
HAL Id: hal-00801861
https://hal.science/hal-00801861v1

Preprint submitted on 18 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

2-stack pushall sortable permutations
Adeline Pierrot, Dominique Rossin

To cite this version:

Adeline Pierrot, Dominique Rossin. 2-stack pushall sortable permutations. 2013. �hal-00801861�

https://hal.science/hal-00801861v1
https://hal.archives-ouvertes.fr

2-stack pushall sortable permutations ∗

Adeline Pierrot Dominique Rossin

March 18, 2013

Abstract

In the 60’s, Knuth introduced stack-sorting and serial compositions of stacks. In par-
ticular, one significant question arise out of the work of Knuth: how to decide efficiently if
a given permutation is sortable with 2 stacks in series? Whether this problem is polyno-
mial or NP-complete is still unanswered yet. In this article we introduce 2-stack pushall
permutations which form a subclass of 2-stack sortable permutations and show that these
two classes are closely related. Moreover, we give an optimal O(n2) algorithm to decide
if a given permutation of size n is 2-stack pushall sortable and describe all its sortings.
This result is a step to the solve the general 2-stack sorting problem in polynomial time.

1 Introduction

In the 60’s, Knuth introduced the problem of stack-sorting [8] and then serial compositions of
stacks [9]. To answer the one-stack case, he introduced both the pattern-containment relation
on permutations and permutation classes, two new fields of combinatorics. Stack-sorting was
further generalized to sorting networks by Tarjan [12] while several variants appear by either
considering other types of combinatorial structures or by changing rules [11, 7, 1].

In this article, we focus on sorting with two stacks in series. More precisely, if σ is a
permutation, we consider σ as a sequence of integers σ1, σ2, . . . , σn that we take as input and
at each step we have three possibilities as described in Figure 2 (p.4):

ρ: Get the next element of σ and push its value on top of the first stack denoted H.

λ: Pop the topmost element of stack H and push this value on top of the second stack V .

µ: Pop the topmost element of V and write it to the output.

We iterate over these three possibilities until all elements have been output. If there is a
sequence of operations that leads to identity on the output, then we say that the permutation
is 2-stack sortable. Three natural questions among others arise:

1. Decision: what is the complexity of the problem consisting of deciding whether a given
permutation is sortable or not?

2. Characterization: can one characterize permutations that are sortable?

3. Counting: establish the generating function of sortable permutations.

∗This work was completed with the support of the ANR project ANR BLAN-0204 07 MAGNUM

1

For the one-stack case these three problems were solved by Knuth in [8]. A greedy algo-
rithm allows to answer the decision problem in linear time. Moreover he characterized sortable
permutations by introducing the 231-avoiding permutations class, whose generating function
is the Catalan series. Since this article, the more general question of sorting with multiple
stacks in series or in parallel has been widely studied. Knuth [8], Tarjan [12] and Pratt [11]
noted that the permutations sortable by the various configurations could be described by
forbidding certain patterns to occur in the permutations.

Regarding t parallel stacks, the decision problem can be answered in time O(n log n) for
t = 1, 2, 3, while for t > 3 this is NP-complete (this is proved by a reduction in [7] to a
problem solved in [13]). The characterization problem is studied in [11]: for t > 1, the basis
of the class of permutations sortable with t stacks in parallel is infinite. Finally, about the
counting problem, when t = 2 the generating function is described in [3], but by an infinite
system of equations.

For stacks in series, it has been shown in [8] that every permutation of size n can be
sorted by log2(n) stacks in series. But none of the above three questions has been answered
for more than one stack in series. For two stacks, Murphy [10] proved that the basis of the
class of sortable permutations is infinite. In his Phd thesis, he also studies the problem of
deciding whether a given permutation is sortable with 2 stacks in series. He reduced this
problem to a 3-SAT problem; at the same time he reduced a 2-SAT instance to the decision
problem, and hoped than one of both reduction was actually an equivalence. But none of
those results has been proved or disproved. In [5], Bóna gives an overview of advances in
sorting networks and mentions this problem as possibly NP-complete. More surprising, both
conjectures exist: in [4], the authors conjectured that the decidability problem is NP-complete,
while Murphy in his PhD ([10] Conjecture 260) conjectured that it is in P . Several weaker
variants of this problem have been studied. First, West considered permutations sortable with
two consecutive greedy passes through a stack in [14, 15]. He conjectured the enumeration
formula which was proved after by Zeilberger [16]. For more than two passes, few results are
known [6, 17]. Another variant studied in [4] is to consider decreasing stacks (i.e. elements in
the stack must be decreasing from bottom to top) instead of general stacks. In this article we
define a new restriction of 2-stacks sorting, namely 2-stacks pushall sorting, and prove that
the decidability problem in this case is polynomial.

Throughout this article we usually write permutations as σ = σ1σ2 . . . σn where n is the
size of σ, denoted by |σ|, and σi is the image of i for all i ≤ n. A permutation π = π1π2 . . . πk is
a pattern of σ if and only if there exist 1 ≤ i1 ≤ i2 ≤ i3 ≤ . . . ≤ ik ≤ n such that σi1σi2 . . . σik
is order isomorphic to π. We note Av(B) the set of permutations avoiding B, i.e. not having
any permutation of B as a pattern. A permutation class C is a set of permutations downward-
closed for the pattern relation: if σ belongs to C, then every pattern of σ belongs to C. Note
that for any set B, Av(B) is a class. A permutation class C can be defined by its minimal
set B such that C = Av(B). This minimal set is called the basis of the class. For example,
Knuth proved that 1-stack sortable permutations are those that belong to the class Av(231).
Unfortunately, the basis can be infinite. For 2-stack sortable permutations, as stated above,
it has been proved in [10] that the basis is infinite.

A permutation can also be represented by its diagram, consisting in the set of points
at coordinates (i, σi) drawn in the plane (see two examples in Figure 1). An interval in a
permutation is a consecutive range of elements, consecutive both in indices and values. For
example in the permutation 4 7 9 6 8 1 3 2 5, the elements 7 9 6 8 form an interval: they are

2

consecutive in the permutation and the values span the whole integer interval [6 . . . 9]. In
the diagram, note that an interval is a square which is itself a diagram of a permutation (if
translated to the origin). In particular, no point outside this square has the same x or y
coordinate than any cell of the square (see the yellow stripes of Figure 1). A permutation
where all intervals are trivial –either a singleton or the whole permutation– is called a simple
permutation. For instance, 2 4 1 3 and 3 1 4 2 are the two simple permutations of size 4. An
inflation of an element σi in σ by a permutation π is the permutation obtained by replacing
σi by π and renormalizing the resulting permutation. For example if we inflate 3 in 2 3 1 4 by
the permutation 4 1 5 2 3, we obtain the permutation 263745 1 8 (see the second diagram of
Figure 1). Notice that in an inflation by π, elements corresponding to π form an interval in
the resulting permutation.

Figure 1: Diagram of 4 7 9 6 8 1 3 2 5 and the inflation of 3 in 2 3 1 4 by 4 1 5 2 3

We denote inflations by σ = τ [π(1), π(2), . . . , π(k)] where τ is a permutation of size k and τi
is inflated by π(i) for all i. When τ is the identity 1 2 . . . k (resp. the decreasing permutation
k . . . 1) we write σ = ⊕[π(1), π(2), . . . , π(k)] (resp. ⊖[π(1), π(2), . . . , π(k)]).

A permutation σ is ⊕-decomposable (resp. ⊖-decomposable) if it can be written σ =
⊕[π(1), π(2), π(3), . . . , π(k)] (resp. ⊖[π(1), π(2), π(3), . . . , π(k)]) with k > 1. Otherwise σ is ⊕-
indecomposable (resp. ⊖-indecomposable)

A decomposition theorem [2] states that any permutation σ 6= 1 can be written in a unique
way as either:

• σ = ⊕[π(1), π(2), π(3), . . . , π(k)] where k ≥ 2 and the π(i) are ⊕-indecomposable.

• σ = ⊖[π(1), π(2), π(3), . . . , π(k)] where k ≥ 2 and the π(i) are ⊖-indecomposable.

• σ = τ [π(1), π(2), π(3), . . . , π(k)] where k ≥ 4 and τ is simple.

In the next section we study 2-stack sorting and 2-stack pushall sorting and show the close
correlation between these two models. This combinatorial study concludes on some partial
characterization of both classes in terms of permutations they contain or permutations in the
basis. The key idea is to use the block-decomposition of permutations given in the above
theorem.

Then in section 3 we prove that 2-stack pushall sorting can be expressed as a 2-color
problem on the diagram of permutations. Moreover we characterize diagram of permutations
that can be colored. This characterization leads to a polynomial algorithm to check whether
a permutation is 2-stack pushall sortable by finding all colorings for its diagram.

Section 4 refines the results of section 3 by limiting the number of colorings to test. This
leads to an optimal algorithm computing in quadratic time a linear representation of all

3

pushall sortings of a given permutation, which thus decides whether a permutation is 2-stack
pushall sortable.

To conclude, we give in section 5 some natural continuations of our work.

2 2-stack sorting vs 2-stack pushall sorting

In this section we define pushall sorting and point out the close link between 2-stack sorting
and 2-stack pushall sorting. Moreover, for each of these sorting problems we exhibit some
recursive necessary and sufficient conditions for a permutation to be sortable depending on
the root of its block-decomposition.

In 2-stack sorting, three different operations are allowed as pictured in Figure 2. Each of
this operation can be encoded with a letter (see Figure 2). For example, whenever an element
is popped from stack H and pushed in stack V , we write λ. A sequence of operations is
encoded by a word whose length is the number of operations performed.

HV

ρ
INPUT

λµ
OUTPUT

Figure 2: Sorting with two stacks in series

Definition 2.1. A stack word w is a word over the alphabet {ρ, λ, µ} such that |w|ρ = |w|λ =
|w|µ and for all prefix v of w, |w|ρ ≥ |w|λ ≥ |w|µ. Intuitively it’s a word which describes
a sequence of appropriate stack operations which take a permutation through two stacks in
series (without necessarily sorting it). A permutation σ = σ1 . . . σn is 2-stack sortable if and
only if there exists a stack word of length 3n (n times each letter ρ, λ, µ) which leads to the
identity in the output with σ as input. Such a word is called a valid stack word for σ.

There are several valid stack word for a given permutation: for example, permutation
2341 admits either ρρρρλµλλλµµµ or ρρρλλλρλµµµµ as valid words. Note also that ρ and
µ commutes: if w is a valid stack word for σ an w′ is obtained for w by exchanging adjacent
letters ρ and µ, then w′ is a valid stack word for σ. In his Phd [10], Murphy studied 2-
stack sorting by studying stack words. This presentation of 2-stack sorting allow us to define
formally 2-stack pushall sorting.

Definition 2.2. A pushall stack word is a stack word such that the first occurrence of letter µ
is after the last occurence of the letter ρ. A permutation σ of size n is 2-stack pushall sortable
if and only it admits a valid pushall stack word.

More informally, 2-stack pushall sortable permutations are those which can be sorted by
pushing all elements in the stacks before writing any element to the output.

For example 2431 is 2-stack pushall sortable as the word ρρρρλµλλλµµµ respects the
required condition (as does ρρρλλλρλµµµµ).

4

Remark 2.3. A stack word w is a pushall stack word if and only if it can be written as
w = uv with u ∈ {ρ, λ}∗ and v ∈ {λ, µ}∗. This decomposition is not unique. In the preceding
example, the word w = ρρρρλµλλλµµµ admits two decompositions: w = (ρρρρ)(λµλλλµµµ)
and w = (ρρρρλ)(µλλλµµµ).

The previous definition of 2-stack pushall sortable permutations implies that they form
a subset of 2-stack sortable permutations. Moreover it is easy to check that 2-stack pushall
sorting is stable by pattern relation: if σ is 2-stack pushall sortable then every pattern π of σ
is 2-stack pushall sortable: choose an occurrence of π in σ and a valid pushall stack word w of
σ. To obtain a valid pushall stack word of π, delete letters of w that correspond to elements
of σ not involved in the occurrence of π. The same reasoning holds for general 2-stack sorting.

Proposition 2.4. 2-stack pushall permutations form a subclass of 2-stack sortable permuta-
tion class.

Although we do not know the ratio between these two classes, there exists a close correla-
tion between them and solving 2-stack pushall sorting is a prerequisite for the more general
case. We first study the possible configurations of the stacks during a sorting procedure. This
will help us to obtain properties of stack sorting permutations thanks to their decomposition.
In a last subsection, we study the basis of 2-stack sortable permutation class and show how
it is correlated to the 2-stack pushall one.

2.1 Stack configurations

At each step of a sorting procedure, some elements of the permutation lie in the stacks. We
call a stack configuration the position of these elements in stacks H and V . In this section,
we exhibit a necessary condition on stack configurations to be part of a sorting procedure.
First we define formally stack configurations.

Definition 2.5. A stack configuration is a pair of two vectors of positive integers (
−→
V ,
−→
H)

of arbitrairy (and maybe different) sizes, such that all coordinates are distincts. A stack

configuration may be empty (if both vectors are of size zero). Vector
−→
V (resp.

−→
H) represents

elements that are in stack V (resp. H) given from bottom to top, so we can apply to stack
configurations moves λ and µ, and move ρ if we know what is the next integer in the input.

Let σ be a permutation, a stack configuration of σ is a stack configuration in which coor-
dinates are bounded by |σ|.

Definition 2.6. To each stack word w of size 3n and permutation σ of size n we associate
a sequence of 3n + 1 stack configurations

(

ck(w, σ)
)

describing how the sequence of moves
w = w1 . . . w3n take σ through the stacks: c1(w, σ) is empty and we obtain ck+1(w, σ) from
ck(w, σ) by doing operation wk with σ as input at the beginning.

Definition 2.7. Let σ be a permutation. A stack configuration c is reachable for σ if it exists
a stack word w and an integer k such that c = ck(w, σ). A stack configuration c is total for
σ if all integers from 1 to |σ| appear in c (this notion depends only on |σ|, we don’t ask c to
be reachable for σ).

Remark 2.8. Let w be a stack word of size 3n and σ a permutation of size n. Then w is a
pushall stack word if and only if at least one of the stack configurations

(

ck(w, σ)
)

is total.

5

During a sorting procedure, stack configurations have constraints so that all elements can
be popped out in increasing order. Recall that in one-stack sorting, the stack must be in
decreasing order (from bottom to top). For two-stack sorting, we have the same decreasing
constraint on stack V but other constraints appear that can be represented as stack patterns.

Definition 2.9. We call unsortable stack-patterns the following three patterns, denoted re-
spectively |12| |, | |132| and |2|13|:

HV

1
2

HV

1
3
2

HV

1
3

2

More precisely pattern |12| | means that there is in stack V one element which has a smaller
element below it. Pattern | |132| means that there is in stack H one element which has a
greater element below it and a smaller element more below. Pattern |2|13| is somehow special
as the pattern is divided in both stacks. It means that there are elements a, b, c such that
b ∈ V , a, c ∈ H, a < b < c and c is above a in stack H.

Theorem 2.10. A stack configuration can be popped out in increasing order if and only if it
avoids each unsortable stack-pattern.

Proof. Notice that if a stack configuration contains any of the 3 unsortable stack-patterns,
then elements involved in the pattern cannot be popped out in increasing order.

For the converse, we prove by induction on the number of elements in the stacks that a
configuration which avoids the 3 unsortable stack-patterns can be popped out in increasing
order. Suppose that the result has been proved for all stack configurations with at most k
elements. Note that the result is trivially true for k ≤ 2. Let c be a stack configuration with
k + 1 elements avoiding the 3 unsortable stack-patterns and m the smallest element of this
configuration. We show that m can be popped out so that the stack configuration of the k
remaining elements still avoids the 3 unsortable stack-patterns. Without loss of generality
assume m = 1.

Suppose that 1 lies in stack V . As c avoids pattern |12| |, V is in decreasing order so 1
is at the top of it. It can be popped out and there remains k elements still avoiding the 3
unsortable stack-patterns. Thus they can be all popped out in increasing order by induction.

Suppose now that 1 lies in stack H. As c avoids pattern | |132| and 1 is the smallest
element, all elements above 1 are in increasing order (from 1 to top). All these elements
can be pushed onto stack V so that stack V remains in decreasing order. Indeed as c avoids
pattern |2|13|, the top of stack V is greater than the top of stack H. When all elements
greater than 1 and above 1 in stack H are transferred onto stack V , then 1 can be popped
out both stacks H and V and the remaining configuration still avoids the 3 unsortable stack-
patterns (as c avoids pattern | |132|, no pattern |2|13| has been created) and we can apply
the induction.

Remark 2.11. There is at most one way to pop out in increasing order elements from a
stack configuration. Indeed to pop out we only use moves µ and λ, and if we want to pop out
in increasing order we have to perform move µ if and only if the smallest element lies in the
top of V .

6

Data: σ a permutation and c a total stack configuration of σ.
Result: True if c can be popped out in increasing order.

1 i←− 1;
2 while i ≤ |σ| do
3 if top(V) = i then
4 pop out top(V) from stack V and let i←− i+ 1
5 else

6 if H is non empty and top(H) < top(V) then
7 pop top(H) from stack H and push it into V ;
8 else

9 Return false;
10 end

11 end

12 end

13 Return true;

Algorithm 1: Pop out in increasing order

Proposition 2.12. Let c be a total stack configuration of a permutation σ. Then Algorithm 1
applied to c returns true if and only if c can be popped out in increasing order. Moreover
Algorithm 1 runs in linear time w.r.t. |σ|.

Proof: At each step, Algorithm 1 performs either a move µ or a move λ. As at most |σ|
moves µ and |σ| moves λ can be done, it runs in linear time w.r.t. |σ|. We conclude using
Remark 2.11.

Theorem 2.10 ensures that a stack configuration can be popped out in increasing order.
Conditions of this theorem must be verified at each step of a sorting procedure. This is
formalised in the following proposition:

Proposition 2.13. If w is a valid stack word for the permutation σ, then each stack config-
uration of

(

ck(w, σ)
)

avoids the 3 unsortable stack-patterns.

The converse is not true: let w = (ρλµ)n then for all permutation σ of size n each stack
configuration of

(

ck(w, σ)
)

avoids the 3 unsortable stack-patterns (as it has at most one
element in the stacks). But if σ is not the identity, w is not a valid stack word for σ.

For 2-stack pushall sorting, however, it is sufficient to check whether the stack configura-
tion obtained just after the last element of σ has been pushed onto H avoids the 3 unsortable
stack-patterns.

Proposition 2.14. A permutation σ is 2-stack pushall sortable if and only if there is a way
to put all its elements in the stacks so that the total stack configuration obtained avoids the
three unsortable patterns.

Proof: If σ is 2-stack pushall sortable we conclude using Proposition 2.13 and Remark 2.8.
The converse is a consequence of Theorem 2.10.

2.2 Decomposition and stack sorting

In this part we exhibit conditions for a permutation σ to be 2-stack sorted depending on its
decomposition.

7

⊖-decomposable permutations :

Proposition 2.15. A permutation σ = ⊖[π(1), π(2), . . . , π(k)] is 2-stack sortable if and only
if every π(i) for i ∈ {1 . . . k − 1} is 2-stack pushall sortable and π(k) is 2-stack sortable.

Proof. Suppose that σ is 2-stack sortable. Let wσ be a valid stack word of σ. For i ∈ {1 . . . k},
consider the subword wπ(i) of wσ by taking letters corresponding to an element of π(i). This
word is of size 3|π(i)| and has equal number of occurrences of the letters ρ, λ, µ. Moreover, it
is a valid stack word for π(i) as the relative order of elements of π(i) under the action of wπ(i)

will be the same as the action of wσ on σ. Furthermore, as the element 1 in σ belongs to the
last block π(k), all elements of π(i) are pushed into the stacks before the first pop. Hence π(i)

is 2-stack pushall sortable. 2-stack sortable permutations form a permutation class, so that
π(k) must be 2-stack sortable.

Conversely, if every π(i) for i ∈ {1 . . . k− 1} is 2-stack pushall sortable and π(k) is 2-stack
sortable, let wi (1 ≤ i ≤ k−1) be a pushall stack word for π(i) and wk be a stack word for π(k).
Then each wi (1 ≤ i ≤ k − 1) can be written as w′

iw
′′
i where w′

i contains no occurrence of µ
and w′′

i no occurrence of ρ. It is easy to check that the word w′
1w

′
2 . . . w

′
k−1wkw

′′
k−1w

′′
k−2 . . . w

′′
1

is a valid stack word for σ, hence σ is 2-stack sortable.

With a similar proof, we have the following result when restricting to 2-stack pushall
sortable permutations:

Proposition 2.16. A permutation σ = ⊖[π(1), π(2), . . . , π(k)] is 2-stack pushall sortable if
and only if every π(i) for i ∈ {1 . . . k} is 2-stack pushall sortable.

⊕-decomposable permutations The case where σ is ⊕-decomposable is a bit different
as each block of the decomposition can be popped out as soon as they are pushed into the
stacks. So the only condition is given in the following proposition.

Proposition 2.17. If σ = ⊕[π(1), . . . , π(k)] then σ is 2-stack sortable if and only if each π(i)

is 2-stack sortable.

For 2-stack pushall sortable permutations, ⊕-decomposable permutations are harder to
handle. As no element can be popped out before all elements have been pushed, the element
1 which belongs to the first block must remain in the stacks until every element is pushed.
This induces several constraints which are proved in the following propositions. All these
propositions aim at proving Theorem 2.18 which fully characterizes ⊕-decomposable 2-stack
pushall sortable permutations.

Theorem 2.18. Let σ be a ⊕-decomposable permutation. Then σ is 2-stack pushall sortable
if and only if σ avoids

B+ = {132465, 135246, 142536, 142635, 143625, 153624, 213546, 214365, 214635, 215364,

241365, 314265, 315246, 315426, 351426, 1354627, 1365724, 1436527, 1473526, 1546273,

1573246, 1624357, 1627354, 1632547, 1632574, 1642573, 1657243, 2465137, 2631547,

2635147, 3541627, 4621357, 4652137, 5136427, 5162437, 21687435, 54613287}

The proof proceeds step by step in Propositions 2.19 to 2.26.

Proposition 2.19. Let σ be a permutation such that either:

8

• σ ∈ Av(132)

• σ ∈ Av(213)

• σ ∈ ⊕[Av(132), Av(213)]

• σ ∈ ⊕[Av(213), Av(132)]

Then σ is 2-stack pushall sortable.

Proof. We show that we can put all elements of σ in the stacks so that they avoid patterns
of Theorem 2.10 (p.6). In the first case, just push every element in stack H. For the second
case, we know from Knuth [9] that each permutation avoiding 231 can be sort in increasing
order with one stack. So each permutation avoiding 213 can be sort in deacreasing order with
one stack. Hence we can use stack H to push all elements of σ in decreasing order onto stack
V . For the last two cases, we push the elements in corresponding stacks H for Av(132) and
V for Av(213). In each case, the stack configuration respect conditions of Theorem 2.10.

Note that Proposition 2.19 give a sufficient condition which is not necessary: the permu-
tation 143652 is 2-stack pushall sortable but do not belong to one of the preceding cases. In
this proposition, an important role is given to classes Av(213) and Av(132). These indeed
are exactly the classes of permutations that can be pushall sorted with a stack configuration
where all elements lie in one single stack (V for Av(213) and H for Av(132)). Thus the
only difficult case is whenever a permutation contains both pattern 132 and 213. This is
characterized by the following proposition:

Proposition 2.20. A permutation σ contains both patterns 213 and 132 if and only if it
contains one of the following patterns: 1324, 2143, 2413, 3142, 465213 and 546132.

Figure 3: Minimal permutations containing patterns 132 and 213.

Proof. Minimal permutations that contain both 132 and 213 are exactly permutations of the
basis of Av(132)

⋃

Av(213). By minimality of the elements of the basis those permutations
are at most of size 6 and a comprehensive study ends the proof.

To prove a complete characterization of ⊕-decomposable 2-stack pushall sortable permu-
tations, we deal first with permutations whose decomposition contains non-trivial block -i.e.
blocks not reduced to a singleton-.

Proposition 2.21. Suppose σ = ⊕[α1 . . . αr] with r ≥ 2, each αi ⊕-indecomposable and blocks
α1 and αr are non-trivial. Then σ is 2-stack pushall sortable if and only if σ avoids every
pattern of B1 = {132465, 213546, 214365, 214635, 215364, 241365, 314265, 1657243, 4652137,
21687435, 54613287}.

9

Proof. We state by checking each pushall stack word of the right size that permutations
of B1 are not 2-stack pushall sortable. Hence if σ is 2-stack pushall sortable it avoids B1.
Conversely, let σ be a permutation avoiding every pattern of B1. As α1 and αr are non-trivial
and ⊕-indecomposable, they contain 21 as a pattern. But σ avoids 214365 so that blocks αi

with 2 ≤ i ≤ r− 1 are trivial. Let I = {i | αi contains pattern 132} and J = {j | αj contains
pattern 213}. These sets are included in {1, r} and not equal to {1, r} as σ avoids 132465
and 213546.

• If I = J = Ø, then α1 ∈ Av(132) and ⊕[α2 . . . αr] ∈ Av(213) so σ ∈ ⊕[Av(132), Av(213)]
and σ is 2-stack pushall sortable by Proposition 2.19.

• If I = Ø and J = {j0}, then j0 ∈ {1, r}. If j0 = 1 then α1 ∈ Av(132) and
⊕[α2 . . . αr] ∈ Av(213) hence σ ∈ ⊕[Av(132), Av(213)] and σ is 2-stack pushall sortable
by Proposition 2.19. If j0 = r, as σ avoids 213546 then r = 2, but α1 ∈ Av(213)
and αr ∈ Av(132) hence σ ∈ ⊕[Av(213), Av(132)]. So σ is 2-stack pushall sortable by
Proposition 2.19.

• If I = {i0} and J = Ø, then i0 ∈ {1, r}. If i0 = 1, as σ avoids 132465 then r = 2, but
α1 ∈ Av(213) and αr ∈ Av(132) hence σ ∈ ⊕[Av(213), Av(132)]. So σ is 2-stack pushall
sortable by Proposition 2.19. If i0 = r then α1 ∈ Av(132) and ⊕[α2 . . . αr] ∈ Av(213)
hence σ ∈ ⊕[Av(132), Av(213)] and σ is 2-stack pushall sortable by Proposition 2.19.

• If I = {i0} 6= J = {j0}. If i0 = 1 then j0 = r and r = 2 as σ avoids 132465.
But α1 ∈ Av(213) and αr ∈ Av(132) hence σ ∈ ⊕[Av(213), Av(132)] and σ is 2-
stack pushall sortable by Proposition 2.19. If i0 = r then j0 = 1, α1 ∈ Av(132) and
⊕[α2 . . . αr] ∈ Av(213) hence σ ∈ ⊕[Av(132), Av(213)]. So σ is 2-stack pushall sortable
by Proposition 2.19.

• If I = J = {i0}, then by Proposition 2.20, αi0 contains either 1324, 2143, 2413, 3142,
465213 or 546132. We prove that σ contains a pattern of B1. If αi0 contains 1324, either
i0 < r, and σ would contain 132465 or i0 = r, and σ would contain 213546. Similarly
if αi0 contains 2143, σ would contain 214365. The same goes for αi0 containing 2413,
3142, 465213 or 546132. Hence the case I = J = {i0} cannot occur.

Given two permutation classes C and C′, their horizontal juxtaposition [C C′] consists of
all permutations σ that can be written as a concatenation [π, τ] where π is order isomorphic
to a permutation in C and τ is order-isomorphic to a permutation in C′. In other words, a
diagram of a permutation σ ∈ [C C′] can be divided by a vertical line into two parts, such
that the left one is order-isomorphic to a permutation of C and the right one to a permutation

of C′. We can similarly define the vertical juxtaposition

[

C
C′

]

consisting of permutations

having a diagram cut by a horizontal line.

Proposition 2.22. A permutation ⊕[1, σ] is 2-stack pushall sortable if and only if
σ ∈

[

Av(213) Av(132)
]

and there exists an associated decomposition σ = [π, τ] such that there
are no pattern 213 in σ where 2 is in π and 13 is in τ .

10

Proof. If σ = [π, τ] with this decomposition satisfying hypothesis of the proposition, then
⊕[1, σ] is 2-stack pushall sortable using the following algorithm. Put 1 in H. Then push
elements of π in stack V in decreasing order. Then put 1 at top of V and finally push every
element of τ onto H. As there are no pattern 213 in σ with 2 in π and 13 in τ , the stack
configuration respects conditions of Theorem 2.10 hence can be popped out.

Conversely, suppose that ⊕[1, σ] is 2-stack pushall sortable and consider a stack word for
this permutation. As 1 is the first element, it is pushed at the bottom of H. Then some
elements are pushed onto 1 and into V before 1 is popped out from stack H to stack V . The
remaining elements are pushed into H as they are greater than 1. We consider the moment
where all elements have been pushed and 1 is at the top of V . This separates in two parts
the elements of σ taking τ as the elements in H and π the elements in V apart from 1. From
Theorem 2.10 decomposition σ = [π, τ] satisfies conditions of the statement.

Proposition 2.23. Let E = {σ|⊕[1, σ] is 2-stack pushall sortable }. Then E is a finitely based
permutation class whose basis is B2 = {21354, 24135, 31425, 31524, 32514, 42513, 243516, 254613,
325416, 362415, 435162, 462135, 513246, 516243, 521436, 521463, 531462, 546132, 4652137}.

Proof. As 2-stack pushall sortable permutations is a permutation class, so does E. Let B2 be
the basis of E. To prove that B2 is finite, we first prove that every permutation in B2 has
size less than 9. Then an comprehensive computation gives the permutations in B2.

By Proposition 2.22, E = {σ = πτ | π ∈ Av(213), τ ∈ Av(132) and there are no pattern
213 in σ where 2 is in π and 13 is in τ}. Let σ ∈ B2. By definition σ 6∈ E so σ 6∈ Av(213) and
σ 6∈ Av(132). Let σiσjσk be a pattern 132 such that i is maximal and σrσsσt be a pattern
213 such that t is minimal, then r minimal (for t fixed) and finally s maximal (for t and r
fixed).

• If t < i then π = σrσsσtσiσjσk /∈ E, hence by minimality of the basis σ = π so |σ| = 6.

• If t = i then π = σrσsσiσjσk /∈ E and by minimality σ = π so |σ| = 5.

• If t > i, consider the pattern σrσsσt (shown in Figure 4). Minimality conditions for t
and r and maximality condition for s imply that gray zones in the diagram of σ are
empty. So s = t− 1. As σ /∈ E, there is no possible cut σ = πτ such that π ∈ Av(213),
τ ∈ Av(132) and there are no pattern 213 in σ where 2 is in π and 13 is in τ . Hence,
all cuts in σ are forbidden, either because they are to the left of a 132 pattern or to the
right of a 213 pattern or between element 2 and 1 of a pattern 213. More specially the
cut between t− 1 and t is forbidden. This cut cannot be to the left of a pattern 132 by
maximality of i (t > i) and cannot be to the right of a pattern 213 by minimality of t.
So this cut is between elements 2 and 1 of a pattern 213. We consider a pattern 213
denoted by σxσyσz such that x is minimal and y is minimal for x fixed among patterns
213 such that x ≤ s = t− 1 and y ≥ t.

11

σs

σt

σr

Figure 4: σrσsσt

σs

σtσr

A

B

C

D

Figure 5: Cas r > i

σs

σt

σr

σx

σzγ

δ

Figure 6: σxσrσsσtσz

σs

σt

σr

σy

σzγ

δ

Figure 7: σrσsσtσyσz

– If r ≤ i then π = {σrσsσtσiσjσkσxσyσz} /∈ E. Indeed all cuts are forbidden: those
before r by σiσjσk, between r and s by σrσsσt, between s and t by σxσyσz and
before t by σrσsσt. So by minimality of the basis |σ| ≤ 9.

– If r > i, we want to prove that x ≤ i. Then π = {σrσsσtσiσjσkσxσyσz} /∈ E since
all cuts are forbidden as before and |σ| ≤ 9. As r > i and i maximal, gray zones
added in Figure 5 are empty. As y ≥ t, σy and σz lie either both in A, or both in
B, or σy lies in B and σz in A.

∗ If σy and σz lie both in B, then σx lies in D and σxσtσz form the permutation
132 and as i is maximal, x ≤ i.

∗ If σy and σz lie both in A, then σx lies in C and by minimality of y we have
y = t. x is minimal, so that gray zones added in Figure 6 are empty. Suppose
that x > i. The cut between i and i + 1 is forbidden as σ /∈ E. As i is
maximal the cut cannot be to the left of a pattern 132, neither to the right of
a pattern 213 by minimality of t. Hence the cut lies between element 2 and 1
of a pattern 213. Let σaσbσc be such a pattern 213 such that a ≤ i and b > i.
Then a < x and σa lies in area γ or δ and c ≥ t by minimality of t. If σa lies
in γ then σaσtσc is the pattern 213, which is forbidden by minimality of x.
Hence σa lies in δ and b ≥ t otherwise σaσbσt is a pattern 213 with a ≤ i < r,
which is also forbidden by minimality of r. Hence σaσbσc is a pattern 213 with
a ≤ i < x ≤ s and b ≥ t which is impossible by minimality of x.

∗ If σy lies in B and σz in A, by minimality of x, x = r or σx lies in C or σx
lies in D. If σx lies in C then σxσtσz is a pattern 213 which contradicts the
minimality of y. If σx lies in D, σxσrσs is a pattern 132 hence x ≤ i. If x = r,
by minimality of x then y, gray zones added in Figure 7 are empty. The cut
between i and i + 1 is forbidden as σ /∈ E. As before the cut lies between
elements 2 and 1 of a pattern 213. Let σaσbσc such a pattern 213 such that
a ≤ i and b > i. Then a < r and σa lies in γ or δ and c ≥ t by minimality of t.
If σa lies in γ then σaσtσc is a pattern 213 and by minimality of x, x ≤ a ≤ i.
If σa lies in δ then b ≥ t otherwise σbσtσy is a pattern 132 with b > i, which
is forbidden by maximality of i. But σaσbσc is a pattern 213 with a ≤ i and
b ≥ t, so by minimality of x, x ≤ i.

Proposition 2.24. A permutation ⊕[σ, 1] is 2-stack pushall sortable if and only if σ ∈
[

Av(132)
Av(213)

]

and there exists an associated decomposition σ =

[

π
τ

]

such that there is no

pattern 132 in σ where element 3 is in π and elements 1 and 2 are in τ .

12

Proof. Let n = |σ|+ 1. Consider a pushall sorting of ⊕[σ, 1]. This permutation has n as last
element, so that we consider the configuration of the stacks just after the insertion of n. By
Theorem 2.10, it must avoid the pattern |2|13|, so that all elements in H -under n- are greater

than those of V . Hence we can write σ =

[

π
τ

]

where τ contains elements of V and π those

in H -except n-. Then from Theorem 2.10 π ∈ Av(132) and τ ∈ Av(213) and that there are
no pattern 132 in σ where element 3 is in π and elements 1 and 2 are in τ .

Conversely, suppose that there exists a decomposition σ =

[

π
τ

]

respecting the previous

conditions then we have a pushall sorting of the permutation ⊕[σ, 1] using the following
algorithm. While the input is not empty, if stack H is empty or if the top of H belongs to π,
we push the next element of the input onto H. If σi, the top of H belongs to τ , and if the next
element of the input σj belongs to τ and is greater than σi, we push σj onto H, otherwise
we pop σi from H and push it onto V . At each step we verify conditions of Theorem 2.10 so
that all elements can be popped out in increasing order at the end.

Proposition 2.25. Let F = {σ|⊕ [σ, 1] is 2-stack pushall sortable }. F is a finitely based per-
mutation class whose basis is B3 = {13524, 14253, 21354, 31524, 31542, 35142, 135462, 143652,
162435, 163254, 246513, 263154, 263514, 354162, 462135, 465213, 513642, 516243, 1657243}.

Proof. As the set of 2-stack pushall sortable permutations is a permutation class, so is F . By

Proposition 2.24, F = {σ ∈

[

Av(132)
Av(213)

]

such that there exists an associated decomposition

σ =

[

π
τ

]

such that there is no pattern 132 in σ where element 3 is in π and elements 1 and

2 are in τ}. Hence E and F are in one-to-one correspondence by taking an element of E,
rotate its diagram by −π/2 and apply the symmetry with respect to axis (Oy). If elements
are in one-to-one correspondence by rotation and symmetry so does the basis which proves
the result.

Proposition 2.26. A permutation ⊕[1, σ, 1] is 2-stack pushall sortable if and only if σ ∈
⊕[Av(213), Av(132)].

Proof. By Proposition 2.22, ⊕[1, σ, 1] is 2-stack pushall sortable if and only if ⊕[σ, 1] ∈
[

Av(213), Av(132)
]

and there exists a corresponding decomposition σ = πτ such that there
is no pattern 213 in σ where element 2 is in π and 13 are in τ , which is equivalent to
σ ∈

[

Av(213), Av(132)
]

and there exists a corresponding decomposition σ = πτ such that
there are no pattern 21 in σ where element 2 is in π and element 1 is in τ , i.e. σ ∈
⊕[Av(213), Av(132)].

We are now able to prove Theorem 2.18 (p.8).

Proof. Permutations of B+ are not 2-stack pushall sortable (check each pushall stack word
of the right size), hence if σ is 2-stack pushall sortable it avoids B+. Conversely suppose
that σ avoids B+. Let σ = ⊕[α1 . . . αr] be the ⊕-decomposition of σ with r ≥ 2 and αi

⊕-indecomposable for all i.

• If α1 and αr are non trivial then σ is 2-stack pushall sortable thanks to Proposition 2.21.
Indeed σ avoids B1 = {132465, 213546, 214365, 214635, 215364, 241365, 314265, 1657243,
4652137, 21687435, 54613287} as B1 ⊂ B+.

13

• If α1 is trivial then σ = ⊕[1, π] and π avoids B2 = {21354, 24135, 31425, 31524, 32514,
42513, 243516, 254613, 325416, 362415, 435162, 462135, 513246, 516243, 521436, 521463,
531462, 546132, 4652137} so that σ is 2-stack pushall sortable by Proposition 2.23.

• If αr is trivial then σ = ⊕[π, 1] and π avoids B3 = {13524, 14253, 21354, 31524, 31542,
35142, 135462, 143652, 162435, 163254, 246513, 263154, 263514, 354162, 462135, 465213,
513642, 516243, 1657243} hence σ is 2-stack pushall sortable by Proposition 2.25.

We call separable permutations the class Av(2413, 3142).

Theorem 2.27. Let σ be a separable permutation. σ is 2-stack pushall sortable if and only if σ
avoids B = {132465, 213546, 214365, 1354627, 1436527, 1624357, 1632547, 1657243, 4652137,
21687435, 54613287}.

Proof. As permutations of B are not 2-stack pushall sortable, every 2-stack pushall sortable
permutation avoids B. Conversely, supppose that σ avoids B. As σ is separable, σ is either ⊕-
decomposable or ⊖-decomposable or trivial (i.e. of size 1), and σ avoids 2413 and 3142 which
added to constraints of B gives that σ avoids B+, the set defined in Theorem 2.18. If σ is
⊕-decomposable, then σ is 2-stack pushall sortable by Theorem 2.18. If σ is ⊖-decomposable,
then σ = ⊖[π(1), π(2), . . . , π(k)] where each π(i) is either trivial or ⊕-decomposable. So σ is
2-stack pushall sortable by Proposition 2.16 and Theorem 2.18.

2.3 Basis of stack sorting class

In the previous section, we show that 2-stack pushall sortable separable permutations form
a finitely based permutation class. This property does not hold for 2-stack pushall sortable
permutations and we exhibit an infinite antichain in the following proposition.

Proposition 2.28. The basis of 2-stack pushall sortable permutation is infinite.

Proof. Consider permutations 2n − 3 2n − 1 2n − 5 2n . . . p p + 5 . . . 1 6 2 4 for n ≥ 3. The
first ones are depicted in Figure 8. These permutations are simple and incomparable. To
complete the proof, straightforward though technical, just check that those permutations are
not 2-stack pushall sortable and that every pattern of these permutations are 2-stack pushall
sortable.

Figure 8: An antichain of the basis of 2-stack pushall sortable permutations class.

Note that the basis is infinite and contains a infinite number of simple permutations, and
the 2-stack pushall sortable class contains also an infinite number of simple permutations.

14

Proposition 2.29. If σ is in the basis of 2-stack pushall sortable permutations, then σ is
2-stack sortable.

Proof. Let σ = σ1σ2 . . . σn be in the basis of 2-stack pushall sortable permutations. By
definition, σ1σ2 . . . σn−1 is 2-stack pushall sortable. We can sort σ (not pushall sort σ) using
the following algorithm. Push all elements σ1 to σn−1 in the stacks following the 2-stack
pushall sortable operations of σ1 . . . σn−1. Then pop elements 1, 2, . . . , σn − 1, then push σn
and pop it to the output and pop the remaining elements. It is easy to check that these
operations are allowed.

Those last two propositions give a partial characterization of the basis of 2-stack pushall
sortable permutations class and 2-stack sortable permutations. A more accurate result can
be given for certain type of permutations in the basis.

Proposition 2.30. Let π be a ⊖-decomposable permutation. Then π belongs to the basis of
2-stack sortable permutations class if and only if π = ⊖[σ, 1] where σ belongs to the basis of
2-stack pushall sortable permutations class.

Proof. Let π = ⊖[σ, 1] with σ a pemrutation of the basis of 2-stack pushall sortable permu-
tations class. Proposition 2.15 ensures that π is not 2-stack sortable. Note also that every
pattern of π is 2-stack sortable. To prove this result, suppose that you remove a point in the
permutation. Suppose we delete element 1 then the obtained permutation is σ, hence it is
2-stack sortable by Proposition 2.29. Otherwise we delete an element of σ leading to σ′ which
is 2-stack pushall sortable by the definition of a permutation class basis. Then, ⊖[σ′, 1] is
2-stack pushall sortable using Proposition 2.15.

Conversely, if σ = ⊖[π(1), π(2), . . . , π(k)] belongs to the basis of 2-stack sortable permuta-
tions class, then by Proposition 2.15, either π(k) is not 2-stack sortable which contradicts the
minimality of σ (σ is an element of the basis so that every pattern of σ must belong to the
class) or there exists 1 ≤ i ≤ k − 1 such that π(i) is not 2-stack pushall sortable. But in that
case, ⊖[π(i), 1] is not 2-stack sortable by Proposition 2.15 hence σ = ⊖[π(i), 1] by minimality
of basis elements. If π(i) has a proper pattern τ which is not 2-stack pushall sortable then
⊖[τ, 1] is a proper pattern of σ which is not 2-stack sortable. This is impossible as σ belongs
to the basis of 2-stack sortable permutations class. So π(i) belongs to the basis of 2-stack
pushall sortable permutations class, which concludes the proof.

3 Sorting and bi-coloring

3.1 A simple characterization

There is a natural relation between 2-stack pushall sorting and coloring of permutation dia-
gram into two colors. The key idea is to look at the stack configuration once all elements of
the permutation are pushed into the stacks. Then each element of the permutation belong
either to stack H or to stack V . We assign a color to them depending in which stack they lie

at this particular step of the sorting. In this article we color like points that lie in stack

H and like points in stack V .
However by Remark 2.3, this stack configuration is not unique, and neither is the coloring.

15

Definition 3.1. A bicoloring of a permutation σ is a coloring of the points of the diagram
of σ with two colors G and R.

A valid coloring is a bicoloring which avoids each of the four following colored pattern:

• pattern 132: there is a pattern 132 in R

• pattern 213: there is a pattern 213 in G

• pattern 1X2: there is a point of R lying vertically between a pattern 12 of G

• pattern 2/13: there is a point of G lying horizontally between a pattern 12 of R

Definition 3.2. Let σ be a permutation. To each total stack configuration of σ the map Col
assigns the bicoloring of σ such that elements of H are in R and elements of V are in G.
To every bicoloring of a permutation σ the map Conf associates the total stack configuration
of σ such that elements of G lie in V in decreasing order of value from bottom to top and
elements of R lie in H in increasing order of indices from bottom to top.

Remark 3.3. For any bicoloring b, Col(Conf(b)) = b. For any stack configuration c such
that elements of V are in decreasing order of value from bottom to top and elements of H are
in increasing order of indices from bottom to top, Conf(Col(c)) = c.

Proposition 3.4. Let b be a bicoloring of a permutation σ. Then Algorithm 2 applied to b
returns true if and only if Conf(b) is reachable for σ. In this case the stack configuration to
which Algorithm 2 leads is Conf(b).

To state this proposition we need the two following lemmas:

Lemma 3.5. At each step of Algorithm 2, the stack configuration we have is reachable for
σ, elements of H are in increasing order of indices from bottom to top, elements of V are
in decreasing order of value from bottom to top, there is no element of R in V , there is no
element of R above an element of G in H and elements of G that lie in H are in increasing
order of value from bottom to top.

Moreover index i verifies that if i ≤ |σ| then σi is the next element of the input and if
i > |σ| then there is no more element in the input.

Proof: The proof is by induction on the number of stack operations performed by the algo-
rithm. Algorithm 2 begins with the empty stack configuration and σ as input and i = 1 so
the properties are true at the beginning. Algorithm 2 performs only appropriate stack oper-
ations so at each step the configuration obtained is reachable for σ. Moreover in a reachable
configuration, elements of H are in increasing order of indices. When an element is put in V
(this happens at line 9 or 21) then this element is in G (checked at line 6 or 19) and is smaller
than the top of V (checked at line 8 or 20) so that elements of V remain in decreasing order
of value from bottom to top and V contains no element of R. When we put an element in
H, it can be at line 4 or 14. In the first case, H is empty or its top is in R (checked at line
3) so all its elements are in R by induction hypothesis. In the second case, the top of H is
in G and the element we put in H is in G and greater than the top of H. This ensures that
there is no element of R above an element of G in H and that elements of G that lie in H are
in increasing order from bottom to top (using induction hypothesis). Finally i is increased
exactly when σi is put into H so the last property remains true.

16

Data: σ a permutation and b a bicoloring of σ.
Result: True if the stack configuration corresponding to b is reachable from σ.

1 Begin with the empty stack configuration and σ as input and i = 1;
2 while i ≤ |σ| do
3 if H is empty or top(H) ∈ R then

4 push σi into H;
5 i←− i+ 1;

6 else /* top(H) ∈ G */
7 if σi ∈ R or σi < top(H) then
8 if V is empty or top(H) < top(V) then
9 pop top(H) from stack H and push it into V ;

10 else

11 Return false;
12 end

13 else /* top(H) ∈ G, σi ∈ G and σi > top(H)*/
14 push σi into H;
15 i←− i+ 1;

16 end

17 end

18 end

19 while H is nonempty and top(H) ∈ G do

20 if top(H) < top(V) then
21 pop top(H) from stack H and push it into V ;
22 else

23 Return false;
24 end

25 end

26 Return true;

Algorithm 2: Algorithm to obtain a reachable configuration compatible with a bicol-
oring

17

Lemma 3.6. Algorithm 2 terminates in linear time w.r.t |σ|.

Proof: At each step, Algorithm 2 performs either a legal move ρ, or a legal move λ, or return
false or true (and stops). As at most |σ| legal moves ρ and |σ| legal moves λ can be done,
Algorithm 2 terminates after at most 2|σ| + 1 steps. As each step is done in constant time,
we have the result.

We are now able to prove Proposition 3.4:
Proof: If Algorithm 2 applied to b returns true, then it reaches line 26. In particular the loop
of line 19 stops so the top of H is not in G. Thus by Lemma 3.5 there is no element of G
in H. In addition by the same lemma elements of H are in increasing order of indices from
bottom to top, elements of V are in decreasing order of value from bottom to top and there is
no element of R in V . So the stack configuration we have is Conf(b). Moreover Lemma 3.5
states that the stack configuration we have is reachable for σ, so Conf(b) is reachable for σ.

Conversely if Conf(b) is reachable for σ, then there is a sequence w of appropriate stack
operations so that the configuration obtained with σ as input is Conf(b). Let us prove that
the sequence of moves w′ performed by Algorithm 2 applied to b is w. We prove by induction
on k ≤ |w| (k ≥ 0) that w and w′ have the same prefix of length k (obvious for k = 0).
First notice that as Conf(b) is a total stack configuration, so w has no letter µ, and that
Algorithm 2 performs only moves λ and ρ, so w′ has no letter µ. Suppose that w and w′ have
the same prefix v of length k with k < |w|, let c′ be the stack configuration obtained after
permforming moves of v with σ as input. We want to prove that w′

k+1 exists and w′
k+1 = wk+1.

By definition of w′, w′
k+1 is the move performed by Algorithm 2 in configuration c′ (setting

by extension w′
k+1 = α if Algorithm 2 terminates in configuration c′, i.e. if |w′| = k), and

by defintion of w, wk+1 is a move which allows to go from configuration c′ to configuration
Conf(b) (maybe with some additional moves).

We check the value of i after Algorithm 2 has performed moves v. We know that at this
step stacks are in configuration c′.

If i > |σ|, then from Lemma 3.5 in configuration c′ all elements of σ lie already in the
stacks. As w is a sequence of appropriate stack operations, then wk+1 6= ρ so wk+1 = λ (w
has no letter µ). As wk+1 is a move which allows to go from configuration c′ to configuration
Conf(b) in which there is no elements of R in V and V is decreasing, then the top of H in c′

is in G and smaller than the top of V (or V is empty). As i > |σ| and as the top of H in c′

is in G and smaller than the top of V (or V is empty) then Algorithm 2 performs line 21 so
w′
k+1 = λ = wk+1.
If i ≤ |σ| then we are in the loop beginning at line 2 of the algorithm and from Lemma 3.5

σi is the next element of the input. Suppose that wk+1 = λ. As wk+1 is a legal move which
allows to go from configuration c′ to configuration Conf(b) in which there is no elements of
R in V and V is decreasing, then H is non empty, the top of H is in G and smaller than the
top of V . Suppose in addition that σi ∈ G. As σi is still on the input after wk+1 and wk+1

is a move which allows to go to configuration Conf(b) in which V is decreasing, then σi is
smaller than the top of H in c′. So either σi < top(H) or σi ∈ R. So from c′ Algorithm 2
performs line 9 so w′

k+1 = λ = wk+1.
Suppose that wk+1 = ρ. If in configuration c′ stack H is empty or top(H) ∈ R then

Algorithm 2 performs line 4 so w′
k+1 = ρ = wk+1. Otherwise let σh be the top of H in c′, then

σh ∈ G. So σh ∈ V in Conf(b). But once wk+1 = ρ is performed σi is above σh in H. As
wk+1 is a move which allows to go from configuration c′ to configuration Conf(b) then σi is
below σh in V in Conf(b) (indeed it is impossible that σh goes to stack V and σi remains in

18

stack H). So σi ∈ G and as in Conf(b) elements of V are in decreasing order, σi > σh. So the
test of line 7 of the algorithm is false and Algorithm 2 performs line 14 so w′

k+1 = ρ = wk+1.
This ends the induction. We have proved that w is a prefix of w′, so Algorithm 2 reaches

configuration Conf(b). We have now to prove that Algorithm 2 stops in this configuration
and returns true.

When Conf(b) is reached then there is no element in the input anymore, so from Lemma 3.5
i > |σ|, and top(H) /∈ G in Conf(b). So both loops while of Algorithm 2 are finished and the
algorithm reaches line 27, returns true and terminates in configuration Conf(b).

Lemma 3.7. Let b be a bicoloring of a permutation σ. If Algorithm 2 applied to b returns
false then b has a pattern 1X2 or a pattern 213.

Proof: We consider the stack configuration reached when Algorithm 2 returns false. We
set σh = top(H) and σv = top(V). By Lemma 3.5, σv ∈ G. Algorithm 2 returns false by
reaching either line 11 or line 23. In both cases, σh ∈ G and σh > σv. Now we consider the
step of the algorithm where σv was put in V , the indice i at this step of the algorithm, and
the corresponding configuration c just before the move putting σv into V is done. So at this
step σv is on the top of H, and i > v. If σh is in H in c, then it is below σv, contradicting
Lemma 3.5 (σh > σv and both are in G). As σh is in H when the algorithm ends, it cannot
be in V in c. So σh is still in the input and i ≤ h ≤ |σ|. Recall that we consider the step of
the algorithm where σv is put in V . This can happen at line 9 or 21 but i ≤ |σ| so it is at
line 9. So the test of line 8 is true, thus either σi ∈ R and then σv, σi, σh is a pattern 1X2 of
b, or σi ∈ G but σi < σv and then σv, σi, σh is a pattern 213 of b.

Theorem 3.8. The map Col is a bijection from the set of reachable total stack configuration
of σ avoiding the three unsortable patterns to the set of valid coloring of σ. Moreover the
inverse of Col is the map Conf .

Proof: Let c be a reachable total stack configuration of σ avoiding the three unsortable
patterns and set b = Col(c). We have to prove that b avoids every forbidden colored pattern
of Definition 3.1.

If b has a pattern 132 in R then there are three element σi, σj and σk of R such that
i < j < k and σi < σk < σj . By definition of Col, σi, σj and σk lie in H. As c is reachable
and i < j < k, σi is below σj which is below σk. So we have a stack-pattern | |132| in c which
contradicts our hypothesis. So b has no pattern 132.

If b has a pattern 213 in G then there are three element σi, σj and σk of G such that
i < j < k and σj < σi < σk. By definition of Col, σi, σj and σk lie in V . As c avoids
stack-pattern |12| |, σk is below σi which is below σj . But then c is not reachable: as σk is
below σi and σj in V , σi and σj have to stay in stack H until σk enters stack H. But as i < j,
σi is below σj in stack H and cannot be below σj in stack V as going from stack H to stack
V reverse the order. So b has no pattern 213.

If b has a point of R lying vertically between a pattern 12 of G then there are elements
σi and σj of G and σk of R such that i < k < j and σi < σj. By definition of Col, σi and
σj lie in V and σk lies in H. Configuration c is reachable. We consider a sequence of stack
operations leading to c. As i < k, σi is already in the stacks when σk enters H. As σk remains
in H in c but σi is in V in c, σi has to be already in V when σk enters stack H. As k < j, at
this moment σj is not already in stack V , so σj will be above σi in V and they form a pattern
|12| | in c, which is excluded. So b has no pattern 1X2.

19

If b has a point of G lying horizontally between a pattern 12 of R then in c these points
form a pattern |2|13| which is excluded. So b has no pattern 2/13.

Conversely let b be a valid coloring of σ. By definition Conf(b) is a total stack configura-
tion of σ. We have to prove that Conf(b) is reachable for σ and avoids the three unsortable
stack patterns. As b is a valid coloring, it avoids patterns 1X2 and 213. So from Lemma 3.7,
Algorithm 2 started with input b returns true. Thus from Proposition 3.4, c is reachable for
σ. Moreover by definition of Conf , Conf(b) avoids pattern |12| |. Furthermore we know
that in Conf(b), elements of H are in increasing order of indices from bottom to top. So if
Conf(b) has a pattern | |132|, then b has a pattern 132, and if Conf(b) has a pattern |2|13|
then b has a pattern 2/13. A b is a valid coloring, we conclude that Conf(b) avoids the three
unsortable stack patterns.

Now using Remark 3.3 it’s clear that Conf is the inverse of Col.

Theorem 3.9. A permutation σ is 2-stack pushall sortable if and only if its diagram admits
a valid coloring.

Proof: Consequence of Proposition 2.14 and Theorem 3.8.

Now thank to Theorem 3.9 we have a naive algorithm to check if a permutation σ is
2-stack pushall sortable: forall bicoloring b of σ, we can test if b is valid by checking if b
avoids patterns 213, 1X2, 2/13 and 132 of Definition 3.1. But first notice that we have a
more efficient way to test if a bicoloring is valid:

Proposition 3.10. Let b be a bicoloring of a permutation σ. We can check in linear time
w.r.t. |σ| if b is a valid coloring. More precisely, b is a valid coloring if and only if Algorithm 2
applied to b returns true and Algorithm 1 applied to Conf(b) returns true.

Proof: From Theorem 3.8, b is valid if and only if Conf(b) is reachable for σ and avoids the
three unsortable patterns. We conclude using Lemma 3.6, Proposition 3.4, Theorem 2.10 and
Proposition 2.12.

Now even using this efficient way to test if a bicoloring is valid, the naive algorithm
descrided above is unefficient. Indeed there is 2|σ| bicolorings of σ, leading to a exponential
algorithm. Yet we will find a way to restrict the possible number of colorings to a polynomial
number. The key idea is to look at increasing sequences in the permutation.

3.2 Increasing sequences in a valid coloring

First we reformulate the notion of valid coloring thanks to increasing and decreasing sequences.

Proposition 3.11. Let c be a bicoloring of a permutation σ. Then c is a valid coloring if
and only if c respects the following set of rules denoted R8:

20

∅

(i)
∅

(ii) (iii) (iv)

∅
(v)

∅

(vi) (vii) (viii)

Figure 9: Rewriting rules R8

For example rule (i) means that if two points (i, σi) and (j, σj) are in increasing order
i < j and σi < σj and belong to G then every point (k, σk) of the permutation must respect:

• If i < k < j then σk > σi and (k, σk) belongs to G.

• If k < i and σi < σk < σj then (k, σk) belongs to R.

Proof. We prove that c is not valid if and only if c violates a rule of R8. Suppose that c is not
valid then c has one of the four colored patterns of Definition 3.1. If c has a pattern 132 then
c violate rule (ii) applied to elements 1 and 3 of the pattern 132, as element 2 of the pattern
lies in a zone that should be empty. If c has a pattern 213 then c violate rule (i) applied to
elements 2 and 3 of the pattern 213, as element 1 of the pattern lies in a zone that should be
empty. If c has a pattern 1X2 then c violate rule (i) applied to elements of G of the pattern
1X2. If c has a pattern 2/13 then c violate rule (ii) applied to elements of R of the pattern
2/13. Conversely if c violates a rule of R8 then a comprehensive study shows that c has one
of the four colored patterns of Definition 3.1 and is not valid.

We can use implication rules of R8 to limit the number of bicoloring to test, using the
following idea: knowing the coloring of some points in the permutation (either in R or in G),
the deduction rules given in Figure 9 can be applied until we obtain either a contradiction
or no more rule can be applied. We can try the following algorithm: Set the color of two
increasing points of σ, use implication rules to deduce the color of the other points and test
whether the coloring obtained is right. Unfortunately, implication rules are not sufficient to
ensure that given the color two points, the color of all other points is set. We may have to
choose arbitrary the color of lots of points. To ensure that the number of bicoloring to test
is polynomial, we have to study more precisely properties of increasing sequences in a valid
bicoloring.

Definition 3.12. Let c be a bicoloring of a permutation σ. We call increasing sequence RG
a pair of two points (σi, σj) such that i < j, σi < σj , σi ∈ R and σj ∈ G. We define in the
same way increasing sequences GR, RR or GG.

Rule (iii) of R8 implies that every increasing sequence RG fixes the color of all points to
the left of σi below σj (which are in R) and to the right of σi above σj (which are in G). The
following theorem shows that when σ is ⊖-indecomposable, the color of points to the left of
σi above σj is also fixed.

21

Theorem 3.13. Consider a valid coloring of a ⊖-decomposable permutation σ. If there exist
two points σi < σj, i < j such that σi ∈ R and σj ∈ G, then the color of every point σk with
k < i or σk > σj is determined by iterations of rules C8 knowing only the color of σi and
σj and can be represented as follows, the second diagram being a short representation of this
alternance which will be used in the sequel. Furthermore, any increasing sequence (i, σi), (j, σj)
of points located either to the left of i or to the top of σj is either monochromatic or colored
RG. Moreover, knowing σi and σj , we can decide the color of the points whose indices are
less than i or whose values are greater than σj in linear time.

∅

σi

σj

∅

. . .

σi

σj

Figure 10: Zone ARG

Proof: The proof is by induction on the assigned border between the zone not yet assigned to
a stack and the assigned zone containing σi and σj where points are forced to be in a specific
stack. At first, the assigned border is reduced to the segments (i, 1) − −(i, σj) − −(n, σj) as
well as the assigned zone (where n = |σ|).

More formally we build sequences (σik) and (σjk) such that σikσjk in an increasing sequence
RG and the color of all points lying in the set Ck = {σℓ | ik ≤ ℓ ≤ i and σj ≤ σℓ ≤ σjk} is
determined and respects Figure 10. We set i0 = i and j0 = j. We prove that if (σik 6= 1 or
σjk 6= n) then we can build σik+1

and σjk+1
such that σik+1

< σik or σjk+1
> σjk .

We set Hk = {σℓ | ℓ ≤ ik and σℓ ≤ σjk} and Vk = {σℓ | ℓ ≥ ik and σℓ ≥ σjk} (see
Figure 11). By rule (iii) applied to σik and σjk , Hk ⊂ H and Vk ⊂ V . Then, different
situations may happen depending on whether areas Hk and Vk are empty:

Hk and Vk empty: Then σ is⊖-decomposable which is in contradiction with our hypothesis.

Hk and Vk both non empty: If both of the colored zones Hk or Vk are non empty, we set
ik+1 = min{ℓ | σℓ ∈ Hk} and σjk+1

= maxVk (see Figure 11). Then Ck+1 = Ck ∪Hk ∪ Vk ∪Z
is a partition of Ck+1, where Z = {σℓ | ik+1 ≤ ℓ ≤ ik and σjk ≤ σℓ ≤ σjk+1

} (see Figure 11).
The only points of Ck+1 whose color is not determined yet are those of Z. If Z is not empty
consider a point σℓ of Z. If σℓ ∈ V then rule (i) applied to σℓ and σjk+1

is in contradiction
with the existence of σik . Hence σℓ ∈ H but then rule (ii) applied to σik+1

and σℓ is in
contradiction with the existence of σjk . So Z is empty and the color of all points of Ck+1 is
determined and respects Figure 10.

22

(iii)

Hk

Vk

∅

∅

∅ ∅

Z

∅

∅

∅ ∅

∅

∅

∅

∅ ∅

∅

σik+1

σjk+1

Figure 11: Transitive closure

Only one area in Hk and Vk is empty: The same proof as the preceding case allow us
to define a new point σjk+1

or σik+1
depending on which area is empty and we can extend the

assigned border as shown in next figure.

(iii)

Hk

Vk

∅

∅

∅ ∅

∅

∅

∅ ∅

σjk+1

Transitive closure

Hence, the assigned zone keeps growing until all permutation points are assigned, proving
Theorem 3.13.

We also have a similar result extending rule (iv):

Theorem 3.14. Consider a valid coloring of a ⊖-decomposable permutation σ. If there exist
two points σi < σj , i < j such that σi ∈ G and σj ∈ R, then the color of each point σk with

k > j or σk < σi is determined. Such a zone will be represented as

σj

σi

in the sequel.

Proof: Notice that rules are symetric so that the same proof as for Theorem 3.13 holds.

Knowing Theorem 3.13 and Theorem 3.14, to set the color of as much points as possible,
we better have to choose the lower right increasing sequence RG or the upper left increasing
sequence GR. Let us now define properly these particular ascents.

We consider a valid bicoloring c of a permutation σ. We define ARG as the set of increasing
sequences RG of c.

Lemma 3.15. Suppose ARG 6= ∅. Among increasing sequences RG of c, the pair (σi, σj)
which maximizes i first then minimizes σj (for i fixed) is the same than the pair that minimizes
σj first then maximizes i (for σj fixed).

Proof. Let (σi0 , σj0) be the pair that maximizes i0 first then minimizes σj0 and (σi1 , σj1) be
the pair that minimizes σj1 first then maximizes i1. Then by definition i0 ≥ i1 and σj1 ≤ σj0 .

If j1 < i0 then (σj1 , σj0) is an increasing sequence GG and rule (i) is in contradiction
with σi0 ∈ H as j1 < i0 < j0. If σj1 < σi0 then (σi1 , σi0) is an increasing sequence RR
and rule (ii) is in contradiction with σj1 ∈ V as σi1 < σj1 < σi0 . Hence (σi0 , σj1) is an
increasing sequence RG. Then by definition of j0, σj0 ≤ σj1 and by definition of i1, i1 ≥ i0.
So (σi0 , σj0) = (σi1 , σj1).

23

By the preceding lemma, when ARG 6= ∅ we can define iRG, jRG as the lower right
increasing sequence RG. By symmetry, we can also define iGR, jGR the upper left increasing
sequence GR when ARG 6= ∅, whereAGR is the set similar to ARG but for increasing sequences
GR.

Now we have all the tools to prove that there are only a polynomial number of bicolorings
to test. We juste have to do a case study depending on ARG or AGR are empty.

3.3 Case study

Recall that from Proposition 2.16 if σ is ⊖-decomposable then σ is 2-stack pushall sortable
if and only if each ⊖-indecomposable block of σ is 2-stack pushall sortable. Thus, we can
assume that σ is ⊖-indecomposable.

In this section, we consider a valid coloring c of a ⊖-indecomposable permutation σ. We
prove that knowing if there are ascents RG or GR in c and knowing iRG, jRG, iGR and jGR

(if they exist), we can deduce the color of every point of σ.
We prove this considering 4 cases depending on whether there are ascents RG or GR in c.

3.3.1 There is no bicolored ascents

If ARG and AGR are both empty, then the coloring is monochromatic:

Proposition 3.16. Let σ be a ⊖-indecomposable permutation and c a valid coloring of σ such
that every pattern 12 of σ is monochromatic. Then all points of σ have the same color.

Proof: Let σi and σj be two consecutive left-to-right minima of σ. By definition there are
no point below σi and to the left of σj as shown by the empty sign in the following figure

∅

σi

σj

σk

. As σ is ⊖-indecomposable, there exist a point σk above σj and to the right of σi. As
increasing subsequences are monochromatic, σi and σk have the same color. The same goes
for σj and σk. Thus σi and σj have the same color. So all left-to-right minima of σ have the
same color. By definition of left-to-right minima, for every non-minimal point σl there exists
a left-to-right minima σm such that (σm, σl) is a pattern 12 of σ. Thus σl has the same color
as σm, and all points of σ have the same color.

3.3.2 There is no increasing sequence RG but some increasing sequences GR

We suppose in this section that there exists at least one increasing sequence GR but no
increasing sequence RG. As AGR is non empty, iGR and jGR are defined. We prove that once
iGR and jGR are determined, then it fixes the color of every other point of the permutation.

Proposition 3.17. Let σ be a ⊖-indecomposable permutation and c a valid coloring of σ such
that there is no increasing subsequence RG in c and there is at least an increasing sequence
GR in c. Then c has one of the following shapes (where maybe a = iGR or b = jGR):

∅

∅

jGR

iGR
a

b

x ∅
jGR

iGR
a

b

∅

∅
jGR

iGR
a

b

x

24

Remark 3.18. Here and in all the following, when a zone of a diagram is colored with R
(resp. G), it means than if there are some points lying in this zone, they are in R (resp. G).
And when a zone of a diagram has an empty sign, it means than this zone is empty.

Proof: The color of every point σk such that k > jGR or σk < σiGR
is determined by

Theorem 3.14 (see the first diagram of Figure 12). Note that we denote by ∗ the zone
where the color of the points is unknown. By maximality of σiGR

, any point above σiGR
and

lower left with respect to σjGR
is in R. By minimality of jGR, any point to the left of σjGR

and top right with respect to σiGR
is in G. As no point can be both in R and in G, we know

that the zone between σiGR
and σjGR

is empty, as shown in the second diagram of Figure 12.

jGR

iGR

∗

∅
jGR

iGR

∗

∅∅

∅

jGR

iGR
a

∗
∅

∅∅

∅∅

∅

jGR

iGR
a

b

∗ ∅

∅

∅

jGR

iGR
a

b

∗

1

2

Figure 12: Only bicolored increasing subsequences GR exist

Let a be the leftmost point among points below iGR (notice that a may be equal to iGR).
Applying rule (i) to a and iGR, we obtain the third diagram (note that if a = iGR the column
between iGR and a does not exist). Let b be the topmost point to the right of jGR (b may be
equal to jGR). Applying rule (ii) to jGR and b, we obtain the fourth diagram of Figure 12 (if
b = jGR the column between jGR and b does not exist).

At last, we number two different areas and discuss about the different cases whether these
zones are empty or not. These zones are pictured in the fifth diagram of Figure 12.

Zone 1 is not empty Let x be the leftmost point inside zone 1. Note that x may be above
or below jGR. First diagram of Figure 13 illustrates the position of point x. Applying rule (ii)
to x and b we obtain the second diagram of Figure 13. By hypothesis, there are no increasing
sequence RG, thus there are no points in G in the up-right quadrant of x. This leads to the
third diagram. At last, if the zone ∗ is not empty, then σ is ⊖-decomposable by cutting along
the row of b and the column of x. Thus ∗ is empty and all points have a determined color, as
in the first diagram of Proposition 3.17.

∅

∅

∅∅

∅
jGR

iGR
a

b

x

∗∗ ∅

∅

∅∅

∅
jGR

iGR
a

b

x

∗ ∅

∅

∅∅

∅

∅ ∅

jGR

iGR
a

b

x

∗

∅

∅

jGR

iGR
a

b

x

Figure 13: Zone 1 is not empty

25

Zone 1 is empty Suppose that zone 1 is empty. If zone 2 is also empty then as σ is ⊖-
indecomposable, zone ∗ is also empty and all points have a determined color, as in the second
diagram of Proposition 3.17.

∅

∅∅

∅

jGR

iGR
a

b

∗ 2 ∅

∅∅

∅

∅ ∅

jGR

iGR
a

b

x∗

∗

∅

∅∅

∅

∅ ∅

jGR

iGR
a

b

x

∗

∅

∅∅

∅

∅ ∅

jGR

iGR
a

b

x

∗

∅ ∅

∅
jGR

iGR
a

b

x

Figure 14: Zone 1 is empty

Otherwise, zone 2 is not empty and let x be the topmost point inside zone 2 (x may be
to the left or to the right of iGR). This is depicted in the second diagram of Figure 14. We
apply rule (i) to a and x to obtain the third diagram. As there is no increasing subsequence
RG, there is no point of R in the lower left quadrant of x as depicted in the fourth diagram.
Moreover, σ is ⊖-indecomposable, thus zone ∗ is empty and each point has a determined
color, as in the last diagram of Proposition 3.17.

Definition 3.19. Let σ be a permutation and i and j two indices of σ such that σiσj is
an ascent. Set a = min{k | σk ≤ σi} and b such that σb = max{σk | k ≥ j}. We define
CGR(σ, i, j) as the partial bicoloring of σ having the following shape:

j

i
a

b

Proposition 3.20. Let σ be a ⊖-indecomposable permutation and c a valid coloring of σ such
that there is no increasing subsequence RG in c and there is at least an increasing sequence
GR in c. Then c = CGR(σ, iGR, jGR).

Proof: This is a direct consequence of Proposition 3.17 and Definition 3.19.

3.3.3 All bicolored increasing sequences are labeled RG

We suppose in this section that there exists at least one increasing sequence RG but no
increasing sequence GR. As ARG is non empty, iRG and jRG are defined. We prove that once
iRG and jRG are determined, then it fixes the color of every other point of the permutation.

Proposition 3.21. Let σ be a ⊖-indecomposable permutation and c a valid coloring of σ such
that there is no increasing subsequence GR in c and there is at least an increasing sequence
RG in c. Then c has one of the following shapes (where maybe a = jRG or b = iRG):

26

∅

∅∅

∅

iRG

jRG

∅

∅

∅ ∅

∅

∅

iRG

jRG a

b

x

∅

∅

∅ ∅

∅

∅

∅

∅

∅

iRG

jRG
a

b

x

y

∅

∅∅

∅

∅

∅

iRG

jRG a

b

x
∅

∅

∅ ∅ ∅

∅

∅

∅

∅

iRG

jRG a

b

x

y

Proof: The color of every point σk such that k < iRG or σk > σjRG
is determined by Theo-

rem 3.13 (see the first diagram of Figure 15). We denote by ∗ the zone where the color of the
points is unknown. By maximality of iRG and minimality of σjGR

we know the color of some
other points, and as no point can be both in R and in G, we know that the zone between
σiRG

and σjRG
must be empty, as shown in the second diagram of Figure 15.

iRG

jRG

∗

∅

iRG

jRG

∗

∅ ∅

∅

∅

iRG

jRG a

∗

∅

∅

∅ ∅

∅

∅

∅

∅

iRG

jRG a

b

1

2

∗

Figure 15: All bicolored increasing sequences are labeled RG

Let a be the rightmost point among points above jRG (maybe a = jRG). Rule (i) applied
to points jRG and a gives the third diagram of Figure 15 (note that if a = jRG the column
between jRG and a does not exist). Similarly let b be the lowest point among points to the
left of iRG (b may be equal to iRG). Rule (ii) applied to b and iRG leads to the fourth diagram
of Figure 15. Note also that we numbered two specific zones in this diagram and we study
now the different cases where they are empty or not.

∅ ∅ ∅

∅

∅

∅ ∅

∅

∅

∅

∅

iRG

jRG a

b

x

1

2

∗

∗

∅ ∅ ∅

∅

∅

∅ ∅

∅

∅

∅

∅

iRG

jRG a

b

x

1

∅

3
∗ ∅ ∅ ∅

∅

∅

∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

iRG

jRG
a

b

x

y

1 3
∗ ∗ ∅ ∅

∅

∅

∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

iRG

jRG
a

b

x

y

1 3
∅∅ ∗

Figure 16: Zone 1 is non-empty

Zone 1 is non-empty If zone 1 is non-empty, let x be the lowest point inside this zone (see
Figure 16). As there do not exist an increasing sequence GR, every point to the top-right of
x is in G as shown in the second diagram of Figure 16, where we define a zone 3. If zone 3 is
empty then zone ∗ is empty as σ is ⊖-indecomposable, hence every point has a assigned color
as in the first diagram of Proposition 3.21. If zone 3 is non empty, let y be the rightmost

27

point inside this zone as shown in the third diagram. Applying rule (i) to x and y add another
empty zone, leading to the last diagram. As σ is ⊖-indecomposable, zone ∗ is empty and all
points have an assigned color as in the second diagram of Proposition 3.21.

Zone 1 is empty Suppose that zone 1 is empty. If zone 2 is also empty then as σ is ⊖-
indecomposable, zone ∗ is also empty and all points have a determined color, as in the third
diagram of Proposition 3.21.

If zone 2 is non-empty, let x be the rightmost point of zone 2.

∅

∅

∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

iRG

jRG a

b

x
2

∗ ∗

∅

∅

∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

iRG

jRG a

b

x
2

3 ∗

∅

∅

∅ ∅ ∅ ∅

∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

iRG

jRG a

b

x

y

2

∗

∗

∅

∅

∅ ∅ ∅ ∅

∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

iRG

jRG a

b

x

y

2

∗

∅

Figure 17: Zone 1 is empty

As there are no increasing subsequence GR, all points in the lower left quadrant of x lie
in R as shown in the second diagram of Figure 17 where we define a zone 3. If zone 3 is
empty then as σ is ⊖-indecomposable zone ∗ is also empty and all points have a determined
color, as in the fourth diagram of Proposition 3.21. Otherwise zone 3 is non-empty and let
y the lowest point in zone 3 as depicted in the third diagram. We apply rule (ii) to x and
y leading to the fourth diagram. As σ is ⊖-indecomposable, zone ∗ is empty and all points
have a determined color, as in the last diagram of Proposition 3.21.

Definition 3.22. Let σ be a permutation and i and j two indices of σ such that σiσj is
an ascent. Set a = max{k | σk ≥ σj} and b such that σb = min{σk | k ≤ i}. We define
CRG(σ, i, j) as the partial bicoloring of σ having the following shape:

i

j
a

b

1

2 3

where points of zone 3 are in G if zone 1 is empty and zone 2 is nonempty,
in R if zone 1 is nonempty and zone 2 is empty, and have no color otherwise.

Proposition 3.23. Let σ be a ⊖-indecomposable permutation and c a valid coloring of σ such
that there is no increasing subsequence RG in c and there is at least an increasing sequence
GR in c. Then c = CRG(σ, iRG, jRG).

Proof: This is a direct consequence of Proposition 3.21 and Definition 3.22.

3.3.4 There exist both increasing sequences labeled GR and RG

In this section we study the last case that remains to deal, i.e. there is at least one increasing
sequence colored RG and at least one colored GR. As AGR and ARG are non empty, iGR,

28

jGR, iRG and jRG are defined. We prove that once iGR, jGR, iRG and jRG are determined,
then it fixes the color of every other point of the permutation.

Proposition 3.24. Let σ be a permutation and c a valid coloring of σ such that there exists
at least an increasing sequence colored GR and at least an increasing sequence colored RG.
Then c has one of the following shapes:

∅

∅

∅

iRG

jRG

iGR

jGR

∅ ∅

∅

∅

iRG

jRG

iGR

jGR

∅

∅

∅

∅

iRG

jRG

iGR

jGR

∅

∅ ∅

∅

∅

∅

∅ ∅

∅ ∅
iRG

jRG

iGR

jGR

x

∅

∅ ∅

∅

∅

∅

∅ ∅

∅

∅

iRG

jRG

iGR

jGR

y

Proof: By maximality of iGR and minimality of σjGR
we have:

∅

jRG

iRG

By Theorem 3.13 we obtain:

∅

iRG

jRG

1

2 3

Recall that there exist an increasing sequence GR. iGR lies in quadrant 2 or 3 and jGR

in quadrant 1 or 3. Hence the coloring c as either one of the 4 following shapes:

∅

iRG

jRG

iGR

jGR ∅

iRG

jRG

iGR

jGR

∅

iRG

jRG

iGR

jGR

∅

iRG

jRG

iGR

jGR

Applying Theorem 3.14 to iGR and jGR we obtain these new diagrams:

∅

∅

∅

iRG

jRG

iGR

jGR ∅

∅

∅

iRG

jRG

iGR

jGR

∅

∅

∅

iRG

jRG

iGR

jGR

∅

∅

∅

iRG

jRG

iGR

jGR

Finally, using maximality of σiGR
and minimality of jGR, we obtain:

∅

∅

∅

iRG

jRG

iGR

jGR

∅ ∅

∅

∅

iRG

jRG

iGR

jGR

∅

∅

∅

∅

iRG

jRG

iGR

jGR

∅

∅ ∅

∅

∅

∅

iRG

jRG

iGR

jGR

In the first 3 diagrams, the color of each point is determined – recall that upper-left and

29

lower-right points are determined by Theorems 3.13 and 3.14 – and only depend on iRG, jRG,
iGR and jGR.

This leaves us with the last diagram of Figure 18 for which we have again to consider
several cases. Note that in this diagram we named several zones whose emptiness is relevant
and we denote once more the unknown zone by ∗.

∅

∅ ∅

∅

∅

∅

iRG

jRG

iGR

jGR

A

B

C

D

∗

∅

∅ ∅

∅

∅

∅

iRG

jRG

iGR

jGR

A

B

∅

∅

∗

∅

∅ ∅

∅

∅

∅

∅ ∅

∅ ∅
iRG

jRG

iGR

jGR

x

∅

∅ ∅

∅

∅

∅

∅ ∅

∅

∅

iRG

jRG

iGR

jGR

y

Figure 18: There exist increasing sequences labeled RG and GR

Applying rule (vii) to iRG and jGR implies that zone C is empty. Similary rule (viii)
applied to jGR and iGR proves that zone D is empty. If there exists a point x in zone A, then
applying rule (ii) to jGR and x, all points in ∗ are determined – they lie in R– as shown in
the third diagram. Symetrically, if there exists a point y in B then applying rule (i) to y and
iGR, all points in ∗ should be in G– see diagram 4 –.

Thus this leaves us with the case where both A and B are empty. We show that this case
is not possible.

∅

∅ ∅

∅

∅

∅

iRG

jRG

iGR

jGR

∅

∅

∅

∅

∗

∅

∅ ∅

∅

∅

∅

iRG
a

jRG

iGR

jGR

∅

∅

∅

∅

∗

∅ ∅ ∅ ∅

∅

∅

∅ ∅

∅

∅

∅

iRG
a

jRG b

iGR

jGR

∅

∅

∅

∅

∗

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅

∅

∅

∅

iRG
a

jRG b

iGR
d

jGR

c

∅

∅ ∅

∅

∅

∗

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

1

2

3

4

Figure 19: A and B are empty

A and B are empty Then the permutation is colored as shown in the first diagram of
Figure 19. Let a be the lowest point among points to the left of iRG (a may be equal to iRG).
Rule (ii) applied to a and iRG implies the coloring shown in the second diagram – notice that
if a = iRG, the line between a and iGR does not exist –. Similarly, define b as the rightmost
point among points above jGR (b may be equal to jGR). Rule (i) applied to b and jRG leads
to the third diagram. At last we consider the topmost point c among points to the right of
jGR (maybe c = jGR) and we apply rule (ii) to c and jGR. We also introduce d as the leftmost
point among points below iGR (maybe d = iGR). Rule (i) applied to d and iGR leads to the

30

last diagram where different zones are numbered. We now study different cases according
whether zone 1 is empty or not, and we prove that both are excluded.

Zone 1 is empty Suppose that zone 1 is empty. As σ is ⊖-indecomposable then zone 2
must contain at least one point. Denote by x the rightmost point of this zone. Figure 20
illustrates the proof.

∅

∅

∅ ∅

∅

∅

∅

iRG
a

jRG b

iGR
d

jGR

c

x
∅

∅ ∅

∅

∅

∗

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∗

∅

∅

∅2

3

4
∅

∅

∅ ∅

∅

∅

∅

iRG
a

jRG b

iGR
d

jGR

c

x
∅

∅ ∅

∅

∅

∗

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∗

∅

∅

∅

∅

∅

2

3

4
∅

∅

∅ ∅

∅

∅

∅

iRG
a

jRG b

iGR
d

jGR

c

x
∅

∅ ∅

∅

∅

A

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∗

∅

∅

∅

∅

∅

2

3

4

Figure 20: Increasing sequences RG and GR exist and 1 is empty.

Rule (vii) applied to x and c leads to the second diagram. Moreover as (iGR, jGR) is the
topmost and leftmost increasing sequence GR, all points to the lower left quadrant of x lie in
R, leading to the third diagram where we define a zone A.

Zone 4 is not empty We prove that this case is not possible. If zone 4 is not empty, let y
be its leftmost point (above or below jGR) as illustrated in the first diagram of Figure 21.

∅

∅

∅ ∅

∅

∅

∅

iRG
a

jRG b

iGR
d

jGR

c

x

y

∅

∅ ∅

∅

∅

A

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∗ ∗

∅

∅

∅

∅

∅

2

3

4
∅

∅

∅ ∅

∅

∅

∅

iRG
a

jRG b

iGR
d

jGR

c

x

y

∅

∅ ∅

∅

∅

A

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∗

∅

∅

∅

∅

∅

2

3

4

Figure 21: Zone 1 is empty and zone 4 is not empty

We apply rule (ii) to y and c and obtain the second diagram. But (iRG, jRG) is lowest-
right increasing sequence RG, hence there is no point labeled G in the above-right quadrant
of y. Hence zone 3 is empty which is forbidden as σ is ⊖-indecomposable.

Zone 4 is empty We prove that this case is also not possible. Suppose that zone 4 is empty
as illustrated in the first diagram of Figure 22.

31

∅

∅

∅ ∅

∅

∅

∅

iRG
a

jRG b

iGR
d

jGR

c

x
∅

∅ ∅

∅

∅

A

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∗

∅

∅

∅

∅

∅

∅

∅

2

3

∅

∅

∅ ∅

∅

∅

∅

iRG
a

jRG b

iGR
d

jGR

c

x

z

∅

∅ ∅

∅

∅

A

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∗

∅

∅

∅

∅

∅

∅

∅

2

3

∅

∅

∅ ∅

∅

∅

∅

iRG
a

jRG b

iGR
d

jGR

c

x

z

∅

∅ ∅

∅ ∅

∅

∅

A

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∗

∅

∅

∅

∅

∅

∅

∅

2

3

Figure 22: Zone 1 is empty and zone 4 is empty.

As σ is ⊖-indecomposable, zone 3 is non-empty. Let z be the topmost point of zone 3
(it may be to the left or to the right of iGR). Applying rule (i) to z and d we obtain the
second diagram. But (iRG, jRG) is the lowest right increasing sequence labeled RG, hence
there are no point labeled R in the below-left quadrant of z – see diagram 3 –. But then σ is
⊖-decomposable which is forbidden.

Zone 1 is not empty Suppose that zone 1 of Figure 19 is non empty. Define x as the
lowest point of this zone as shown in the first diagram of Figure 23.

∅

∅ ∅

∅

∅

∅

iRG
a

jRG b

iGR
d

jGR

c

x

∅

∅ ∅

∅

∅

∗

∗

∅

∅ ∅ ∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

1

2

3

4
∅

∅ ∅

∅

∅

∅

iRG
a

jRG b

iGR
d

jGR

c

x

∅

∅ ∅

∅

∅

∗

∗

∅

∅ ∅ ∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅∅

∅

∅

∅

∅

∅

1

2

3

4
∅

∅ ∅

∅

∅

∅

iRG
a

jRG b

iGR
d

jGR

c

x

∅

∅ ∅

∅

∅

∗
A

∅

∅ ∅ ∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅∅

∅

∅

∅

∅

∅

1

3

4

Figure 23: Zone 1 is not empty.

Rule (viii) applied to x and d implies the second diagram. Moreover, as (iGR, jGR) is the
leftmost-top increasing sequence labeled GR, all points to the top right of x are in G, leading
to the last diagram.

Zone 3 is not empty If zone 3 is not empty, let y be its topmost point (y may be to the
left or to the right of iGR) as pictured in Figure 24.

32

∅

∅ ∅

∅

∅

∅

iRG
a

jRG b

iGR
d

jGR

c

x

y

∅

∅ ∅

∅

∅

∗

∗
A

∅

∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅∅

∅

∅

∅

∅

∅

1

3

4
∅

∅ ∅

∅

∅

∅

iRG
a

jRG b

iGR
d

jGR

c

x

y

∅

∅ ∅

∅

∅

∗
A

∅

∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅∅

∅

∅

∅

∅

∅

1

3

4

Figure 24: Zone 1 is not empty and zone 3 is not empty.

Rule (i) applied to d and y gives the second diagram. But (iRG, jRG) is the bottom-
rightmost increasing sequence RG, hence no point in the lower left quadrant of y lies in R.
Hence zone 4 is empty and σ is ⊖-decomposable which is forbidden.

∅

∅ ∅

∅

∅

∅

iRG
a

jRGb

iGRd

jGR

c

x

∅

∅ ∅

∅

∅

∗
A

∅

∅ ∅ ∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅∅

∅

∅

∅

∅

∅

∅

1

4
∅

∅ ∅

∅

∅

∅

iRG
a

jRGb

iGRd

jGR

c

x

y

∅

∅ ∅

∅

∅

∗
A

∅

∅ ∅ ∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∗

∅

∅

∅

1

4
∅

∅ ∅

∅

∅

∅

iRG
a

jRGb

iGRd

jGR

c

x

y

∅

∅ ∅

∅

∅

∗
A

∅

∅ ∅ ∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

1

4
∅

∅ ∅

∅

∅

∅

iRG
a

jRGb

iGRd

jGR

c

x

y

∅

∅ ∅

∅

∅

∗
A

∅

∅ ∅ ∅

∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅

∅∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

1

4

Figure 25: Zone 1 is not empty and zone 3 is empty

Zone 3 is empty Figure 25 illustrates the proof. As σ is ⊖-indecomposable, zone 4 is not
empty. Let y be the leftmost point inside zone 4 – either above or under jGR – as depicted in
the second diagram. Rule (ii) applied to y and c leads to the third diagram. But (iRG, jRG)
is the bottom-rightmost increasing sequence RG, hence no point of G lies in the top-right
quadrant of y leading to the fourth diagram. So σ is ⊖-decomposable which is forbidden.

This ends the cases study, proving that zone A and B cannot be both empty.

Definition 3.25. Let σ be a permutation and i, j, k, ℓ four indices of σ such that σiσj and
σkσℓ are ascents. We define the partial bicoloring C∗(σ, i, j, k, ℓ) of σ as follows.

33

i

j

k

ℓ

i

j

k

ℓ
i

j

k

ℓ

i

j

k

ℓ

A

B

1

If σi, σℓ, σk and σj have a relative position corresponding to one of the above diagrams, then
we define C∗(σ, i, j, k, ℓ) as the partial bicoloring of σ having the corresponding shape, where
in the first diagram points of zone 1 are in R if zone A is nonempty, in G if zones B is
nonempty, and have no color otherwise.

Otherwise C∗(σ, i, j, k, ℓ) is the partial coloring with no point colored.

Proposition 3.26. Let σ be a ⊖-indecomposable permutation and c a valid coloring of σ
such that there exist increasing sequences RG and increasing sequences GR in c. Then c =
C∗(σ, iRG, jRG, iGR, jGR).

Proof: This is a consequence of Proposition 3.24 and Definition 3.25, noticing that if there
exists a point x in zone A, then applying rule (ii) to ℓ and x, all points in zone 1 belong to R,
and if there exists a point y in zone B, then applying rule (i) to y and k, all points in zone 1
belong to G.

3.4 A first polynomial algorithm

Data: σ a ⊖-indecomposable permutation (whose size is denoted n).
Result: The set E of valid colorings of σ
for c bicoloring of σ being one of

c is unicolor R
c is unicolor G
c = CGR(σ, i, j) or CRG(σ, i, j) for i ∈ [1..n] and j ∈ [i..n] s.t. σj > σi
c = C∗(σ, i, j, k, ℓ) for i ∈ [1..n] and j ∈ [i..n] s.t. σj > σi and

for k ∈ [1..n] and ℓ ∈ [k..n] s.t. σℓ > σk
do

If all points of σ are colored and c is valid then add c to E;
end

Algorithm 3: ColoringIndecomposable1(σ)

Proposition 3.27. Algorithm 3 compute in time O(n5) the set of valid colorings of any
⊖-indecomposable permutation σ.

Proof: Let σ be a ⊖-indecomposable permutation of size n and c a valid coloring of σ. Then
from Propositions 3.16, 3.20, 3.23 and 3.26, c is either monochromatic, or CGR(σ, i, j) or
CRG(σ, i, j) for some i ∈ [1..n] and some j ∈ [i..n] such that σj > σi, or c = C∗(σ, i, j, k, ℓ) for
some i ∈ [1..n], some j ∈ [i..n] such that σj > σi, some k ∈ [1..n] and some ℓ ∈ [k..n] such
that σℓ > σk. Thus c is computed by Algorithm 3 and added to E as it is valid. Conversely,
each coloring added to E is a valid bicoloring of σ.

Now consider the complexity of Algorithm 3. There are O(n4) colorings computed. Indeed
there are two monochromatic colorings, O(n2) colorings CGR(σ, i, j) or CRG(σ, i, j) and O(n

4)

34

colorings C∗(σ, i, j, k, ℓ). Moreover the coloring is computed in linear time and checking if the
coloring is valid is done in linear time using Proposition 3.10. Hence Algorithm 3 runs in time
O(n5).

4 An optimal algorithm

4.1 Rooting colorings

In this section we show how each diagram of Propositions 3.17, 3.21 and 3.24 can be rooted
in a given point such that each point iGR, iRG, jGR and jRG can be deduced from this one.
Moreover, given a diagram we show how we can assign colors to points of the permutations
lying in a colored zone of the diagram in linear time.

Definition 4.1. Let σ be a permutation and s ∈ [1..|σ|]. We set

C1(σ, s) = CGR(σ, s, t) where t = min{k | k > s and σk > σs}
C2(σ, s) = CGR(σ, t, s) where t is such that σt = max{σk | k < s and σk < σs}
C3(σ, s) = CRG(σ, s, t) where t is such that σt = min{σk | k > s and σk > σs}
C4(σ, s) = CRG(σ, t, s) where t = max{k | k < s and σk < σs}

C5(σ, s) = C∗(σ, p, q, t, s) with
t = max{k | k < u and σk < σs}
with u = max{k | k < s and σk > σs},
p = max{k | k < t and σt < σk < σs} and
q such that σq = min{σk | t < k ≤ u}

∅ ∅

∅ ∅

∅

p

q u

t

s

C6(σ, s) = C∗(σ, p, q, s, t) with
t = min{k | k > s and σk > σs},
u = max{k | k < t and σk > σt},
p = max{k | k < u and σs < σk < σt} and
q such that σq = min{σk | σk > σt and p < k ≤ u}

∅

∅

∅

∅ ∅

p

q

s

t

u

C7(σ, s) = C∗(σ, q, p, t, s) with
t such that σt = max{σk | k < s and σk < σs},
u such that σu = min{σk | k < t and σk > σt},
p such that σp = min{σk | σk > σu and t < k < s} and
q = max{k | k < p and σu ≤ σk < σp}

u

∅

∅

∅ ∅

∅

q

p

t

s

C8(σ, s) = C∗(σ, p, q, s, t) with
t = min{k | k > s and σk > σs},
u such that σu = max{σk | σk > σt and k > t},
v = max{k | k < u and σk > σu},
p = max{k | k < v and σt < σk < σu} and
q such that σq = min{σk | σk > σu and p < k ≤ v}

∅

∅
∅

∅

∅

∅ ∅

p

q

u

s

t

v

35

C9(σ, s) = C∗(σ, q, p, t, s) with
t such that σt = max{σk | k < s and σk < σs},
u = min{k | k < t and σk < σt},
v such that σv = min{σk | k < u and σk > σu},
p such that σp = min{σk | σk > σv and u < k < t} and
q = max{k | k < p and σv ≤ σk < σp} u∅

∅

∅

∅ ∅

∅ ∅

q

p

t

s

v

Proposition 4.2. Let σ be a ⊖-indecomposable permutation and c a valid coloring of σ which
is not monochromatic. Then there exists s ∈ [1..|σ|] and m ∈ [1..9] such that c = Cm(σ, s).

Proof: As c is not monochromatic, then from Proposition 3.16 σ has at least a pattern 12
which is not monochromatic.

If there is no increasing subsequence RG in c then there is at least an increasing sequence
GR in c. Thus from Propostion 3.20, c = CGR(σ, iGR, jGR). Moreover, c has one of the u
shapes described in Proposition 3.17. If the shape of c is one of the two first shapes, then jGR

is the leftmost point in the upper-right quadrant of iGR and c = C1(σ, iGR). Otherwise the
shape of c is the third one and iGR is the topmost point in the bottom-left quadrant of jGR

thus c = C2(σ, jGR).
If there is an increasing subsequence RG in c but no increasing sequence GR, then from

Proposition 3.23 c = CRG(σ, iRG, jRG). Moreover c has one of the 5 shapes described in
Proposition 3.21. If the shape of c is one of the three first shapes, then jGR is the lowest
point in the upper-right quadrant of iGR and c = C3(σ, iGR). Otherwise the shape of c is one
of the two last shapes and iGR is the rightmost point in the bottom-left quadrant of jGR thus
c = C4(σ, jGR).

If there is an increasing subsequence RG and an increasing sequence GR in c, then from
Proposition 3.26 c = C∗(σ, iRG, jRG, iGR, jGR). Moreover c has one of the 5 shapes described
in Proposition 3.24.

If the shape of c is the first one, let u be the rightmost point in the top left quadrant of
jGR (maybe u = jRG). Then applying rule (ii) to iGR and u, c has the following shape:

∅

∅ ∅

∅∅

iRG

jRG
u

iGR

jGR

Thus iGR is the rightmost point on the left of u below jGR. Moreover
iRG is the rightmost point on the topleft quadrant of iGR below jGR.
Finally jRG is the lowest point on the right of iGR and on the left of
u. Hence c = C5(σ, jGR).

If the shape of c is the second one of Proposition 3.24, let u be the rightmost point in the
top right quadrant of jRG (maybe u = jRG). From rule (viii) applied to jRG and iGR, u < iGR.
Then applying rule (ii) to iRG and jGR and applying rule (i) to jRG and u if u 6= jRG, c has
the following shape:

∅ ∅

∅

∅

iRG

jRG

iGR

jGR

u Thus jGR is the leftmost point in the upper right quadrant of iGR and
u is the rightmost point in the upper left quadrant of jGR. Moreover
iRG is the rightmost point to the left of u, below jGR and above iGR.
Finally, jRG is the lowest point in the upper left quadrant of jGR and
to the right of iRG. Hence c = C6(σ, iGR).

If the shape of c is the third one of Proposition 3.24, let u be the lowest point in the lower
left quadrant of iRG (maybe u = iRG). From rule (vii) applied to iRG and jGR, σu > σjGR

.

36

Then applying rule (i) to iGR and jRG and applying rule (ii) to u and iRG if u 6= iRG, c has
the following shape:

u

∅

∅

∅

∅

iRG

jRG

iGR

jGR

Thus iGR is the topmost point in the lower left quadrant of jGR and u is
the lowest point in the upper left quadrant of iGR. Moreover jRG is the
lowest point above u, to the right of iGR and to the left of jGR. Finally,
iRG is the rightmost point to the lower left of jRG and above u. Hence
c = C7(σ, jGR)

If the shape of c is the fourth one of Proposition 3.24, let u be the topmost point to
the upright quadrant of jGR and v be the rightmost point to the top-right quadrant of jRG

(maybe v = jRG). Note that u is above iRG as u is above x (u is the topmost point) which
is above iRG. Then applying rule (ii) to iRG and u and applying rule (iii) to jRG and v if
v 6= jRG, c has the following shape:

∅

∅ ∅∅

∅

∅

∅ ∅

∅
∅

∅

∅

∅

∅
iRG

jRG

u

iGR

jGR

v

Thus jGR is the leftmost point in the up right quadrant of iGR. Point
u is the topmost point in the upper right quadrant of jGR. Point v is
the rightmost point in the upper left quadrant of u. Then iRG is the
rightmost point to the left of v, below u and above iGR. At last, jRG

is the lowest point above u, to the right of iRG and to the left of v.
Hence c = C8(σ, iGR)

If the shape of c is the last one of Proposition 3.24, let u be the leftmost point in the
lower left quadrant of iGR and v be the lowest point in the lower left quadrant of iRG (maybe
v = iRG). Note that u is to the left of jRG as it is to the left of y (u is the leftmost point)
and y is to the left of jRG. Then applying rule (i) to u and jRG and applying rule (ii) to v
and iRG if v 6= iRG, c has the following shape:

∅

∅

∅ ∅

u

v

∅

∅

∅

∅

∅

iRG

jRG

iGR

jGR

Thus iGR is the topmost point in the lower left quadrant of jGR and u
is the leftmost point in the lower left quadrant of iGR. Moreover v is
the lowest point in the upper left quadrant of u and jRG is the lowest
point above v and to the right of u and to the left of iGR. Finally, iRG

is the rightmost point in the lower left quadrant of jRG and above v.
Hence c = C9(σ, jGR)

Proposition 4.3. Let σ be a permutation, s ∈ [1..|σ|] and m ∈ [1..9]. Then we can compute
Cm(σ, s), test whether all points of σ are colored and check whether Cm(σ, s) is valid in linear
time w.r.t. |σ|.

Proof: Theorems 3.13 and 3.14 and 3.10

37

4.2 Algorithm and linear number of sortings for ⊖-indecomposable permu-

tations

Data: σ a ⊖-indecomposable permutation
Result: The set E of valid colorings of σ
for c bicoloring of σ unicolor R or unicolor G do

If c is valid then add c to E;
end

for s from 1 to |σ| do
for m from 1 to 9 do

c = Cm(σ, s);
If all points of σ are colored and c is valid then add c to E;

end

end

Algorithm 4: ColoringIndecOptimal(σ)

Given any point s in the permutation the Algorithm decides if the permutation can be
colored in each possible case depicted in Propositions 3.17,3.21 and 3.24. Note that diagrams
of Propositions 3.17,3.21 and 3.24 depend on v points iGR, iRG, jGR, jRG. Indeed, we prove
in section 4.1 that any diagram can be rooted in one point – say iRG for example – and from
this points, we can find in linear time any other points – iGR, jGR, jRG for instance –. Then,
we color the permutations with respect to the different zones defined in the diagram. In this
process, some points may be uncolored, meaning that they lie in empty zone of the diagram
hence have to be rejected. At last, we have a coloring according to diagram and we have to
check that this coloring is valid.

Theorem 4.4. A ⊖-indecomposable permutation of size n has at most 9n+2 valid colorings.
Those colorings can be computed using Algorithm 4 in time O(n2) which is optimal.

Proof: This is a direct consequence of Propositions 4.2 and 4.3, except for the optimality.
Proposition 4.5 below implies that the size of the set of valid colorings of the identity of size
n is 2n2, proving the optimality.

Proposition 4.5. For all n the identity of size n has exactly 2n valid colorings.

Proof: Let σ be the identity of size n. For all k between 1 and n let Ck
RG (resp. Ck

GR) be the
coloring of σ such that for all i, σ is in R (resp. G) if i ≤ k and in G (resp. R) otherwise.
Then it is straightforward to check using Proposition 3.11 that Ck

RG (resp. Ck
GR) is a valid

coloring of σ. Conversely if c is a valid coloring of the identity, rules (iii) and (iv) of R8

imply that there are at most one pair of consecutive points whoses colors are different. So c
is some Ck

RG or some Ck
GR.

The property of having a linear number of sortings is not a special case of the identity.
Indeed there are some simple permutations that also have a linear number of sortings, as
shown in the next proposition.

Proposition 4.6. Permutations σ(n) = (2n − 1)(2n − 3)(2n)(2n − 5)(2n − 2)(2n − 7)(2n −
4) . . . 5 8 3 6 1 4 2 of size 2n have at least 2n− 3 valid colorings.

Proof. To prove the result, we exhibit 2n − 3 colorings. We look at set of four points of σ
whose indices (resp. values) are consecutive and which form a pattern 2 4 1 3 (resp. 3 1 4 2).

38

Notice that they can be taken to be {iRG, iGR, jRG, jGR} in a valid coloring of σ respecting
to the last (resp. third) diagram of Proposition 3.24, as shown in the figure below. This way
we obtain 2n− 3 valid colorings of σ.

4.3 Final algorithm

Recall first that if a permutation is ⊖-decomposable, then it is 2-stack pushall sortable if and
only if each of the block of its decomposition is 2-stack pushall sortable and that we can just
push elements of the first block according to any sorting procedure of it, then elements of the
second and so on, before popping out all the elements. This means that the different colorings
for a ⊖-decomposable permutation is the product of all colorings for each block.

Proposition 4.7. Let σ be a permutation and Col(σ) the set of valid colorings of σ. If
σ = ⊖[π1, . . . , πk] then the map c→ (c|π1, . . . , c|πk) is a bijection from Col(σ) into Col(π1)×
· · · × Col(πk).

Proof: Let c be a valid coloring of σ, then c avoids patterns 132, 213, 2/13 and 1X2. Thus for
all i, c|πi avoids patterns 132, 213, 2/13 and 1X2 hence is a valid coloring of πi. Conversely
let ci ∈ Col(πi) for all i. Then coloring points of σ according to (c1, . . . ck) (i.e. according to
c1 for the |π1| first points of σ, according to c2 for the |π2| following points and so on) leads
to a coloring c of σ which is valid. Indeed assume that c is not valid. Then c has a pattern
132, 213, 2/13 or 1X2. Let p be such a pattern. Then p is not inside a block πi as ci is a valid
coloring for all i. If all points of p are in different blocks πi then p is 321 which is excluded.
Thus there are one point of p in a block πi and two points of p in a block πj. If i < j then
p begins with its greatest point, which is excluded as p is 132, 213, 2/13 or 1X2. If i > j
then p ends with its smallest point, which is excluded as p is 132, 213, 2/13 or 1X2. As a
consequence such a pattern p does not exists and c ∈ Col(σ), concluding the proof.

Data: σ a permutation
Result: A linear description of the set Col(σ) of valid colorings of σ
Compute the ⊖-decomposition of σ: σ = ⊖[π1, . . . , πk] with πi ⊖-indecomposable;
for i from 1 to k do

Compute Col(πi) thanks to Algorithm 4;
end

Return (Col(π1), . . . , Col(πk));

Algorithm 5: Colorings(σ)

Proposition 4.8. Let σ be a permutation of size n. Then Algorithm 5 gives a linear descrip-
tion of Col(σ) in time O(n2).

Proof. The algorithm computes the ⊖-decomposition of σ: σ = ⊖[π1, . . . , πk] with πi ⊖-
indecomposable. This is done in linear time. If k = 1 then σ is ⊖-indecomposable and
Col(σ) = Col(π1). We concludes thanks to Theorem 4.4. If k > 1 then from Proposition 4.7,

39

Col(σ) ≈ Col(π1) × · · · × Col(πk). For all i, Col(πi) has a size is smaller than 9|π1| and is
computed in O(|π|2). We concludes the proof noticing that 9|π1| + · · · + 9|πk| = 9|σ| and
|π1|

2 + · · · + |πk|
2 ≤ |σ|2.

Theorem 4.9. Using Algorithm 5, we can decide in time O(n2) whether a permutation σ of
size n is 2-stack pushall sortable.

Proof. By Theorem 3.9, a permutation σ is 2-stack pushall sortable if and only if it admits a
valid coloring. Thus all we need is to test whether each set Col(πi) returned by Algorithm 5
is non-empty with σ = ⊖[π1, . . . , πk] being the ⊖-decomposition of σ, and we conclude using
Proposition 4.8.

5 Conclusion

This article defines a new restriction of 2-stacks sorting, namely 2-stacks pushall sorting. We
characterize every possible pushall sorting of a permutation by means of a bi-coloring of the
permutation. Then we give an O(n2) algorithm which computes a linear representation of
all pushall sortings of a given permutation, which thus decides if a permutation is 2-stack
pushall sortable. We proove that this complexity is optimal.

More studies remain to be done on 2-stacks pushall sorting. First, a simpler mathematical
characterization of 2-stack pushall sortable permutations would be interesting. Then, we could
study more in depth the number of pushall sortings of a given permutation. More generally
it would be nice to compute the generating function of 2-stack pushall sortable permutations,
or at least asymptotic bounds on this function. But most importantly, this result is a step to
the solve the general 2-stack sorting, which we do in a forthcoming article.

References

[1] Michael Albert, Mike Atkinson, and Steve Linton. Permutations generated by stacks and
deques. Annals of Combinatorics, 14:3–16, 2010.

[2] Michael H. Albert and Mike D. Atkinson. Simple permutations and pattern restricted
permutations. Discrete Mathematics, 300(1-3):1–15, 2005.

[3] Michael H. Albert and Mireille Bousquet-Melou. Permutations sortable by two stacks in
parallel. In preparation.

[4] M. D. Atkinson, M. M. Murphy, and N. Ruskuc. Sorting with two ordered stacks in
series. Theor. Comput. Sci., 289:205–223, October 2002.

[5] Miklós Bóna. A survey of stack-sorting disciplines. Electr. J. Comb., on(2), 2002.

[6] Mireille Bousquet-Mélou. Sorted and/or sortable permutations. Discrete Mathematics,
225(1-3):25–50, 2000.

[7] S. Even and A. Itai. Queues, stacks, and graphs. In Theory of Machines and Computa-
tions, pages 71–86. Academic Press, 1971.

[8] Donald E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algo-
rithms. Addison-Wesley, 1968.

40

[9] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Search-
ing. Addison-Wesley, 1973.

[10] Maximillian M. Murphy. Restricted permutations, anti chains, atomic classes and stack
sorting. Phd thesis, University of St Andrews, 2002.

[11] Vaughan R. Pratt. Computing permutations with double-ended queues, parallel stacks
and parallel queues. In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W.
Floyd, Michael A. Harrison, Richard M. Karp, and H. Raymond Strong, editors, STOC,
pages 268–277. ACM, 1973.

[12] Robert Endre Tarjan. Sorting using networks of queues and stacks. J. ACM, 19(2):341–
346, 1972.

[13] Walter Unger. The complexity of colouring circle graphs (extended abstract). In Alain
Finkel and Matthias Jantzen, editors, STACS, volume 577 of Lecture Notes in Computer
Science, pages 389–400. Springer, 1992.

[14] Julian West. Permutations with forbidden subsequences and Stack sortable permutations.
Phd thesis, Massachusetts Institute of Technology, 1990.

[15] Julian West. Sorting twice through a stack. Theor. Comput. Sci., 117(1&2):303–313,
1993.

[16] Doron Zeilberger. A proof of julian west’s conjecture that the number of two-stacksortable
permutations of length n is 2(3n)!/((n + 1)!(2n + 1)!). Discrete Mathematics, 102(1):85–
93, 1992.

[17] Henning Úlfarsson. Describing west-3-stack-sortable permutations with permutation pat-
terns, 2011.

41

	Introduction
	2-stack sorting vs 2-stack pushall sorting
	Stack configurations
	Decomposition and stack sorting
	Basis of stack sorting class

	Sorting and bi-coloring
	A simple characterization
	Increasing sequences in a valid coloring
	Case study
	There is no bicolored ascents
	There is no increasing sequence RG but some increasing sequences GR
	All bicolored increasing sequences are labeled RG
	There exist both increasing sequences labeled GR and RG

	A first polynomial algorithm

	An optimal algorithm
	Rooting colorings
	Algorithm and linear number of sortings for -indecomposable permutations
	Final algorithm

	Conclusion

