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Health Assessment of Composite Structures in Unconstrained Environments Using Partially Supervised Pattern Recognition Tools

The health assessment of composite structures from acoustic emission data is generally tackled by the use of clustering techniques. In this paper, the K-means clustering and the newly proposed Partially-Hidden Markov Model (PHMM) are exploited to analyse the data collected during mechanical tests on composite structures. The health assessment considered in this paper is made difficult by working in unconstrained environments. The presence of the noise is illustrated in several examples and is shown to distort strongly the results of clustering. A solution is proposed to filter out the noisy partition provided by the clustering methods. After filtering, the PHMM provides results which appeared closer to the expectations than the K-means. The PHMM offers the possibility to use uncertain and imprecise labels on the possible states, and thus covers supervised and unsupervised learning as special cases which makes it suitable for real applications.

. This work deals with the health assessment of tubular composite structures based on data-driven approaches. Such structures are used in many application fields, such as speed 1

INTRODUCTION

Context and motivation

The use of organic matrix composite materials has seen considerable growth in many industry sectors in the last decade. The very high specific strength and stiffness and the lowweight of carbon fibres composites has catapulted the use of these materials into the aeronautic market. Their use is also increasing in automotive and railway industries. However, challenges remain to predict their durability, their multiple failure modes over long in-service conditions, to assess the remaining lifetime and to detect damages requiring immediate repair in mobile structures. The main issue is to better Emmanuel Ramasso et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

understand the damage mechanisms and kinetics.

Typically the observed failure consists of inter-fibre matrix cracking, fibre breakage and a variety of interfacial failure (like fibre-matrix debonding, splitting or inter-ply delamination). These damages are almost always accompanied by releases of heat and stress-wave propagation due to microstructural changes.

Detection and analysis of acoustic emissions are powerful means for identification of damage phenomena and monitoring of their evolution [START_REF] Huguet | Use of acoustic emission to identify damage modes in glass fibre reinforced polyester[END_REF][START_REF] Barr | On the use of acoustic emission to investigate damage mechanisms in glass-fibre-reinforced polypropylene[END_REF][START_REF] Huguet | Application de classificateurs aux donnees d'emission acoustique: identification de la signature acoustique des mecanismes d'endommagement dans les composites a matrice polymere[END_REF][START_REF] Momon | Unsupervised and supervised classification of ae data collected during fatigue test on cmc at high temperature[END_REF][START_REF] Momon | Acoustic emission and lifetime prediction during static fatigue tests on ceramicmatrix composite at high temperature under air[END_REF] and generally, a standard method based on only one or several features of waves is inadequate for composite materials submitted to complex loadings [START_REF] Momon | Unsupervised and supervised classification of ae data collected during fatigue test on cmc at high temperature[END_REF]. Pattern recognition techniques are thus considered to identify distinct types of AE-signals based on a large number of features obtained from recorded wave hits. However, the formation of AE-signal clusters highly depends on:

• The experimental configuration,

• The material,

• The geometry of the specimen,

• The existence of AE-sources not correlated to specimen failure,

• The criterion to identify the particular failure mechanisms from AE-clusters.

rotors, flywheels, pressure vessels, transportation systems and so on. In these applications, many sources related to the operation of the structure can generate an acoustic activity in addition to the material deformation and degradation. The surrounding electric and electronic appliances can also generate spurious signals at level of acquisition cards used with acoustic sensors. Moreover, the stress state in these composite structures is most of the time complex (multiaxial and heterogeneous) due to the combination of in-service loads and environments. These conditions make particularly difficult the prediction of damage occurrence.

Related work on data-driven approaches for damage phenomena identification and monitoring

State of the art data-driven approches for tackling the problem of identification and monitoring of damage phenomena can be found in [START_REF] Momon | Unsupervised and supervised classification of ae data collected during fatigue test on cmc at high temperature[END_REF] where two families of pattern recognition approches are considered:

• Unsupervised approaches, in particular a K-means clustering algorithm. • Supervised approaches, in particular the K-Nearest Neighbours classifier.

In unsupervised approaches, the data feed a clustering algorithm which finds out the underlying data structure. The term unsupervised specifies that no prior is available concerning the potential membership of a datum to a particular class (also called clusters or group). Generally, unsupervised techniques require to tune the number of possible clusters, either empirically or automatically based on a given criterion [START_REF] Momon | Unsupervised and supervised classification of ae data collected during fatigue test on cmc at high temperature[END_REF]. Many unsupervised techniques have been developed, in particular the K-means algorithm used in [START_REF] Momon | Unsupervised and supervised classification of ae data collected during fatigue test on cmc at high temperature[END_REF] where the optimisation relies on the Euclidean distance which defines circle-shaped clusters. Other algorithms exist, and some are able to manage the number of clusters sequentially while relying on the Mahalanobis distance to fit ellipsoid-shaped clusters with any orientation [START_REF] Serir | Evidential evolving gustafson-kessel algorithm for online data streams partitioning using belief function theory[END_REF].

In supervised techniques, each datum is accompanied by a label which represents the class. Data and labels are then used to train a classifier which roughly consists in finding the frontiers between the classes. Given a testing instance, the classifier infers membership degrees to all possible classes, and the class with the maximum membership can be selected. Many classifiers have been proposed in the literature, in particular the K-Nearest Neighbours (KNN) [START_REF] Momon | Unsupervised and supervised classification of ae data collected during fatigue test on cmc at high temperature[END_REF] which is a model-free classifier which assigns to the testing instance the most similar datum found in the training dataset.

Problem statement and contribution

Instead of considering a binary situation where one has or does not have labels of damage, we consider a more general case called partially-supervised modelling which consists in assuming that the prior on labels is now encoded with imprecision and uncertainty. The introduction of this soft computing part enables one to cope with variable situations:

• If the labels are precise and certain for the whole dataset, then one retrieves the supervised case.

• If the labels are fully imprecise and certain for the whole dataset, then one retrieves the unsupervised case.

• If the labels are fully imprecise and certain only for a part of the dataset but precise and certain for the other part, then one is facing a semi-supervised case.

• If the labels takes the form of an uncertainty measure such as a probability, a possibility or a belief mass distribution [START_REF] Klir | Uncertainty-based information. elements of generalized information theory[END_REF] over the set of labels, then one is facing a partially-supervised case.

Therefore, the partially-supervised case is the most general situation and enlarges the binary situation (supervised or unsupervised) by considering a soft case. It paves the way for the development of algorithms able to manage supervised or unsupervised cases.

Partially-supervised learning was considered in several algorithms such as the K-nearest neighbours classifier [START_REF] Denoeux | A k-nearest neighbor classification rule based on Dempster-Shafer theory[END_REF], decision trees [START_REF] Vannoorenberghe | Handling uncertain labels in multiclass problems using belief decision trees[END_REF] and mixture models [START_REF] Vannoorenberghe | Partially supervised learning by a Credal EM approach[END_REF][START_REF] Come | Learning from partially supervised data using mixture models and belief functions[END_REF][START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF]. In these algorithms, the uncertainty measure is represented by belief functions which generalise probabilities and set-membership approaches [START_REF] Dempster | Upper and lower probabilities induced by multiple valued mappings[END_REF][START_REF] Shafer | A mathematical theory of Evidence[END_REF][START_REF] Smets | The Transferable Belief Model[END_REF][START_REF] Smets | What is Dempster-Shafer's model ?[END_REF]. For prognostics and health management applications, it was exploited more recently in [START_REF] Ramasso | Joint prediction of observations and states in time-series based on belief functions[END_REF] where the authors proposed to combine discrete and continuous predictions.

More recently, the procedures of inference and training in Hidden Markov Models [START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF] were extended to the partially-supervised case and the resulting model, called a Partially-Hidden Markov Model (PHMM) [START_REF] Ramasso | Partially-Hidden Markov Models[END_REF], is able to perform clustering and classification. This model appears to be well-suited for datadriven identification and monitoring of damages in composites, in particular because:

PHMM manages uncertainties on labels: It is a partiallysupervised technique, managing uncertainties using belief functions which is an original approach compared to the literature on composites analysis and health assessment.

PHMM considers time-dependency of features: The underlying statistical modelling takes explicitly into account the relationship between consecutive data, in opposite to previous approaches. This specificity, combined with the Evidential Expectation-Maximisation algorithm (E2M) used to estimate the parameters in the PHMM, makes it practically more robust to initial conditions than usual methods.

PHMM is flexibility to represent distributions: The distributions of features conditionally to the damages can take various forms, in particular the mixture of Gaussians which allows to represent ellipsoid-shaped relationships between features with different orientations, in opposite to usual approches of clustering based on the Euclidean distance.

PHMM can be used for prognostics: Usual HMMs were already exploited for prognostics and the extension to PHMM can be straightforward. Note that prognostic is not considered in this paper.

Usual probabilistic HMM were exploited for damage modelling in some recent works, in particular in [START_REF] Zhou | Sensor fusion and damage classification in composite materials[END_REF][START_REF] Zhou | On the use of hidden markov modeling and time-frequency features for damage classification in composite structures[END_REF]. To our knowledge, the most related work can be found in [START_REF] Wang | Multiscale uncertainty quantification based on a generalized hidden markov model[END_REF] where imprecise probabilities are used for composite materials analysis based on HMM. Belief functions are different from imprecise probabilities [START_REF] Shafer | A mathematical theory of Evidence[END_REF][START_REF] Smets | What is Dempster-Shafer's model ?[END_REF], the only mathematical link holds in the lower probability measure which represents a belief measure. The tools developed in the the theory of belief functions as considered in Shafer and Smets' mind [START_REF] Shafer | A mathematical theory of Evidence[END_REF][START_REF] Smets | The Transferable Belief Model[END_REF] are now well recognized are suitable ones for pattern recognition and are generally developed to alleviate probabilistic assumptions.

The contribution of this paper lies in two main aspects:

• The introduction of PHMM for health assessment of composites (with the aforementioned assets).

• The proposition of a filtering approach adapted for clustering methods.

• The testing and validation of PHMM and filtering results on a real-world case.

A plot chart of the proposed methodology is given in Figure 1.

Figure 1. Plot chart of the proposed methodology.

EXPERIMENTS

The material

Health was assessed on composite split disks when submitted to mechanical loading. The tests were performed according to ASTM D2290 "Apparent hoop tensile strength of plastic or reinforced plastic pipe by split disk method" (Figure 2). The transient elastic waves were recorded at the material surface using a multi-channels data acquisition system from EPA (Euro Physical Acoustics) corporation (MISTRAS Group).

The system is made up of miniature piezoelectric sensors (µ -80) with a range of resonance of 250 -325 kHz, preamplifiers with a gain of 40 dB and a 20 -1000 kHz filter, a PCI card with a sampling rate of 1 MHz and the AEWin software. The sensors were coupled on the specimen faces using a silicon grease. The calibration of the system was performed after installation of the transducers on the specimen and before each test using a pencil lead break procedure. Ambient noise was filtered using a threshold of 40 dB. The acquisition parameters: PDT (Peak Definition Time) = 60µsec; HDT (Hit Definition Time) = 120µsec and HLT (Hit Lock Time) = 300µsec were identified using preliminary measurements.

Identification of damage mechanisms and their happening under mechanical loading using Non Destructive Technique (NDT)

The damages of ring specimens caused by the mechanical loading were first identified by cautiously inspecting the inner, outer and width surfaces of the specimen following the mechanical tests. Pictures in Figure 3 and their legends precisely detail the identified damage mechanisms. Some of them could have been induced by the very high level energy release at the specimen failure. To avoid any confusion and misinterpretation, some tests were also stopped just before the specimen failure (at approximately 95% of the ultimate tensile stress), and the composite observed using an op-tical microscope (Nikon Eclipse LV 150). These microscopic observations allowed the damage mechanisms observed from fractography images to be confirmed (Figure 4). The occurrence of the damages according to the stress level were identified for each lays-up configuration using a combination of information obtained from NDT techniques, i.e. AE, IR (Infrared) thermography. A CCD Kodak Megaplus 4.2 camera was also used to record specimen pictures with a frame rate of 1 frame per second. Infrared thermography provided high resolution thermal maps as a function of loading time and allowed the damages, characterized by a heat release on the surface of the specimen, to be located (Figure 5). Since approximately 550MPa (20 seconds), IR images clearly show the emergence of matrix cracks, growing in the hoop direction up to the outer 90 o layers splitting. A good correlation is observed between acoustic activity and temperature increase. Each crack propagation can easily be located on the outer surface of the specimen using IR images. A temperature increase of several degrees goes with the crack propagation in this sample area. A significant increase in the absolute energy from AE of a magnitude order of 109 aJ is recorded. Since approximately 850MPa (52 seconds), a damage increase, traduced by a quick increase in temperature and in absolute energy (of about 1010aJ order) was recorded. By means of macrography images, this damage was identified to be due to bundles of fibres fracture.

The evolution of the increase in the acoustic activity and temperature at the outer surface of the specimen and the optical images allowed the different damage modes to be identified during tensile loading for each specimen. Tables 1,2, 3 synthesised the results for each specimen family.

In the first table (Tab. 1), the damage modes and onsets as a function of mechanical stress of the UD specimen are listed.

In addition to fibres breakage just before the final failure, macrocracks with specimen hoop splitting occur since 450 MPa.

The second table (Tab. 2) and the last table (Tab. 3) show that for the others stacking sequences, in addition to the hoop splitting of UD layers, inter-laminar ply delamination is detected. Experimental data do not provide enough information to clearly distinguish the onsets of each variety of interfacial failure. Ely and Hill [START_REF] Ely | Longitudinal splitting and fiber breakage characterization in graphite epoxy using acoustic emission data[END_REF] showed that the signal amplitude can be used as a filter criteria to distinguish fibre breakage and longitudinal splitting. Unfortunately, analysis based on only one or several of the most used parameters, such as amplitude, energy and duration as a filter criteria do not allow hoop splitting and ply delamination to be discriminated.

Identification of damage mechanisms based on acoustic emission data using pattern recognition tools

The 

Features extraction

Acoustic emission signals obtained from the acquisition board can be transformed into features which provides relevant information about the wear mechanisms.

Several features can be extracted and we refer to [START_REF] Hadzor | Development of acoustic emission evaluation method for repaired prestressed concrete bridge girders[END_REF] for a detail overview. Figure 7 (taken from [START_REF] Huang | Using acoustic emission in fatigue and fracture materials research[END_REF]) summarized the most relevant ones. There are about 22 well-known features and the most used ones are in particular: amplitude (in decibels), duration, rise time, strengh, energy, counts, counts to peak, and some frequencybased features. 

Noise removal

Need of noise removal When the pre-processing of data is completed (features extracted followed by a PCA), clustering algorithms can be applied in order to identify families of degrading modes. However, due to the unconstrained environment, a lot of waveforms can be registered, among which only a few represent damage mechanisms in the composite structure.

To illustrate the amount of waveforms which can be considered as false events, we simply applied the K-means clustering algorithm with K = 10. To cope with the dependency on the initial conditions of the K-means clustering, 200 iterations and 10 different initialisations were considered and the partition minimizing the average within-cluster distance was chosen.

The evolution of the logarithm of the cumulated sum of cluster appearance (logCSCA) along time is represented in Figure 9(a) for a configuration [(90 o ) 6 ]. In this configuration, three main families of damage is generally encountered, but it is expected that each family can be represented by members with particular properties, accounting for the choice 10 clusters. This number also well illustrates the influence of noise as described hereafter.

The logCSCA is defined as follows.

Let Ω = {1, 2, . . . , k, . . . , K} be the set of clusters, the following matrix:

S(t, k) = 1 if cluster k is activated at sample t (1)
where t is the sample index, represents the cluster appearance. The logCSCA can be computed as:

log CSCA(t, k) = log 10 t x=1 S(x, k) (2)
The result is depicted in Figure 9(a). This result is far from one can expect. Actually, the number of clusters located at the beginning of the experiment can not reflect a damage mechanism because this area corresponds only to the seating of the specimen in the grips. The initial portion of the stress-time curve is clearly non-linear. The material is not significantly stressed, the applied load at this point just allows the grips to be straightened. Moreover, only a few phenomenons are detected after the half of the duration of the experiment which is also unexpected since this area should be one of the most active ones.

A simple noise removal procedure enables one to obtain a much more satisfying result as depicted in Figure 9(b). The procedure is detailed below.

Noise removal procedure Since it appears difficult to automatically identify a noise waveform from other types of waveforms directly from the features, the noise removal procedure is applied after the clustering phase, i.e. in the clusters space. The noise is removed by a simple majority voting scheme in a given window with size W . The basic assumption is to consider that a mechanical phenomenon implies several consecutive waveforms with similar properties. Let S f be the filtered matrix of cluster appearance:

S f (t, k * ) = 1 (3) 
where

k * = K argmax j=1 C j (4) 
and

C j = t+ W 2 i=t-W 2 S(i, k) (5) 
To speed up the processing, the sliding window of size W can be moved by step equals to P = W/2. In this case

S f (t , k * ) = 1, ∀t ∈ [t, t + P ].
Setting up the window size At the beginning of an experiment, most of waveforms come from the straightening of the grips. This phase generates a lot of waveforms (about 20%) with small energy and small amplitude. Therefore, in this phase, the window size can be large (here chosen equal to 256 points). Then, the specimen start to be notably loaded which induces more complex mechanical phenomenons generating waveforms with particular properties until the final failure. We assume that the damages appearing along time have an increasing importance as the load increases. Therefore, in order to not filter out these potentially important phenomenons, the window size decreases along time. The decreasing rate of the window size is, for the moment, set manually, as depicted in Figure 10. This noise removal procedure is illustrated in Figures 9(a)-9(b) for the K-means algorithm.

Clustering results

Test on [(90 o ) 6 ] with 10 states For comparison purpose (based on the aforementioned K-means results), the Partially-Hidden Markov Model (PHMM) was tuned with 10 states, 1 component for each state, using mixture of Gaussians to represent the distribution of features conditionally to the states. 10 different initialisations were used and the PHMM with the highest likelihood was selected. On the selected model, the Viterbi decoder was applied to obtain the sequence of states along time. The state sequence is then processed by the noise removal procedure. In the PHMM, two sets of partial labels were used:

• A set of labels in the 3 first seconds of the experiment, which correspond to the seating of the specimen in the grips and to the straightening of the grips. • A set of labels in the 3 last seconds of the experiment, which correspond to the fibre breakage.

For these two areas, the plausibility of the two states was set to 1. Since other mechanical phenomenons can appear in these areas, a random noise drawn uniformly in [0, 1] with σ = 0.1 was added on the labels, followed by a normalisation of the plausibilities which must be in [0, 1].

Figures 11(a)-11(b) pictorially depict the clustering result before and after noise removal.

The result provided by the (post-processed) PHMM appears to be different from the K-means ones. The cluster of noise, which starts around t = 5 for PHMM, is well isolated by this method. This result is much more satisfying than the one obtained by the K-means which is more affected by the noise since several clusters starts very soon while there is almost no constraint. Compared to the K-means, the cluster of noise detected by the PHMM also depicts a stationary regime (around t = 40) which is attributed to the end of the seating of the specimen in the grips.

Moreover, the K-means seems to provide clusters with quite periodical starting points (the period seems to be close to 35 seconds on Figure 9(b)) which does not reflect the real behavior of the material. In comparison, the PHMM emphasizes that in some intervals of time, several damages appear, which seems more credible. For example, in the last 30%, several clusters have been identified, which is coherent with the fact that the material is approaching the fibres breakage and the final failure.

The results provided by the PHMM are also closer to the expectations detailed in Table 1 since three main families appear: around t = 5, t = 30 and for t > 60. The following tests emphasize this conclusion.

Test [(90 o ) 6 ] with 3 states The PHMM was run on the configuration [(90 o ) 6 ] with 3 states and 2 components per state and using a similar labeling process as proposed in the previous test. The number of states corresponds here to the number of expected families described in Table 1 and the number of components to different possible members to these families. Figure 12 represents the logCSDA criterion along time for this set-up. The noise removal procedure again improves the detection by separating the clusters. The first cluster still presents the stationary regime around t = 40 and could also includes the signature of the matrix microcracking. The second cluster may represent the hoop splitting with propagation of macrocracks, while the third may characterize the fibre breakage which, as expected, seems to generate some "jumps" in the evolution of the logCSDA. 

CONCLUSION

In this paper, we considered the problem of health assessment of composite structures in applications where the noise is present and can strongly influence the results. Considering the noise in composite structure analysis is a difficult task due to the number of data to process and to the lack of knowledge about the damage appearance and evolution. To cope with this problem, a filtering procedure working in the space of the clusters (which can be estimated by any clustering approach) is developed and applied on the K-means and on the the newly proposed Partially-Hidden Markov Model (PHMM). The results of the latter are shown to be closer to the expectations than the former.

As perspectives, several tracks are currently tackled:

• How to automatically set-up the window's size in the cluster filtering process? Various experiments let us think that one solution is to consider the level of energy released during the experiment. To make it more reliable, a combination with other features should be used. • How to obtain a better description of some particular damages and a better discrimination of the mechanisms of a same damage family, such as ply delamination and splitting, in order to improve the interpretation of the damage process? The labelling process allowed in PHMM can be exploited to emphasize some kind of "macro-states" and a hierarchical processing of these macro-states could give some useful information about finer degradations. • On the opposite to the previous item, given a large number of clusters representing micro-states, how to gather them into families of damages? Partially supervised learning in PHMM can be exploited to assign uncertain and imprecise prior on some waveforms about their membership to some predefined macro-states. The PHMM could then be applied to estimate if "components" have to be gathered [START_REF] Serir | Time-sliced temporal evidential networks: the case of evidential hmm with application to dynamical system analysis[END_REF]. • How to exploit the model-based approach [START_REF] Rabiei | Structural integrity assessment using in-situ acoustic emission monitoring[END_REF] jointly with data-driven ones using possibly distributed sensors [START_REF] Daigle | Distributed damage estimation for prognostics based on structural model decomposition[END_REF] for a better health assessment and prognostics [START_REF] Kessler | A structural health monitoring software tool for optimization, diagnostics and prognostics[END_REF])? Many information fusion tools were developed in the literature [START_REF] Ramasso | Parameter identification in Choquet integral by the Kullback-Leibler divergence on continuous densities with application to classification fusion[END_REF][START_REF] Ramasso | Joint prediction of observations and states in time-series based on belief functions[END_REF] and experiments are now necessary for a validation on composite structure analysis presented in this paper.
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 2 Figure 2. Experimental set-up for tensile test on split-disk specimen.

Figure 3 .

 3 Figure 3. Photograph of the observed macro-damage on splitdisk specimen after failure. Evidence of splitting in UD structures lays-up, ply delamination in multidirectional structures and fibre failures.

Figure 4 .

 4 Figure 4. Micrograph of the surface of a [(90 o ) 2 / ± 45 o /(90 o ) 2 ] specimen (thickness side) loaded at 95% of the maximum strength. Evidence of Matrix cracking, ply delamination and fibre breakage.
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 5 Figure 5. Infrared map during split-disk tests (specimen [(90 o ) 2 / ± 45 o /(90 o ) 2 ]). Evidence of matrix cracks (splitting) and radial delamination.
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 7 Figure 7. Features of typical AE signal.
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 9 Figure 9. Evolution of the logarithm of the cumulated sum of cluster appearance along time using the K-means with 10 clusters.

Figure 10 .

 10 Figure 10. Evolution of the size of the window used in the noise removal procedure. The time axis represents the percentage of experiments' duration.

Figure 13

 13 Figure 13 also presents the results of clustering jointly with report to the mechanical stress and the cumulated energy. The positioning of the clusters is here well justified: the first cluster gathers the waveforms corresponding to the seating of the specimen in the grips where the stress is minimal, the second to possible splittings and the third to fibre breakage.
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 11 Figure 11. Evolution of the logarithm of the cumulated sum of cluster appearance along time using the PHMM with 10 clusters and 1 component.

Figure 12 .

 12 Figure12. Evolution of the logarithm of the cumulated sum of cluster appearance along time using the PHMM with 3 clusters and 2 components.

Figure 13 .

 13 Figure 13. Viewing the results presented in Figure 12(b) jointly with the mechanical stress and the cumulated energy.

  

Table 2 .

 2 Damage onsets and modes as a function of layup configuration [(90 o ) 2 / ± 45 o /(90 o ) 2 ] determined during quasi-static SD tests using NDT.

	[(90 o ) 6 ]

following tests are focused on the configuration [(90 o ) 6 ].

Table 3 .

 3 Damage onsets and modes as a function for layup configuration [(90 o ) 2 / ± 20 o /(90 o ) 2 ] determined during quasi-static SD tests using NDT.
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