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spreading-multiplexing (SFSM) MIMO
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Abstract

This paper presents a unified tensor model for space–frequency spreading-multiplexing (SFSM) multiple-input
multiple-output (MIMO) wireless communication systems that combine space- and frequency-domain spreadings,
followed by a space–frequency multiplexing. Spreading across space (transmit antennas) and frequency (subcarriers)
adds resilience against deep channel fades and provides space and frequency diversities, while orthogonal
space–frequency multiplexing enables multi-stream transmission. We adopt a tensor-based formulation for the
proposed SFSM MIMO system that incorporates space, frequency, time, and code dimensions by means of the parallel
factor model. The developed SFSM tensor model unifies the tensorial formulation of some existing multiple-
access/multicarrier MIMO signaling schemes as special cases, while revealing interesting tradeoffs due to combined
space, frequency, and time diversities which are of practical relevance for joint symbol-channel-code estimation. The
performance of the proposed SFSM MIMO system using either a zero forcing receiver or a semi-blind tensor-based
receiver is illustrated by means of computer simulation results under realistic channel and system parameters.

Keywords: Blind receiver, MIMO–OFDM communications, Parallel factor analysis, Space–frequency
spreading-multiplexing, Tensor modeling

1 Introduction
Wireless communication systems employing multiple
antennas at both ends of the link, commonly known
as multiple-input multiple-output (MIMO) systems, are
being considered as one of the key technologies to
be deployed in current and upcoming wireless com-
munication standards [1]. In this context, the inte-
gration of multiple-antenna systems with code-division
multiple-access (CDMA) transmission and/or orthogo-
nal frequency division multiplexing (OFDM) has also
been the subject of several works over the past few
years [2-4].

Different combinations of OFDM and CDMA have
been reported in a number of works. Multi-carrier (MC)-
CDMA performs spreading of the information symbols
across the different subcarriers [5,6], but suffers from lim-
ited frequency diversity gains like conventional CDMA
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systems. MC direct-sequence (MCDS)-CDMA differs
from MC-CDMA by performing the spreading operation
in the time-domain at each subcarrier [7]. For combat-
ing frequency-selective fading, MCDS-CDMA requires
forward error-correction coding and frequency-domain
interleaving. In [8], a hybrid of MC-CDMA and OFDM
systems with orthogonal transmission in the frequency-
domain was proposed, which ensures interference-free
transmission/reception regardless of the multipath chan-
nel profile. A related approach, called multicarrier block-
spread (MCBS)-CDMA, was introduced in [9] by cap-
italizing on redundant block spreading and frequency-
domain linear precoding to preserve orthogonal multiple-
accessing and to enable full multipath diversity gains.
The receiver is based on a low-complexity single-user
equalization.

By introducing the spatial dimension at the trans-
mit processing, jointly with time and/or frequency
dimensions, a number of different space–frequency
MIMO transceivers were proposed to enable orthogonal
multiple-access in multiuser systems combining OFDM
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and CDMA techniques. A spread spectrum-based trans-
mission framework was proposed in [10], therein called
multicarrier spread space spectrum multiple access (MC-
SSSMA), with the idea of fully spreading each user symbol
over space, time, and frequency. MC-SSSMA is a gen-
eralization of its single-carrier counterpart proposed in
[11]. Despite the achieved spectral efficiency gains, the
design of [10] was restricted to the case where the number
of transmit and receive antennas is equal to the spread-
ing gain. In [12], space–time–frequency spreading was
proposed for MC-CDMA based on the concatenation of
a space–time spreading code with a frequency-domain
spreading code.

A common characteristic of all these works is the
assumption of perfect channel knowledge at the receiver.
When the channel is not known, as it is the case in
practice, the receiver design is generally based on subop-
timum (linear or nonlinear) filtering/equalization/signal
separation structures that use training sequences for
channel acquisition and tracking, before decoding the
transmitted data. However, practical limitations such
as the receiver complexity and the training sequence
overhead (which implies a reduction of the informa-
tion rate) may be too restrictive and prohibitive in
some cases.

Recently, tensor modeling has successfully been applied
to the design of MIMO transceivers based on spatial mul-
tiplexing and/or space–time coding [13-19]. Relying on
the use of spreading codes, the common feature of these
works is the fact that the received signal can be mod-
eled as a third-order tensor, the dimensions of which
are associated with space, time, and code diversities [20].
Due to the uniqueness properties of tensor models, these
tensor-based MIMO–CDMA transceivers afford blind
multiuser detection and channel estimation under more
relaxed conditions compared with conventional matrix-
based receivers. The approach of [13] relies on pure spatial
multiplexing by means of a parallel factor (PARAFAC)
model [21]. The work of [14] deals with a multiple-access
MIMO antenna system relying on a block tensor model
[22]. In [15], a constrained “block-structured” PARAFAC
model is proposed for allowing multiuser space–time
spreading in the uplink. The multiuser downlink case is
treated in [16]. More general tensor-based space–time
spreading and multiplexing structures were also pro-
posed relying on the constrained factor (CONFAC) model
[17,18] and on PARATUCK-type models [19,23].

In this article, we present a unified tensor model
for space–frequency spreading-multiplexing (SFSM)
MIMO wireless communication systems combining
both space and frequency spreadings along with a
space–frequency multiplexing. On one hand, spread-
ing across space (transmit antennas) and frequency
(subcarriers) potentially provides robustness against

frequency-selective fading and channel ill-conditioning
while providing transmit diversity gains. On the other
hand, an orthogonal space–frequency multiplexing
enables interference-free multistream transmission. For
this system, we adopt a tensorial formulation of the
transmitted and received signals that jointly incorpo-
rates space, frequency, time, and code dimensions by
means of a PARAFAC tensor model. From this tensorial
formulation, we show how several existing multiple-
antenna CDMA-based systems can be derived by
making appropriate simplifications on the unified tensor
model structure.

We also address the problem of joint symbol-channel-
code estimation for the proposed system by capitalizing
on the uniqueness properties of the PARAFAC model. By
exploiting the space, time, frequency, and code diversi-
ties inherent to the unified SFSM tensor model, we obtain
new results providing useful bounds on the required
number of transmit and receive antennas, subcarriers,
and spreading length for ensuring a unique recovery of
users’ symbols, channels, and codes. A performance eval-
uation of the SFSM MIMO system is also carried out
considering a zero forcing (ZF) receiver and a semi-
blind alternating least squares (ALS) receiver that only
requires a single pilot symbol per transmitted data stream
in order to remove the scaling factor introduced by the
estimation process.

The remainder of this article is organized as follows. In
Section 2, the main building blocks of the SFSM trans-
mitter are detailed and the transmitted signal model is
formulated. In Section 3, we present the received signal
model and also derive the proposed unifying tensor model
and its special cases. A ZF receiver with joint block-
decoding and equalization is formulated in Section 4.
Section 5 is dedicated to the problem of joint symbol-
channel-code estimation for the unified SFSM MIMO
system, where bounds on the required numbers of trans-
mit/receive antennas, subcarriers, spreading length, and
the number of symbols per data stream are provided. The
semi-blind ALS receiver is also presented in this section.
In Section 6, the performance of the SFSM MIMO system
is evaluated by means of computer simulations under dif-
ferent system parameter settings. The article is concluded
in Section 7.

Notations: Some notations and properties are now
defined. Scalars are denoted by lower-case letters
(a, b, . . .), vectors are written as boldface lower-case let-
ters (a, b, . . .), matrices as boldface capitals (A, B, . . .),
and tensors as calligraphic letters (A,B, . . .). We use
ai,j =[ A]i,j to denote the entry (i, j) of matrix A while
ai,j,k,l refers to the entry (i, j, k, l) of the tensor A ∈
C

I×J×K×L. The ith row and jth column of A are denoted
by Ai.C1×J and A.j ∈ C

I×1, respectively. AT , A−1 and
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A† stand for transpose, inverse, and pseudo-inverse of
A, respectively. The operator diag(·) forms a diagonal
matrix from its vector argument, while blockdiag(·) forms
a block-diagonal matrix from its matrix arguments. The
operator vecdiag(·) forms a column vector out of the main
diagonal of its matrix argument, while 1R denotes the “all-
ones” vector of dimension R. The operator vec(·) forms
a vector by stacking the columns of its matrix argument.
Di(A) forms a diagonal matrix holding the ith row of A
on its main diagonal. The Kronecker and the Khatri-Rao
products are denoted by ⊗ and �, respectively:

A�B =[ A·1⊗B·1, . . . , A·R⊗B·R] =
⎡⎢⎣ BD1(A)

...
BDI(A)

⎤⎥⎦ ∈ C
IJ×R

(1)

with A =[ A·1 . . . A·R] ∈ C
I×R, B =[ B·1 . . . B·R] ∈ C

J×R.
We shall make use of the following properties of the
Khatri-Rao product:

vec
(

Adiag(x)BT
)

= (B � A)x, (2)

with A ∈ C
I×R, B ∈ C

J×R and x ∈ C
R, and

(A � B)H(A � B) = AH A ∗ BH B, (3)

where ∗ denotes the Hadamard (element-wise) matrix
product.

2 SFSM: transmitted signal model
We consider the uplink of a single-cell multicarrier mul-
tiuser MIMO system with Q active co-channel users
transmitting data across the same set of F subcarriers.
Each user terminal is equipped with Mt transmit anten-
nas and transmits R data streams. The base station is
equipped with Mr receive antennas. The proposed SFSM
transmission structure is composed of three main oper-
ations: (i) space spreading, (ii) frequency spreading, and
(iii) space–frequency block-coding. Figure 1 depicts the
block diagram of the transmitter structure by focusing on
the transmission of the nth symbol of the rth data stream.
For notational simplicity, we begin by limiting ourselves to
a single-user transmission model in order to facilitate the
presentation. Later on, we show that the multiuser signal
model is readily obtained with minor changes in notation.

2.1 Space-domain spreading
The input symbol sequence is serial-to-parallel converted
into R data streams, each one being constituted by N sym-
bols. For the nth symbol period, let us define sn,r as the
nth symbol of the rth data stream. The first operation is
the space spreading, which consists in spreading each data

stream on the Mt transmit antennas using a different code.
Let us define �

.=[ �· 1, . . . , �· r , . . . , �· R] ∈ C
Mt×R as the

matrix collecting the code vectors of the R data streams.
The space-domain spread signal is defined by the third-
order tensor S̄ ∈ C

Mt×N×R, the (mt , n, r)th element of
which is given by

s̄mt ,n,r = ωmt ,rsn,r , (4)

and represents the nth space spread symbol of the rth data
stream transmitted by the mtth antenna.

For the space-domain spreading matrix �, we choose
a Vandermonde design with complex generators ρmt =
e−j2π(mt−1)/max(Mt ,R), mt = 1, . . . , Mt , i.e.

�(ρ1, . . . , ρMt )
.= 1√

Mt

⎡⎢⎢⎢⎣
1 1 · · · 1
1 ρ2 · · · ρR−1

2
...

... · · · ...
1 ρMt · · · ρR−1

Mt

⎤⎥⎥⎥⎦ . (5)

As shown in [24], the Vandermonde structure mini-
mizes an upper bound of the pairwise error probability at
high signal-to-noise ratios (SNRs). Moreover, this struc-
ture yields a good coding gain and makes the transmis-
sion more robust to ill-conditioned/rank-deficient MIMO
channels [25].

2.2 Frequency-domain spreading
The second operation consists in jointly spreading and
coding each component s̄mt ,n,r in the frequency-domain.
This operation is implemented by means of linear precod-
ing, which adds transmit redundancy in the frequency-
domain before the multicarrier modulation. Each data
symbol is transmitted simultaneously (in parallel) on dif-
ferent subcarriers in a way similar to an MC-CDMA
system with frequency-domain spreading [26]. In addition
to provide frequency diversity gains, frequency-domain
spreading adds resilience to symbol detection even in
the presence of a deep channel fade over one or more
subcarrier channels.

Let �
.=[ �· 1, . . . , �· r , . . . , �· R] ∈ C

F×R be the fre-
quency spreading matrix. The output of this frequency
spreading operation is given by

s̃f ,mt ,n,r = θf ,r s̄mt ,n,r = θf ,rωmt ,rsn,r , (6)

which is the (f , mt , n, r)th element of the fourth-order ten-
sor S̃ ∈ C

F×Mt×N×R representing the space–frequency
spread signal sn,r associated with the nth symbol period
and rth data stream.
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Figure 1 SFSM transmitter block-diagram.

The frequency spreading can be redundant (F > R) or
not (F ≤ R). As for the space-domain spreading, here we
also choose � as a Vandermonde matrix with complex
generators νf = e−j2π(f −1)/max(F ,R), f = 1, . . . , F , i.e.

�(ν1, . . . , νF)
.= 1√

F

⎡⎢⎢⎢⎣
1 1 · · · 1
1 ν2 · · · νR−1

2
...

... · · · ...
1 νF · · · νR−1

F

⎤⎥⎥⎥⎦ . (7)

The reason for choosing the Vandermonde structure for
the frequency spreading matrix follows that of the space
spreading matrix. Some designs for � have been reported
in the literature (we refer the interested reader to [27] for
further details).

Note that spreading in the space-domain consists in
multiplying the symbol sn,r by a complex code that
depends on the transmit antenna number mt while
spreading in the frequency-domain results in a multiplica-
tion of the same symbol by a complex code that depends
on the frequency number f, as shown in (6).

2.3 Space-frequency multiplexing
The third operation of the SFSM transmitter consists
in a multiplexing of the R space–frequency spread sym-
bols. Using conventional direct sequence (DS) spread-
ing, each space–frequency symbol s̃f ,mt ,n,r is spread by
a factor P using a specific spreading code. Due to
spectrum spreading at the subcarrier level, each sub-
carrier signal constitutes a DS spread signal. Conse-
quently, the frequency spectrum associated with each
subcarrier is allowed to overlap in order to achieve high
spectral efficiency.

Denote C .=[ C· 1, . . . , C· r , . . . , C· R] ∈ R
P×R as the

spreading code matrix the columns/rows of which belong
to a (possibly truncated) Walsh–Hadamard (WH) code
matrix. When P ≤ R, we form C by selecting the P first
rows of an R × R WH matrix. Each spreading code vec-
tor is applied with the chip period Tc = T/P, where
T corresponds to the OFDM symbol duration. The pro-
posed space–frequency multiplexing operation consists
in summing up R DS spread signals, each one of which
being obtained by multiplying s̃f ,mt ,n,r by the correspond-
ing spreading code cp,r . Therefore, this operation yields a
multi-stream signal tensorZ ∈ C

F×Mt×N×P whose typical
element is given by

zf ,mt ,n,p =
R∑

r=1
s̃f ,mt ,n,rcp,r . (8)

2.4 Multicarrier modulation
Before being transmitted, the space–frequency multi-
plexed signal passes through the OFDM modulator. Con-
sidering a frequency selective wireless link between each
transmit-receive antenna pair, define Lmax as the maxi-
mum length of the impulse response of all the channels,
including the effects of the physical channel, and pre-
/post-filtering at transmitter and receiver. An inverse fast
Fourier transform (IFFT) is applied and a cyclic prefix
(CP) of Lmax chips is appended to the resulting time-
domain samples. Let � = TcpFH ∈ C

J×F be a matrix
representing the combined IFFT and CP-adding opera-
tion, where F ∈ C

F×F is an FFT matrix, with [ F]k,f =
e−j2π(k−1)(f −1)/F , Tcp =[ IT

cp, IF ]T ∈ C
J×F is the CP-

adding matrix, J = F + Lmax, and Icp is the matrix formed
from the Lmax last rows of IF , the identity matrix of order
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F. The output of the IFFT+CP-adding block correspond-
ing to the transmitted signal is given by the following
tensor transformation:

xj,mt ,n,p =
F∑

k=1
ξj,k zk,mt ,n,p, j = 1, . . . , J . (9)

where ξj,k =[ �]j,k and xj,mt ,n,p is a typical element of the
transmitted signal tensor X ∈ C

J×Mt×N×P .

3 SFSM: received signal model
The block diagram of the receiver is depicted in Figure 2.
We adopt a discrete-time baseband equivalent model for
the received signal in the SFSM MIMO system, assum-
ing perfect chip- and symbol-level synchronization at the
receiver. Following the tensor notation used in the pre-
vious section, the fourth-order tensor V ∈ C

J×Mr×N×P

representing the time-domain received signal in absence
of noisea is defined as:

vj,mr ,n,p =
Mt∑

mt=1

J∑
j′=1

ḣj−j′,mr ,mt xj′,mt ,n,p

=
Mt∑

mt=1

F∑
k=1

J∑
j′=1

ḣj−j′,mr ,mt ξj′,k zk,mt ,n,p, (10)

where ḣj,mr ,mt is an element of the tensor Ḣ ∈ C
J×Mr×Mt ,

Ḣ · mrmt ∈ C
J×1 being the impulse response of the chan-

nel linking the mrth receive antenna to the mtth transmit
antenna.

The time-domain samples vj,mr ,n,p pass through the
combined FFT and CP-removal (CPR) block, represented
here by �̄ = FRcp ∈ C

F×J , where Rcp =[ 0F×Lmax , IF ] ∈

C
F×J is the CPR matrix. This yields the following received

signal tensor Y ∈ C
F×Mr×N×P :

yf ,mr ,n,p =
J∑

j=1
ξ̄f ,j vj,mr ,n,p. (11)

Using (10), we can rewrite (11) as

yf ,mr ,n,p =
Mt∑

mt=1

F∑
k=1

⎛⎝ J∑
j=1

J∑
j′=1

ξ̄f ,j ḣj−j′,mr ,mt ξj′,k

⎞⎠
︸ ︷︷ ︸

hf ,k,mr ,mt

zk,mt ,n,p,

(12)

where hf ,k,mr ,mt corresponds to the end-to-end
(frequency-domain) channel tensor H ∈ C

F×F×Mr×Mt

that results from the combined FFT+CPR and IFFT+CP
transformations at the receiver and transmitter, respec-
tively. Note that hf ,k,mr ,mt is zero for all f 	= k. In matrix
notation, this can be seen by noting that the matrix slice
Ḧ··mr ,mt ∈ C

F×F of Ḧ, defined by [ Ḧ··mr ,mt ]f ,k
.= hf ,k,mr ,mt ,

has a diagonal structure [28]. Consequently, we can sim-
plify (12) by eliminating the summation over index k,
yielding

yf ,mr ,n,p =
Mt∑

mt=1
hf ,f ,mr ,mt zf ,mt ,n,p. (13)

Finally, using (6) and (8), we can rewrite (13) as:

yf ,mr ,n,p =
Mt∑

mt=1

R∑
r=1

hf ,f ,mr ,mt θf ,rωmt ,rsn,rcp,r . (14)

In the next section, we show how the tensor model
(14) satisfied by the received signals can be cast into a
PARAFAC model by contracting the first two modes of

Figure 2 Receiver block diagram.
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the transmitted and received signal tensors. Our motiva-
tion behind the use of PARAFAC modeling comes from
the possibility of studying identifiability by resorting to the
well-known results available in the literature.

3.1 PARAFAC model formulation
In its general form, the PARAFAC decomposition
amounts to decomposing the third-order tensor X ∈
C

I1×I2×I3 into a sum of R rank-one third-order tensors
[21]. It has the following scalar representation

xi1,i2,i3 =
R∑

r=1
a(1)

i1,ra(2)
i2,ra(3)

i3,r (15)

where a(n)
in,r is the entry (in, r) of the nth mode matrix factor

A(n) ∈ C
In×R, n = 1, 2, 3. When R is minimal, it is called

the rank of X .
Starting from the space–frequency block-coded signal

(8), let us contract the first two modes of the coded sig-
nal tensor Z ∈ C

F×Mt×N×P as m = (f − 1)Mt + mt ,
with M = FMt , and define the space–frequency spreading
matrix U ∈ C

M×R such as

um,r = ωmt ,rθf ,r ↔ U· r = �· r � �· r ↔ U = � � �.
(16)

Then, Equations (6), (8), and (16) lead to the following
contracted signal tensor:

z̄m,n,p =
R∑

r=1
um,rsn,rcp,r , (17)

which corresponds to a third-order PARAFAC model for
the transmitted signal tensor Z̄ ∈ C

M×N×P , with matrix
factors (U, S, C).

Following the same reasoning, let us now contract
the first two modes of the received signal tensor Y ∈
C

F×Mr×N×P by defining i = (f − 1)Mr + mr , with
I = FMr . Combining this contraction with the one intro-
duced for the transmitted signal tensor Z̄ ∈ C

M×N×P and
using (17), we get the following contracted received signal
tensor Ȳ ∈ C

I×N×P :

ȳi,n,p =
M∑

m=1
h̄i,mz̄m,n,p =

R∑
r=1

M∑
m=1

h̄i,mum,rsn,rcp,r , (18)

where H̄ ∈ C
I×M is a channel matrix obtained

from a double contraction of the end-to-end chan-
nel tensor H ∈ C

F×F×Mr×Mt such as [ H̄]i,m =
[ H̄](f −1)Mr+mr=h(f −1)Mt+mr = hf ,f ,mr ,mt . Defining G ∈
CI×R with element gi,r =

M∑
m=1

h̄i,mum,r as the effective

MIMO channel linking the R multiplexed data streams

at the transmitter to the I = FMr equivalent subchan-
nel outputs at the receiver, the tensor Ȳ can be rewritten
element-wise as

ȳi,n,p =
R∑

r=1
gi,rsn,rcp,r , (19)

which corresponds to a third-order PARAFAC model for
the contracted received signal tensor Ȳ . The final step is to
determine an adequate expression for the factorization of
the effective MIMO channel matrix G. From the definition
of gi,r and the expression (16) of U, we get

G = H̄U = H̄(� � �) ∈ C
I×R. (20)

Note that the contracted received signal tensor Ȳ ∈
C

I×N×P given by (19) follows a PARAFAC model with
matrix factors (H̄(� � �), S, C). In fact, models (17)
and (19) for the transmitted and received signal tensors,
respectively, differ only in their first-mode matrix factors,
which are related by (20).

For the model (19), we have the following matrix repre-
sentations:

Ȳ1 = (C � G)ST ∈ CPI×N , (21)
Ȳ2 = (G � S)CT ∈ CIN×P , (22)
Ȳ3 = (S � C)GT ∈ CNP×I , (23)

where [ Ȳ1](p−1)I+i,n =[ Ȳ2](i−1)N+n,p =[ Ȳ3](n−1)P+p,i =
ȳi,n,p.

3.2 Multiuser case
The extension of the transmitted and received signal mod-
els to the multiuser MIMO case is straightforward. Let
us assume that Q users are transmitting to the base sta-
tion (uplink transmission) and that all users have the same
number Mt of transmit antennas, Mr denoting the num-
ber of receive antennas at the base station. The multiuser
signal model follows that of the single-user case by consid-
ering a block-partitioned notation. In the multiuser case,
the total number of transmitted data streams (summed
over all the users) is equal to R = R(1) + · · · + R(Q), where
R(q) denotes the number of space–frequency spread data
streams transmitted by the qth user. With these defini-
tions, the received signal model (19) can be rewritten as
follows

ȳi,n,p =
Q∑

q=1

R(q)∑
r(q)=1

g(q)

i,r(q)s
(q)

n,r(q)c
(q)

p,r(q) . (24)
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In this case, the mode-1 unfolded matrix representation
of (24) is given by

Ȳ1 =
Q∑

q=1
(C(q) � G(q))S(q)T

=
[

C(1) � G(1), . . . , C(Q) � G(Q)
]⎡⎢⎣ S(1)T

...
S(Q)T

⎤⎥⎦ = (C � G)ST ,

(25)

where S =[ S(1), . . . , S(Q)] ∈ C
N×R, C =[ C(1), . . . , C(Q)] ∈

C
P×R, G =[ G(1), . . . , G(Q)] ∈ C

I×R. Therefore, the
PARAFAC model (17) is equally valid for the multiuser
case by simply interpreting its factor matrices as block-
matrices.

3.3 Special cases
The proposed structured PARAFAC model (19) of the
received signal is general in the sense that it incorporates
several existing multiple-access/multiple-antenna signal-
ing schemes. By making appropriate assumptions, the
proposed model can gradually be simplified, so that we
obtain different tensor-based transceiver models as spe-
cial cases:

• Space–time spreading CDMA (STS-CDMA) : For
F = 1, which corresponds to a single-carrier
transmission over a flat-fading channel, we can
abandon the frequency-dependent index and
eliminate the frequency spreading matrix � = 1T

R , so
that G = H̄�. Thus, the trilinear model (21) reduces
to classical space–time spreading using multiple
spreading codes and can be written as:

Ȳ1 = (C � H̄�)ST ∈ C
PMr×N . (26)

This model is valid for modeling the multiple-antenna
transmission systems proposed in [25,29].

• Spatial multiplexing CDMA (SM-CDMA) : In
SM-CDMA systems, the space spreading operation
(which is responsible for spreading R data streams
across Mt transmit antennas) is eliminated. In other
words, each data stream is transmitted by a different
transmit antenna. Still considering F = 1, in this case
we have R = Mt , � = IMt , and � = 1T

R , which
implies G = H̄, and model (21) becomes:

Ȳ1 = (C � H̄)ST ∈ C
PMr×N . (27)

This model covers a spatial multiplexing/multiple-
access CDMA system using a different spreading
code per transmit antenna [2], and is the same as the
PARAFAC-CDMA model proposed in the seminal
paper [20]. It also coincides with the Khatri-Rao
space–time (KRST) coding model of [13].

• Multicarrier CDMA systems (MCBS-CDMA
/MCDS-CDMA/ MC-CDMA) : We consider the
transmission model of a MCDS-CDMA system
where frequency-domain spreading and orthogonal
multiplexing take place (e.g. see [26,30]). This is a
single-input single-output (SISO) antenna system
(Mr = Mt = 1), which means that the channel
matrix H̄ reduces to an F × F diagonal matrix, and
we can eliminate the space spreading matrix � = 1T

R
so that G = H̄� ∈ CF×R. Consequently, the general
PARAFAC model (21) becomes:

Ȳ1 = (C � H̄�)ST ∈ C
PF×N . (28)

It is worth noting that this special model can be
interpreted as the tensorial formulation of the
MCBS-CDMA system proposed in [9]. In particular,
if frequency-domain spreading is not used, we have
� = IR so that (28) reduces to a PARAFAC model
for a MCDS-CDMA system with direct-sequence
spectrum spreading at the subcarrier level [7]. In the
SISO case, where H̄ ∈ C

F×F is diagonal, if
space–frequency block-coding is not used (P = 1 and
C = 1T

R ), then (28) reduces to traditional
MC-CDMA, and we have:

Ȳ1 = H̄�ST ∈ C
F×N . (29)

• Conventional spatial multiplexing: This is the
well-known single-user single-carrier MIMO system
with spatial multiplexing (such as the V-BLAST
system of [31]). Then, we have F = P = 1, R = Mt ,
and C = � = 1T

R , � = IMt . In this case, the general
PARAFAC model (21) simplifies to the conventional
matrix-based model:

Ȳ1 = H̄ST ∈ C
Mr×N . (30)

Table 1 summarizes the different special cases covered
by the proposed tensor model. It allows us to deduce how
the proposed tensor model parameters and the structure
of the associated matrix factors are adjusted to model
different existing systems in a tensorial form.

Remark 1 (subcarrier grouping). In order to reduce the
complexity of the receiver, we can resort to subcarrier
grouping [32,33]. It consists in dividing the set of F sub-
carriers into μ nonintersecting subsets of K equispaced
subcarriers, where K can be chosen equal to the num-
ber of independent multipaths. Since both F and K can
be viewed as system design parameters, we choose them
so that μ = F/K is an integer. Information recovery
can be carried out independently within each subcarrier
group at the receiver (after FFT demodulation). This low-
complexity detection strategy will be considered later in
our simulations. We have chosen to not explicitly model
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Table 1 Equivalent tensorial formulation for different systems

Systems (F , Mt , R, Mr) � � Rx signal Matrix factors

STS-CDMA [25,29] (1, Mt , R, Mr) 1T
R Full Y ∈ C

Mr×N×P (H̄�, S, C)

SM-CDMA [2]/KRST [13] (1, Mt , Mt , Mr) 1T
R IMt Y ∈ C

Mr×N×P (H̄, S, C)

MCBS-CDMA [9] (F, 1, R, 1) Full 1T
R Y ∈ C

F×N×P (H̄�, S, C)a

MCDS-CDMA [7] (F, 1, R, 1) IR 1T
R Y ∈ C

F×N×P (H̄, S, C)a

MC-CDMAb [5] (F, 1, R, 1) Full 1T
R Ȳ1 ∈ C

F×N (H̄�, S, 1T
R)a

Spatial multiplexingb [31] (1, Mt , Mt , Mr) 1T
R IMt Ȳ1 ∈ C

Mr × N (H̄, S, 1T
R)

aTensor models with diagonal channel matrix H̄ ∈ C
F×F .

bSystems in which the received signal model is reduced to a matrix (bilinear) decomposition.

subcarrier grouping in order to avoid unnecessary com-
plicated mathematical notation in the formulation of the
transmitted and received signal models.

4 ZF receiver
Assuming that the channel (H), code (C), and spread-
ing (�, �) matrices are known at the receiver, we pro-
pose a ZF receiver that simultaneously estimates all the
R transmitted data streams by means of a joint block-
decoding and an equalization without de-spreading. The
ZF receiver is based on Equation (21). It minimizes the
least squares (LS) criterion ‖Ȳ1−(C�G)ST‖2 with respect
to the symbol matrix, giving a simultaneous estimate of
the R data streams as:

ŜT = WȲ1, (31)

where

W = (C � G)† ∈ C
R×PFMr . (32)

Since C � G ∈ C
PFMr×R must be full column-rank to be

left-invertible, the ZF receiver requires that PMrF ≥ R.
From the structure of (32), we can observe that the

ZF receiver does not require code-orthogonality to jointly
estimate the transmitted signals. In Section 5, we pro-
pose a PARAFAC-based receiver that can blindly operate,
i.e. without a priori knowledge of the space–frequency
MIMO channel.

4.1 Space–frequency linear combiner
Note that, under the condition P ≥ R, the column-
orthonormality of C turns the ZF receiver into a sim-
pler space–frequency linear combiner that avoids matrix
inversion and decodes each transmitted data stream sep-
arately. Indeed, if C has orthonormal columns, we have
CH C = IR. By expanding W in (32) and using property
(3), we get

W = ((C � G)H(C � G)
)−1

(C � G)H

= (CH C ∗ GH G
)−1

(C � G)H

= (IR ∗ GH G)−1(C � G)H

Since the Hadamard product IR ∗ GH G eliminates the off-
diagonal elements of GH G, we have

W =

⎡⎢⎢⎢⎢⎢⎢⎣

GH· 1G· 1︸ ︷︷ ︸
γ1

. . .
GH· RG· R︸ ︷︷ ︸

γR

⎤⎥⎥⎥⎥⎥⎥⎦

−1

(C � G)H , (33)

so that

ŜT· r = 1
γr

(C· r ⊗ G· r)
H Ȳ1, r = 1, . . . , R. (34)

5 Semi-blind ALS receiver
The goal of the base station receiver is to separate the
co-channel transmissions while recovering the data trans-
mitted by each user. In our proposed SFSM MIMO sys-
tem, co-channel transmissions are represented by the R
data streams accessing simultaneously the space, time,
and frequency channel resources. We are interested in a
semi-blind receiver that neither requires prior knowledge,
or estimation, of channel and antenna array responses, nor
relies on statistical independence between the transmitted
signals. These properties are distinguishing features of the
PARAFAC modeling and constitute the main motivation
for using the unified tensor model.

Moreover, the proposed receiver is called semi-blind
in the sense that it relies only on a single pilot symbol
inserted at the beginning of each data stream. This pilot
symbol is used to remove the scaling factor introduced by
the estimation process.

We now study the joint symbol-code-channel recov-
ery by capitalizing on the fundamental uniqueness prop-
erty of the PARAFAC model (19). This property allows
to establish several practical corollaries, which provide
lower bounds on the required number of transmit/receive
antennas, subcarriers, symbol periods, and the spread-
ing length for ensuring a semi-blind symbol-code-channel
estimation. They also clearly illustrate the underlying
tradeoffs involving space, frequency, and code diversities.
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Let us rewrite the three unfolded matrices of the
received signal in (21), (22), and (23), in the following
manner

Ȳ1 = Z(c,g)ST , Ȳ2 = Z(g,s)CT , Ȳ3 = Z(s,c)H̄T ,
(35)

where Z(c,g) = C � G ∈ C
PFMr×R, Z(g,s) = G � S ∈

C
FMrN×R, and Z(s,c) = (S � C)(� � �)T ∈ C

NP×FMt ,
where we have used the factorization of G defined in (20).
Identifiability of the symbol, code, and channel matrices in
the LS sense from factorizations (35) requires that Z(c,g),
Z(g,s), and Z(s,c) be full column-rank, which implies

min(PFMr , FMrN) ≥ R, and NP ≥ R ≥ FMt . (36)

The first inequality comes from the full column-rank
requirement of C � G and G � S, while the second one
comes from the full column-rank requirement of (S �
C)(� � �)T . These necessary conditions are useful when
one is interested in eliminating system configurations
leading to a non-identifiable model. We emphasize that
conditions (36) do not imply model identifiability since it
is not a sufficient condition.

In the following, we start from the Kruskal’s condition
for the essential uniqueness of the PARAFAC decom-
position [34] and then deduce simplified conditions by
considering different special cases of practical interest.
Directly applied to model (19), Kruskal’s condition states
that G, S, and C can uniquely be estimated up to column
permutation and scaling ambiguitiesb from the received
data tensor Ȳ if

kG + kS + kC ≥ 2R + 2, (37)

where k(·) denotes the Kruskal-rankc of a matrix.
Assume that G = H̄U is full rank. If the number N of

symbols is large enough compared to the number R of data
streams, the symbol matrix S is likely to be full rank. Note
also that the space–frequency multiplexing matrix C has
orthogonal columns and is full rank by definition. Taking
these considerations into account, Kruskal’s condition can
be written as [34,35]:

rank(G) + rank(S) + rank(C) ≥ 2R + 2. (38)

We now use the fact that G = H̄U, with U given
in (16) and consider particular cases leading to simpli-
fications of (38) which are of practical relevance for the
unified SFSM MIMO system. Interesting tradeoffs for
joint symbol-channel-code estimation can explicitly be
obtained.

5.1 Single-carrier transmission (F = 1)
1. Mr ≥ Mt . We have G = H̄�. Assuming that H̄ is full

column-rank and � is full rank due to its
Vandermonde structure, it follows that

rank(G) = rank(�) = min(Mt , R), and (38) becomes:

min(Mt , R) + min(N , R) + min(P, R) ≥ 2R + 2.
(39)

2. R ≥ Mt . In this case � is full row-rank due to its
Vandermonde structure. Assuming that H̄ is modeled
by i.i.d entries (which corresponds to scattering-rich
propagation) and thus is full rank, it follows that
rank(G) = rank(H̄) = min(Mr , Mt), which implies:

min(Mr , Mt) + min(N , R) + min(P, R) ≥ 2R + 2.
(40)

These two conditions (39) and (40) have interesting
practical corollaries. Assuming that the number of sym-
bols and the code spreading factors are large enough
(i.e., both S and C are full column-rank), they become,
respectively,

min(Mt , R) ≥ 2, (Mr ≥ Mt) (41)

and

min(Mr , Mt) ≥ 2, (R ≥ Mt), (42)

and can be interpreted in the following way.
Corollary 1. For Mr ≥ Mt , spreading across Mt =
2 transmit antennas is sufficient for joint symbol-code-
channel recovery, regardless of the number R ≥ 2 of data
streams, for large enough number of symbols and code
spreading factors.
Corollary 2. For R ≥ Mt , Mr = 2 receive antennas are
sufficient for joint symbol-code-channel recovery, regard-
less of the number Mt ≥ 2 of transmit antennas, for large
enough number of symbols and code spreading factors.

5.2 Single-antenna transmission (Mt = 1)
In this case, H̄ ∈ C

FMr×F is full column-rank, and we
have G = H̄�. Moreover, considering that � is full rank
due to its Vandermonde structure, we have rank(G) =
rank(�) = min(F , R), which implies:

min(F , R) + min(N , R) + min(P, R) ≥ 2R + 2. (43)

Now, assuming that S and C are full column-rank (i.e.,
N ≥ R and P ≥ R), condition (43) is equivalent to:

min(F , R) ≥ 2 (44)

and we obtain:
Corollary 3. For Mt = 1, spreading across F = 2 subcar-
riers is sufficient for joint symbol-code-channel recovery,
regardless of the number R ≥ 2 of data streams, for large
enough number of symbols and code spreading factors.

Note that this condition is independent on the number
Mr of receive antennas, which means that joint symbol-
code-channel recovery is achieved even with one receive
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antenna. This clearly illustrates the tradeoff between fre-
quency diversity and space diversity at the receiver, which
is inherent to this trilinear PARAFAC model.

5.3 Small spreading lengths (P < R)
A different interpretation of (39) and (40) arises if S is
full column rank, but P < R, i.e., the spreading length is
smaller than the number R of data streams. This is a chal-
lenging situation, since most of the multiuser receivers (as
well as the single-user one) need P ≥ R in order to achieve
multiuser interference rejection or de-spreading. In this
case, for single-carrier transmissions (F = 1), conditions
(39) and (40) reduce, respectively, to the following ones:

min(Mt , R) + P ≥ R + 2, (45)

and

min(Mr , Mt) + P ≥ R + 2. (46)

The simplified condition (45) results in the following
corollary:
Corollary 4. For Mr ≥ Mt ≥ R, spreading across P = 2
chips is sufficient for joint symbol-code-channel recov-
ery, regardless of the number R ≥ 2 of data streams and
receive antennas.

This condition establishes a tradeoff between code
diversity (spreading length) and space diversity afforded
by the proposed trilinear PARAFAC modeling.

Remark 2. When subcarrier grouping is used, receiver
processing is parallelized into μ independent detection
“layers”, each one associated with K = F/μ subcarriers.
For this reason, identifiability can be studied group-wise
(i.e., what matters for identifiability is K and not F) since
the results obtained for a given subcarrier group are
equally valid for all the other groups.

It is worth mentioning that uniqueness conditions more
relaxed than Kruskal’s one have been reported in [36,37],
and can be applied to our PARAFAC model. For instance,
it is common to assume that the symbol matrix S is full
column-rank for sufficiently large N. In this case, applying
the sufficient condition derived in [37] to model (19) gives
the following uniqueness condition:

PFMr(P − 1)(FMr − 1) ≥ 2R(R − 1). (47)

Note that this condition is more relaxed than Kruskal’s
condition (37). In connection with [36], it is shown in
[37] that this condition is valid if G and C are randomly
sampled from an (FMr +P)R-dimensional continuous dis-
tribution. In a recent work [38], a mathematical proof is
provided to the case of non-random G and C matrices.

5.4 Receiver algorithm
The symbol-code-channel recovery is carried out by esti-
mating each one of the three matrix factors S, C, and G of
the trilinear PARAFAC model (19) through the minimiza-
tion of the following nonlinear cost function:

f (G, S, C) =
N∑

n=1

P∑
p=1

FMr∑
i=1

∣∣∣∣∣ȳi,n,p −
R∑

r=1
gi,rsn,rcp,r

∣∣∣∣∣
2

. (48)

In this study, we propose the use of the ALS algorithm
[20,39,40], which is the classical solution to minimize
this cost function. It exploits the Khatri-Rao factoriza-
tions (21)–(23) of the unfolded matrix representations of
the received signal tensor, by alternating among the esti-
mation of G, S, and C. These estimates are found by,
respectively, optimizing the three following LS criteria:

Ŝ = argmin
S

∥∥∥Ỹ1 − (C � G)ST
∥∥∥2

F
, (49)

Ĉ = argmin
C

∥∥∥Ỹ2 − (G � S)CT
∥∥∥2

F
, (50)

Ĝ = argmin
G

∥∥∥Ỹ3 − (S � C)GT
∥∥∥2

F
, (51)

where Ỹi = Ȳi + Bi, i = 1, 2, 3, is the noisy ver-
sion of Ȳi, and Bi is a matrix representing the additive
complex-valued white Gaussian noise.d We can rely on the
knowledge of the space and frequency spreading matrices
� and � to directly obtain an LS estimate of ̂̄H, pro-
vided that the second inequality of (36) is satisfied, i.e.,
if R ≥ FMt . From (51), and using (20), we have ̂̄HT =[
(S � C)(� � �)T ]† Ỹ3. On the other hand, if R < FMt ,

a unique estimation of H̄ is not guaranteed, although we
can still estimate S, C and G from (49), (50), and (51),
respectively.

The ALS algorithm always monotonically converges to
(at least) a local minimum. Convergence to the global
minimum can sometimes be slow if all the matrix fac-
tors H̄, S, and C are unknown. Several alternative algo-
rithms have been proposed in the literature to alleviate
the slow convergence problems caused by a random ini-
tialization of the algorithm. For instance, an eigenanalysis
solution based on compression of the tensor dimensions
can be used [20]. The study of [37] proposes a general-
ization of the eigenanalysis solution by means of simulta-
neous matrix diagonalization. The convergence can also
be improved by means of enhanced line search [41,42]
or, using a nonlinear optimization algorithm such as
the Levenberg–Marquardt algorithm [43]. The ALS algo-
rithm rapidly converges when one of the three matrix
factors of the model is known. This is typically the case in
the SFSM MIMO system when relying on the knowledge
of the code and spreading matrices (C, �, �).
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After convergence of the ALS algorithm, the estimated
matrix factors Ŝ, Ĉ, and ̂̄H are affected by unknown scaling
factors. In order to eliminate the scaling ambiguity from
the columns of Ŝ, thus leading to an unambiguous sym-
bol recovery, we assume that “all ones” pilot symbols are
introduced at the beginning of the transmission, i.e., at the
first symbol of all the data streams. Mathematically speak-
ing, this means that the first row of the symbol matrix
is given by S1 · =[ 1 1 · · · 1] ∈ C

1×R. A final estimate of
the symbol matrix is therefore obtained in the following
manner:̂̂S = Ŝ

[
D1(̂S)

]−1 ,

where D1(̂S) is the diagonal matrix formed from the first
row of Ŝ.

In principle, the ALS receiver is capable of process-
ing a higher number of users as long as condition (38)
is satisfied. Regarding the computation complexity, three
matrix inverses are performed at each iteration of the
algorithm. The asymptotic complexity is therefore O(R3)
per iteration. Consequently, a joint detection of a very
large number of users can be prohibitive. This is gener-
ally a common limitation of multiuser detection receivers.
Note that the computational complexity can be reduced
if users’ codes are mutually orthogonal. In this case, their
symbol matrices can be estimated separately using (34).

6 Simulation results
We simulated a system operating at a transmission rate of
Rc = 1/Tc = 4.096 × 106 chips per second (cps), using
a total of F = 64 subcarriers divided into μ groups of K
subcarriers each. Note that F = 64 is a fixed parameter,
while K is a transmission design parameter (now repre-
senting the frequency spreading length) that will be varied
in our simulations. Due to subcarrier grouping, at each
symbol period, R symbols belonging to R different data
streams are transmitted using μ groups of K subcarriers.
In all simulations, we assume the transmission of N = 10
symbols per data stream. In order to avoid interference
between adjacent subcarriers, a guard interval in the form
of a CP is appended to each OFDM symbol [5]. Perfect
time and frequency synchronization is assumed. Table 2
summarizes the SFSM MIMO system parameters.

Table 2 System parameters

Chip rate 4.096×106 cps

Number of subcarriers (F) 64

Number of subcarriers per group (K) 2 or 4

Number of subcarriers groups (μ) 32 or 16

CP length 5 (Chan. A)/20 (Chan. B)

Number of symbols per data stream (N) 10

Modulation QPSK

At each run, the transmitted symbols are randomly
drawn from a quaternary phase shift keying (QPSK)
alphabet. The channel is assumed quasi-static, which
means that the channel impulse responses do not change
during the N symbol periods. Each plotted bit error rate
(BER) curve is shown as a function of an overall SNR
measure, given by

SNR = 10 log10

(
‖Y‖2

F
‖B‖2

F

)
where B ∈ C

F×Mr×N×P is the additive noise tensor, whose
entries are circularly symmetric complex Gaussian ran-
dom variables. Note that this SNR measure takes all the
received signal dimensions into account, i.e., the number
F of subcarriers, the number Mr of receive antennas, the
number N of symbol periods, and the spreading length
P. At each run, the additive noise power is generated
according to this SNR measure. The BER curves represent
the performance averaged over the R transmitted data
streams and 1,000 independent Monte Carlo runs.

We adopt two frequency selective channel models for
modeling the channel between each pair of transmit and
receive antennas. Both are ITU’s outdoor-to-indoor mod-
els, and are valid for typical urban propagation environ-
ments: (i) the 4-ray pedestrian channel A and (ii) the
6-ray pedestrian channel B [44]. The channel parameters
are summarized in Tables 3 and 4. Note that, for chan-
nel A, the maximum multipath delay is τmax = 410 ns,
so that the maximum channel impulse response memory
is Lmax = τmax/Tc� = 2 chip samples. We chose a CP
length of 5 chips when considering channel A. For chan-
nel B, the maximum multipath delay is τmax = 3700 ns,
so that maximum channel impulse response memory has
Lmax = τmax/Tc� = 15 chip samples. We chose a CP
length of 20 chips when the channel B is simulated.

In the following simulation results, the maximum num-
ber of iterations allowed for the ALS algorithm is fixed
to 1000. Thus, for each Monte Carlo run, we assume that
the algorithm has converged at the tth iteration when
|e(t) − e(t−1)| < 10−4 for t ≤ 1000, where e(t) is the
error between the received signal tensor and its recon-
structed version obtained from the estimated matrices
Ŝ(t), Ĉ(t), and ̂̄H(t). By exploiting the knowledge of the
spreading codes, convergence is typically achieved within
a few iterations. In a more challenging situation where

Table 3 Parameters of the ITU pedestrian channel A

Path Excess delay (ns) Average relative power (dB)

1 0 0

2 110 −9.7

3 190 −19.2

4 410 −22.8
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Table 4 Parameters of the ITU pedestrian channel B

Path Excess delay (ns) Average relative power (dB)

1 0 0

2 200 −0.9

3 800 −4.9

4 1200 −8.0

5 2300 −7.8

6 3700 −23.9

the spreading codes are unknown, the convergence speed
is much slower. In this situation, we make use of eigen-
analysis to initialize the ALS algorithm [20], and we have
discarded 1% of the total number of runs for the BER
calculation, corresponding to inevitable non-convergent
runs, typical in ALS-type algorithms due to their sensi-
tivity to initialization [40]. As an illustrative example, we
have simulated a system with Mt = Mr = 2, K = 2, P =
8, N = 10, R = Q = 8 (i.e., R(q) = 1, q = 1, . . . , Q)
and SNR = 30 dB. For this system configuration, Figure 3
depicts an histogram of the required number of iterations
for convergence of the ALS algorithm. The histogram was
based on 100 Monte Carlo runs. In this example, 92% of
the runs have converged within the first 1,000 iterations.

6.1 Semi-blind ALS versus ZF receivers
The following simulation results illustrate the perfor-
mance of the SFSM MIMO system using the ALS receiver
described in Section 5.4. The main objectives are

1. To compare the performance of the semi-blind ALS
receiver with that of the perfect ZF receiver;

2. To compare the SFSM MIMO system with other
CDMA–MIMO systems when ALS estimation is
used;
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Figure 3 ALS algorithm: histogram of the number of iterations
for convergence.
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Figure 4 Comparison between semi-blind ALS and ZF receivers.

3. To evaluate the channel estimation accuracy as a
function of the SNR.

All the simulations were performed assuming F = 64
subcarriers divided into groups of K = 2 or K = 4
subcarriers.

As a reference for comparison, in Figure 4, we compare
the performance of the semi-blind ALS receiver with that
of the ZF receiver described in Section 4, which assumes
perfect channel and code knowledge. Our aim is to deter-
mine the performance loss due to semi-blind receiver
processing in the SFSM MIMO system. We assume
Mt = Mr = 2, K = 2, P = 8, N = 10, Q = 4, and
R(q) = 2, q = 1, . . . , 4. We can observe that the perfor-
mance loss of the proposed receiver in comparison with
the perfect ZF receiver is around 5 dB for channel A and
2 dB for channel B, for a BER equal to 10−3. In particu-
lar, the slope of the BER curves is approximately the same,
which means that the proposed receiver presents the same
BER improvement as the ZF receiver as a function of the
SNR. Also, both receivers perform better with channel B
due to the increased multipath diversity.

6.2 Performance for different system loads
The next results illustrate the performance of the pro-
posed receiver for different system loads. From now on,
the ITU channel B is considered in all the simulations. We
assume Mt = 2, K = 2, P = 16, and N = 20 while the
number of users is varied (Q = 4, 6, and 8). Each user
transmits two data streams (R(q) = 2, q = 1, . . . , Q). We
assume Mr = 1 or 2. Note that these configurations are
challenging in terms of receiver spatial diversity, since Mr
is always smaller than Q. Our aim is, therefore, to show
that joint symbol-channel-code estimation is still possi-
ble in this situation thanks to the joint use of SFSM and
PARAFAC modeling. Note that the sufficient uniqueness
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condition (38) is satisfied in the chosen configurations. In
fact, as can be observed from Figure 5, semi-blind recov-
ery of symbol, channel, and codes is achieved even when
Mr = 1. For instance, with Mr = 2 receive antennas,
increasing the number of users from Q = 4 to Q = 6, or
from Q = 6 to Q = 8, implies nearly a 2-dB increase in
the required SNR for a target BER of 10−2. We can also
note that the BER performance is more sensitive to a vari-
ation in the system load when Mr = 2 receive antennas
are used.

6.3 Comparison with the MCDS-CDMA system
The MCDS-CDMA system is a multicarrier extension
of the classical DS-CDMA to frequency-selective chan-
nels, by performing the spreading operation in the time-
domain at each subcarrier [7]. As shown in Section 3.3,
the PARAFAC modeling is also valid to model the MCDS-
CDMA system, which is a special case of the proposed
SFSM MIMO system, where space and frequency spread-
ings are not used (i.e., Mt = 1 and K = 1). We now
compare the performance of both systems using the same
PARAFAC-based ALS receiver with knowledge of the
spreading codes. The perfect ZF receiver was also simu-
lated for both systems as a reference for comparison. By
comparing SFSM with MCDS-CDMA, we can verify the
impact of space and frequency spreadings as a distinguish-
ing feature of the SFSM MIMO system. Here, we assume
Mr = 2, P = 8, N = 50, and Q = 8, each user transmitting
a single data stream (i.e., R(q) = 1, q = 1, . . . , 8). Figure 6
shows the substantial performance gain obtained with the
proposed system, which corroborates the advantages of
space and frequency spreadings. We can also note that the
gap between ALS and ZF receivers is smaller when SFSM
MIMO is used.
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Figure 5 BER versus SNR with semi-blind ALS receiver(different
system loads).
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6.4 Comparison with the SSSMA system
In [10], an MC-SSSMA system was proposed to provide
space and frequency diversities in the forward link of
a MIMO wireless system. The space–frequency spread-
ing model proposed therein is a generalization of [45]
to frequency-selective channels. The multicarrier SSSMA
system has some similarity with the proposed SFSM
MIMO system in the sense that space and frequency-
domain spreadings are performed. In [10], a joint space–
time spreading is used by means of Hadamard codes (its
structure is detailed in [11]), while our approach uses
separate space and frequency spreadings using Vander-
monde codes. In Figure 7, the performances of SSSMA
and SFSM MIMO are compared. We assume Mt = 2
transmit antennas, Mr = 1 or 2, F = 64 and K = 2. For
a fair comparison, we adjust the transmit parameters and
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Figure 7 SFSM MIMO (semi-blind receiver) versus SSSMA
(perfect channel knowledge).
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the modulation to keep the same data rate for both sys-
tems. The SSSMA scheme assumes R = 8, P = 2, and
BPSK. For the proposed SFSM scheme we have R = 4,
P = 4, and 16-QAM. In this case, both schemes have a
rate of 2 bits per channel use. For the SSSMA system, a ZF
receiver with perfect channel knowledge is used. For the
proposed SFSM MIMO system, a semi-blind estimation
without channel knowledge is used. The spreading codes
are assumed to be known at the receiver for both systems.
Note that for Mr = 1, SSSMA exhibits a poor perfor-
mance. This is due to the fact that multiuser detection
in the SSSMA system requires Mr ≥ Mt . This con-
straint is not necessary in the SFSM MIMO system that
makes an efficient use of the frequency diversity to sepa-
rate the transmitted data streams when spatial diversity is
not available at the receiver. For Mr = 2, SSSMA outper-
forms SFSM MIMO over the low-to-medium SNR range.
For higher SNR values, the proposed system has superior
performance. The slope of the BER curves indicates that
the proposed SFSM scheme has a higher diversity gain.

6.5 Channel estimation performance
The channel estimation accuracy of the semi-blind ALS
receiver is now evaluated from a root mean square
error (RMSE) measure obtained from 100 Monte Carlo
runs. The overall RMSE is calculated using the following
formula:

RMSE =
√√√√ 1

100MtMr

100∑
i=1

∥∥∥̂̄H(i) − H̄
∥∥∥2

F
,

where ̂̄H(i) is the channel matrix estimated at the ith
Monte Carlo simulation. The following system configura-
tion is considered for the SFSM MIMO system: Q = 1,
Mt = 2, P = K = 2, R = 4, N = 10, and Mr = 1

or 2. We can observe from Figure 8 that the RMSE has
a linear decrease as a function of the SNR in both cases.
Using Mr = 2 antennas provides a performance gain of
3 dB over the single receive antenna case. Such a gain obvi-
ously comes from the increased receiver spatial diversity
that helps the separation of the data streams, despite the
larger number of parameters to estimate.

7 Conclusion
We have proposed a unified tensor model for MIMO
communication systems with SFSM. The proposed model
unifies several existing multiple-access/multiple-antenna
communication systems. We have shown that the received
signal can be formulated as a trilinear PARAFAC model,
and capitalizing on its uniqueness property we have put
in evidence lower bounds on the design parameters (num-
ber of transmit/receive antennas, subcarriers, symbols per
data stream, and spreading length) for a joint symbol-
code-channel recovery. The obtained conditions help the
understanding of the existing tradeoffs involving space,
frequency, and code diversities that are inherent to the
SFSM MIMO system. The performance of the proposed
receiver using a semi-blind ALS algorithm has been illus-
trated by means of computer simulations under realistic
channel models and system parameters, and a comparison
with other multiple-antenna CDMA-based systems has
been made. Perspectives of this work include an investiga-
tion of the impact of different transmit antenna, spreading
code, and subcarrier allocation schemes on the design and
performance of the proposed tensor-based receiver. We
believe that these features could be integrated into the
SFSM system by modeling the received signals using a
CONFAC tensor model [18]. In this case, identifiability
can be investigated using the recently established results
on the partial uniqueness of constrained tensor decompo-
sitions [46,47]. The impact of non-perfect users’ synchro-
nization on the receiver performance is also a subject for
a future work.

Endnotes
aFor notational convenience, we omit the noise terms

in the following developments. They will be added later,
when the receiver algorithm is presented.

bThis means that any alternative triplet {G̃, S̃, C̃} satisfy-
ing model (19) is related to the true triplet {G, S, C} by the
following equalities: G̃ = G��1, S̃ = S��2, C̃ = C��3,
where � is a permutation matrix and �i, i = 1, 2, 3, are
diagonal (scaling) matrices such that �1�2�3 = IR.

cThe Kruskal-rank of A is equal to κ if every subset of κ

columns of A is linearly independent.
dSee [20,40] for further details about the ALS algorithm.
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