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Abstract

In this paper, we are interested in the numerical approximation of the classical time-dependent drift-diffusion system

near quasi-neutrality. We consider a fully implicit in time and finite volume in space scheme, where the convection-

diffusion fluxes are approximated by Scharfetter-Gummel fluxes. We establish that all the a priori estimates needed

to prove the convergence of the scheme does not depend on the Debye length λ. This proves that the scheme is

asymptotic preserving in the quasi-neutral limit λ→ 0.

1. Introduction

1.1. Aim of the paper

In the modeling of plasmas or semiconductor devices, there is a hierarchy of different models: kinetic models and

quasi hydrodynamic models, ranging from Euler-Poisson system to drift-diffusion systems (see [38, 39, 32]). In each

of these models scaled parameters are involved, like the mass of electrons, the relaxation time or the rescaled Debye

length. There is a wide literature on the theoretical validation of the hierarchy of models (see [4, 33, 12] and references

therein). Moreover, an active and recent field of research consists in designing numerical schemes for these physical

models which are valid for all range of scaled parameters, and especially when these parameters may tend to 0. These

schemes are said to be asymptotic preserving. These methods have proved their efficiency in many situations, for

instance: in fluid limits for the Vlasov equation, quasi-neutral limits for the drift-diffusion, Euler or Vlasov equations

coupled to the Poisson equation, in diffusive limit for radiative transfer (see [30, 14, 37, 3, 15, 19, 10] among a long

list of articles that could be mentioned here)

In this paper, we consider the numerical approximation of the linear drift-diffusion system. It is a coupled system

of parabolic and elliptic equations involving only one dimensionless parameter: λ, the rescaled Debye length. This

parameter λ is given by the ratio of the Debye length to the size of the domain; it measures the typical scale of

electric interactions in the semiconductor. Many different numerical methods have been already developed for the

approximation of the drift-diffusion system; see for instance the mixed exponential fitting schemes proposed in [7]

and extended in [31, 34] to the case of nonlinear diffusion. The convergence of some finite volume schemes has been

proved by C. Chainais-Hillairet, J.-G. Liu and Y.-J. Peng in [8, 9]. But, up to our knowledge, all the schemes are

studied in the case λ = 1 and the behavior when λ tends to 0 has not yet been studied.

In this paper, we are interested in designing and studying a scheme for the drift-diffusion system applicable for any

value of λ. This scheme must converge for any value of λ ≥ 0 and must remain stable at the quasi-neutral limit λ→ 0.

We consider an implicit in time and finite volume in space scheme with a Scharfetter-Gummel approximation of the
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convection-diffusion fluxes. As it is classical in the finite volume framework (see [18]), the proof of convergence of

the scheme is based on some a priori estimates which yield the compactness of the sequence of approximate solutions.

In the case of the drift-diffusion system, the a priori estimates needed for the proof of convergence are L∞ estimates on

N and P, discrete L2(0, T,H1(Ω))-estimates on N, P and Ψ in the non-degenerate case [8], with additional weak-BV

estimates on N and P in the degenerate case [9]. However, the crucial point in our work is to establish that all the a

priori estimates do not depend of λ ≥ 0 and therefore the strategy used in [8, 9] to get them does not directly apply. In

order to get estimates which are independent of λ, we adapt to the discrete level the entropy method proposed by A.

Jüngel and Y.-J. Peng in [33] and by I. Gasser et al in [24, 25]. The choice of the Scharfetter-Gummel fluxes for the

discretization of the convection-diffusion fluxes is essential at this step.

1.2. The drift-diffusion system

Let Ω be an open bounded subset of Rd (d ≥ 1) describing the geometry of a semiconductor device and T > 0. The

unknowns of the linear drift-diffusion system are the density of electrons and holes, N and P, and the electrostatic

potentialΨ. In this paper, we assume that the doping profile vanishes in the semiconductor device. The system writes

for all (x, t) ∈ Ω × [0, T ]:

∂tN + div(−∇N + N∇Ψ) = 0, (1a)
∂tP + div(−∇P − P∇Ψ) = 0, (1b)

−λ2∆Ψ = P − N, (1c)

where λ ≥ 0 is the rescaled Debye length. The system is supplemented with mixed boundary conditions (see [38]):

Dirichlet boundary conditions on the ohmic contacts and homogeneous boundary conditions on the insulated boundary

segments. It means that the boundary ∂Ω is split into ∂Ω = ΓD∪ΓN with ΓD∩ΓN = ∅ and that the boundary conditions

write:

N(γ, t) = ND(γ), P(γ, t) = PD(γ),Ψ(γ, t) = ΨD(γ), (γ, t) ∈ ΓD × [0, T ], (2a)
(∇N · ν) (γ, t) = (∇P · ν) (γ, t) = (∇Ψ · ν) (γ, t) = 0, (γ, t) ∈ ΓN × [0, T ], (2b)

where ν is the unit normal to ∂Ω outward to Ω.

The system (1) is also supplemented with initial conditions N0, P0:

N(x, 0) = N0(x), P(x, 0) = P0(x), x ∈ Ω. (3)

In the sequel, we denote by (Pλ) the drift-diffusion system (1)–(3). We need the following assumptions:

Hypotheses 1.1. The domain Ω is an open bounded subset of Rd (d ≥ 1) and ∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅ and

m(ΓD) > 0. The boundary conditions ND, PD and ΨD are the traces of some functions defined on the whole domain

Ω, still denoted by ND, PD and ΨD. Furthermore, we assume that

N0, P0 ∈ L∞(Ω), (4a)

ND, PD ∈ L∞ ∩ H1(Ω), ΨD ∈ H1(Ω), (4b)
∃m > 0,M > 0 such that m ≤ N0, P0,N

D, PD ≤ M a.e. on Ω. (4c)

The weak solution of (Pλ) is defined by: N, P ∈ L∞(Ω × (0, T )), N − ND, P − PD, Ψ − ΨD ∈ L∞(0, T ; V), with

V =
{
v ∈ H1(Ω) ; v = 0 almost everywhere on ΓD

}
and, for all test functions ϕ ∈ C∞c (Ω×[0, T )) and η ∈ C∞c (Ω×(0, T ))

such that ϕ(γ, t) = η(γ, t) = 0 for all (γ, t) ∈ ΓD × [0, T ) and:

∫ T

0

∫

Ω

(N ∂tϕ − ∇N · ∇ϕ + N ∇Ψ · ∇ϕ) dx dt +

∫

Ω

N0(x) ϕ(x, 0) dx = 0, (5a)∫ T

0

∫

Ω

(P ∂tϕ − ∇P · ∇ϕ − P∇Ψ · ∇ϕ) dx dt +

∫

Ω

P0(x) ϕ(x, 0) dx = 0, (5b)

λ2

∫ T

0

∫

Ω

∇Ψ · ∇η dx dt =

∫ T

0

∫

Ω

(P − N) η dx dt. (5c)

The existence of a weak solution to the drift-diffusion system (Pλ) has been proved in [40, 21] under hypotheses more

restrictive than Hypotheses 1.1 since they consider more regular boundary conditions. In [23], the authors prove this

existence results under Hypotheses 1.1 and assuming that ∇(log ND −ΨD), ∇(log PD + ΨD) are in L∞(Ω).
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1.3. The quasi-neutral limit of the drift-diffusion system

The quasi-neutral limit plays an important role in many physical situations like sheath problems [20], plasma diode

modeling [44], semiconductors [45]... Then, it has been studied for different models: see [13, 43] for the Euler-Poisson

model, [6, 28] for the Vlasov-Poisson model and [33, 24, 25] for the drift diffusion-Poisson model.

In these models, the quasi-neutral limit consist in letting tend to 0 the scaled Debye length λ. In a physic point of view,

this means that only the large scale structures with respect to the Debye length are then taken into account. Formally,

this quasi-neutral limit is obtained by setting λ = 0 in the model, here (Pλ). Then, the Poisson equation (1c) on Ψ

reduces to the algebraic relation P − N = 0 (which is the quasi-neutrality relation). But adding and subtracting (1a)

and (1b), we get new equations on N and Ψ. The quasi-neutral system (P0) rewrites finally for all (x, t) ∈ Ω × [0, T ]:

∂tN − ∆N = 0, (6a)

div(N∇Ψ) = 0, (6b)

P = N. (6c)

In [33], A. Jüngel and Y.-J. Peng performed rigorously the quasi-neutral limit for the drift-diffusion system with a zero

doping profile and mixed Dirichlet and homogeneous Neumann boundary conditions. Indeed, under Hypotheses 1.1

and under quasi-neutrality assumptions on the initial and boundary conditions (N0 − P0 = 0 and ND − PD = 0), they

prove that a weak solution to (Pλ), denoted by (Nλ, Pλ,Ψλ), converges, when λ → 0, to (N0, P0,Ψ0) solution to (P0)

in the following sense:

Nλ → N0, Pλ → P0 in Lp(Ω × (0, T )) strongly, for all p ∈ [1,+∞),

Nλ ⇀ N0, Pλ ⇀ P0,Ψλ ⇀ Ψ0 in L2(0, T,H1(Ω)) weakly.

The same kind of result is established for the drift-diffusion system with homogeneous Neumann boundary conditions

by I. Gasser in [24] for a zero doping profile and by I. Gasser, C.D. Levermore, P. Markowich, C. Schmeiser in [25]

for a regular doping profile. In all these papers, the rigorous proof of the quasi-neutral limit is based on an entropy

method.

The entropy method, described for instance in the review paper [1], has been developed in the last twenty years. It

is firstly devoted to the study of the long time behavior of some partial differential equations or systems of partial

differential equations and to the study of their equilibrium state. It consists in looking for a nonnegative Lyapunov

functional, called entropy, and its nonnegative dissipation, connected within an entropy-entropy production estimate.

Generally, it provides the convergence in relative entropy of the evolutive solution towards an equilibrium state. This

method has been widely applied to many different systems: see [1] and the references therein, but also [35, 22, 16, 27,

26]...

However, the entropy method also permits to get new a priori estimates on systems of partial differential equations

via a bound on the entropy production, see [33, 24, 25] for instance. In the case of Dirichlet-Neumann boundary

conditions, the entropy functional, which has the physical meaning of a free energy, is defined (see [33]) by

E(t) =

∫

Ω

(
H(N) − H(ND) − log(ND)(N − ND)

+H(P) − H(PD) − log(PD)(P − PD) +
λ2

2
|∇Ψ − ∇ΨD |2

)
dx,

with H(x) =
∫ x

1
log(t) dt = x log x − x + 1, and the entropy production functional is defined by

I(t) =

∫

Ω

(
N

∣∣∣∇(log N −Ψ)
∣∣∣2 + P

∣∣∣∇(log P + Ψ)
∣∣∣2
)

dxdt.

The entropy-entropy production inequality writes:

dE

dt
(t) +

1

2
I(t) ≤ KD ∀t ≥ 0, (7)

where KD is a constant depending only on data. This inequality is crucial in order to perform rigorously the quasi-

neutral limit. Indeed, if E(0) is uniformly bounded in λ, (7) provides a uniform bound on
∫ T

0
I(s)ds. It implies a priori

uniform bounds on (Nλ, Pλ,Ψλ) solution to (Pλ) and therefore compactness of a sequence of solutions.
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1.4. Presentation of the numerical method

In order to introduce the numerical scheme for the drift-diffusion system (Pλ), first, we define the mesh of the domain

Ω. Here, we consider the two-dimensional case but generalization to higher dimensions is straightforward. The mesh

M = (T ,E,P) is given by T , a family of open polygonal control volumes, E, a family of edges and P = (xK)K∈T
a family of points. As it is classical in the finite volume discretization of elliptic or parabolic equations with a two-

points flux approximations, we assume that the mesh is admissible in the sense of [18] (Definition 9.1). It implies that

the straight line between two neighboring centers of cell (xK , xL) is orthogonal to the edge σ = K|L (and therefore

collinear to νK,σ, the unit normal to σ outward to K).

We distinguish in E the interior edges, σ = K|L, from the exterior edges, σ ⊂ ∂Ω. Therefore E is split into E =
Eint ∪ Eext. Within the exterior edges, we distinguish the edges included in ΓD from the edges included in ΓN :

Eext = ED
ext ∪ EN

ext. For a given control volume K ∈ T , we define EK the set of its edges, which is also split into

EK = EK,int ∪ ED
K,ext
∪ EN

K,ext
. For all edges σ ∈ E, we define dσ = d(xK , xL) if σ = K|L ∈ Eint and dσ = d(xK , σ) if

σ ∈ Eext with σ ∈ EK . Then, the transmissibility coefficient is defined by τσ = m(σ)/dσ, for all σ ∈ E. We assume

that the mesh satisfies the following regularity constraint:

∃ξ > 0 such that d(xK , σ) ≥ ξ diam(K), ∀K ∈ T ,∀σ ∈ EK . (8)

Let β > 0 be such that card(EK) ≤ β. Let ∆t > 0 be the time step. We set NT = E(T/∆t) and tn = n∆t for all

0 ≤ n ≤ NT . The size of the mesh is defined by size (T ) = maxK∈T diam (K) with diam(K) = supx,y∈K |x − y|, for all

K ∈ T . We denote by δ = max(∆t, size (T )) the size of the space-time discretization. Per se, a finite volume scheme

for a conservation law with unknown u provides a vector uT = (uK)K∈T ∈ Rθ (with θ = Card(T )) of approximate

values and the associate piecewise constant function, still denoted uT :

uT =
∑

K∈T
uK1K , (9)

where 1K denotes the characteristic function of the cell K. However, since there are Dirichlet boundary conditions

on a part of the boundary, we need to define approximate values for u at the corresponding boundary edges: uED =

(uσ)σ∈ED
ext
∈ Rθ

D

(with θD = Card(ED
ext)). Therefore, the vector containing the approximate values in the control

volumes and the approximate values at the boundary edges is denoted by uM = (uT , uED ).

For any vector uM = (uT , uED), we define, for all K ∈ T , for all σ ∈ EK ,

uK,σ =



uL, if σ = K|L ∈ EK,int,

uσ, if σ ∈ ED
K,ext
,

uK , if σ ∈ EN
K,ext
,

(10a)

DuK,σ = uK,σ − uK and Dσu =
∣∣∣DuK,σ

∣∣∣ . (10b)

We also define the discrete H1- semi-norm | · |1,M on the set of approximations by

|uM|21,M =
∑

σ∈E
τσ (Dσu)2 , ∀uM = (uT , uED ).

As we deal in this paper with a space-time system of equations (Pλ), we define at each time step, 0 ≤ n ≤ NT , the

approximate solution un
T = (un

K
)K∈T for u = N, P,Ψ and the approximate values at the boundary un

ED = (un
σ)σ∈ED

ext

(which in fact does not depend on n since the boundary data do not depend on time). Now, let us present the scheme

that will be studied in the sequel. First, we discretize the initial and the boundary conditions. We set

(
N0

K , P
0
K

)
=

1

m(K)

∫

K

(
N0(x), P0(x)

)
dx, ∀K ∈ T , (11)

(
ND
σ , P

D
σ ,Ψ

D
σ

)
=

1

m(σ)

∫

σ

(
ND(γ), PD(γ),ΨD(γ)

)
dγ, ∀σ ∈ ED

ext.

and we define

Nn
σ = ND

σ , Pn
σ = PD

σ , Ψ
n
σ = Ψ

D
σ , ∀σ ∈ ED

ext,∀n ≥ 0. (12)

4



This means that Nn
ED = ND

ED for all n ≥ 0.

We consider a Euler implicit in time and finite volume in space discretization. The scheme writes:

m(K)
Nn+1

K
− Nn

K

∆t
+

∑

σ∈EK

F n+1
K,σ = 0, ∀K ∈ T ,∀n ≥ 0, (13a)

m(K)
Pn+1

K
− Pn

K

∆t
+

∑

σ∈EK

Gn+1
K,σ = 0, ∀K ∈ T ,∀n ≥ 0, (13b)

− λ2
∑

σ∈EK

τσDΨn
K,σ = m(K)(Pn

K − Nn
K), ∀K ∈ T ,∀n ≥ 0. (13c)

It remains to define the numerical fluxes F n+1
K,σ

and Gn+1
K,σ

which can be seen respectively as numerical approximations

of

∫

σ

(−∇N +N∇Ψ) · νK,σ and

∫

σ

(−∇P−P∇Ψ) · νK,σ on the interval [tn, tn+1). We choose to discretize simultaneously

the diffusive part and the convective part of the fluxes, by using the Scharfetter-Gummel fluxes. For all K ∈ T , for all

σ ∈ EK , we set:

F n+1
K,σ = τσ

(
B(−DΨn+1

K,σ)Nn+1
K − B(DΨn+1

K,σ)Nn+1
K,σ

)
, (14a)

Gn+1
K,σ = τσ

(
B(DΨn+1

K,σ)Pn+1
K − B(−DΨn+1

K,σ)Pn+1
K,σ

)
, (14b)

where B is the Bernoulli function defined by

B(0) = 1 and B(x) =
x

exp(x) − 1
∀x , 0. (15)

These fluxes have been introduced by A. M. Il’in in [29] and D. L. Scharfetter and H. K. Gummel in [42] for the

numerical approximation of convection-diffusion terms with linear diffusion. It has been established by R. Lazarov,

I. Mishev and P. Vassilevsky in [36] that they are second-order accurate in space. Moreover, they preserve steady-

states . With this choice of numerical fluxes, M. Chatard in [11] proved a discrete entropy estimate, with control of

the entropy production, which yields the long-time behavior of the Scharfetter-Gummel scheme for the drift-diffusion

system. The generalization of these fluxes to nonlinear diffusion has been studied by A. Jüngel and P. Pietra in [34],

R. Eymard, J. Fuhrmann and K. Gärtner in [17] and M. Bessemoulin-Chatard in [5].

Remark 1.2. Let us note that the definition (10) ensures that DΨn+1
K,σ = 0 and also that F n+1

K,σ = Gn+1
K,σ = 0, for all

σ ∈ EN
K,ext

. These relations are consistent with the Neumann boundary conditions (2b).

In the sequel, we denote by (Sλ) the scheme (11)–(15). It is a fully implicit in time scheme: the numerical solution

(Nn+1
K
, Pn+1

K
,Ψn+1

K
)K∈T at each time step is defined as a solution of the nonlinear system of equations (13)–(14). When

choosing DΨn
K,σ instead of DΨn+1

K,σ in the definition of the fluxes (14), we would get a decoupled scheme whose solution

is obtained by solving successively three linear systems of equations for N, P and Ψ. However, this other choice of

time discretization used in [8, 9] induces a stability condition of the form ∆t ≤ Cλ2 (see for instance [2]). Therefore,

it cannot be used in practice for small values of λ and it does not preserve the quasi-neutral limit.

Setting λ = 0 in the scheme (Sλ) leads to the scheme (S0). The scheme for the Poisson equation (13c) becomes

Pn
K
− Nn

K
= 0 for all K ∈ T , n ∈ N. In order to avoid any incompatibility condition at n = 0 (which would correspond

to an initial layer), we assume that the initial conditions N0 and P0 satisfy the quasi-neutrality assumption:

P0 − N0 = 0. (16)

Adding and subtracting (13a) and (13b), we get

m(K)
Nn+1

K
− Nn

K

∆t
+

1

2

∑

σ∈EK

(
F n+1

K,σ + Gn+1
K,σ

)
= 0,∀K ∈ T ,∀n ≥ 0,

and
∑

σ∈EK

(
F n+1

K,σ − Gn+1
K,σ

)
= 0,∀K ∈ T ,∀n ≥ 0.
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But, using Pn
K
= Nn

K
for all K ∈ T and n ∈ N, and the following property of the Bernoulli function

B(x) − B(−x) = −x ∀x ∈ R, (17)

we have, ∀K ∈ T ,∀σ ∈ EK,int ∪ EN
K,ext

:

F n+1
K,σ − Gn+1

K,σ = τσDΨn+1
K,σ(Nn+1

K + Nn+1
K,σ ),

and F n+1
K,σ + Gn+1

K,σ = −τσ
(
B(DΨn+1

K,σ) + B(−DΨn+1
K,σ)

)
DNn+1

K,σ .

Let us note that these equalities still hold for each Dirichlet boundary edge σ ∈ ED
K,ext

if ND
σ = PD

σ . In the sequel, when

studying the scheme at the quasi-neutral limit (S0), we assume the quasi-neutrality of the initial conditions (16) and

of the boundary conditions:

PD − ND = 0. (18)

Finally, the scheme (S0) can be rewritten: ∀K ∈ T , ∀n ≥ 0,

m(K)
Nn+1

K
− Nn

K

∆t
−

∑

σ∈EK

τσ
B(DΨn+1

K,σ
) + B(−DΨn+1

K,σ
)

2
DNn+1

K,σ = 0, (19a)

−
∑

σ∈EK

τσDΨn+1
K,σ(Nn+1

K + Nn+1
K,σ ) = 0, (19b)

Pn
K − Nn

K = 0, (19c)

with the initial conditions (11) and the boundary conditions (12).

1.5. Main results and outline of the paper

The scheme (Sλ) is implicit in time. Then we begin by proving that the nonlinear system of equations (13) admits a

solution at each time step. The proof of this result is based on the application of Brouwer’s fixed point theorem. The

existence result is given in Theorem 1.3 and is proved in Section 2.

Theorem 1.3 (Existence of a solution to the numerical scheme).

We assume Hypotheses 1.1, let T be an admissible mesh of Ω satisfying (8) and ∆t > 0. If λ = 0, we further assume

the quasi-neutrality of the initial and boundary conditions (16) and (18). Then, for all λ ≥ 0, there exists a solution

to the scheme (Sλ): (Nn
K
, Pn

K
,Ψn

K
)K∈T ∈ (Rθ)3 for all n ≥ 0. Moreover, the approximate densities satisfy the following

L∞ estimate:

∀K ∈ T ,∀n ≥ 0, m ≤ Nn
K , P

n
K ≤ M. (20)

Then, in Section 3, we prove the discrete counterpart of the entropy-dissipation inequality (7). As the functions ND,

PD, ΨD are given on the whole domain, we can set:

(
ND

K , P
D
K ,Ψ

D
K

)
=

1

m(K)

∫

K

(
ND(x), PD(x),ΨD(x)

)
dx, ∀K ∈ T .

For all n ∈ N, the discrete entropy functional is defined by:

E
n =

∑

K∈T
m(K)

(
H(Nn

K) − H(ND
K ) − log(ND

K )
(
Nn

K − ND
K

))

+
∑

K∈T
m(K)

(
H(Pn

K) − H(PD
K) − log(PD

K)(Pn
K − PD

K)
)
+
λ2

2

∣∣∣Ψn
M −Ψ

D
M

∣∣∣2
1,M ,

and the discrete entropy production is defined by

I
n =

∑

σ∈E,
σ∈EK

τσ

[
min

(
Nn

K ,N
n
K,σ

) (
Dσ

(
log Nn −Ψn) )2

+min
(
Pn

K , P
n
K,σ

) (
Dσ

(
log Pn + Ψn) )2

]
.

The discrete counterpart of (7) is given in Theorem 1.4
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Theorem 1.4 (Discrete entropy-dissipation inequality).

We assume Hypotheses 1.1, let T be an admissible mesh of Ω satisfying (8) and ∆t > 0. Then, there exists KE ,

depending only on Ω, T , m, M, ND, PD, ΨD, β and ξ such that, for all λ ≥ 0, a solution to the scheme (Sλ),
(Nn
T , P

n
T ,Ψ

n
T )0≤n≤NT

, satisfies the following inequality:

En+1 − En

∆t
+

1

2
I

n+1 ≤ KE , ∀n ≥ 0. (21a)

Furthermore, if N0 and P0 satisfy the quasi-neutrality assumption (16), we have

NT−1∑

n=0

∆t In+1 ≤ KE(1 + λ2). (21b)

Let us note that the last inequality (21b), which ensures the control of the discrete entropy production, depends on

λ. However, as we are interested in the quasi-neutral limit λ → 0, we can assume that λ stays in a bounded interval

[0, λmax] and then get a uniform bound in λ.

In Section 4, we show how to obtain, from the discrete entropy-dissipation inequality, all the a priori estimates needed

for the convergence of the scheme. These estimates are given in the following Theorem 1.5. There are weak-BV

inequality (22a) and L2(0, T,H1)-estimates(22b) on N and P and L2(0, T,H1)-estimates (22c) on Ψ.

Theorem 1.5 (A priori estimates satisfied by the approximate solution). We assume Hypotheses 1.1, let T be an

admissible mesh of Ω satisfying (8) and ∆t > 0. We also assume that the initial and boundary conditions satisfy the

quasi-neutrality relations (16) and (18). Then, there exists a constant KF depending only onΩ, T , m, M, ND, PD, ΨD,

β and ξ such that, for all λ ≥ 0, a solution to the scheme (Sλ), (Nn
T , P

n
T ,Ψ

n
T )0≤n≤NT

, satisfies the following inequalities:

NT−1∑

n=0

∆t
∑

σ∈E
τσDσΨ

n+1
(
(DσPn+1)2 + (DσNn+1)2

)
≤ KF (1 + λ2), (22a)

NT−1∑

n=0

∆t
∑

σ∈E
τσ(DσNn+1)2 +

NT−1∑

n=0

∆t
∑

σ∈E
τσ(DσPn+1)2 ≤ KF (1 + λ2), (22b)

NT−1∑

n=0

∆t
∑

σ∈E
τσ(DσΨ

n+1)2 ≤ KF (1 + λ2). (22c)

Estimates (22b) and (22c) yield the compactness of a sequence of approximate solutions, as shown for instance in [8],

applying some arguments developed in [18]. To prove the convergence of the numerical method, it remains to pass to

the limit in the scheme and by this way prove that the limit of the sequence of approximate solutions is a weak solution

to (Sλ). It can still be done as in [8], but dealing with the Scharfetter-Gummel fluxes as in [5]. The convergence proof

is not detailed in this paper. Let us just note that the convergence proof holds for all λ ≥ 0.

Finally, in Section 5, we present some numerical experiments. They illustrate the stability of the scheme when λ

varies and goes to 0. They show that the proposed scheme is an asymptotic-preserving scheme in the quasi-neutral

limit since the scheme order in space and time is preserved uniformly in the limit.

2. Existence of a solution to the numerical scheme

In this Section, we prove Theorem 1.3 (existence of a solution to the numerical scheme (Sλ) for all λ ≥ 0). As

the boundary conditions are explicitly defined by (12), it consists in proving at each time step the existence of

(Nn
T , P

n
T ,Ψ

n
T ) solution to the nonlinear system of equations (13) when λ > 0 or (19) when λ = 0. We distinguish

the two cases in the proof.
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2.1. Study of the case λ > 0

We consider here λ > 0. The proof of Theorem 1.3 is done by induction on n. The vectors N0
T and P0

T are defined by

(11) and Ψ0
T by (13c). Furthermore, the hypothesis on the initial data (4c) ensures that

m ≤ N0
K , P

0
K ≤ M ∀K ∈ T .

We suppose that, for some n ≥ 0, (Nn
T , P

n
T ,Ψ

n
T ) is known and satisfies the L∞ estimate (20). We want to establish the

existence of (Nn+1
T , P

n+1
T ,Ψ

n+1
T ) solution to the nonlinear system of equations (13), also satisfying (20). Therefore, we

follow some ideas developed by A. Prohl and M. Schmuck in [41] and used by C. Bataillon et al in [2].

Let µ > 0, we introduce an application T n
µ : R

θ × R
θ → R

θ × R
θ, such that T n

µ(NT , PT ) = (N̂T , P̂T ), based on a

linearization of the scheme (13) and defined in two steps.

• First, we define ΨT ∈ Rθ as the solution to the following linear system:

−λ2
∑

σ∈EK

τσDΨK,σ = m(K)(PK − NK), ∀K ∈ T , (23a)

with Ψσ = Ψ
D
σ , ∀σ ∈ ED

ext. (23b)

• Then, we construct (N̂T , P̂T ) as the solution to the following linear scheme:

m(K)

∆t

((
1 +
µ

λ2

)
N̂K −

µ

λ2
NK − Nn

K

)

+
∑

σ∈EK

τσ
(
B

(−DΨK,σ

)
N̂K − B

(
DΨK,σ

)
N̂K,σ

)
= 0, ∀K ∈ T , (24a)

m(K)

∆t

((
1 +
µ

λ2

)
P̂K −

µ

λ2
PK − Pn

K

)

+
∑

σ∈EK

τσ
(
B

(
DΨK,σ

)
P̂K − B

(−DΨK,σ

)
P̂K,σ

)
= 0, ∀K ∈ T , (24b)

with N̂σ = ND
σ and P̂σ = PD

σ ∀σ ∈ ED
ext. (24c)

The existence and uniqueness of ΨT solution to the linear system (23) are obvious. The second step (24) also leads

to two decoupled linear systems which can be written under a matricial form: AN N̂T = Sn
N

and APP̂T = Sn
P

. The

matrix AN for instance is the sparse matrix defined by

(AN)K,K =
m(K)

∆t

(
1 +
µ

λ2

)
+

∑

σ∈EK\EN
K,ext

τσ B
(−DΨK,σ

) ∀K ∈ T ,

(AN)K,L = −τσ B
(
DΨK,σ

) ∀L ∈ T such that σ = K|L ∈ Eint.

We verify that AN has positive diagonal terms, nonpositive offdiagonal terms and is strictly diagonally dominant with

respect to its columns. It implies that AN is a M-matrix: it is invertible and its inverse has only nonnegative coefficients.

The same result holds for AP. Thus, we obtain that the scheme (24) admits a unique solution (N̂T , P̂T ) ∈ Rθ × Rθ, so

that the application T n
µ is well defined and is a continuous application.

Now, in order to apply Brouwer’s fixed point theorem, we want to prove that T n
µ preserves the set

Cm,M =
{
(NT , PT ) ∈ Rθ × Rθ; m ≤ NK , PK ≤ M, ∀K ∈ T

}
. (25)

The right hand side of the linear system (24a) is defined by

(SN)K =
m(K)

∆t

(
Nn

K +
µ

λ2
NK

)
+

∑

σ∈ED
K,ext

τσ B
(
DΨK,σ

)
ND
σ , ∀K ∈ T .
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If NT ≥ 0, we have Sn
N
≥ 0 and, as AN is a M-matrix, we get N̂T ≥ 0. Similarly, if PT ≥ 0, we obtain that P̂T ≥ 0.

In order to prove that N̂K ≤ M for all K ∈ T , we introduce MT the constant vector of Rθ with unique value M and we

compute AN(N̂T −MT ). Using the property (17), we get that for all K ∈ T ,

(
AN(N̂T −MT )

)
K
=

m(K)

∆t
(Nn

K − M) +
m

∆t

µ

λ2
(NK − M)

+
∑

σ∈ED
K,ext

τσ
(
B

(
DΨK,σ

)
ND
σ − B

(−DΨK,σ

)
M

)
− M

∑

σ∈EK,int

τσ DΨK,σ.

Since B is a nonnegative function and ND satisfies (4c), we have, for all σ ∈ ED
K,ext

,

B
(
DΨK,σ

)
ND
σ − B

(−DΨK,σ

)
M = B

(
DΨK,σ

)
(ND
σ − M) − DΨK,σ M ≤ −DΨK,σ M

Then, using the induction assumption Nn
K
≤ M for all K ∈ T , it yields

(
AN(N̂T −MT )

)
K
≤ m(K)

∆t

µ

λ2
(NK − M) − M

∑

σ∈EK

τσ DΨK,σ,

and using (23), we get that for all K ∈ T
(
AN(N̂T −MT )

)
K
≤ m(K)

λ2

(
µ

∆t
− M

)
(NK − M) + M

m(K)

λ2
(PK − M). (26)

We can prove exactly in the same way that, for all K ∈ T ,

(
AN(N̂T −mT )

)
K
≥ m(K)

λ2

(
µ

∆t
− m

)
(NK − m) + m

m(K)

λ2
(PK − m). (27)

Since µ > 0 is an arbitrary constant, we can choose it such that m∆t ≤ M ∆t ≤ µ. Then, if (NT , PT ) ∈ Cm,M,

inequalities (26) and (27) imply that

AN(N̂T −MT ) ≤ 0 and AN(N̂T −mT ) ≥ 0.

As AN is an M-matrix, we conclude that m ≤ N̂K ≤ M for all K ∈ T . The proof that m ≤ P̂K ≤ M for all K ∈ T is

similar and we have (N̂T , P̂T ) ∈ Cm,M .

Finally, T n
µ is a continuous application which stabilizes the set Cm,M. Then, by the Brouwer’s fixed-point theorem, T n

µ

has a fixed point in Cm,M which is denoted by (Nn+1
T , P

n+1
T ) and satisfies the L∞ estimate (20). The correspondingΨT

defined by (23) is denoted by Ψn+1
T and (Nn+1

T , P
n+1
T ,Ψ

n+1
T ) is a solution to the scheme (13). This shows Theorem 1.3

when λ > 0.

2.2. Study of the case λ = 0

Now, we prove Theorem 1.3 when λ = 0. In this case, thanks to the quasi-neutrality assumptions, we have shown

that the scheme (S0) rewrites as the nonlinear system of equations (19). Indeed, it is sufficient to study the system

(19a)-(19b), whose unknowns are (Nn+1
T ,Ψ

n+1
T ).

The proof is done by induction as in the case λ > 0. Let us first note that N0
T satisfy the L∞ estimate (20). Then,

we assume that, for n ≥ 0, Nn
T is known and also satisfies (20). As in the case λ > 0, we introduce an application

T n : (R∗+)θ → Rθ such that T n(NT ) = N̂T , based on a linearization of (19a)-(19b) and defined in two steps.

• First, we define ΨT ∈ Rθ as the solution to the linear system:

−
∑

σ∈EK

τσDΨK,σ(NK + NK,σ) = 0, ∀K ∈ T , (28a)

with Ψσ = Ψ
D
σ ∀σ ∈ ED

ext. (28b)
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• Then, we define N̂T ∈ Rθ as the solution to the linear system:

m(K)

∆t
(N̂K − Nn

K) −
∑

σ∈EK

τσ
B(DΨK,σ) + B(−DΨK,σ)

2
DN̂K,σ = 0,∀K ∈ T , (29a)

with N̂σ = ND
σ ∀σ ∈ ED

ext. (29b)

First, let us prove that the application T n is well defined. If NK > 0 for all K ∈ T , the matrix of the linear system (28)

is a positive symmetric definite matrix (it can be proved for instance by multiplying (28a) by ΨK and summing over

K ∈ T ). Therefore,ΨT is uniquely defined.

The linear system (29) can be written under the matricial form AN N̂T = Sn
N

where the matrix AN is defined by:

(AN)K,K =
m(K)

∆t
+

1

2

∑

σ∈EK\EN
K,ext

τσ
(
B(DΨK,σ) + B(−DΨK,σ)

) ∀K ∈ T ,

(AN)K,L = −
τσ

2

(
B(DΨK,σ) + B(−DΨK,σ)

) ∀L ∈ T such that σ = K|L ∈ Eint.

and the right hand side Sn
N

is defined by:

(Sn
N)K =

m(K)

∆t
Nn

K +
1

2

∑

σ∈ED
K,ext

τσ
(
B(DΨK,σ) + B(−DΨK,σ)

)
ND
σ ∀K ∈ T .

The matrix AN is an M-matrix because it has positive diagonal terms, nonpositive off diagonal terms and it is strictly

diagonally dominant with respect to its columns. Therefore the linear system (29) has a unique solution N̂T , so that

the application T n is well defined. It is also continuous.

Now, let us prove that T n preserves the set

Km,M =
{
NT ∈ Rθ; m ≤ NK ≤ M, ∀K ∈ T

}
.

Therefore, we compute AN(N̂T −MT ). We obtain

(
AN(N̂T −MT )

)
K
=

m(K)

∆t
(Nn

K − M)

+
1

2

∑

σ∈ED
K,ext

τσ
(
B(DΨK,σ) + B(−DΨK,σ)

)
(ND
σ − M).

Thanks to the induction hypothesis and (4c), we deduce that AN(N̂T −MT ) ≤ 0. Similarly, we prove that AN(N̂T −
mT ) ≥ 0. This implies N̂T ∈ Km,M. We conclude the proof of Theorem 1.3 in the case λ = 0 by applying the

Brouwer’s fixed point theorem as in the case λ > 0.

3. Discrete entropy-dissipation inequality

In this Section, we prove Theorem 1.4. Therefore, we adapt the proof done by M. Chatard in [11] for the study of the

long-time behavior of the scheme (in this case, the entropy functional is defined relatively to the thermal equilibrium).

Since H is a convex function, we have En ≥ 0 and En+1 − En ≤ T1 + T2 + T3, with

T1 =
∑

K∈T
m(K)

(
log

(
Nn+1

K

)
− log

(
ND

K

)) (
Nn+1

K − Nn
K

)
,

T2 =
∑

K∈T
m(K)

(
log

(
Pn+1

K

)
− log

(
PD

K

)) (
Pn+1

K − Pn
K

)
,

T3 =
λ2

2

∣∣∣Ψn+1
M −Ψ

D
M

∣∣∣2
1,M
− λ

2

2

∣∣∣Ψn
M −Ψ

D
M

∣∣∣2
1,M
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Multiplying the scheme on N (13a) by ∆t
(
log

(
Nn+1

K

)
− log

(
ND

K

))
, summing over K ∈ T and following a discrete

integration by parts (using (12)), we rewrite T1:

T1 = −∆t
∑

K∈T

∑

σ∈EK

F n+1
K,σ

(
log

(
Nn+1

K

)
− log

(
ND

K

))

= ∆t
∑

σ∈E
σ∈EK

F n+1
K,σ

(
(D log Nn+1)K,σ − (D log ND)K,σ

)
.

(30)

Starting from the scheme on P (13a) and following the same kind of computations, we also rewrite T2:

T2 = ∆t
∑

σ∈E
σ∈EK

Gn+1
K,σ

(
(D log Pn+1)K,σ − (D log PD)K,σ

)
. (31)

Now, in order to estimate T3, we subtract two consecutive time steps of the scheme on Ψ (13c). It yields:

−λ2
∑

σ∈EK

τσDΨn+1
K,σ + λ

2
∑

σ∈EK

τσDΨn
K,σ = m(K)

(
(Pn+1

K − Pn
K) − (Nn+1

K − Nn
K)

)
.

Thanks to the schemes on N (13a) and P (13b), it rewrites

λ2
∑

σ∈EK

τσ(DΨn+1
K,σ − DΨD

K,σ) − λ2
∑

σ∈EK

τσ(DΨn
K,σ − DΨD

K,σ) = ∆t
∑

σ∈EK

(Gn+1
K,σ − F n+1

K,σ ).

Multiplying this equality byΨn+1
K
−ΨD

K
, summing over K ∈ T , integrating by parts and using the boundary conditions,

we obtain:

λ2
∑

σ∈E
σ∈EK

τσ(DΨn+1
K,σ − DΨD

K,σ)2 − λ2
∑

σ∈E
σ∈EK

τσ(DΨn
K,σ − DΨD

K,σ)(DΨn+1
K,σ − DΨD

K,σ) =

∆t
∑

σ∈E
σ∈EK

(Gn+1
K,σ − F n+1

K,σ )(DΨn+1
K,σ − DΨD

K,σ).

But, for all K ∈ T and all σ ∈ EK , we have

−(DΨn
K,σ − DΨD

K,σ)(DΨn+1
K,σ − DΨD

K,σ) ≥−1

2
(DΨn

K,σ − DΨD
K,σ)2 − 1

2
(DΨn+1

K,σ − DΨD
K,σ)2

and therefore for all λ ≥ 0

T3 ≤ ∆t
∑

σ∈E
σ∈EK

(Gn+1
K,σ − F n+1

K,σ )(DΨn+1
K,σ − DΨD

K,σ). (32)

From (30), (31) and (32), we get

En+1 − En

∆t
≤

∑

σ∈E
σ∈EK

[
F n+1

K,σ

(
D(log N −Ψ)n+1

K,σ − D(log N −Ψ)D
K,σ

)

+ Gn+1
K,σ

(
D(log P + Ψ)n+1

K,σ − D(log P + Ψ)D
K,σ

) ]
.

But, thanks to inequalities (A.3a) and (A.3b), we have

∑

σ∈E
σ∈EK

[
F n+1

K,σ D(log N −Ψ)n+1
K,σ + Gn+1

K,σD(log P + Ψ)n+1
K,σ

]
≤ −In+1
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Now, using (A.4a), (A.4b) and Young’s inequality, we get

∣∣∣∣∣∣F
n+1
K,σ D(log N − Ψ)D

K,σ

∣∣∣∣∣∣+
∣∣∣∣∣∣G

n+1
K,σD(log P + Ψ)D

K,σ

∣∣∣∣∣∣≤

τσ

2

[
min(Nn+1

K ,N
n+1
K,σ )

∣∣∣Dσ(log N − Ψ)n+1
∣∣∣2+

max(Nn+1
K
,Nn+1

K,σ
)2

min(Nn+1
K
,Nn+1

K,σ
)

∣∣∣Dσ(log N −Ψ)D
∣∣∣2

+min(Pn+1
K , P

n+1
K,σ)

∣∣∣Dσ(log P + Ψ)n+1
∣∣∣2 +

max(Pn+1
K
, PD

K,σ
)2

min(Pn+1
K
, Pn+1

K,σ
)

∣∣∣Dσ(log P + Ψ)D
∣∣∣2 .

]

Finally, thanks to the L∞-estimates (20) in Theorem 1.3, we obtain

En+1 − En

∆t
≤ −1

2
In+1 +

M2

2m

∣∣∣log(ND
M) −ΨD

M
∣∣∣2
1,M +

M2

2m

∣∣∣log(PD
M) + ΨD

M
∣∣∣2
1,M

which rewrites
En+1 − En

∆t
+

1

2
I

n+1 ≤ M2

2m

(∣∣∣log(ND
M) −ΨD

M
∣∣∣2
1,T +

∣∣∣log(PD
M) + ΨD

M
∣∣∣2
1,T

)
. (33)

But, thanks to hypothesis (4b), the functions log(ND) − ΨD and log(PD) + ΨD belong to H1(Ω). Therefore, using

Lemma 9.4 in [18], we have
∣∣∣log(ND

M) −ΨD
M

∣∣∣2
1,M ≤ K ‖ log(ND) −ΨD‖2

H1(Ω)

and
∣∣∣log(PD

M) + ΨD
M

∣∣∣2
1,M ≤ K ‖ log(PD) + ΨD‖2

H1(Ω)

with K depending on β and ξ (defined in (8)). It yields (21a).

Summing (21a) over n ∈ {0, . . .NT − 1} yields:

NT−1∑

n=0

∆t In+1 ≤ E
NT +

NT−1∑

n=0

∆t In+1 ≤ T KE + E
0. (34)

It remains now to bound E0. As the function H satisfies the following inequality:

∀x, y > 0 H(y) − H(x) − log x(y − x) ≤ 1

min(x, y)

(y − x)2

2
,

we get, using (4c),
∑

K∈T
m(K)

(
H(N0

K) − H(ND
K ) − log(ND

K )
(
N0

K − ND
K

))
≤ m(Ω)

(M − m)2

2m
,

and the same inequality for P. Then, multiplying the scheme (13c) at n = 0 by Ψ0
K
− ΨD

K
and summing over K ∈ T ,

we get

λ2
∑

σ∈E
σ∈EK

τσDΨ0
K,σ(DΨ0

K,σ − DΨD
K,σ) =

∑

K∈T
m(K)(P0

K − N0
K)(Ψ0

K −ΨD
K) = 0,

if the initial conditions satisfy the quasi-neutrality assumption (16). Then, using a(a − b) ≥ (a − b)2/2 − b2/2 for

a, b ∈ R and once more Lemma 9.4 in [18], we obtain

λ2

2
|Ψ0
M −Ψ

D
M|1,M ≤

λ2

2
|ΨD
M| ≤

λ2

2
K ‖ΨD‖H1(Ω).

with K depending on β and ξ (defined in (8)).

Finally, we obtain E0 ≤ K0
E

(1 + λ2), with K0
E

depending on Ω, m, M, ΨD, β and ξ. Inserting this result in (34), we

deduce the discrete control of the entropy production (21b) with an adaptation of the constant KE .

It concludes the proof of Theorem 1.4. Let us note that the hypothesis on the vanishing doping profile is not directly

necessary to follow the computations in this proof. However, we need it in order to ensure the lower and the upper

bounds on the discrete densities, with their strict positivity.
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4. A priori estimates on the scheme

This Section is devoted to the proof of Theorem 1.5. This proof is splitted into three steps: first, we establish the weak-

BV inequality on N and P (22a); then, we deduce the L2(0, T,H1)-estimate on N and P (22b); finally, we conclude

with the L2(0, T,H1)-estimate on Ψ (22c).

4.1. Weak BV-inequality on N and P

First, let us first prove the inequality (22a) of Theorem 1.5. Therefore, we denote by TBV the left-hand-side of (22a),

that is the term we want to bound.

We follow the ideas of [9]: we multiply the scheme on N (13a) by ∆t (Nn+1
K
− ND

K
) and the scheme on P (13b) by

∆t (Pn+1
K
− PD

K
) and we sum over K ∈ T and n. It yields

E1 + E2 + E3 + F1 + F2 + F3 = 0, (35)

with

E1 =

NT−1∑

n=0

∑

K∈T
m(K)(Nn+1

K − Nn
K)(Nn+1

K − ND
K ), E2 = −

NT−1∑

n=0

∆t
∑

σ∈E
σ∈EK

F n+1
K,σ DNn+1

K,σ ,

E3 =

NT−1∑

n=0

∆t
∑

σ∈E
σ∈EK

F n+1
K,σ DND

K,σ, F1 =

NT−1∑

n=0

∑

K∈T
m(K)(Pn+1

K − Pn
K)(Pn+1

K − PD
K),

F2 = −
NT−1∑

n=0

∆t
∑

σ∈E
σ∈EK

Gn+1
K,σDPn+1

K,σ, F3 =

NT−1∑

n=0

∆t
∑

σ∈E
σ∈EK

Gn+1
K,σDPD

K,σ.

As (Nn+1
K
− Nn

K
)(Nn+1

K
− ND

K
) =

(
(Nn+1

K
− ND

K
)2 + (Nn+1

K
− Nn

K
)2 − (Nn

K
− ND

K
)2
)
/2, we get:

E1 ≥ −
1

2

∑

K∈T
m(K)(N0

K − ND
K )2 ≥ −m(Ω)(M − m)2

2

and F1 ≥ −
1

2

∑

K∈T
m(K)(P0

K − PD
K)2 ≥ −m(Ω)(M − m)2

2
.

(36)

We may also bound the terms E3 and F3. Indeed, using successively the property of the flux F n+1
K,σ

(A.4a), the L∞

estimates and Cauchy-Schwarz inequality, we get

|E3| ≤
NT−1∑

n=0

∆t
∑

σ∈E
σ∈EK

τσmax(Nn+1
K ,N

n+1
K,σ )Dσ(log N −Ψ)n+1DσND |,

≤ M
√

m

√
T |ND

M|1,M



NT−1∑

n=0

∆t
∑

σ∈E
σ∈EK

τσmin(Nn+1
K ,N

n+1
K,σ )

(
Dσ(log N −Ψ)n+1

)2



1/2

.

But, the right-hand-side is bounded thanks to the control of the entropy production (21b) and the hypothesis (4b).

Following similar computations for F3, we get

|E3| ≤ K(1 + λ2) and |F3| ≤ K(1 + λ2) (37)

with K depending only on T , KE , M, m, ND, PD, β and ξ.
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We focus now on the main terms E2 and F2. Using the definition of the Bernoulli function (15), the numerical fluxes

F n+1
K,σ and Gn+1

K,σ, defined by (14), rewrite:

F n+1
K,σ =

τσ

2

DΨn+1
K,σ(Nn+1

K + Nn+1
K,σ ) − DΨn+1

K,σ coth


DΨn+1

K,σ

2

 DNn+1
K,σ

 ,

Gn+1
K,σ =

τσ

2

−DΨn+1
K,σ(Pn+1

K + Pn+1
K,σ) − DΨn+1

K,σ coth


DΨn+1

K,σ

2

 DPn+1
K,σ

 .

Since x coth(x) ≥ |x| for all x ∈ R, we obtain

E2 ≥ 1

2

NT−1∑

n=0

∆t



∑

σ∈E
τσ DσΨ

n+1 (DσNn+1)2 −
∑

σ∈E
σ∈EK

τσDΨn+1
K,σ

(
(Nn+1

K,σ )2 − (Nn+1
K )2

)

,

F2 ≥ 1

2

NT−1∑

n=0

∆t



∑

σ∈E
τσ DσΨ

n+1 (DσPn+1)2 +
∑

σ∈E
σ∈EK

τσDΨn+1
K,σ

(
(Pn+1

K,σ)2 − (Pn+1
K )2

)

.

Summing these two inequalities, we can integrate by parts due to the quasi-neutrality of the boundary conditions (18)

and we get

E2 + F2 ≥
1

2

NT−1∑

n=0

∆t
∑

K∈T

∑

σ∈EK

τσDΨn+1
K,σ

(
(Nn+1

K )2 − (Pn+1
K )2

)
+

1

2
TBV .

In the case λ = 0, using Pn+1
K
= Nn+1

K
, we obtain

E2 + F2 ≥
1

2
TBV . (38)

In the case λ > 0, using the scheme on Ψ (13c), we get:

E2 + F2 ≥
1

2λ2

NT−1∑

n=0

∆t
∑

K∈T
m(K)(Nn+1

K − Pn+1
K )

(
(Nn+1

K )2 − (Pn+1
K )2

)
+

1

2
TBV .

Since the function x 7→ x2 is nondecreasing on R+, it also yields (38). Finally, we deduce the weak-BV inequality

(22a) from (35), (36), (37) and (38).

4.2. Discrete L2(0, T ; H1)-estimates on the densities

Now, we give the proof of the inequality (22b) of Theorem 1.5. Therefore, we start as in the proof of (22a) with (35).

But, we treat in a different manner the terms E2 and F2. Indeed, for all K ∈ T and all σ ∈ EK , the Scharfetter-Gummel

fluxes F n+1
K,σ

and Gn+1
K,σ

defined by (14) rewrite

F n+1
K,σ = τσ

(
B̃(−DΨn+1

K,σ)Nn+1
K − B̃(DΨn+1

K,σ)Nn+1
K,σ−DNn+1

K,σ

)
= F̃ n+1

K,σ − τσDNn+1
K,σ (39a)

Gn+1
K,σ = τσ

(
B̃(DΨn+1

K,σ)Pn+1
K − B̃(−DΨn+1

K,σ)Pn+1
K,σ−DPn+1

K,σ

)
= G̃n+1

K,σ − τσDPn+1
K,σ (39b)

with B̃ defined by B̃(x) = B(x) − 1 for all x ∈ R. Therefore

E2 + F2 =

NT−1∑

n=0

∆t
∑

σ∈E
τσ(DσNn+1)2 +

NT−1∑

n=0

∆t
∑

σ∈E
τσ(DσPn+1)2 + Ẽ2 + F̃2, (40)

with Ẽ2 = −
NT−1∑

n=0

∆t
∑

σ∈E
σ∈EK

F̃ n+1
K,σ DNn+1

K,σ and F̃2 = −
NT−1∑

n=0

∆t
∑

σ∈E
σ∈EK

G̃n+1
K,σDPn+1

K,σ.
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But, as for the fluxes F n+1
K,σ

, we can rewrite the fluxes F̃ n+1
K,σ

either under the form (A.2a) or (A.2b) with B̃ instead of B.

Then, as x(x − y) = 1
2
(x − y)2 + 1

2
(x2 − y2), we get either

−F̃ n+1
K,σ DNn+1

K,σ = τσ

(
DΨn+1

K,σ

2
(DσNn+1)2 +

DΨn+1
K,σ

2

(
(Nn+1

K )2 − (Nn+1
K,σ )2

)

+B̃(DΨn+1
K,σ)(DσNn+1)2

)
, (41a)

or − F̃ n+1
K,σ DNn+1

K,σ = τσ

(
−

DΨn+1
K,σ

2
(DσNn+1)2−

DΨn+1
K,σ

2

(
(Nn+1

K,σ )2 − (Nn+1
K )2

)

+B̃(−DΨn+1
K,σ)(DσNn+1)2

)
. (41b)

But, B̃(x) ≥ 0 for all x ≤ 0 and B̃(−x) ≥ 0 for all x ≥ 0. Then, using (41a) when DΨn+1
K,σ ≤ 0 and (41b) when

DΨn+1
K,σ
≥ 0, we obtain in both cases

−F̃ n+1
K,σ DNn+1

K,σ ≥
τσ

2

(
−DσΨ

n+1(DσNn+1)2 + DΨn+1
K,σ

(
(Nn+1

K )2 − (Nn+1
K,σ )2

))
.

Similarly, we have

−G̃n+1
K,σDPn+1

K,σ ≥
τσ

2

(
−DσΨ

n+1(DσPn+1)2 − DΨn+1
K,σ

(
(Pn+1

K )2 − (Pn+1
K,σ)2

))
.

It yields, after a discrete integration by parts

Ẽ2 + F̃2 ≥ −
1

2
TBV +

1

2

NT−1∑

n=0

∆t
∑

K∈T

∑

σ∈EK

τσDΨn+1
K,σ

(
(Nn+1

K )2 − (Pn+1
K )2

)
,

and, thanks to the scheme (13c),

Ẽ2 + F̃2 ≥ −
1

2
TBV . (42)

Then, we deduce the discrete L2(0, T ; H1) estimate on N and P (22b) from (35), (36), (37), (40), (42) and the weak-BV

inequality (22a).

4.3. Discrete L2(0, T ; H1(Ω)) estimate on Ψ

We conclude the proof of Theorem 1.5 with the proof of the L2(0, T,H1) estimate on Ψ (22c). Once more, we use

Theorem 1.4 in the proof.

Let us first consider the case λ = 0. In this case, multiplying the scheme on Ψ (19b) by ∆t(Ψn+1
K
− ΨD

K
) and summing

over K ∈ T and n ∈ {0, . . . ,NT − 1}, we get:

NT−1∑

n=0

∆t
∑

σ∈E
σ∈EK

τσDΨn+1
K,σ

(
DΨn+1

K,σ − DΨD
K,σ

) (
Nn+1

K + Nn+1
K,σ

)
= 0.

Then, thanks to the L∞-estimate (20) and the inequality a(a − b) ≥ a2/2 − b2/2 (∀a, b ∈ R), we obtain:

NT−1∑

n=0

∆t
∑

σ∈E
τσ(DσΨ

n+1)2 ≤
NT−1∑

n=0

∆t
∑

σ∈E
τσ(DσΨ

D)2,

which yields (22c).
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Now, let us consider the case λ > 0. We follow the ideas developed by I. Gasser in [24] at the continuous level and

adapt them to the case of mixed boundary conditions. We set:

J =
NT−1∑

n=0

∆t
∑

K∈T
m(K)

(Nn+1
K
− Pn+1

K
)2

λ2

+

NT−1∑

n=0

∆t
∑

σ∈E
σ∈EK

τσ(min(Nn+1
K ,N

n+1
K,σ ) +min(Pn+1

K , P
n+1
K,σ))(DσΨ

n+1)2.

Multipliying the scheme on Ψ (13c) by ∆t(Pn+1
K
− Nn+1

K
)/λ2 and summing over K ∈ T and n ∈ {0, . . . ,NT − 1}, we get

NT−1∑

n=0

∆t
∑

K∈T
m(K)

(Nn+1
K
− Pn+1

K
)2

λ2
=

NT−1∑

n=0

∆t
∑

σ∈E
σ∈EK

τσDΨn+1
K,σ(DPn+1

K,σ − DNn+1
K,σ ),

due to the quasi-neutrality of the boundary conditions (18). Therefore,J may be splitted into J = J1 +J2 with

J1 =

NT−1∑

n=0

∆t
∑

σ∈E
σ∈EK

τσDΨn+1
K,σ

(
min(Pn+1

K , P
n+1
K,σ)D(log P + Ψ)n+1

K,σ

−min(Nn+1
K ,N

n+1
K,σ )D(log N −Ψ)n+1

K,σ

)
,

J2 =

NT−1∑

n=0

∆t
∑

σ∈E
σ∈EK

τσDΨn+1
K,σ

((
DPn+1

K,σ −min(Pn+1
K , P

n+1
K,σ)D(log P)n+1

K,σ

)

−
(
DNn+1

K,σ −min(Nn+1
K ,N

n+1
K,σ )D(log N)n+1

K,σ

) )
.

Applying Young inequality on J1, we get

|J1| ≤
1

2

NT−1∑

n=0

∆t



∑

σ∈E
σ∈EK

τσ(DσΨ
n+1)2

(
min(Nn+1

K ,N
n+1
K,σ ) +min(Pn+1

K , P
n+1
K,σ)

)
+In+1


,

≤ 1

2

NT−1∑

n=0

∆t
∑

σ∈E
σ∈EK

τσ(DσΨ
n+1)2

(
min(Nn+1

K ,N
n+1
K,σ ) +min(Pn+1

K , P
n+1
K,σ)

)
+

KE (1 + λ2)

2
.

Now, we estimate the term J2 which does not appear at the continuous level because ∇N = N∇ log N. For all x, y > 0

we have ∣∣∣∣∣log y − log x − y − x

min(x, y)

∣∣∣∣∣ ≤
(x − y)2

2 min(x, y)2
.

It yields
∣∣∣DPn+1

K,σ −min(Pn+1
K , P

n+1
K,σ)D(log P)n+1

K,σ

∣∣∣ ≤
(DPn+1

K,σ
)2

2m
,

∣∣∣DNn+1
K,σ −min(Nn+1

K ,N
n+1
K,σ )D(log N)n+1

K,σ

∣∣∣ ≤
(DNn+1

K,σ
)2

2m

and

|J2| ≤
1

2m

NT−1∑

n=0

∆t
∑

σ∈Eint

σ=K|L

τσ|DΨn+1
K,σ|

(
(DPn+1

K,σ)2 + (DNn+1
K,σ )2

)
≤ KBV(1 + λ2)

2m
.

As J = J1 +J2, the estimates on J1 and J2 imply that

J ≤ mKE + KBV

2m
(1 + λ2).

As N and P are lower bounded by m (20), it yields (22c) in the case λ > 0.
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5. Numerical experiments

In this section we present some numerical results in one and two space dimensions. Our purpose is to illustrate the

stability of the fully implicit Scharfetter-Gummel scheme for all nonnegative values of the rescaled Debye length λ.

5.1. Test case 1: 1D with C = 0

First, we consider a one dimensional test case onΩ = (0, 1), with a zero doping profile since this situation corresponds

to the one studied in this paper. Initial data are constant N0(x) = P0(x) = 0.5, ∀x ∈ (0, 1). We consider quasi-neutral

Dirichlet boundary conditions ND(0) = PD(0) = 0.1, ΨD(0) = 0 and ND(1) = PD(1) = 0.9, ΨD(1) = 4.
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Figure 5.1: Test case 1. Errors in L1 norm as functions of ∆t, for different values of λ2 .
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Figure 5.2: Test case 1. Errors in L1 norm as functions of λ2, for different values of ∆x .

Since the exact solution of this problem is not available, we compute a reference solution on a uniform mesh made

of 10240 = 20 × 29 cells, with time step ∆t = 10−6, for different values of λ2 in [0, 1]. This reference solution is

then used to compute the L1 error for the variables N, P and Ψ. In order to prove the asymptotic preserving behavior

of the scheme, we compute L1 errors at time T = 0.1 for different numbers of cells θ = 20 × 2i, i ∈ {0, ..., 8}, with

different time steps ∆t in [10−5, 10−2] and various rescaled Debye length λ2 in [0, 1]. Figure 5.1 presents the L1 error

on the electron density and on the electrostatic potential as functions of ∆t for different values of λ2. It clearly shows

the uniform behavior in the limit λ tends to 0 since the convergence rate is of order 1 for all variables even for small

values of λ2, including zero. Similar results are obtained for the hole density.

We plot the L1 errors as functions of λ2 for different values of the space step on Figure 5.2. We still observe the

asymptotic preserving properties of the scheme in the limit λ tends to zero. Moreover, the errors are independent on

λ2.
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5.2. Test case 2: 1D with a discontinuous doping profile

Here, we consider a nonzero discontinuous doping profile on Ω = (0, 1), which corresponds to the physically relevant

hypothesis, but not to the framework of our study:

C(x) =

{
−0.8 for x ≤ 0.5,

+0.8 for x > 0.5.

In this case, the Poisson equation (1c) is replaced by

−λ2∆Ψ = P − N + C.

The initial conditions are N0(x) = (1 + C(x))/2, P0(x) = (1 −C(x))/2 for all x ∈ (0, 1). And, the boundary conditions

are still quasi-neutral and of the Dirichlet type ND(0) = 0.1, PD(0) = 0.9, ΨD(0) = 0 and ND(1) = 0.9, PD(1) = 0.1,

ΨD(1) = 4. Figure 5.3 presents the error in L1 norm between the approximate solution and the reference solution
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Figure 5.3: Test case 2. Errors in L1 norm as functions of ∆t, for different values of λ2.

computed as previously. We observe that the convergence rate does not depend on the value of λ2. It seems that the

scheme is still asymptotic preserving at the quasi-neutral limit even if the doping profile C is not zero.

5.3. Test case 3: PN-junction in 2D

P-region

N-region

ΓD

ΓD

0 1

1

Figure 5.4: Geometry of the PN-junction diode

Now, we present a test case for a geometry corresponding to a PN-junction in 2D (see Figure 5.4). The domain Ω is

the square (0, 1)2. The doping profile is piecewise constant, equal to 0.8 in the N-region and −0.8 in the P-region. The

Dirichlet boundary conditions are ND = 0.9, PD = 0.1, ΨD = 1.1 on {y = 0}, and ND = 0.1, PD = 0.9, ΨD = −1.1

on {y = 1, 0 ≤ x ≤ 0.25}. Elsewhere we put homogeneous Neumann boundary conditions. Initial conditions are

N0(x, y) = (1 +C(x, y))/2, and P0(x, y) = (1 −C(x, y))/2 .
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The electron density profile sat time T = 1 with a mesh made of 3584 triangles and a time step ∆t = 10−2 for λ2 = 1

and 10−9 are shown in Figure 5.5. We observe that the scheme remains efficient even for small values of the Debye

length and with a large time step.
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(a) Electron density N, λ2 = 1.
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(b) Electron density N, λ2 = 10−9.

Figure 5.5: Test case 3. Electron density computed at time T = 1 with a mesh of 3584 triangles and a time step ∆t = 10−2 for λ2 = 1 and λ2 = 10−9.

Appendix A. Properties of the Scharfetter-Gummel numerical fluxes

We recall that the Scharfetter-Gummel numerical fluxes F n+1
K,σ and Gn+1

K,σ defined by (14) can be seen respectively

as numerical approximations of
∫
σ

(−∇N + N∇Ψ) · νK,σ and
∫
σ

(−∇P − P∇Ψ) · νK,σ on the interval [tn, tn+1). At the

continuous level, we may rewrite −∇N+N∇Ψ = −N∇(log N−Ψ) and −∇P−P∇Ψ = −P∇(log P+Ψ). Such equalities

cannot be kept at the discrete level. However, we can give lower and upper bounds of F n+1
K,σ

and Gn+1
K,σ

by terms of the

form −Nn+1
σ D(log N −Ψ)n+1

K,σ
and −Pn+1

σ D(log P + Ψ)n+1
K,σ

, as shown in Proposition Appendix A.1.

Proposition Appendix A.1. For all K ∈ T and all σ ∈ EK , the flux F n+1
K,σ

defined by (14a) satisfies the following

inequalities:

−max(Nn+1
K ,N

n+1
K,σ )D(log N − Ψ)n+1

K,σ ≤
F n+1

K,σ

τσ
≤ −min(Nn+1

K ,N
n+1
K,σ )D(log N −Ψ)n+1

K,σ,

if D(log N −Ψ)n+1
K,σ ≥ 0. (A.1a)

−min(Nn+1
K ,N

n+1
K,σ )D(log N −Ψ)n+1

K,σ ≤
F n+1

K,σ

τσ
≤ −max(Nn+1

K ,N
n+1
K,σ )D(log N −Ψ)n+1

K,σ,

if D(log N − Ψ)n+1
K,σ ≤ 0. (A.1b)

Replacing Ψ by −Ψ and N by P yields similar properties for the flux Gn+1
K,σ

.

Proof. Let K ∈ T , first, we remark that (A.1) is trivially satisfied if σ ∈ EN
K,ext

because all the terms of the inequalities

vanish. Let σ ∈ EK,int ∪ED
K,ext

, since the Bernoulli function B defined by (15) satisfies the property (17), the flux F n+1
K,σ

defined by (14a) can be either rewritten

F n+1
K,σ = τσ

(
DΨn+1

K,σNn+1
K − B

(
DΨn+1

K,σ

)
DNn+1

K,σ

)
, (A.2a)
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or F n+1
K,σ = τσ

(
DΨn+1

K,σNn+1
K,σ − B

(
−DΨn+1

K,σ

)
DNn+1

K,σ

)
. (A.2b)

It implies

F n+1
K,σ = τσ

[
DΨn+1

K,σNn+1
K − B

(
D(log N)n+1

K,σ

)
DNn+1

K,σ

+

(
B

(
D(log N)n+1

K,σ

)
− B

(
DΨn+1

K,σ

) )
DNn+1

K,σ

]
,

and F n+1
K,σ = τσ

[
DΨn+1

K,σNn+1
K,σ − B

(
−D(log N)n+1

K,σ

)
DNn+1

K,σ

+

(
B

(
−D(log N)n+1

K,σ

)
− B

(
−DΨn+1

K,σ

) )
DNn+1

K,σ

]
.

But, the definition of the Bernoulli function (15) also ensures that

B(log y − log x) =
log y − log x

y − x
x, ∀x, y > 0.

Therefore, we get

F n+1
K,σ = τσ

[
−D(log N −Ψ)n+1

K,σNn+1
K +

(
B

(
D(log N)n+1

K,σ

)
−B

(
DΨn+1

K,σ

))
DNn+1

K,σ

]
,

and

F n+1
K,σ = τσ

[
−D(log N −Ψ)n+1

K,σNn+1
K,σ +

(
B

(
−D(log N)n+1

K,σ

)
−B

(
−DΨn+1

K,σ

))
DNn+1

K,σ

]

Now, we may use the fact that B is a non increasing function on R. Assuming that the sign of D(log N − Ψ)n+1
K,σ

is

known, the sign of
(
B

(
D(log N)n+1

K,σ

)
− B

(
DΨn+1

K,σ

))
and

(
B

(
−D(log N)n+1

K,σ

)
− B

(
−DΨn+1

K,σ

))
are also known (and oppo-

site). Distinguishing the cases DNn+1
K,σ
≥ 0 (Nn+1

K
≤ Nn+1

K,σ
) and DNn+1

K,σ
≤ 0 (Nn+1

K
≥ Nn+1

K,σ
) yields inequalities (A.1).

Now, we give a straightforward consequence of Proposition Appendix A.1 as a Corollary.

Corollary Appendix A.2. For all K ∈ T and all σ ∈ EK , the fluxes F n+1
K,σ

and Gn+1
K,σ

defined by (14) verify:

F n+1
K,σ D(log N − Ψ)n+1

K,σ ≤ − τσmin(Nn+1
K ,N

n+1
K,σ )

(
Dσ(log N −Ψ)n+1

)2
, (A.3a)

Gn+1
K,σ D(log P + Ψ)n+1

K,σ ≤ − τσmin(Pn+1
K , P

n+1
K,σ)

(
Dσ(log P + Ψ)n+1

)2
. (A.3b)

Moreover, if min(Nn+1
K
,Nn+1

K,σ
) ≥ 0 and min(Pn+1

K
, Pn+1

K,σ
) ≥ 0, we also have

∣∣∣F n+1
K,σ

∣∣∣ ≤ τσmax(Nn+1
K ,N

n+1
K,σ )

∣∣∣Dσ
(
log N − Ψ)n+1

∣∣∣ , (A.4a)
∣∣∣Gn+1

K,σ

∣∣∣ ≤ τσmax(Pn+1
K , P

n+1
K,σ)

∣∣∣Dσ
(
log P + Ψ

)n+1
∣∣∣ . (A.4b)
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[27] A. Glitzky, and R. Hünlich, Stationary solutions to an energy model for semiconductor devices where the equations are defined on different

domains, Math. Nachr., 281 (2008), pp. 1676–1693.

[28] E. Grenier, Oscillations in quasineutral plasmas, Comm. Partial Differential Equations, 21 (1996), pp. 363–394.

[29] A. M. Il’in, A difference scheme for a differential equation with a small parameter multiplying the highest derivative, Mat. Zametki, 6 (1969),

pp. 237–248.

[30] S. Jin, Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21(1999), pp. 441–454.
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[34] A. Jüngel, and P. Pietra, A discretization scheme for a quasi-hydrodynamic semiconductor model, Math. Models Methods Appl. Sci., 7

(1997), pp. 935–955.
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