if, for every λ in R and every m in M , the relation
λm = 0 implies λ = 0 or m ∈ mRM .

The main result of this section is the flatness criterion 3.7 for modules over
a Gorenstein, Artin, local k-algebra. First, we need the following lemma.

Lemma 3.2 Let k be a field and R an Artin local k-algebra. Assume that R is
Gorenstein and that its residue field is k. Then there exists a basis (e1, . . . , en)
of R as a k-vector space, together with elements a1, . . . , an−1 of R such that
the following holds.

1. for all i we have aiei = en
2. for all j > i, aiej = 0.

Example 3.3 For the k-algebra k[u, v]/(u3, v3), the basis

(1, u, u2, v, uv, u2v, v2, uv2, u2v2)

works. We can take as ai’s the elements u2v2, uv2, v2, u2v, uv, v, u2, u.

Remark 3.4 Recall that, in a Gorenstein local ring R of dimension 0, there is
a unique minimal ideal, called the socle of R. If mR is the maximal ideal of R,
then the socle of R is equal to the annihilator Ann(mR) of mR (see for example
[SiSt] for a formal computation of this annihilator). Now, if (e1, . . . , en) is as
in the lemma, then en is necessarily a generator of the socle of R. Indeed, en
is different from zero since it is part of a basis of R, and if v is a nonzero
element of R, we can write v = αiei+ · · ·+αnen with αi an invertible element.
Multiplying by ai, we see that en belongs to (v), so that the principal ideal
generated by en is the minimal ideal of R.

Moreover, the element e1 is necessarily invertible in R, and this is the only
one. Indeed, we know that a1e1 is different from zero, so that a1 6= 0. But we
also have a1ej = 0 for all j > 1 so that the ej ’s cannot be invertible for j ≥ 2.
It follows that e1 is invertible, since the basis necessarily contains at least one
invertible element.

Proof Let en be a generator of the socle of R, and let us take elements
e1, . . . , en−1 such that (e1, . . . , en) is a basis of R. We proceed by induction.
Assume that we already have constructed elements a1, . . . , ai−1 with the prop-
erties of the lemma (1 ≤ i ≤ n − 1). As en is in the socle of the ring, there
exists an element ai such that aiei = en. Note that ai is not invertible, so
aien = 0. If there is an ej , j > i such that aiej does not belong to (en), then
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we exchange ei and ej and we replace ai with some multiple of ai in such a way
that aiei is still equal to en. Now, for every j > i, aiej belongs to (en), so we
can write aiej = λjen. We replace ej with ej − λjei. This gives the result. ⊓⊔

Remark 3.5 The Gorenstein assumption cannot be removed. Let R be equal to
k[x, y]/(x, y)2 = k[x, y]/(x2, xy, y2). Assume that there exists a basis (e1, e2, e3)
and elements a1, a2 as in the lemma. We have seen in the preceding remark
that e2 is in the maximal ideal mR of R. Moreover, the relation a2e3 = 0
proves that a2 is also in the maximal ideal. Then a2e2 = 0, which yields a
contradiction.

Remark 3.6 The hypothesis on the residue field cannot be removed. For in-
stance if R is a finite (nontrivial) extension field of k, the lemma is obviously
false for R.

Proposition 3.7 Let R be an Artin local ring. Assume that R is Gorenstein
and contains a field. Then an R-module M is flat over R if and only if it is
weakly torsion-free.

Proof Assume that M is flat over R. Let λ be a nonzero element in R and
m ∈ M such that λm = 0. As M is flat over R, we can write m =

∑

i αiei
where the ei’s belong to an R-basis of M . Thus, for every i, λαi = 0, so that
αi cannot be invertible and belongs to mR.

Conversely, assume thatM is weakly torsion-free. Recall that R necessarily
contains its residue field (see for instance [EGA][0, 19.6.3]). Let (fi)i∈Λ be a
family of elements of M the images of which form a basis of the κ(R)-vector
space M/mRM . We will prove that this is a basis of M over R. We have to
prove that the morphism

Φ :

{

R(Λ) −→ M

(bi)i∈Λ 7−→
∑

bifi

is an isomorphism. Owing to lemma 2.1, we already know that it is surjective.
Let us consider a relation

∑

i bifi = 0. We have to prove that all the bi are
zero. Let (e1, . . . , en) be a κ(R)-basis of R given by the lemma 3.2. We can
write bi =

∑

j αijej with αij in κ(R). Thus we get the relation

∑

i

n
∑

j=1

αijejfi = 0.

Let a1, . . . , an−1 be the elements of R given together with the basis (e1, . . . , en)
in the lemma 3.2. Multiplying the relation by a1, we get:

en
∑

i

αi1fi = 0.

Since M is weakly torsion-free, we deduce that
∑

i αi1fi belongs to mRM.
But the fi’s form a basis of M/mRM , so for every i, αi1 = 0. Proceeding by
induction (using a2, . . . , an−1) we prove that all the αij are equal to zero. ⊓⊔
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Example 3.8 If we drop the Gorenstein assumption, 3.7 is not true any more.
Let k be a field, let R = k[x, y]/(x, y)2, and letM be the quotient R2/I, where
I is the submodule of R2 generated by the element

(

x
y

)

. ThenM is not flat over
R since it is of dimension 5 as a k-vector space. But M is weakly torsion-free.
Indeed, let λ ∈ R and m =

(

a
b

)

∈ R2 such that λm ∈ I. If λ is invertible
it is obvious that m ∈ mRR

2. If λm = 0 it is obvious that either λ = 0 or
m ∈ mRR

2. Now if λ ∈ mR and λm 6= 0, we have λa = αx, λb = αy with
α ∈ R× so a and b are invertible and λ ∈ (x) ∩ (y) = (0), a contradiction.

Corollary 3.9 Let ϕ : A→ B be a Gorenstein morphism of Artin local rings.
LetM be a B-module, flat over A. Then the following conditions are equivalent.

(i) The module M is flat over B.
(ii) The module M/mAM is flat over B/mAB.
(iii) The module M/mAM is weakly torsion-free over B/mAB.

Proof The equivalence of (i) and (ii) is 2.3. The equivalence of (ii) and (iii)
is a consequence of the previous proposition. (Note that the Gorenstein ring
B/mAB contains the field κ(A).) ⊓⊔

4 Flatness in first order

We begin with a technical lemma that will be used twice: the first time to
define the notion of flatness in order one below (4.2 (i)), and the second time
in the proof of lemma 4.11 (that will be useful in §5 to modify the morphism
ϕ when necessary).

Lemma 4.1 Let A be a Noetherian local ring, I an ideal of A, and M an
A-module. Let x = (x1, . . . , xn) be a sequence generating I minimally. Let us
denote by Nx the submodule of M generated by the elements mi for all the
relations

x1m1 + · · ·+ xnmn = 0.

Then the module Nx does not depend on the choice of x.

Proof Let y = (y1, . . . , yn) be another sequence generating I minimally. It is
enough to prove that Nx ⊂ Ny. Let

x1m1 + · · ·+ xnmn = 0

be a relation as in the statement of the lemma.
We still write x (resp. y) for the row matrix (x1, . . . , xn) (resp. (y1, . . . , yn))

and m for the column matrix (m1, . . . ,mn)
t. The above relation becomes

x.m = 0. Since x and y are minimal systems of generators of I, there is a
matrix C of size n × n with coefficients in A such that x = yC. Since the
images of x and y in I/mAI are both κ(A)-basis of I/mAI, this matrix C is
invertible modulo mA. This implies that C is also invertible in A since A is
local. The relation xm = yCm = 0 implies that Cm has its entries in Ny.
Hence m = C−1Cm also has its entries in Ny, this proves the assertion. ⊓⊔
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Definition 4.2 (i) Let A be a Noetherian local ring and M an A-module.
ThenM is said to be flat in first order (or flat in order one, or simply 1-flat)
if for a (resp. for any, see 4.1) minimal system of generators (x1, . . . , xn) of
mA, and for elements m1, . . . ,mn in M the relation

x1m1 + · · ·+ xnmn = 0

implies mi ∈ mAM for all i. (In other words, if Nx ⊂ mAM with the
notations of the above lemma.)

(ii) Let ϕ : A→ B be a morphism of Noetherian local rings andM aB-module.
Then M is said to be ϕ-1-flat if it is 1-flat over A via ϕ.

(iii) Let ϕ : A → B be a morphism of Noetherian local rings and M be a B-
module. ThenM is said to be ϕ-weakly torsion-free ifM/mAM is a weakly
torsion-free B/mAB-module.

Proposition 4.3 Let A be a Noetherian local ring and M an A-module. Then
M is flat in first order if and only if M/m2

AM is flat over A/m2
A. In particular,

any flat A-module is 1-flat, and the converse is true if m2
A = 0.

Proof Let (ei)i∈I be an A/m2
A-basis of M/m2

AM . Let x1m1 + · · ·+ xnmn = 0
be a relation as in the definition 4.2 and consider its projection in M/m2

AM .
Let us denote by λij the coefficient of mj along ei. Then we have the relation
in A/m2

A:
x1λi1 + · · ·+ xnλin = 0

Since the xi’s form a basis of mA/m
2
A this implies that all the λij belong to

mA, hence all the mj belong to mAM .
Conversely, assume that M is 1-flat. Let (ei)i∈I be a family of elements of

M/m2
AM , the images of which form a basis of M/mAM over κ(A). The ei’s

generate M/m2
AM owing to 2.1 (note that A/m2

A is Artin). To prove they are
linearly independant over A/m2

A, let us consider a relation
∑

λiei = 0 with
λi ∈ A. Viewing the relation in M/mAM , we immediately see that λi belongs
to mA. Thus we can write λi = x1α

i
1 + · · ·+ xnα

i
n and we have

x1(
∑

αi1ei) + · · ·+ xn(
∑

αinei) = 0.

Since M is 1-flat, this implies that for all j,
∑

αijei = 0 in M/mAM , thus the

αij belong to mA and the λi belong to m
2
A. ⊓⊔

Remark 4.4 If m2
A 6= 0, a 1-flat module does not need to be flat. For instance

in the ring k[x]/(x3), the ideal (x) is 1-flat but not flat. Actually, since A/m2
A

is 1-flat, we have m
2
A = 0 if and only if every 1-flat module is flat.

Definition 4.5 Let ϕ : A → B be a morphism of Noetherian local rings.
Then ϕ is called nice if every ϕ-1-flat B-module is ϕ-weakly torsion-free.

Remark 4.6 A morphism ϕ : A → B of Noetherian local rings is nice if and
only if the induced morphism ϕ ⊗A (A/m2

A) is nice. (Immediate from the
definitions 4.2, 4.5 and the proposition 4.3.) Note also that if ϕ is not local
then it is obviously nice since B/mAB = 0.
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Remark 4.7 If ϕ is a nice Gorenstein morphism of Artin local rings then us-
ing 4.3 and 3.9, we see that every B-module M that is flat over A, is flat over
B. In particular this proves 1.4.

Proposition 4.8 Let ϕ : A → B be a local morphism of Noetherian local
rings and let M be a B-module. Assume that M is of finite type over A or that
A is Artin. Assume also that µB(mAB) < edim (A), and that M is ϕ-1-flat.
Then M = 0.

Proof By 2.1, we only have to prove that M = mAM . Let (x1, . . . , xn) be a
minimal system of generators of mA. By assumption, one of the ϕ(xi)’s, say
ϕ(x1), is a linear combination of the others:

ϕ(x1) =

n
∑

i=2

biϕ(xi)

with bi ∈ B. Now if m is an element of M , multiplying the above relation by
m and using the first order flatness of M over A, we see that m ∈ mAM . ⊓⊔

Corollary 4.9 Let ϕ : A→ B be a local morphism of Noetherian local rings.
Assume that µB(mAB) < edim (A). Then ϕ is nice and de Smit. ⊓⊔

Corollary 4.10 Let ϕ : A→ B be a local complete intersection morphism of
Noetherian local rings. Assume that edim (B) < edim (A). Then the only ϕ-1-
flat B-module (of finite type over A if A is not Artin) is zero. In particular ϕ
is nice and de Smit.

Proof Indeed, using the lemma 5.4 below, we see that µB(mAB) ≤ edim (B).
Note that to prove that ϕ is nice, we can reduce to m

2
A = 0 using 4.6, so A is

Artin. ⊓⊔

Lemma 4.11 Let ϕ, ψ : A → B be two local morphisms of Noetherian local
rings. Assume that ϕ(mA)B = ψ(mA)B. Let M be a B-module. Then:

(i) ϕ(mA)M = ψ(mA)M .
(ii) M is ϕ-weakly torsion-free if and only if it is ψ-weakly torsion-free.
(iii) M is ϕ-1-flat if and only if it is ψ-1-flat.

Proof (i) This is obvious.

(ii) This is an immediate consequence of the definition and (i).

(iii) In view of 4.3, we can assume that m
2
A = 0, so A is Artin. Now if

µB(mAB) < edim (A) the statement is obvious since the only ϕ-(resp. ψ-) 1-
flat B-module is zero, see 4.8. Otherwise, let (x1, . . . , xn) be a minimal system
of generators of mA. Then (ϕ(x1), . . . , ϕ(xn)) and (ψ(x1), . . . , ψ(xn)) are both
minimal systems of generators of mAB, and the result is a consequence of
lemma 4.1. ⊓⊔
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5 Sufficient conditions for the conjecture to be verified

We will give in this section some particular cases in which we can prove the
conjecture 1.1. The results 5.1, 5.11, 5.12 and 5.13 give the proof of 1.6. We
first get rid of the trivial cases of embedding dimension zero or one.

Theorem 5.1 Let ϕ : A → B be a morphism of Artin local rings with same
embedding dimension n equal to zero or one. Then ϕ is nice.

Proof If n equals 0, the rings A and B are fields and the statement is obvious.
Now assume n is equal to 1. Let M be a ϕ-1-flat B-module and let x (resp. u)
be a minimal generator of mA (resp. mB). Let λ ∈ B and m ∈M be elements
such that λ /∈ ϕ(x)B and λm ∈ ϕ(x)M . We have to prove that m ∈ uM . We
can assume ϕ(x) 6= 0 (see 4.9). Let p (resp. q) be the greatest integer such
that ϕ(x) ∈ (up) (resp. λ ∈ (uq)). Then we have ϕ(x) = aup and λ = buq with
a, b ∈ B×, and p > q since λ does not belong to ϕ(x)B. There is an m′ in M
such that λm = ϕ(x)m′. Then:

uq(bm− aup−qm′) = 0

ϕ(x)(bm− aup−qm′) = 0.

Since M is ϕ-1-flat, this implies that bm − aup−qm′ belongs to ϕ(x)M , thus
m ∈ uM . ⊓⊔

Before going further, we recall some facts about Wiebe matrices and con-
sequences of Wiebe’s criterion (which recognizes complete intersections of di-
mension zero among the class of Noetherian local rings).

Definition 5.2 ([SiSt] 2.6) Let A be a Noetherian local ring with a sequence
x = (x1, . . . , xn) generating its maximal ideal (not necessarily minimally). An
x-Wiebe matrix for the ring A is a square matrix ψ of size n such that x.ψ = 0
and det(ψ) 6= 0. (Here the sequence x is also viewed as a row matrix.)

Proposition 5.3 (Wiebe, see [SiSt] 2.7) A Noetherian local ring A is a
complete intersection of dimension zero if and only if it has an x-Wiebe matrix
for some (every) sequence x generating its maximal ideal. When this is the
case, the determinant of an x-Wiebe matrix generates the socle of the ring.

Lemma 5.4 Let A be a Noetherian local ring, and I a proper ideal of A.
Assume that the ring A/I is a complete intersection.

(i) Then
µA(I) ≤ edim (A) − dim(A/I).

(ii) If moreover I ⊂ m
2
A, then

µA(I) ≤ edim (A/I)− dim(A/I).

Remark 5.5 The inequalities are not equalities in general (consider for instance
A = C[x]/(x2) and I = 0). But if A is regular, then it is well known that (ii)
actually is an equality.
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Proof We first prove (ii). As the minimal number of generators of any A-
module is impervious to the change of rings A→ Â, where Â is the completion
of A in its mA-adic topology, we are reduced to the case where A is complete.
Using Cohen’s theory, we know that there exists a regular Noetherian local
ring R and a surjective local morphism π : R → A with Kerπ ⊂ m

2
R. Write

J = π−1(I). Then, since I ⊂ m
2
A and Kerπ ⊂ m

2
R, we have J ⊂ m

2
R. Moreover,

by assumption the ring R/J ≃ A/I is a complete intersection. Thus by [Ma]
(21.2) the ideal J of R is generated by a regular sequence, so that µR(J) =
edim (R/J) − dim(R/J). But µA(I) ≤ µR(J) (because π is surjective). This
gives the result.

Now let us prove (i), using (ii). The inclusion of the ideal I in mA induces
a map of κ(A)-vector spaces ψ : I

mAI
→ mA

m
2

A

. Let x1, . . . , xi be a sequence of

elements of I, the images of which form a basis of the image of ψ. We complete
it to form a minimal system of generators (x1, . . . , xn) of mA. Let J ⊂ I be the
ideal generated by the elements x1, . . . , xi. Let us denote by A′ the quotient
ring A/J and I ′ the ideal I/J in A′. Then we see that I ′ ⊂ m

2
A′ , and the ring

A′/I ′ ≃ A/I is a complete intersection. Thus using (ii), we get

µA′(I ′) ≤ edim (A′/I ′)− dim(A′/I ′)

≤ edim (A′)− dim(A/I)

Moreover, we obviously have

µA(I) ≤ µA(J) + µA(I
′).

Now we have µA(J) ≤ i by definition of J , and µA(I
′) = µA′(I ′). We conclude

µA(I) ≤ i+ edim (A′)− dim(A/I)

≤ edim (A)− dim(A/I)

⊓⊔

The existence of an element u ∈ B verifying the equivalent conditions (i)-
(vi) given in the following lemma is precisely the condition under which we
(the authors) can go from embedding dimension n to embedding dimension
n − 1 when trying to prove de Smit’s conjecture 1.6 (see 5.7 and the proof
of 5.13). Unfortunately such an element u does not always exist (see 6.1.3).
Note that, as mentionned in the introduction, there is a Maple program on
the webpage of the first author for testing (in some cases) if such an element
exists.

Lemma 5.6 Let ϕ : A → B be a complete intersection morphism of Artin
local rings. Assume that

edim (A) = edim (B) = dimκ(B)
mAB

mBmAB
.

Let n denote this dimension and B0 denote the quotient ring B/mAB. Let
u be a minimal generator of mB such that its image u0 in B0 is a minimal
generator of mB0

( i.e. u is not in mAB + m
2
B). Let I = Ann(u0) denote the

annihilator of u0. The following are equivalent:
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(i) There is an element y in mAB \mBmAB such that u divides y in B.
(ii) The ring B0/(u0) is a complete intersection.
(iii) The ring B0/I is a complete intersection.
(iv) The ideal I of B0 is principal.
(v) For any (for some) sequence v = (v1, . . . , vr) generating mB0

(not neces-
sarily minimally), there is a v-Wiebe matrix ψ of B0 such that its entries
in the first column are all multiples of u.

(vi) For any (for some) sequence v = (u0, v2, . . . , vn) generating mB0
minimally,

there is a v-Wiebe matrix for B0 of the form

ψ =

(

z1 . . .
0 ψ∗

)

.

Moreover if these conditions hold, and if ψ is a matrix as in (vi), then ψ∗ is
a (v2, . . . , vn)-Wiebe matrix for the ring B0/(u0).

Proof The equivalence of conditions (ii) to (vi) and the last statement are
proved in [SiSt] 5.5 and 5.7. So we only have to prove the equivalence of (i)
and (ii).

Assume (i). Using Cohen’s theory, there is a Noetherian regular local ring
R and a surjective local morphism π : R → B, with Kerπ ⊂ m

2
R. In R,

there are liftings y′ and u′ of y and u such that y′ is a multiple of u′. Let
J = π−1(mAB). Since π(mR) ⊂ mB, we easily see that y′ and u′ are minimal
generators of J and mR respectively. Let (y′, y2, . . . , ys) be a minimal system
of generators of J . This is a regular sequence since the ring R/J , isomorphic
to B0, is a complete intersection. This means that the sequence (y2, . . . , ys) is
regular and that y′ is not a zero divisor in R/(y2, . . . , ys). Neither is u′ since
y′ is a multiple of u′. Thus (u′, y2, . . . , ys) is a regular sequence and the ring
R/(u′, y2, . . . , ys) = R/(J + (u′)) is a complete intersection. This last ring is
isomorphic to B0/(u0), proving (ii).

Conversely, assume (ii). Let π be the projection map π : B → B = B/(u).
The quotient ring B/mAB is isomorphic to B0/(u0), and so is a complete
intersection. Applying the previous lemma 5.4 to B and its ideal mAB, we get

µB(mAB) ≤ edim (B) = n− 1.

Let (x1, . . . , xn) be a sequence in A generating mA minimally. With the above,
the sequence π(ϕ(x1)), . . . , π(ϕ(xn)) in B, which generates mAB, does not
generate mAB minimally. Thus one of the π(ϕ(xi)), say π(ϕ(x1)), is a linear
combination of the others and we have in B a relation π(ϕ(x1) + α2ϕ(x2) +
· · ·+αnϕ(xn)) = 0 for some αi ∈ B. Now the element y = ϕ(x1) +α2ϕ(x2) +
· · ·+ αnϕ(xn) is in mAB \mBmAB and in Kerπ = (u). ⊓⊔

Lemma 5.7 Let ϕ : A→ B be a morphism of Artin local rings. Assume that
there is a minimal generator u of mB and a minimal generator x of mA such
that ϕ(x) is a multiple of u and does not belong to mBmAB. Let us denote by

ϕ : A = A/(x) → B/(u) = B

the induced morphism of Artin local rings.
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(i) If ϕ is a complete intersection morphism then so is ϕ.
(ii) If m2

A = 0, then m
2
A
= 0.

(iii) The embedding dimensions of A and B are respectively edim (A) − 1 and
edim (B) − 1. In particular, if A and B have same embedding dimension,
then so have A and B.

(iv) If mAB/m
2
AB is free of rank edim (A) over B/mAB, then mAB/m

2
A
B is

free of rank edim (A) over B/mAB. (The interest of this property is that it
implies that dimκ(B) mAB/mBmAB = edim (A).)

(v) If M is a ϕ-1-flat B-module, then M :=M/uM is a ϕ-1-flat B-module.
(vi) If B/mAB is Gorenstein and if ϕ is nice, then ϕ is nice.

Proof (ii) and (iii) are obvious. (i) is a consequence of the implication (i) ⇒ (ii)
of 5.6, taking ϕ(x) for the element y.

(iv) Let n = edim (A) and let (x1, . . . , xn) be a minimal system of gen-
erators of mA, with x1 = x. We will prove that the images of the elements
(ϕ(x2), . . . , ϕ(xn)) in mAB/m

2
A
B form a basis of this module over B/mAB.

We only have to prove that they are linearly independant. So let α2, . . . , αn be
elements of B such that the image of α2ϕ(x2) + · · ·+ αnϕ(xn) in the module
mAB/m

2
A
B is zero, and let us prove that for all i, αi belongs to mAB, i.e. that

αi belongs to mAB + (u). By assumption, we have

n
∑

i=2

αiϕ(xi) ∈ (u) +m
2
AB.

We multiply this by an element d ∈ B such that du = ϕ(x) and obtain

n
∑

i=2

dαiϕ(xi) ∈ (ϕ(x)) +m
2
AB.

But, with the assumption in (iv), the images of the ϕ(xi)’s in mAB/m
2
AB form

a basis of this free module over B/mAB, so that dαi ∈ mAB for all i. Hence
we can write:

dαi =

n
∑

j=1

βijϕ(xj)

with βij ∈ B. Multiplying by u, we get:

ϕ(x)αi =

n
∑

j=1

βijuϕ(xj)

ϕ(x)(αi − uβi1) =

n
∑

j=2

βijuϕ(xj)

We remember that the images of the ϕ(xi)’s in mAB/m
2
AB form a basis of this

free B/mAB-module, and we conclude that αi − uβi1 ∈ mAB.
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(v) LetM be a ϕ-1-flat B-module and let us viewM as an A-module via ϕ.
Let (x, x2, . . . , xn) be a minimal system of generators of mA. Then (x2, . . . , xn)
is a minimal system of generators of mA. Let

x2m2 + · · ·+ xnmn = 0

be a relation in M viewed as an A-module via ϕ. We then have

x2m2 + · · ·+ xnmn = um1

in M . Since M is ϕ-1-flat, since ϕ(x) = du for some d ∈ B, this implies that
m1 belongs to mAM , i.e. m1 = x1m

′

1 + · · ·+ xnm
′

n. We get:

x2(m2 − um′

2) + · · ·+ xn(mn − um′

n) = ux1m
′

1

thus mi − um′

i ∈ mAM for i ≥ 2 using 1-flatness again. This proves that mi

belongs to mAM .
(vi) Let M be a ϕ-1-flat B-module. Let v ∈ B and m ∈ M such that

vm ∈ mAM and v /∈ mAB. We want to prove that m ∈ mBM . Plainly we
may assume that v modulo mAB generates the socle of B/mAB. We write
ϕ(x) = ud, with d ∈ B. The element d is not in mAB (otherwise ϕ(x) would
belong to mBmAB). Thus (v) ⊂ (d) in B/mAB and there is a b ∈ B and a
λ ∈ mAB such that v = db+ λ. Now dbm ∈ mAM , thus

dbm = udm1 + ϕ(x2)m2 + · · ·+ ϕ(xn)mn.

ud(bm− um1) = ϕ(x2)um2 + · · ·+ ϕ(xn)umn

Since M is ϕ-1-flat, this implies that bm− um1 belongs to mAM . Hence the
element bm of M belongs to mAM . But b does not belong to mAB (otherwise
db would belong to mAB since du does). Moreover we have seen that M is
ϕ-1-flat so that M/mAM is a weakly torsion-free B/mAB-module since ϕ is
nice. Thus m belongs to mBM . This easily implies that m ∈ mBM . ⊓⊔

Lemma 5.8 Let ϕ : A → B be a morphism of Artin local rings. Assume
that m2

A = 0. Let (x1, . . . , xn) be a minimal system of generators of mA, and
(y1, . . . , yn) a system of generators of ϕ(mA)B (not necessarily minimal). In
case A does not contain a field, we assume moreover that x1 = p.1A and
y1 = p.1B, where p is the characteristic of κ(A). Then:

(i) There is a morphism ψ : A→ B such that ψ(xi) = yi.
(ii) For such a morphism, the ideals ϕ(mA)B and ψ(mA)B are equal.

Remark 5.9 If A does not contain a field, then the characteristic p of κ(A) is
different from zero and we have p.1A 6= 0 ([EGA] chap. 0, 19.6.3), so that p.1A
is a minimal generator of mA since m

2
A = 0. Thus the additional hypothesis

x1 = p and y1 = p is not a restriction on ϕ but only on the choice of the
minimal system of generators of mA.
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Proof (i) If A contains a field, then it contains κ(A) and the map Ti 7→ xi
defines an isomorphism from

κ(A)[|T1, . . . , Tn|]

(T1, . . . , Tn)2

to A (we use m
2
A = 0). Via this isomorphism, and since (mAB)2 = 0, we can

obviously define ψ by Ti 7→ yi.
If A does not contain a field, let WA be a Cohen ring, the residue field

of which is κ(A). WA is a discrete valuation ring, and its maximal ideal is
generated by p. Since m

2
A = 0, we have an isomorphism

A ≃
WA[|T2, . . . , Tn|]

(p, T2, . . . , Tn)2

identifying Ti with xi (2 ≤ i ≤ n) and we can again define the map ψ sending
Ti to yi.

(ii) Obvious by construction. ⊓⊔

The following lemma prepares the proof of the conjecture 1.1 in embedding
dimension 2.

Lemma 5.10 Let ϕ : A→ B be a morphism of Artin local rings of embedding
dimension 2. Assume that

dimκ(B)
mAB

mBmAB
= 2.

Then for every minimal generator u of mB, there is an element y in mAB \
mBmAB such that u divides y in B.

Proof Let (u, v) be a minimal system of generators of mB and (x, y) a minimal
system of generators of mAB (i.e. a basis of mAB

mBmAB
). We can write

x = αvn + ub1

y = βvm + ub2

with b1, b2 ∈ B and α, β ∈ B×. We can assume m ≥ n. Then y − βα−1vm−nx
is a multiple of u, and is an element of mAB \mBmAB. ⊓⊔

Theorem 5.11 Let ϕ : A→ B be a Gorenstein morphism of Artin local rings
of embedding dimension two. Then ϕ is nice.

Proof Using 4.9 and 4.6, we can assume that

dimκ(B)
mAB

mBmAB
= 2

and that m
2
A = 0. Let u be a minimal generator of mB and y given by the

previous lemma. Using lemma 5.8 there is a morphism ψ : A → B such that
ψ(x) = y for a minimal generator x of mA and ψ(mA)B = ϕ(mA)B. Using
lemma 4.11, we may replace ϕ with ψ so that we may assume ϕ(x) = y. Now
owing to theorem 5.1, the induced morphism ϕ : A/(x) → B/(u) is nice. Hence
ϕ is nice because of lemma 5.7 (vi). ⊓⊔
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Remark 5.12 The same argument proves theorem 1.6 (ii).

Theorem 5.13 Let ϕ : A→ B be a morphism of Artin local rings with same
embedding dimension. Write B0 = B/mAB and assume that for some minimal
system of generators u = (u1, . . . , un) of mB0

, there is an upper triangular u-
Wiebe matrix for B0. Then ϕ is nice.

Proof Note that, since there is a u-Wiebe matrix for B0, ϕ is a complete
intersection morphism (5.3). Proceeding by induction on n = edim (A) (5.7),
and using 5.1 for the initial step, we may assume (and we do) that the theorem
is true in embedding dimension n− 1. We can also assume (4.9, 4.6) that

dimκ(B)
mAB

mBmAB
= edim (A)

and that m2
A = 0. Let u′ be a lifting of u1 in B. Owing to lemma 5.6, there is

an element y in mAB \mBmAB such that u′ divides y in B. Using lemma 5.8
there is a morphism ψ : A→ B sending a minimal generator x of mA on y and
such that ψ(mA)B = ϕ(mA)B. We may replace ϕ by ψ (4.11) so that we may
assume ϕ(x) = y. Now the induced morphism ϕ : A/(x) → B/(u) is nice (use
lemma 5.6 and the induction hypothesis). Hence ϕ is nice because of lemma
5.7. ⊓⊔

Remark 5.14 The question of existence of such upper triangular Wiebe matri-
ces has been considered in [SiSt].

6 Examples and further developments

6.1 Examples

Example 6.1.1 Let us consider the morphism

ϕ : A =
(Z/p2Z)[x1, x2, x3]

(x21, x
2
2, x

2
3)

B =
(Z/p2Z)[t, u, v, w]

(t2 − p, α2
1, α

2
2, α

2
3)

where ϕ is defined by ϕ(xi) = αi and

α1 = u2 + tw2

α2 = v2 + t3 + u3

α3 = w3 + vw

The rings A and B are Artin local with embedding dimension 4. We let the
reader check that the (image in B0 of the) matrix









t w2 t2 0
0 u u2 0
0 0 v w
0 0 0 w2








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is a (t, u, v, w)-Wiebe matrix for the ring B0 = B/mAB ≃
Fp[t,u,v,w]

(t2,α1,α2,α3)
. (Com-

pute a Gröbner basis and check that tuvw2 is not zero in B0.) Hence we deduce
from theorem 5.13 that any A-flat B-module is B-flat.

Example 6.1.2 Let us consider

p1 = u2 + vw

p2 = v2 + uw

p3 = w2 + uv

and the morphism ϕ : A = C[[x1,x2,x3]]
(x1,x2,x3)2

→ B = C[[u,v,w]]
(p1,p2,p3)2

defined by ϕ(xi) = pi.

We let the reader check that ϕ is flat (e.g. 1, w, w2, w3, v, vw, v2, u is an A-basis
of B). Hence B/mAB is a complete intersection owing to 2.5. Moreover, the
element u − v is a minimal generator of mB, and divides the element p1 − p2
of mAB \ mBmAB. Thus using 1.6 (ii) we see that every A-flat B-module is
B-flat.

Example 6.1.3 Now let us try with

p1 = u3 + vw

p2 = v2 + uw2

p3 = w3 + u2v

We can check (with the help of a computer) that the condition given in 1.6 (ii)
is not true for ϕ. Hence de Smit’s question remains open in this case.

6.2 Further developpments

For A → B a flat morphism of local rings, Lech [Le] and Hironaka [Hi] asked
whenever we have inequality of i-th sum transforms of the Hilbert series of
A and of B (see [He]). This question is a generalization of the inequality of
the embedding dimensions (edim (A) ≤ edim (B)). We could discuss a weaker
version of de Smit’s conjecture using these transforms of Hilbert series. In view
of 1.6 it is also tempting to ask wether a morphism of Artin local rings with
the same embedding dimension is always nice.

De Smit’s question has origin in Wiles’ proof of Fermat’s theorem ([Wi]).
Wiles’ proof needs an isomorphism between an Hecke algebra and a defor-
mation ring. De Smit mentionned his conjecture in order to make easier one
argument in this direction ([DSmRuSc]). But such a criterion will not only
have applications in deformation theory but also in many other fields. For ex-
ample let R be a regular ring of characteristic p and F : R→ R the Frobenius.
Consider F ∗R the (R−R) bimodule with additive group R and left and right
scalar multiplication given by arb = arF (b) for a, b ∈ R and r ∈ F ∗R. Then
it is well known that R → F ∗R is a flat couple ([BrHe]§8.2). Then such a
flatness criterium could also have some applications in the theory of ϕ-module
of Fontaine in order to study R and F ∗R-modules.
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