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Abstract: Human movement modeling can be of great interest for the design of pattern 14 

recognition systems relying on the understanding of the fine motor control (such as on-15 

line handwriting recognition or signature verification) as well as for the development of 16 

intelligent systems involving in a way or another the processing of human movements. In 17 

this paper, we briefly list the different models that have been proposed in order to 18 

characterize the handwriting process and focus on a representation involving a vectorial 19 

summation of lognormal functions: the Sigma-Lognormal model. Then, from a practical 20 

perspective, we describe a new stroke extraction algorithm suitable for the reverse 21 

engineering of handwriting signals. In the following section it is shown how the resulting 22 

representation can be used to study the writer and signer variability. We then report on 23 

two joint projects dealing with the automatic generation of synthetic specimens for the 24 

creation of large databases. The first application concerns the automatic generation of 25 

totally synthetic signature specimens for the training and evaluation of verification 26 

performances of automatic signature recognition systems. The second application deals 27 
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with the synthesis of handwritten gestures for speeding up the learning process in 28 

customizable on-line recognition systems to be integrated in electronic pen pads.   29 

1. Introduction 30 

Human movement modeling can be of great interest for the design of pattern recognition 31 

systems relying on the understanding of the fine motor control, like on-line handwriting 32 

recognition and signature verification, as well as in the development of intelligent 33 

systems involving in some way the analysis of human movements. Among other things, 34 

this general approach aims at elaborating a theoretical background for any handwriting 35 

processing application as well as providing some basic knowledge that can be integrated 36 

in the development of automatic systems.  37 

So far, many models have been proposed to study human movement production in 38 

general and handwriting in particular : models relying on neural networks (Bullock and 39 

Grossberg, 1988; Schomaker, 1991; Gangadhar et al., 2007;  Kalveram, 1998), 40 

equilibrium point models (Feldman, 1966; Feldman and Latash, 2005;  Bizzi et al., 1978; 41 

1992), behavioral models (Schmidt, 1999; Thomassen et al., 1983; van Galen and 42 

Teulings, 1983), coupled oscillator models (Hollerbach, 1981; Kelso, 1995; Zazone et al., 43 

2005), kinematic models (Plamondon, 1995; Plamondon and Djioua, 2006), and models 44 

exploiting minimization principles (Wada and Kawato, 1995; Engelbrecht, 2001) : 45 

minimization of the acceleration (Neilson, 1993; Neilson and Neilson, 2005), of the 46 

energy (Nelson, 1983), of the time (Tanaka et al., 2006; Enderle and  Wolfe, 1987; 47 

Hermes and LaSalle, 1969), of the jerk (Hogan, 1984; Flash and Hogan, 1985), of the 48 

snap (Edelman and Flash, 1987), of the torque changes (Uno et al., 1989) and of the 49 

sensory-motor noise  (Harris and Wolpert, 1998). Finally, many models exploit the 50 



properties of various functions to reproduce human movements: exponentials 51 

(Plamondon and Lamarche, 1986), second order systems (Denier van der Gon and 52 

Thuring, 1965; Dooijes, 1983), gaussians (Leclerc et al., 1992), beta functions (Alimi, 53 

2003), splines (Morasso et al., 1983) and trigonometrical functions (Maarse, 1987). 54 

 Among the models which provide analytical representations, the Kinematic Theory of 55 

rapid human movements (Plamondon, 1995a, 1995b; Plamondon and Djioua, 2006) and 56 

its Delta- and Sigma-lognormal models have been used to explain most of the basic 57 

phenomena reported in classical studies on human motor control (Plamondon and Alimi, 58 

1997) and to study several factors involved in the fine motricity (Djioua and Plamondon, 59 

2008; O’Reilly and Plamondon, 2010; Woch et al., 2010). Apart from these fundamental 60 

studies, the theory has been used, directly or indirectly, in many practical applications 61 

like the design of a signature verification system (Plamondon, 1994), the development of 62 

tools to help children learning handwriting (Djeziri, Guerfali, Plamondon, and Robert, 63 

2002), as well as of biomedical set ups to detect fine motor control problems associated 64 

with brain strokes (O’Reilly and Plamondon, 2011, 2012).  65 

In this paper, we report on two new and original case studies dealing with the automatic 66 

generation of synthetic handwritten specimens for the creation of large databases. The 67 

first application addresses the automatic generation of totally synthetic signature 68 

specimens which may be used for the training and evaluation of the verification 69 

performances of automatic recognition systems as well as for the quality assessment of 70 

specimens. The second application regards the synthesis of handwritten gesture for 71 

speeding up the learning process in customizable on-line recognition systems to be 72 

integrated in electronic pen pads. Sections 5 and 6 reports detailed results about these two 73 



genuine applications, which at the time of the ICFHR 2010 keynote address presented by 74 

the first author, were the first trial of using the Kinematic Theory for the generation of 75 

synthetic trajectories to be used in signature verification and gesture recognition 76 

experiments. 77 

To better understand these applications and estimate their potential interest, as well as 78 

making the present paper self-consistent a brief survey of the Kinematic Theory is 79 

presented in section 2, two algorithms used for sigma-lognormal parameter extraction are 80 

outlined described in section 3 and the main results on previous studies of handwriting 81 

variability are summarized in section 4. These sections present in a condensed and goal 82 

oriented way, the main concepts and strategies that have been explored over the years and 83 

that are necessary to understand the present applications, without coming back to these 84 

complete and often more exhaustive studies. 85 

  86 

2. The Kinematic Theory of Rapid Human Movement and its Sigma-87 

Lognormal Model 88 

One key feature of the Kinematic Theory is that it relies on strong and robust 89 

mathematical grounds. All the models that are used under this paradigm are based on the 90 

lognormal function which has been proved to be the ideal curve for describing 91 

asymptotically the impulse response of a neuromuscular network made up of a large 92 

number of coupled subsystems controlling the velocity of a movement (Plamondon et al., 93 

2003). For simple reaching or pointing gestures, a target is specified and two of these 94 

networks are needed to control a trajectory, an agonist network which is acting in the 95 



target direction and one antagonist, acting in the opposite direction. Overall, the speed 96 

profile is then described by a Delta-lognormal equation, a weighted difference of two 97 

lognormals (Plamondon, 1995a, 1995b). When more complex trajectories have to be 98 

generated, like in handwriting or in signing, a sequence of targets has to be reached and, 99 

globally, the trajectory of the pen tip can then be described by a vectorial summation of 100 

lognormals, hereinafter called sigma-lognormal equations, which takes into account the 101 

various changes of direction. 102 

In this vectorial summation context, the production of a word or of a signature requires 103 

the definition beforehand of an action plan that is made up of virtual targets, which are 104 

linked in pairs with an arc of circle. This map of paired target points represents a 105 

sequence of discontinuous strokes. This plan triggers a motor command generator that 106 

produces a series of impulses activating the neuromuscular systems characterized by their 107 

lognormal impulse response (Plamondon and Privitera, 1995). For each impulse, a 108 

lognormal velocity profile is generated at the pen tip and the time superimposition of 109 

these strokes results in a smooth and well controlled trajectory. According to this 110 

representation, the original strokes are thus hidden in the signal. 111 

Mathematically, the Sigma-Lognormal model considers the velocity of the pen tip, , as 112 

described by a vectorial summation of N lognormal primitives: 113 
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Each lognormal in this summation defines a stroke scaled in amplitude by a command 115 

parameter ( ) and time-shifted by the time occurrence of this command ( ), any 116 

individual stroke pattern being described by a lognormal time function:  117 
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 (2) 118 

Each of these primitives is also assumed to occur around a pivot, and the evolution of the 119 

angular position of the trajectory can be calculated using an error function (erf): 120 
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 122 

where si  and ei  refer, respectively, to the starting and ending angular direction of each 123 

stroke. In equations (2) and (3), i  and i  represent correspondingly the logtime delay 124 

and the logresponse time of the neuromuscular system as it reacts to the i
th

 command 125 

(Plamondon and Djioua, 2006).  126 

Under these conditions, the synergy produced by the interaction and coupling of many of 127 

these neuromuscular systems results in the sequential generation of a complex 128 

handwriting sample or a signature pattern. 129 

 130 

3. Sigma-lognormal Parameter Extraction 131 

To use the Sigma-Lognormal model for analyzing human movements, it is necessary to 132 

have an algorithm to solve the inverse problem in a fully automatic fashion, that is, to 133 

extract the lognormal parameters that most adequately fit the experimental data. The 134 

Sigma-Lognormal parameters are considered to be well estimated and fitted for statistical 135 

analysis if the SNR, defined in (4), is over 20dB. 136 



 
 

                 (4) 

 In this equation,  are the experimental (numerical) velocity signals and 137 

 are the velocity signals of the sigma-lognormal reconstruction. 138 

 In the last years, two complementary algorithms have been proposed to solve this 139 

nonlinear regression problem, the Robust Xzero based algorithm and the prototype based 140 

algorithm. The next subsections briefly overview the state-of-the-art regarding these 141 

parameter extractors. 142 

 143 

3.1. The Robust Xzero based extractor 144 

The Robust Xzero (RX0) based extractor is a powerful algorithm that provides an 145 

accurate set of sigma-lognormal parameters describing the end-effector trajectory (e.g. 146 

the pen tip trajectory in handwriting studies) of arbitrarily complex motions without any 147 

a priori knowledge regarding the nature of the movement. In the following text, an 148 

outline of the algorithm is presented. A more comprehensive description can be found in 149 

(O’Reilly and Plamondon, 2009; O’Reilly, 2012). 150 

To implement this algorithm, sequences of five characteristic points   151 

(i=1,2,..,5) must be located in the original speed signal . Following a time occurrence 152 

order, these points are: a local minimum, an inflexion point, a local maximum, an 153 

inflexion point and a local minimum. The sigma-lognormal representation of these points 154 

can be written as in equations (5-6) with the parameters  defined in (7). 155 
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Nine estimators can be obtained for the values of the kinematic parameters  156 

corresponding to the nine different combinations  (with 157 

, , ) in the equations (8)-(11). 158 
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The angular parameters  associated with each estimation of the kinematic 159 

parameter set  is obtained using (12)-(13), where 160 

 (with erfc being the complementary error 161 

function defined as ) and  is direction angle of the trajectory 162 

with respect to time.  163 
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A choice can be made between the nine estimations of the six sigma-lognormal 164 

parameters by keeping the solution minimizing the error function (14). 165 

 
 

(14) 

It should be noticed that, before using the values  in the previous expressions, 166 

some preprocessing should be applied to get proper estimations
1
. To extract the 167 

parameters of a whole velocity signal, good results have been obtained by, first, 168 

extracting sequentially (i.e. in increasing order of their time occurrence) the lognormal 169 

components. For that matter, each lognormal is extracted and subtracted from the original 170 

signal before proceeding to the next component. Then, a global non-linear optimization 171 

process can be applied to improve the estimated values. If this approach results in an 172 

unsatisfactory reconstruction SNR, more lognormal components can be extracted by 173 

processing them by decreasing importance of their impact (assessed here by their relative 174 

size) on the signal.  175 

The latest improvements included in this extraction system have resulted in a significant 176 

increase of the SNR fitting accuracy. For example, on a 683 signatures database 177 

                                                           
1 The details of these preliminary computations are presented in (O’Reilly & Plamondon, 

2009; O’Reilly, 2012). 

 



comprising 124 subjects, an average increase of 7.9 dB has been obtained, passing from 178 

17.4 dB in (O’Reilly & Plamondon, 2009) to 25.3 dB. Fig. 1 gives an example of a 179 

complex movement, in this case a signature, fitted using the proposed RX0 approach 180 

(SNR=22.2dB). 181 
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(c) 

Fig. 1. Example of a signature reconstruction (SNR=22.2dB) following the proposed 182 

RX0 approach: (a) the trajectory, (b) the speed profile and (c) the lognormal 183 

decomposition of the speed profile. In (b) and (c), only a small part of the actual signals 184 

are shown to better allow the reader to appreciate the curve fitting and its lognormal 185 

decomposition. 186 

 187 

3.2. The prototype based extractor 188 

Although the system based on the Robust Xzero estimator gives very satisfying 189 

extraction results on complex movements, an alternative extraction strategy may be of 190 

great use under certain experimental scenarios. For example, this is the case of the 191 

analysis of stereotypical movements such as those often involved in psychophysical 192 

experiments. This type of experiments present some specific characteristics that can make 193 

an alternative extraction method better fitted for the task than RX0. First, a lot of a priori 194 

information on the nature of the movement is available which may be very helpful during 195 

the extraction process (the RX0 algorithm is not designed to take advantage of this 196 

knowledge). Second, in this kind of experimental framework, researchers may want to 197 
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perform statistical testing of hypotheses on the value of local parameters. This may be 198 

difficult with the solution obtained by an extractor such as the one based on RX0 199 

because, in this case, there is no clear correspondence between the parameters extracted 200 

from various movements.  201 

These reasons supported the development of the prototype based extractor presented in 202 

(O’Reilly and Plamondon, 2010). The advantages of such an extractor can be seen, for 203 

example, in (O’Reilly and Plamondon, 2011) where it has been used to assess the 204 

neuromuscular health of subjects on the basis of the sigma-lognormal parameters of their 205 

movements.  206 

This extractor applies a three step methodology: 1) synthesis of a sigma-lognormal 207 

prototype of the stereotypical movements, 2) time scaling and offsetting of the prototype 208 

to make it more closely correspond to the experimental movement, and 3) global 209 

nonlinear optimization of the scaled and offset prototype to improve the fitting. These 210 

three steps can be briefly described as follow: 211 

- Step 1: Synthesis of the prototype. The initial prototype can be built from i) the 212 

results of the RX0 extractor in order to find what is the expected sigma-lognormal 213 

decomposition of the stereotypical movement or ii) from a sigma-lognormal 214 

synthesizer such as SimScript (O’Reilly and Plamondon, 2007). 215 

- Step 2: Movement scaling and offsetting. It is performed by finding the value of 216 

the scaling ( ) and the offsetting ( ) factors that maximize the reconstruction 217 

SNR between the experimental data and the prototype signals modified in such a 218 

way that the original μi and t0i parameters are changed for the scaled and shifted 219 

parameters μia and t0ia according to (15)-(16). 220 



  (15) 

  (16) 

- Step 3: Non-linear optimization. It can be performed according to any suitable 221 

optimization algorithm. For our work, we used a custom implementation of a 222 

direct search optimization (O’Reilly, 2012) which monotonically increases the 223 

SNR without risk of divergence or of finding solutions that are too far away from 224 

the original prototypes. This preserves the psychophysical correspondence of the 225 

lognormal components among movements. 226 

Using this algorithm on a database of 1440 triangular movements performed by 120 227 

subjects (see (O’Reilly & Plamondon, 2011) for a more complete description of this 228 

dataset), we obtained a mean SNR of 20.8 dB for the prototype based extractor compared 229 

to a 22.1 dB for the RX0 based system. Although its SNR is slightly lower, the prototype 230 

based extractor has the clear advantage of producing solutions with fixed number of 231 

lognormals which enables the comparison among movements with any standard tool of 232 

statistical analysis of variance. 233 

 234 

4. Automatic Generation of Trajectories: Variability Issues 235 

As we have seen, according to the Kinematic Theory, a complex movement results from 236 

the superposition of a set of elementary movements (corresponding to single curved 237 

strokes), localized both in time and space. So, the large variability observed in 238 

handwriting patterns can be interpreted as caused both by the intrinsic variability of the 239 

individual strokes and by fluctuations occurring in the time plan of the superimposition 240 

process as controlled by the central nervous system. 241 



The local variability observed in handwriting and signing can thus come from various 242 

sources. At the central level, a movement is represented by an action plan, a sequence of 243 

virtual targets describing a piece-wise discontinuous trajectory. In parameter terms, this 244 

plan is a timed sequence of arcs described by their length, directions and time of 245 

activation. This discontinuous pattern, once instantiated, stimulates a set of 246 

neuromuscular networks that react to each of these fundamental primitives with specific 247 

time delays and response times. 248 

In this context, at least three basic sources of variability can be identified:  249 

1- a time variability associated with the temporal information contained in the 250 

activation sequence of the different commands,  251 

2- a spatial variability associated with the geometrical information contained in 252 

commands themselves (the magnitude iD  and direction ( bi  and ei ) of each 253 

stroke), and  254 

3- a neuromuscular variability reflected in the timing properties ,i i   of the 255 

neuromuscular networks reacting to these commands. 256 

Those sources of variability have been investigated using a semi-automatic sigma-257 

lognormal parameter extraction methodology somewhat similar to the one described for 258 

the prototype based extraction. Especially, we have shown that the Sigma-Lognormal 259 

model, can explain the great variability of individual stroke trajectories and their 260 

corresponding velocity profiles (Plamondon and Djioua 2005, 2006). We have also 261 

applied this paradigm to study the possible sources of handwriting deformations caused 262 

both by the disruptions in the motor control and the neuromuscular systems (Djioua and 263 

Plamondon 2007, 2009). Particularly, we have shown that, without altering the rest of the 264 



factors involved in handwriting, the distortion of the shapes of a handwritten word is very 265 

sensitive to slight changes of the time plan, represented by the sequence of command 266 

time occurrences 0it . This stresses out the fact that, to write a readable word or to 267 

generate a consistent signature, the production of strokes composing that word or 268 

signature must be planned in advance in order to keep almost constant the timing of the 269 

learned original plan. In contrast, the command parameters, that affect the direction ( bi  270 

and ei ) and the amplitude iD  of the strokes, seem to be less critical. And, finally, the 271 

changes induced by the neuromuscular timing parameters ,i i   seem to have an even 272 

smaller influence on the final variability of the trajectory. 273 

Overall, these studies have shown the existence of a direct relationship between the 274 

fluctuations of the sigma-lognormal parameters and the space and time warping of a pen 275 

tip trajectory, which suggests the feasibility of using this model as a new tool for the 276 

design of synthetic human like movements. This will be shown in the next two sections, 277 

where the relative importance of the three sources of variability will be critical for the 278 

successful design of large synthetic databases. 279 

 280 

5. Application 1: Automatic On-line Signature Database Generation 281 

One of the main obstacles that the biometric technology has found, and still finds, to 282 

become one of the leading solutions in the security market, is the lack of large real 283 

biometric databases which may serve as common benchmarks for the development of this 284 

thriving technology. Two main reasons may explain such a scarcity of biometric data. On 285 

the one hand, biometric database collection is not at all an easy job, involving a lot of 286 

effort in terms of time and resources in order to reflect the variability present in biometric 287 



traits (both inter- and intra-class). This process includes a number of pre-acquisition and 288 

post-acquisition demanding tasks such as the recruitment of donors, the supervision of 289 

collected data, error correction or labeling (Flynn, 2008). On the other hand, biometric 290 

traits are classified as personal data, and as such they are subdued to the different 291 

personal data protection laws existing in each country, which makes the acquisition 292 

(donor’s consent), and later storage and distribution (licensing) of these data very 293 

difficult. 294 

Such a complex context has promoted over recent years the apparition of new algorithms 295 

for the generation of synthetic biometric databases (Cappelli, 2003; Zuo, 2007). These 296 

synthetically produced datasets are not affected by the acquisition and legal issues 297 

mentioned before: i) first, once  the appropriate generation method has been developed, 298 

they are effortless to be produced, avoiding this way the arduous acquisition campaigns, 299 

and ii) second, the synthetic samples which conform these databases cannot be 300 

considered personal data as they have not been produced by a person, and so they may be 301 

freely distributed in order to be used as common evaluation benchmarks. These desirable 302 

characteristics make synthetic databases very powerful tools for the performance 303 

assessment of biometric recognition systems, and have already been used in international 304 

competitive evaluation campaigns (Cappelli, 2006). 305 

In spite of presenting some very interesting features, the use of synthetic biometric 306 

databases is not yet generalized as the production of realistic synthetic samples still 307 

remains a challenging problem: modeling the information contained in a certain 308 

biometric trait as well as the inter-class and intra-class variation found in real databases 309 

(i.e., variation between samples of different subjects, and variation between samples of 310 



the same subject). Accepted solutions have been proposed for fingerprint (Cappelli, 311 

2003) or iris (Zuo, 2007; Shah, 2006), but still no consistent method has been given for 312 

the generation of synthetic handwritten signature databases. 313 

As presented in previous sections, the Kinematic Theory of rapid human movements 314 

provides a powerful theoretical framework which models in a precise and compact 315 

manner the kinematic information involved in most of human writing processes, 316 

including signature. Thus, the Kinematic Theory and its associated Sigma-Lognormal 317 

model constitute a very high potential instrument for many different applications and 318 

have been applied in the present work to the development of an algorithm for the 319 

generation of fully synthetic on-line signatures. 320 

5.1. The generation method 321 

Two main parameters are involved in the design of real biometric databases and, hence, 322 

should also be critical in the generation of synthetically produced datasets: i) number of 323 

users comprised in the database, and ii) number of samples per user to be acquired. As 324 

can be seen in Fig. 2, the generation method of synthetic signature databases proposed in 325 

the present work is constituted of two different algorithms in order to produce: i) the first 326 

sample of fully synthetic individuals (i.e., it allows to control the number of users in the 327 

database), and ii) different samples derived from that original master signature (i.e., 328 

permitting to fix the number of samples per user).  329 



 

Fig. 2. General architecture of the algorithm proposed for the generation of synthetic 

signature databases based on the Kinematic Theory of rapid human movements. 

5.1.1. Generating the master signature 330 

Although other signals such as the azimuth and elevation angles of the input pen or the 331 

pressure applied during the signing process might be taken into account, in this work we 332 

consider that an online signature is defined by two time sequences [x[n] y[n]] specifying 333 

respectively the x and y coordinates, at the time instants n = 1,…,N. 334 

The objective of this initial stage of the generation algorithm is to produce samples from 335 

different synthetic signers (i.e., this algorithm is responsible for controlling the number of 336 

users in the database and for the inter-class variability present in the dataset). 337 

In a first approach, a signature-like graphic is generated following the spectral approach 338 

described in (Galbally, 2009). Although this first specimen has approximately the 339 

appearance of a genuine signature, it does not possess many of the humanly produced 340 

kinematic characteristics of real writing. Thus, in order to confer this preliminary master 341 

signature with the velocity and acceleration properties of human strokes, it is processed 342 

using the Sigma-Lognormal model in two consecutive stages, as shown in Fig. 3: 343 

- Stage 1: Extraction of the sigma-lognormal parameters using the RX0 system. In this 344 

phase, the velocity function of the initial synthetic master signature (vI) is decomposed 345 



in singular strokes and the sigma-lognormal parameters (t0, D, µ, σ, θs, θe) which best 346 

fit each of the individual strokes. 347 

- Stage 2: Reconstruction of the velocity function of the definitive synthetic master 348 

signature according to the previously computed parameters. The new coordinate 349 

signals are then obtained from the reconstructed velocity function (vD) where we can 350 

observe that certain abnormal artifacts such as the very high velocity peaks at the 351 

starting and ending parts of the velocity profile have been corrected (see Fig. 3) 352 

 

Fig. 3. General diagram of the generation process of a synthetic on-line master signature 

with the kinematic properties of a human-produced sample, based on the sigma-

lognormal parameters. 

 353 

5.1.2. Generating the duplicated samples 354 

Once the time sequences [x[n] y[n]] defining the master signature of a synthetic user have 355 

been produced following the method described in Sect. 5.1.1, the next phase for the 356 

automatic generation of synthetic on-line signature databases is the creation of duplicated 357 

samples starting from that master sample (as is shown in Fig. 2). 358 



Therefore, the objective of this part of the proposed method is to produce different 359 

samples of one same synthetic individual following the intra-variability found in real 360 

signatures (i.e., existing variability among signatures produced by the same user).  361 

For this purpose, the velocity function v of the master signature is decomposed into single 362 

strokes following the Sigma-Lognormal model where each stroke is defined by the set of 363 

features p=[t0, D, µ, σ, θs, θe]. The duplicated samples are then generated adding to each 364 

of the single strokes a certain amount of noise which is modeled by a vector w=[wt0, wD, 365 

wµ, wσ, wθs, wθe] where wt0 is extracted from a uniform distribution 
0 0

max max t tw w    which 366 

is estimated according to the intra-user variability found in the development database 367 

BiosecurID (Fierrez, 2010) (analogously for the rest of distortion elements comprised in 368 

the vector w). After the distortion stage, the new velocity function vn is computed, and in 369 

a subsequent step the new coordinates xn and yn are recovered from that velocity 370 

information (see Fig. 4). 371 

 

Fig. 4. General diagram of the generation process of duplicated samples starting from a 

fully synthetic specimen, based on the sigma-lognormal parameters. 

 372 

In Fig. 5 some examples of synthetic signatures generated following the described 373 

approach are shown, together with real samples extracted from the BiosecurID database 374 



(Fierrez, 2010) which was used as development set in order to compute the values of the 375 

different parameters involved in the generation method. As it can be observed from a 376 

general visual comparison, the synthetic signatures, and especially their time functions, 377 

present a very realistic appearance2 in terms of: 1) smoothness of the strokes; 2) growing  378 

 
a) Real signatures extracted from the BiosecurID database. 

                                                           
2 In this context, one concern that might be raised is dealing with the potential use of this 

methodology to fabricate forged signatures. This might be an issue except that for making 

realistic forgeries, the forger would need to have access to the complete on-line information 

about the target signature and if he does, there would be no need to use a complex 

methodology like the one described in this paper. The addition of some noise might be 

sufficient. However, the complete on-line information is generally not available in real life 

systems since it is generally not stored in the reference database.  

 



 
b) Synthetic signatures produced with the proposed generation algorithm 

Fig. 5. Examples of real (a) and synthetic (b) signatures extracted from BiosecurID and 

SDB. Three samples of 5 different real and synthetic signers are shown together with 

their time sequences x[n] and y[n] corresponding to the first sample. 

tendency of the function x (as it corresponds to left-to-right occidental signatures); 3) 379 

large fluctuation at the end of the x and y signals in some of the signatures (corresponding 380 

to some sort of round-like flourish); 4) degree of correlation between some of the most 381 

relevant maxima and minima points in the x and y directions. Furthermore, even though it 382 

is a model-based approach, some recognizable characters may be distinguished in the 383 

synthetic samples. 384 

 385 

5.2. Validation experiments 386 

The experimental validation of the proposed generation method is aimed at determining if 387 

the performance of signature verification systems is similar when it is evaluated on real 388 

and synthetic databases. If the error rates presented by signature-based recognition 389 

applications is comparable in both scenarios (i.e., performance evaluation with real and 390 



synthetic signatures), it would mean that, from a computer-based perspective, the 391 

synthetic signatures present a very similar behavior to that of real samples and that they 392 

can be used to obtain a fair estimation of a system performance, avoiding this way the 393 

different problems linked to real databases (i.e., high resource-consuming acquisition 394 

campaigns and legal issues regarding their acquisition and distribution).  395 

In order to achieve this objective, the performance of two signature verification systems, 396 

using totally different feature sets and matchers, has been evaluated on the MCYT real 397 

database (Ortega, 2003) and on a Synthetic DB (SDB) produced using the proposed 398 

synthetic generation method.  399 

The MCYT dataset has been selected as real test set since it has no overlap with the 400 

BiosecurID database used as development set for the estimation of the generation method 401 

parameters. This way we ensure to obtain totally unbiased results. The SDB has been 402 

created with the same number of users (300) and samples per user (25) as MCYT in order 403 

to permit the use of the same evaluation protocol for both scenarios.  404 

The two on-line verification systems evaluated in the experiments are: 405 

 System A: function based + HMM (Fierrez, 2007). This function-based verification 406 

system applies a regional approach using a statistical model built using Hidden 407 

Markov Models (HMMs) to a set of 10 time sequences selected applying the SFFS 408 

feature selection algorithm (Pudil, 1994) to the total set of 34 functions defined in 409 

(Martinez-Diaz, 2009a). 410 

 System B: function-based + DTW (Martinez-Diaz, 2009b). In this function-based 411 

local approach, a subset of nine time functions (selected using the SFFS from the total 412 



34 feature set as in the case of system B) are directly matched using the elastic 413 

technique Dynamic Time Warping (DTW) (Kholmatov, 2005). 414 

The performance results (Detection Error Trade-off, DET, curves) obtained for both 415 

verification systems are shown in Fig. 6. We can observe that the curves of the two 416 

systems present a very high degree of resemblance, both from a quantitative (EERs) and 417 

qualitative (general behavior) point of view, for the case of real and synthetic signatures. 418 

The results derived from this validation experiment confirm the great potential of the 419 

Kinematic Theory of Rapid Human Movements applied to the generation of synthetic on-420 

line signature databases, and the suitability of such datasets to obtain reliable estimations 421 

of the performance of signature verification systems. 422 

  

Fig. 6. Performance evaluation of systems A and B, on a real (MCYT, grey DET curve) 

and synthetic database (SDB, black DET curve). The EER is indicated in each plot. 

 423 

6. Application 2: Synthetic Gesture Generation for Evolving 424 

Handwriting Classifiers 425 



Motivated by the increasing spread of many types of devices equipped with pen-based 426 

interfaces, such as PDAs, e-book, Tablet PCs, Whiteboards, etc., more emphasis is placed 427 

on the development of efficient recognition systems that can correctly interpret the 428 

gestures sketched by the user and then translate them either into computerized text or into 429 

some specific commands. Nowadays, the recognition systems in use are always pre-430 

trained on a fixed, predefined and a limited group of gestures, which usually contains the 431 

Latin letters and a few specific gestures. These systems do not allow users to add gestures 432 

in order to assign them to new commands or shortcuts, or to replace default gestures 433 

mapped to existing commands. In order to meet this important functionality, the static 434 

handwriting recognition systems that have been used so far must be replaced by novel 435 

dynamic ones where the knowledge base can constantly evolve during the use of the 436 

system. The evolving nature comes from the fact that the system must be able to integrate 437 

at any moment a new class (gesture in our context), and must also continue its adaptation 438 

to the existing classes using the new available data. Although the dynamic nature of 439 

evolving classifiers offers many important advantages, the operation of these systems 440 

suffers from the lack of learning data.  The training process is done directly by the final 441 

user in an online and interactive manner, so that the quantity of teaching samples is 442 

limited because it is impractical to ask the user to enter a large number of samples in 443 

order to obtain a functional classifier. Therefore, the main challenge in the conception of 444 

incremental learning algorithms of evolving classification systems consists in reaching 445 

high recognition performance as fast as possible; i.e. with the minimum number of 446 

samples. Besides the beginning of the incremental learning from scratch, the problem of 447 

lack of data samples appears again during the adaptation process when new classes are 448 



added to the classifier. The evolving system is supposed to be able to learn these new 449 

classes without forgetting the old ones. However, it is difficult to completely avoid 450 

perturbations on the global performance of the classifier when adding new classes and the 451 

efforts must be focused on reducing as much as possible these perturbations. 452 

In addition to the efforts of improving the classification systems and the training 453 

algorithms, the incremental learning process can be further accelerated and enhanced by 454 

generating artificial data based on some knowledge related to the application domain. For 455 

handwritten gesture recognition problems, this idea can be implemented by generating 456 

synthetic gestures from the available real ones after applying on them some deformations 457 

in a realistic and significant manner. Thus, when a new class of gestures is introduced to 458 

the system with few samples provided by the user, many artificial samples can be 459 

generated. Geometric distortions are usually applied on real handwritten symbols in order 460 

to generate synthetic ones (Mitoma, 2005; Wang, 2005; Lin, 2007; Mouchère, 2007). 461 

These deformations can be either based on class-dependent models of gesture variability 462 

and require a learning phase, or on class-independent general strategies without specific 463 

deformation models. 464 

In this work, we incorporate a handwriting generation technique using class-independent 465 

lognormal-based deformations in the incremental learning of evolving handwritten 466 

gesture classifiers. Thanks to the RX0 based extractor, the ΣΛ parameter extraction and 467 

the data generation is performed automatically as a part of the adaptation process. Motion 468 

pattern variability rooted in the motor representation space of the handwritten gestures is 469 

regarded to be more realistic than geometric distortions and thus more valuable in the 470 

training process. In addition to the great advantage of integrating the lognormal-based 471 



handwriting generation technique in our evolving handwriting classifier, an objective and 472 

numerical evaluation of the quality of generated data is provided for the first time, to the 473 

best of our knowledge. The generated handwritten samples are considered realistic as 474 

much as they help the classifier to predict future real samples from the same class of 475 

gestures. The capacity of prediction is translated by the improvement of recognition 476 

performance of the evolving classifier. 477 

 478 

6.1. Acceleration of the learning process using synthetic data 479 

As aforementioned, we believe that distortions obtained by applying some variations on 480 

lognormal parameters are more realistic that those obtained using direct geometrical 481 

distortions. The idea is to extract the sigma-lognormal profiles of a real handwritten 482 

gesture provided by the user. Then, we apply some variation on the extracted parameters 483 

within some specific ranges, and we regenerate artificial gestures using the modified 484 

profiles. The resemblance between the synthetic and the real gestures is controlled by the 485 

variation intervals. Thus, a suitable setting of these intervals is required in order to avoid 486 

over-deformed gestures. We show in Fig. 7 some examples of the artificial gestures that 487 

can be generated by applying modifications on the sigma-lognormal parameters. We can 488 

note that the real gestures can be almost predicted from the synthetic ones. 489 



 

(a) 

 

 

(b) 

Fig. 7. Some examples of generated gestures using sigma-lognormal based deformations. 

 490 

In the context of incremental learning of evolving systems, one can overcome the 491 

problem of lack of samples at the beginning of the inclusion of a new class by generating, 492 

in an adequate manner, a number of synthetic samples. For an evolving handwriting 493 

classifier, the abovementioned sigma-lognormal based technique for synthetic gesture 494 

generation can be incorporated into the incremental training process. The handwriting 495 

generation is automatically performed transparently, with no user intervention. Fig. 8 496 

shows the different steps of the generation method. Frist, the sigma-lognormal parameters 497 

of each incoming sample are first extracted. These parameters are then modified and a 498 

number of synthetic samples are generated. The original sample and the synthetic ones 499 

are then introduced in the incremental learning algorithm. 500 

Using SimScript (O’Reilly and Plamondon, 2007), a visualization interface developed by 501 

the Scribens laboratory that allows an interactive modification of the sigma-lognormal 502 

parameters of a given handwritten gesture, we have experimentally studied the valid 503 

variation intervals of the six parameters within which the generated gesture is generally 504 

considered similar (from a human viewpoint) to the original one.  505 



 506 

6.2. Experimental results 507 

Experiments have been performed on a dataset of on-line handwritten gestures. It was 508 

composed of 11 different gestures drawn by 7 writers on a Tablet PC. Each writer has 509 

drawn 100 samples of each gesture, i.e. 1,100 gestures in each writer specific dataset. 510 

Each gesture was described by a set of 10 features. The presented results are the average 511 

of 7 different tests for the 7 writers. In order to avoid the data order inducing a bias into 512 

the outcome, we repeated 40 times the experiment for each writer with different random 513 

data orders and only the averages are reported. We have used about 40% of the dataset 514 

for the incremental training and the rest is used to estimate the evolution of the 515 

performance during the learning process. We generated 10 synthetic samples (gestures) 516 

for each real sample. The evolving classifier used in these experiments is based on a first-517 

 

Fig. 8. Incorporating lognormal-based data generation into the learning stage of an evolving 

handwriting classifier. 



order Takagi-Sugeno (TS) fuzzy inference system, and taught with our original 518 

incremental learning approach “Evolve++” (Almaksour, 2011). 519 

We compared the lognormal-based handwriting generation method to the geometric 520 

distortions explained in (Mouchère, 2007). Therefore, three performance curves are 521 

presented in the figures: 522 

I. Evolve++: our evolving classification approach with Evolve++ algorithm presented 523 

in (Almaksour, 2011). Only real samples are considered (no synthetic data); 524 

II. Evolve++&Geo: synthetic samples are generated by applying geometric distortions 525 

and used along with real ones to train Evolve++ system; 526 

III. Evolve++&Sigma: synthetic samples are generated using the lognormal-based 527 

method. 528 

The results are presented for two different experimental scenarios: the 11 gestures were 529 

introduced together in the first case, while the gestures were progressively introduced in 530 

the second one. We measure in the former the impact of the synthetic samples at the 531 

beginning of the learning process from scratch, while the latter scenario aims at showing 532 

the impact of these synthetic samples when introducing new gestures. The results of the 533 

first set-up are presented in Fig.9.a and those of the second in Fig.9.b. 534 



 

(a) 

 
(b) 

 

Fig. 9 (a) Performance improvement using synthetic data generation.  

(b) Impact of synthetic samples when adding new gestures. 

 535 

As it can be seen in Fig. 9.a, there is an important impact of the synthetic gestures at the 536 

beginning of the incremental learning process. For example, the misclassification rate is 537 



reduced by 50% for 10 real samples per class when the training is enriched with synthetic 538 

samples. It must also be noted from the same figure that distortions applied on the sigma-539 

lognormal parameters produces a more realistic variability in the synthetic gestures as 540 

compared to direct geometrical distortions. Thanks to the realistic human-like distortions, 541 

the synthetic samples present a significant ability to predict the appearance of future real 542 

samples, which significantly accelerates the adaptation process. Fig. 9.b shows that using 543 

synthetic samples, the classifier resists much better when introducing new classes. It is 544 

able to rapidly re-estimate all its parameters and to improve the recognition performance 545 

for the old and the new gestures. Again, the superiority of lognormal-based deformations 546 

over the traditional geometrical ones is quite apparent. 547 

These experimental results show that sigma-lognormal based synthetic samples play an 548 

important role in improving the classification performance and accelerating the learning 549 

process both when it starts from scratch and also when new gestures are introduced. One 550 

interest of the present methodology is also that it does not depend on the way reference 551 

gestures are defined and collected. For example, gestures that are recorded on hand held 552 

mobile devices while the user is standing up, writing vertically, or while he is sitting in a 553 

moving vehicle could also be used to train the system without really affecting the results. 554 

 555 

7. Conclusion 556 

In the last few years, great advances have been done on the problem of parameter 557 

extraction of the Sigma-Lognormal model. New algorithms have been designed which 558 

now allow an automatic representation of complex human motions such as those involved 559 

in on-line signature and handwriting. The availability of these new systems and a better 560 



understanding of the variability of the sigma-lognormal parameters have paved the way 561 

for the use of this model in the context of automatic generation of synthetic databases of 562 

human movements. This paper has summarized the promising results of two different 563 

investigations on that topic.  564 

Needless to say that further research is still needed on the various topic addressed in this 565 

paper, but as can already be seen, the use of the Sigma-Lognormal model for the 566 

generation of human like movements offers very interesting perspectives for the field of 567 

pattern recognition and the development of verification and recognition systems based on 568 

human movements.  569 
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