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Abstract

The objectives of this paper are the description of azimuthal instability modes

found in annular combustion chambers using two numerical tools: (1) Large

Eddy Simulation (LES) methods and (2) acoustic solvers. These strong com-

bustion instabilities are difficult to study experimentally and the present study

is based on a LES of a full aeronautical combustion chamber. The LES exhibits

a self-excited oscillation at the frequency of the first azimuthal eigenmode. The

mesh independence of the LES is verified before analysing the nature of this

mode using various indicators over more than 100 cycles: the mode is mostly

a pure standing mode but it transitions from time to time to a turning mode

because of turbulent fluctuations, confirming experimental observationsand the-

oretical results. The correlation between pressure and heat release fluctuations

(Rayleigh criterion) is not verified locally but it is satisfied when pressure and

heat release are averaged over sectors. LES is also used to check modes pre-

dicted by an acoustic Helmholtz solver where the flow is frozen and flames are

modelled using Flame Transfer Function (FTF) as done in most present tools.

The results in terms of mode structure compare well confirming that the mode

appearing in the LES is the first azimuthal mode of the chamber. Moreover, the

acoustic solver provides stability maps suggesting that a reduction of the time

delay of the FTF would be enough to stabilise the mode. This is confirmed with
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LES by increasing the flame speed and verifying that this modification leads to

a damped mode in a few cycles.

Keywords: Acoustics, Large Eddy Simulation, Azimuthal modes, Annular

combustion chambers

1. Introduction

Combustion instabilities in annular chambers of gas turbines constitute a

major issue for many designs: these powerful instabilities often correspond to

azimuthal waves propagating in clockwise and counterclockwise directions in

the annular chamber. They lead to vibrations and structural damage [1, 3, 4].

Predicting them at the design stage remains a scientific challenge because many

fundamental aspects which control these modes are not yet understood.

Combustion instabilities have been studied for a long time [5, 6, 7, 8] but

most academic studies have taken place in simplified configurations which were

easier to study numerically and experimentally. The most important simplifi-

cation to study unstable modes in annular gas turbines is to analyse only one

sector of the combustor, avoiding the complexity of a full annular chamber which

contains typically 10 to 25 sectors. Obviously, this simplification implies sig-

nificant assumptions and therefore some care as the physics of instabilities in a

single burner and in a full combustor with multiple burners may differ signifi-

cantly. Knowing how far the single sector method can be applied to real annular

chambers is an open question.

Typical acoustic analysis tools (also called Helmholtz solvers) applied to

combustion instabilities require the resolution of a wave equation in frequency

or time domain. They assume that the flow is frozen and solve the wave equation

in a non-isothermal flow with impedance conditions on walls, inlets and outlets

to identify eigenmodes [9, 10, 11]. The effect of flames is introduced into acoustic

codes through a FTF (Flame Transfer Function) measuring the flame response

(quantified by the heat release rate fluctuations q′) to a velocity change at

the inlet of the burner u′ [12, 13, 14]. FTFs are complex-valued depending



on frequency. A recent extension of these intrinsically linear methods is the

introduction of FTFs which depend also on the oscillation amplitude: these FDF

(Flame Describing Function) formulations can predict not only the unstable

nature of the modes but also their limit cycle amplitudes [7, 15].

Theoretically, the physics of azimuthal modes in annular chambers should

not differ significantly from other, simpler configurations: the source of unstable

modes in all reacting flows is the well-known flame / acoustics coupling mecha-

nism leading to the various forms of the Rayleigh criterion [5, 10, 16]. Extending

the tools used for simpler burners should be a straightforward task for annular

chambers. In practice however, the models developed for most academic burners

are applicable mainly to longitudinal modes and extending them to the com-

plex modes appearing in real annular chambers is a difficult task. The literature

[3, 1, 17, 18, 19, 20] contains multiple ‘extended’ methods dedicated to annular

chambers which provide the growth rate and the structure of modes (longitu-

dinal or azimuthal). These approaches are usually based on a one-dimensional

network-view of the chamber [9, 21, 3] in which each burner is only influenced

by the flow rate fluctuation it is submitted to by the azimuthal acoustic mode,

locally, all acoustic waves propagate longitudinally. All burners are supposed

to be independent from their neighbours and have the same transfer function,

i.e. flame / flame interactions between neighbouring burners are neglected. This

assumption has been verified numerically in one annular helicopter chamber [22]

but it is not valid in general. In liquid-fueled rocket engines or more generally

in burners containing multiple jets [23], the interaction between neighbouring

flames can lead to instability and transverse modes. This may also happen in

gas turbines and hence invalidate the one-dimensional network approach.

Even for modes where burners can be assumed to respond in a one-dimensional

manner to acoustic perturbations, determining their FTFs remains difficult

[24, 25, 26]. FTFs are the key elements of acoustic solvers for combustion

stability as these solvers require the flame response to the acoustic field as an

input data [11, 10] and the FTF is the most common solution. FTFs depend

on multiple parameters (regime but also pulsation amplitude, wall temperature,



Type Modes Description

1 Standing Pressure nodes are fixed

2 Turning or spinning Pressure structure is turning at the sound speed

3 Rotating Standing mode where the structure slowly rotates

at the azimuthal convective speed

Table 1: A classification of azimuthal modes.

pilot flames, etc) so that an accurate description of FTF is often not available

[27, 28, 7]. A second difficulty is to take into account the complexity of the ge-

ometry [29, 30] which leads to a very large number of possible acoustic modes.

Finally, another difficulty is due to the structure of the azimuthal modes [31]:

while most academic, single sector experiments exhibit longitudinal modes, in

real annular combustion chambers, the first (and sometimes second) azimuthal

acoustic mode is often the strongest mode [18, 1, 32]. Azimuthal modes can

appear as standing or turning (also referred to as spinning) modes and both are

observed in gas turbines. Bifurcations between standing and turning modes may

be due to non-linear effects: [3, 32] propose a non-linear theoretical approach

showing that standing wave modes can be found at low oscillation amplitudes

but that only one turning mode is found for large amplitude limit cycles. Other

explanations can be found in linear approaches: turning modes would appear

only in perfectly axisymmetric configurations while any symmetry modification

would lead to standing modes [33, 34]. [20] suggest that the initial flow condi-

tions might trigger either standing or turning modes and [32, 2] observe that

turbulence can cause random mode switching between standing and turning

structures. Note that experimentalists also observe standing modes which have

a structure that slowly rotates, e.g. the pressure nodes, will turn around the

chamber at a low velocity (typically a convective velocity). We will call these

modes ‘rotating’ and show that they are present in our LES (Table 1).

Validating any theory or acoustic method in the framework of annular cham-

bers remains a challenge: only a few experiments have been conducted in labo-



ratories (T.U. Munich, EM2C Paris) to study azimuthal modes in full annular

chambers because multiburner combustion chamber rigs are expensive and of-

fer limited optical access. A solution was proposed by [35] who studied an

azimuthal system of Rijke tubes where flames are replaced by electric heaters.

An alternative path is to rely on numerical simulation: massively parallel Large

Eddy Simulation (LES), first developed for simple flames [36, 37, 38, 10, 39],

have been used recently for full annular chambers [22, 40, 41] despite the very

high computational cost. The main advantage of LES is that it relies on fewer

modelling assumptions than acoustic models and can correctly predict flame /

flame interactions, limit cycles, wall effects, chemical effects, etc.

An important aspect of all combustion instability studies is control: how

can the combustor design be changed to avoid instability or at least mitigate

its level? Fully active combustion instability control [42, 43, 44] has been suc-

cessfully tested for azimuthal instabilities on certain industrial gas turbines [45]

but its cost and its difficult certification for aero engines make it less attrac-

tive today than trying to understand and avoid azimuthal modes and building

intrinsically stable combustors. Developing an LES which captures unstable

azimuthal modes can then be used to understand the source of the instability

and look for passive stabilisation methods at a reasonable cost.

The present paper describes a LES of azimuthal modes in a realistic he-

licopter annular combustion chamber. The reacting unsteady flow in a full

annular chamber containing fifteen sectors is computed using massively parallel

computers: this compressible simulation uses the exact chamber geometry, a

surrogate fuel model for kerosene, a high-order numerical scheme and a fully

compressible solver to track acoustic waves. It captures the self-excited az-

imuthal modes appearing in the real engine and provides unique insight into

the behaviour of the unstable combustor: the LES reveals that the dominant

mode is a standing azimuthal mode (Type 1 in Tab. 1) submitting sectors located

at axial velocity antinodes to strong flow oscillations and periodic flashbacks.

This mode can also transition to a turning mode (Type 2) for a few cycles and

indicators of the mode nature (Tab. 1) show that during the 100 cycles com-



puted with LES, approximately 20 cycles exhibit a turning (Type 2) structure

while the remaining 80 cycles correspond to Type 3 (standing mode rotating

at a convective velocity). The transition from Type 2 to 3 seems to be caused

by turbulent fluctuations. LES results are also used as the baseline ‘numerical

experiment’ to test other methods. For example, an acoustic solver [46, 30] is

applied to the same configuration and results are compared. The acoustic solver

requires FTFs of single sector flames as input: these FTFs are computed using

LES of a single-sector of the same combustor that also provides fields of average

sound speed. The acoustic solver can provide guidelines to control the instabil-

ity: in the present case, it suggests that the azimuthal mode can be damped by

decreasing the delay of the FTF of a single burner. This is tested successfully

in the LES of the full combustor by increasing the preexponential constant of

the chemical reaction. Even though the mean flame is moderately affected by

the faster chemistry, the unstable azimuthal mode is totally damped and dies in

5 to 8 cycles, confirming that the acoustic solver captures the instability source

and can be used to damp it.

The numerical tools (LES and acoustic solvers) are described in Section 2.

The configuration is presented in Section 3. The LES results for an unstable

mode are presented in Section 4 and the structure of the modes is studied in

Section 5. The transfer function and the Rayleigh criterion are discussed in

Section 6 and Section 7 before presenting the results of the acoustic solver in

Section 8: a stability map is obtained in terms of FTF delay and shows that

the unstable mode should be damped when the delay is reduced below a critical

value τ0. This is done in Section 8.2 where a faster chemistry is used in the LES

and the mode is damped. Appendix Appendix A discusses one important issue

linked to the rest of the work: the specification of acoustic impedances at the

inlet and outlet of the combustor.



2. Description of the numerical tools

Two numerical tools are needed to investigate combustion instabilities in

complex geometry chambers:

• A Large Eddy Simulation (LES) code to explicitly resolve all flame move-

ments in the time domain (Section 2.1)

• An acoustic solver based on frozen mean flow, which provides the fre-

quency and structure of all modes (Section 2.2)

The LES is much more costly than the acoustic computations and very few

LES of full azimuthal chambers have been reported up to now [22, 40, 41].

Combining LES results with the outputs of an acoustic solver allows to further

analyse and understand the LES data.

2.1. LES solver

The LES solver is a fully unstructured compressible code, including species

transport and variable heat capacities [47, 38, 48]. Centered spatial schemes

and explicit time-advancement are used to control numerical dissipation and

capture acoustics. For the present case, a third order accurate in space and time

scheme is employed with a time step limited by the speed of sound, namely the

TTGC scheme [49]. The sub-grid scale viscosity νt is defined by the classical

Smagorinsky model [50], νt = (CS∆)
2
||S||, where ∆ and S are respectively

the the filter characteristic length (approximated by the cubic root of the cell

volume) and the resolved strain tensor. Sub-grid thermal and molecular fluxes

are modelled using an eddy diffusion assumption with constant sub-grid Prandtl

(0.9) and Schmidt (0.9) numbers, respectively.

Characteristic NSCBC boundary conditions [51, 47] are used for inlets and

outlets. Walls are handled with a law-of-the-wall formulation [38]. Multi-

perforated plates are effusion-cooled walls and may be taken into account using

a homogeneous model [52, 53].



The LES solves the compressible Navier-Stokes equations given as

∂w

∂t
+∇ ·F = s (1)

where w is the vector of gaseous conservative variables, F is the flux tensor

composed of viscous, inviscid and subgrid scale components and s is the vector

of source terms. w and s are given respectively by:

w =
(

ρũ, ρṽ, ρw̃, ρẽ, ρỸk

)

(2)

s =
(

0, 0, 0, ω̇T , ω̇k

)

(3)

In Eq. (2), ρ is the density, (ũ, ṽ, w̃) are the velocity components, ẽ = ẽs +

1/2 ũiũi is the total non chemical energy (ẽs is the sensible energy) and Ỹk are

the species mass fractions. Five independent species are solved here (k = 5):

JP10, O2, N2, CO2 and H2O. f̃ denotes Favre filtering. In Eq. (3), combus-

tion terms are the reaction rate ω̇k and the heat release ω̇T , their modeling is

described hereafter.

In the following LES calculations, kerosene is replaced by a synthetic surro-

gate: JP10, which has very similar properties. The reaction rate ω̇k is modelled

by a one-step irreversible Arrhenius law [10] with coefficients fitted from de-

tailed chemistry (composed of 43 species and 174 steps) [54]: JP10 + 14 O2 →

10 CO2 + 8 H2O, using criteria based on laminar flame speed and temperature

[55]. The progress rate of the reaction is written as

Q̇ = A

(

ρYC10H16

WC10H16

)1.5 (
ρYO2

WO2

)0.55

exp

(

−
Ta

T

)

(4)

Reduced one-step schemes guarantee proper flame speed predictions only in the

lean regime (i.e. with equivalence ratios Φ < 1). Such a chemical scheme is not

sufficient for the target configuration since the local equivalence ratio reaches

a wide range of values. To circumvent this shortcoming, the pre-exponential

constant of the one-step scheme A is adjusted as a function of the local equiv-

alence ratio Φ to reproduce the proper flame speed dependency on the rich

side [56, 55, 57].



To handle flame/turbulence interactions in this partially premixed flame, the

dynamically thickened flame model (TFLES) is used [58, 49, 38]. This model

detects reaction zones using a sensor and thickens the flame front by a factor F

in these zones so that it can be solved on the LES grid. The interaction between

turbulence and chemistry at the subgrid level is modelled by an efficiency func-

tion E which compensates the effect of thickening and accounts for the influence

of turbulence on the subgrid turbulent flame speed [58, 59].

2.2. Helmholtz solver

A 3D parallel Helmholtz solver in the frequency domain is used to predict

eigenfrequencies and mode structure assuming that the mean flow is frozen

and that the flame’s effect on the acoustic field can be represented through a

transfer function between velocity and heat release fluctuations [60]. It solves

the eigenvalue problem of a Helmholtz equation with a source term due to the

flames arising from a discretisation on unstructured meshes [30].

Starting from the linearised conservation equations for mass and momentum

in a reactive non-viscous low-Mach flow, one obtains [10]

1

c20

∂p1(x)

∂t
+ ρ0∇u1(x) =

γ − 1

c20
ω̇1T (5)

∂u1(x)

∂t
+

1

ρ0
∇p1(x) = 0 (6)

where ρ0 is the mean density and c0 the sound speed, p1 is the acoustic pressure

fluctuation, u1 the acoustic velocity and ω̇1T the heat release fluctuation.

Assuming harmonic fluctuations, the time-variation of a quantity f can be

expressed as f1 = f ′e−jωt. Combining Eq. 5 and Eq. 6 one yields the Helmholtz

equation, solved in the frequency domain for the pressure oscillation amplitude

p′ at ω = 2πf :

∇ · c20(x)∇p′(x) + ω2p′(x) = jω(γ − 1)ω̇′
T (7)

At this point, the equations cannot be closed without an additional assump-

tion allowing to express the unsteady reaction rate ω̇′

T as a function of the



unsteady pressure. The most classical approach is to introduce a Flame Trans-

fer Function (FTF) linking ω̇′

T to velocity perturbations (which can be obtained

from the pressure gradient) at a given reference point in the burner. The FTF

relates the velocity fluctuations upstream of the flame to the fluctuations of the

heat release via an interaction index nu(x) and a time delay τu(x) [30]:

ω̇′
T

ω̇T
= nu(x)

u′(xref , t− τu(x)) · nref

Ubulk
(8)

where xref is a reference point, located just upstream of the flame, where velocity

fluctuations are measured.

This formulation must be extended for annular combustion chambers that

may be composed of ten to twenty burners. The unsteady reaction rate in each

sector i of the annular combustor is supposed to depend only on the velocity

fluctuations at the reference point xref of this sector. There is one single refer-

ence point for each sector and therefore 15 for the whole combustor. Each point

x in the combustor belongs to a sector i and has an associated reference point

xref (x) in this sector. An important assumption used implicitly in the FTF

approach for annular chambers (and in all models found in the literature) is the

ISAAC (Independence Sector Assumption in Annular Combustors), introduced

by [22, 61]. ISAAC states that the heat release fluctuations in a given sector are

driven only by the fluctuating mass flow rates in the swirler of this sector, which

implies that flames do not interact in the chamber and that the only mechanism

leading to unsteady combustion is the fluctuating longitudinal velocity through

the swirlers. ISAAC is probably not satisfied in all combustors, such as when

flame injectors are close to each other [62] or when flame / flame interactions

are important. However, in most gas turbine chambers, ISAAC seems to be

satisfied and it will actually be verified here using LES (Section 6).

The final Helmholtz equation solved for the pressure fluctuation is:

∇ · c20(x)∇p′(x) + ω2p′(x) =
(γ − 1)

ρ0(x)
nu,i(x)e

jωτu,i ∇p′(xref (x)) · nref (9)

Equation 9 is the general form used in this study but it can be simplified

when flames are compact. For these flames, the acoustic wavelength is much



longer than the flame length and the time delay of Eq. 8 can be assumed to

be constant: τu(x) = τ . In such a situation, the Helmholtz solver can be used

to construct stability maps as a function of the single global delay τ and this

property will be used in Section 8.1.

3. Configuration

The combustion chamber in studied case contains fifteen burners (Fig. 1).

To avoid uncertainties associated with the boundary conditions, especially on

inlet and outlet impedances, the chamber casing is also computed. The com-

putational domain starts after the inlet diffuser and ends at the throat of the

high-pressure stator, which is replaced by a choked nozzle with the same min-

imum section, so that the flow in the outlet zone and the acoustic reflection

at the throat are explicitly computed by the solver. The air and fuel inlets

use non-reflective boundary conditions [51]. The air flowing in the casing feeds

the combustion chamber through the swirlers, cooling films and dilution holes,

which are all explicitly meshed and resolved (Fig. 1). Walls are treated with a

law-of-the-wall approach and multi-perforated plates are modelled by a homo-

geneous model [52, 53]. Pure fuel (JP10) is injected at the outlets of the swirlers

through a circular slit of 2 mm width, with a velocity of 5 m/s (Fig. 1). The

flow is supposed to be gaseous to avoid complexities associated with atomisa-

tion and evaporation. Six different unstructured meshes are used in this study:

a single sector (i.e. only one burner) LES grid, three full annular combustor

LES grids (15 sectors) and a coarse annular grid designed for Helmholtz calcu-

lations (Tab. 2).

The reacting flow in the combustor of Figure 1 is simulated by first com-

puting a single sector, duplicating the result 14 times around the turbine axis

(Fig. 2), and then letting the computation evolve to the most amplified oscil-

lation mode. No forcing is added: the LES captures (if present) the oscillation

modes of the combustor without any external excitation [22].



Figure 1: Gas turbine geometry shown on a single sector. Two points of special interest are

displayed: Probe Bi and the reference point xref,i of the n− τ model used by the Helmholtz

solver.

Figure 2: Geometry along with the mesh.



Domain Number of points Number of tetrahedral cells

Single sector LES 518 649 2 819 176

Full annular LES

Coarse 7 694 265 42 287 640

Medium 16 466 145 93 147 720

Fine 54 954 975 336 078 255

Full annular Helmholtz 362 640 1 684 860

Table 2: Domains and grids: the first five domains are used for LES, Helmholtz simulations

are carried out with the last one.

4. Large Eddy Simulation of azimuthal modes

In most cases, LES results reveal a transient period of growth followed by the

formation of azimuthal modes in the combustion chamber: Fig. 3 displays the

azimuthal velocity measured by a probe located in a zone of the casing where

no significant azimuthal flow should exist. This velocity component starts os-

cillating promptly. A time-frequency analysis, based on wavelet transform, is

performed to analyse the apparition of the mode [63]. Figure 4 shows the time

evolution of the frequency content of the pressure fluctuation signal measured at

probeB1. At the very beginning of the simulation, a frequency of 500 Hz is found

and quickly vanishes, soon replaced by a frequency of 750 Hz. This stems from

the fact that a longitudinal mode at 500 Hz is present in the single sector calcu-

lation. This longitudinal mode disappears and azimuthal modes around 750 Hz

settle when including all the burners in the simulations. These modes cause the

flames to oscillate both azimuthally and longitudinally, creating periodic flash-

backs inside the injectors, as illustrated by Figure 5 (or in the animation avail-

able at elearning.cerfacs.fr/combustion/illustrations/azimut/index.php). Fig-

ure 6 displays the pressure fluctuation spectrum of the probe B1 located in the

combustion chamber and reveals a distinct peak at 750 Hz. The mesh inde-

pendence of the LES was checked on a massively parallel system [31, 64] by

comparing LES obtained on the three meshes with 42, 93 and 330 millions of
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Figure 3: Azimuthal velocity measured by a probe located in a quiet zone of the casing.

cells. Results were very similar: the mode structure was the same so that only

the 42 million cells mesh is considered here.

5. Mean swirl, spinning and standing modes

5.1. A simple model for azimuthal waves

Even though the configuration of the swirlers is axi-symmetric, the swirl di-

rection is the same in each burner and makes one rotation direction preferential,

leading to the existence of a mean swirling velocity Vθ in the whole annular com-

bustor. The azimuthal mode that forms in the chamber is primarily composed

of two waves traveling in different directions. These two components induce a

velocity difference between the co-spinning wave (spinning in the direction of

the swirl induced by the injectors), called here the ”+” wave, and the counter-

spinning one, called the ”-” wave. To first order, the + wave turns at a velocity

c + Vθ where Vθ is the mean swirl velocity and c the mean sound speed in the

chamber while the − wave turns at c−Vθ. The mean swirling velocity Vθ is small

compared to the sound speed c, average typical swirl velocities of 10 m/s are

observed in the LES. This allows the effect of the sound speed to be separated

from the effect of the swirl velocity, the main azimuthal mode is observed at a



Figure 4: Time-frequency analysis for the pressure fluctuations measured at probe B1 (Fig. 1).

Figure 5: Flow visualisation. Left: instantaneous pressure field with pressure contours. Right:

temperature field with temperature contours on a cylindrical plane passing through the Bi

probes.
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Figure 6: Pressure fluctuation spectrum of the B1 probe located in the combustion chamber.

carrier frequency of the order of c/2πR and is modulated by a lower frequency

of the order of Vθ/2πR.

To illustrate this point and ease the interpretation of LES results in the

following, a simple model is described here to express the pressure oscillations

p1 resulting from the combination of the + and − waves in an annulus of radius

R where the period and the angular frequency of the azimuthal mode without

swirling flow are Tazi = 2πR/c = 2π/ω and ω = c/R, respectively. The pressure

signal may then be written as

p1 = p′e−jωt =
[

A+e
j(θ−Vθt/R) +A−e

j(−θ+Vθt/R)
]

e−jωt, (10)

where θ is the angle measuring a point position along the azimuthal direction

(Fig. 2). Note that for a perfectly standing mode (Type 1 in Table 1) A+ = A−

and Vθ = 0, for a turning mode (or spinning mode, Type 2) A− or A+ = 0

and Vθ = 0, and for a rotating mode (Type 3) A+ = A− and Vθ 6= 0. A

dependence on the axial direction x is possible [18, 20] but is not included here,

this simplification will be verified in Section 5.2. The Vθt/R terms are induced

by the mean swirl convection at speed Vθ. They change very slowly compared

to the ωt term so that a structure can be defined for p1 by observing it over

a few periods of the short (acoustic) time: this structure then changes over

long (convective) times. Typically, in gas turbines one can observe standing



azimuthal modes (oscillating at hundreds of Hertz) where the pressure nodes

are rotating very slowly (depending on the configuration, one full rotation could

take a few seconds to as long as a few hours). The period required for a complete

rotation of the structure is 2πR/Vθ or Tazi/Ma, where Ma = Vθ/c is the Mach

number of the swirling flow convective component.

This makes the analysis of azimuthal modes more complicated: a standing

mode (observed over a few periods) can exhibit a structure which rotates slowly

(with the swirl velocity). Such a mode (Type 3 in Table 1) is not a spinning

mode (Type 2) where the pressure field turns with the sound speed and p1 would

be written as p1 = Aej(θ−ωt). When using LES, sampling over very long times

is difficult, and hence observing a full rotation of such a structure is costly. In

the present LES, the oscillations were computed for 153 ms corresponding to

115 cycles of the azimuthal mode but only slightly more than one rotation of

the rotating structure at Vθ. However, as soon as the rotation effect due to the

mean swirl component has been identified, the structure can be studied over a

few periods of the azimuthal mode, knowing that it will rotate with the mean

swirl velocity Vθ if one observes it for a long time. This rotation does not affect

the fundamental mode structure observed at shorter times.

As an example, Figure 7 shows the mode structure (modulus and phase of

p′i
1) computed using Eq. 10 at two instants ti (i = 1, 2) separated by 25 periods

of the azimuthal mode Tazi in a case where A+ = 1, A− = 0.95 and Vθ = 10

m/s:

p′i = A+e
j(θ−Vθti/R) +A−e

j(−θ+Vθti/R), (11)

where t2 = t1 + 25Tazi. As expected, the mode keeps the same structure, very

similar to a standing mode, but it has rotated slowly between the two instants,

shifting the angular position of pressure nodes and antinodes by approximately

π/2.

1The exact expression for the phase φ1 plotted in Figure 7 is the difference between the

argument of p1 (which depends on t in Eq. 10 ) and its value at a fixed θ0 which is fixed here

to θ0 = 0. The plotted phase is φ1 = arg(p1)− arg(p1(θ = 0) = arg(p1) + ωt = arg(p′).
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chamber with R = 0.176 m (radius), c = 790 m/s (sound speed) and Vθ = 10 m/s (average

swirl velocity) (Eq. 10).
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Figure 8: Pressure fluctuations versus time at probe B12.

5.2. Analysis of modes observed in LES

LES results are analysed here over a large number of cycles (100) to inves-

tigate the mode structure. The time evolution of the pressure fluctuations at

probe B12 is displayed in Fig. 8. As expected from Eq. 10, the pressure oscillates

at a frequency of 750 Hz modulated at a much lower frequency. Figure 9 displays

the mode structures obtained at two instants of the simulation t1 = 0.143 s and

t2 = 0.153 s. To construct these structures, seven cycles at 750 Hz are sufficient.

Figure 9 demonstrates that, at this moment of the simulation, a standing mode

is observed and that this standing mode is rotating slowly (Type 3). The rota-

tion velocity is 44 rad/s corresponding to a mean swirl velocity Vθ ≈ 7.8 m/s in

the combustion chamber. This value matches the levels measured in the LES.

Figure 9 can be used to compare full LES data (symbols in Fig. 9) to the

output of the simple analytical model of Eq. 10 (lines in Fig. 9). In the present

case, Eq. 10 matches LES results if A−/A+ = 0.96. Despite its simplicity, Eq. 10

captures almost perfectly the structure of the mode found in the LES (Fig. 9).

This standing mode is rotating slowly because of the mean swirl produced in

the chamber, as predicted by Eq. 10. No purely spinning mode (for which

either A+ or A− must be zero, Type 2) is observed at these instants. [32]

suggest that standing modes are less likely to be found than spinning modes

when the limit cycle is reached, whereas [20] imply that branching between
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Figure 9: LES results: pressure perturbations modulus (left) and phase (right) at two times

t1 = 0.143 s (circles) and t2 = 0.153 s (squares). A fit using Eq. 10 is also added with
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standing or spinning modes might depend on the initial flow field. [34, 2] predict

standing modes in strongly asymmetrical configurations, purely spinning modes

in symmetrical ones and mixed modes in between. They also mention that an

initially standing mode is likely to become a spinning mode when the limit cycle

is reached and that the transient duration significantly varies, depending on the

initial conditions. The model used in these studies considers small perturbations

and, while correctly predicting the stability nature of the system, leads to mixed

standing/spinning modes when including large perturbations. All these models

are based on assumptions about the mode structure and about the link between

heat release and acoustics, which are absent in the present LES that explicitly

resolves the unsteady flames. Both turbulent noise and azimuthal modes are

captured by the LES: Figure 6 reveals high levels of background hydrodynamic

noise that may invalidate the hypothesis of small perturbations used in most

models.



Mode type C(t) |C(t)| Phase of C(t)

Standing A cos(ωt) A|cos(ωt)| constant

Right turning A
2 e

jωt A
2 ωt

Left turning A
2 e

−jωt A
2 −ωt

Table 3: Classification of modes and corresponding C(t) indicator.

Even though Fig. 9 shows a Type 3 mode (standing with a slow convectively

rotating pattern) at times t = 0.143 to 0.153 s, other studies [20, 32, 2] suggest

that this could change with time. To investigate the mode nature over the whole

LES duration, it is possible to use an indicator C(t) as proposed by [65]. Let

us consider an azimuthal mode written as in Eq. 10 and N evenly distributed

probes along θ (Fig. 10). A proper indicator of the mode type can be built as

C(t) =
1

N

N
∑

k=1

p1(θk, t)e
jθk , (12)

where the angles θk are defined as shown in Fig. 10, the signal being measured

by the corresponding Bi probes.

The C(t) indicator reveals the spinning nature of the mode [65]: a constant

indicator modulus identifies a spinning mode, whereas an oscillating indicator

modulus (at a 2ω pulsation) unveils a standing mode. Moreover, the phase

of the indicator is constant for a standing mode and linearly increasing (or

decreasing) with time for a right (respectively left) turning mode (see Table 5.2

and Appendix Appendix B for more details).

The time traces for modulus (Fig. 11) and phase (Fig. 12) of C(t) confirm

the presence of a standing mode, as discussed previously in Section 5, over most

of the LES duration. However, a transition towards a mixed standing/spinning

structure (Type 2) is found between 0.12 s and 0.135 s: the modulus of C(t)

shows reduced oscillation levels (Fig. 11) while its phase clearly unwraps like

−ωt for a period of 15 ms (Fig. 12). Figure 13 compares the mode structures

at t = 0.125 s and t = 0.143 s and validates the fact that the mode type

evolves with time: at 0.125 s, the mode is turning (Type 2), while at 0.143 s



Figure 10: Angular location of the Bi probes considered when building the C(t) indicator,

here shown for 4 angular locations.

it is an almost perfectly standing mode (Type 1). It has been experimentally

reported that both spinning and standing modes are observed [66, 1, 32] and the

present LES exhibits the same behaviour. However, the underlying mechanisms

driving this transition between mode types are still not clear. [20] observe the

standing/spinning behaviour of modes in an axisymmetric annular combustor

with 12 burners. Their low-order model approach [67] suggests that the initial

flow conditions might trigger either standing or spinning modes. Frequency and

stability of the mode are however found to be independent of its spinning nature.

[32] and [2] observe that turbulence can cause random mode switching between

standing and turning structures. The present work supports this observation

but does not bring more insight into the reasons of this mode type change.

Some authors, such as [18, 67, 20], include an axial component to the pressure

waves described by Eq. 10. In the present case, Fig. 14 displays the longitudinal

structure of the modes found by LES and predicted by the Helmholtz solver: it

shows that the longitudinal dependency of the azimuthal mode is weak and can

thus be neglected in this study. The peak that appears at the entrance of the

chamber (normalised distance of 0.12 from the inlet) is not acoustic, but rather

stems from the intense hydrodynamic activity in the swirlers and is not seen in

the pressure amplitude predicted by the Helmholtz solver. Pressure fluctuations

(Fig. 14) are normalised for both LES and acoustic solver so as to be of the same

level in the chamber. The gap between both curves in the casing comes from

differences in the normalisation due to the hydrodynamic content of the flow
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Figure 11: C(t) indicator modulus, considering 12 probes evenly distributed.
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mixed mode) and t = 0.143 s (continuous line, standing mode).
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Figure 14: Longitudinal structure of the azimuthal mode in the LES (continuous line) and

of the first azimuthal mode predicted by the Helmholtz solver (dotted line, see Section 8.1

and Fig ??). The structure is obtained with the measured or predicted values of the pressure

fluctuations in the most fluctuating sector along the line shown on top of a sector geometry

(left).

simulated by LES that is not present in the predictions of the Helmholtz solver.

6. Transfer function

Figure 15 displays instantaneous temperature fields at four different phase

angles for two burners. These fields reveal a similar topology: the flames are

stabilised by a recirculating zone created by the swirling motion imposed by

the swirlers. However, during the oscillations observed in Fig. 8, the flames

flashback periodically in the swirlers: the temperature field for the two burners



displayed in Fig. 15 shows that the flames move during a period of the mode.

The azimuthal mode is transverse (i.e. from left to right in Fig. 15) to the

main direction of the flow and the flames indeed dance from left to right. This

azimuthal movement is spectacular but has a limited effect on the instability.

The important mechanism here is the perturbation of the axial flow rate through

the swirlers, which is induced by the azimuthal mode in the chamber along θ.

This flow rate oscillation controls the reaction rate in front of the burner and is

the source of the instability as expected in the ISAAC assumption introduced in

Section 2.2: Fig. 16 displays variations of flow rate and heat release in various

sectors, confirming that the unsteady reaction rate in each sector is controlled

by the flow rate oscillations through the corresponding swirler. Moreover, the

delay between flow rate and heat release oscillations is the same for all burners

(Fig. 17) and is equal to the value obtained in a pulsated single burner LES,

confirming again the validity of the ISAAC assumption and justifying its use

in Section 8. These flow rate oscillations are the source of the strong back and

forth axial displacement of the flames observed in Fig. 15: at some instants,

they are repelled downstream from the swirler exit (e.g. at phase angle 2) and

later enter the swirler (e.g. left flame at phase angle 3).

7. Rayleigh criterion

The Rayleigh criterion is a common condition used to assess thermo-acoustic

stability [5]. It states that a necessary condition for thermoacoustic coupling is

fulfilled if pressure and heat release fluctuations are in phase:

∫∫∫

V

p1q1dV > 0 (13)

Most analytical models use assumptions to relate p1 and q1. LES is more general

and can be used to assess the validity of these hypotheses. For example, in [2],

a linear dependence between heat release and pressure fluctuations is assumed:

q1 = βp1. To check this assumption, phase-averaging of p1 and q1 was performed

on the LES over 7 periods of the first azimuthal mode. 20 phase instants were
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Figure 15: Instantaneous temperature field shown for 2 burners on a developed surface of a

cylinder passing through the Bi probes. Four phase instants are displayed: top left (0), top

right (π
2
), bottom left (π) and bottom right ( 3π

2
).
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Figure 16: Mass flow rate fluctuations through the swirler (continuous lines) and heat release

fluctuations (dotted lines) for sectors 1, 3, 6 and 10.



1.0

0.8

0.6

0.4

0.2

0.0

151413121110987654321

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Sector

τ
/
T

τ
(m

s)

Figure 17: Time delay between mass flow rate and heat release fluctuations for all sectors (nor-

malised by the first azimuthal mode period). The dashed line represents the value extracted

from a pulsated single burner LES.
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Figure 18: Heat release fluctuations versus pressure fluctuations at 20 phase instants for each

sector. Striped zones indicate a non-fulfilled Rayleigh criterion (p1q1 > 0).

considered by period. Furthermore, the domain is decomposed into 15 sectors,

resulting in 300 fields, each one representing a given sector at a given phase

instant. Spatial averaging is then performed to obtain a point representative

of pressure and heat release fluctuations in each sector at each phase instant.

Figure 18 shows the scatter plot that is obtained and reveals that, while most

points seem correlated, a unique β might not be sufficient to describe the flame.

However, the general linear relationship between p1 and q1 postulated by [2] is

verified. Furthermore, most points comply with the Rayleigh criterion (p1q1 >

0), except those located in the striped zones of Fig. 18.



8. Stability prediction and control

8.1. Stability prediction

The stability of the chamber can also be studied with the Helmholtz solver

described in Section 3 and compared to LES predictions. Acoustic damping by

the multi-perforated plates is included in the Helmholtz calculations through a

homogeneous model [68, 69]. Due to the low Mach number assumption of the

solver, the domain is truncated upstream of the choked nozzle included in the

LES (Fig. 19). Inlet and outlet boundary conditions are set to zero acoustic

velocity (u′ = 0)2. The main inputs for the Helmholtz calculations, namely

sound speed and flame transfer function (FTF), are extracted from a pulsated

3D reactive LES of a single sector, following the procedure described in [70].

Once several periods are simulated with the single sector LES, interaction index

and τ fields are calculated via Direct Fourier Transform (DFT) at the pulsating

frequency f :

nu(x) =

∣

∣

∣

∣

∣

Ω̂(x)

û(x)

∣

∣

∣

∣

∣

and τu(x) =
arg

(

Ω̂(x)
û(x)

)

2πf
(14)

where Ω̂ and û are respectively the DFT of the heat release and velocity fluc-

tuations.

The frequency of pulsation on the inlet is 750 Hz, which is the frequency of

the dominant azimuthal mode in this configuration (Fig. 6). From this single

sector calculation, input fields for the Helmholtz solver are obtained (Fig. 19)

and then duplicated 14 times around the turbine axis to build the full annular

fields. Using a reference point located just upstream of the flame for each

burner (Fig. 1), the flame transfer function is constructed through the local

interaction index field, nu(x) and a delay. This delay can be the local delay

τu(x) obtained by the LES. Another solution is to assume that the flame is

2Appendix Appendix A discusses the use of a complex impedance as inlet boundary

condition.



Figure 19: Sound speed (left) and local interaction index nu (right) fields on a planar cut of

a single sector.

compact enough to have τu(x) = constant = τ . Both methods will be used

throughout this study, respectively called ‘acoustic analysis with local delay’ and

‘with global delay’. An advantage of the latter method is that, by varying the

global delay τ , a stability chart can be built: the left part of Figure 20 displays

the frequency of the first azimuthal mode, corresponding to the real part of

the matching eigenfrequency found by the code. The imaginary part (right

side of Fig. 20) measures the amplification of the mode. Positive amplification

corresponds to an unstable behaviour, whereas negative amplification represents

stable operation. This stability chart offers a qualitative description of the

behaviour of the chamber when varying τ in the limit case of a compact flame.

A discontinuity appears as the mode switches from stable to unstable around

τ = τ0 = 0.6 10−3 s, corresponding to 0.4 Tazi where Tazi is the period of the

first azimuthal mode. The frequency ranges from 570 Hz to 750 Hz, depending

on the delay.

If the flame is compact, its interaction index n and global time delay τ can

be evaluated from the fields of nu and τu:
∫∫∫

V

nu(x)e
jωτu(x)dV = nejωτ (15)

The global time delay τ that would be equivalent to the field of local time

delay τu extracted from the pulsated single sector LES is τ1 = 1.01 10−3 s. This

single sector delay value is also reported on Fig. 17 where it matches the delays
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for the first azimuthal mode.

Mode Frequency (Hz) Amplification (s−1) Structure

1 613 75 Azimuthal

2 621 67 Azimuthal

3 651 -170 Longitudinal

Table 4: Modes found by the Helmholtz solver for τ = τ1 = 1.01 10−3 s.

measured for all sectors in the full annular LES. The acoustic solver (Fig. 20)

predicts this delay to lead to an unstable first azimuthal mode as observed also

in the LES. Table 4 lists the modes found by the Helmholtz solver for τ = τ1

that have a frequency smaller than 1000 Hz. The first two modes are ampli-

fied azimuthal modes that have very close frequencies and amplifications. An

observation of their structures (Fig. 21 and Fig. 22) indicates similar azimuthal

structures with an almost constant modulus of pressure. Mode 1 has an an-

ticlockwise phase whereas mode 2 has a clockwise phase, indicating turning

modes. These two modes correspond to the ”+” and ”-” waves mentioned in

Section 5 and can be combined as a single standing mode, as described in Sec-

tion 5. The third mode is a longitudinal mode (no dependence of the modulus

or the phase with the azimuthal angle θ as defined Fig. 2) that is predicted to

be damped (Fig. 23).
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Figure 21: Mode structure obtained with the Helmholtz solver for the first azimuthal mode

(613 Hz) shown in Table 4: pressure fluctuation modulus (left) and phase (right). Modulus

(solid lines) and phase (dashed lines) in the chamber as function of the azimuthal angle.
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Figure 22: Mode structure obtained with the Helmholtz solver for the second azimuthal mode

(621 Hz) shown in Table 4: pressure fluctuation modulus (left) and phase (right). Modulus

(solid lines) and phase (dashed lines) in the chamber as function of the azimuthal angle.



Figure 23: Mode structure for the longitudinal mode (651 Hz) shown in Table 4: pressure

fluctuation modulus (left, with contours) and phase (right).

8.2. Control of the instabilities by delay tuning

Figure 20 shows that the delay τ of a single burner controls the stability

of the full chamber and suggests that reducing τ would stabilise the azimuthal

mode. This delay measures the time needed for a velocity perturbation at the

reference point to induce a perturbation of heat release. If it is reduced below

τ0, the critical delay for stability, Fig. 20 suggests that the mode should be

damped. This section describes such a stabilisation exercise in which the delay

of all burners will be decreased from τ1 to a value τ2, smaller than the critical

value τ0. In a real combustor, this would require a change of the geometry or of

the fuel characteristics. In the LES, this reduction of τ can be obtained simply

by increasing the preexponential A in the Arrhenius law (Eq. 4) and therefore

the flame speed.

First, a pulsated single sector LES with a preexponential multiplied by four

is carried out in order to extract the delay field τu(x). Using Eq. 15 one obtains a

corresponding global delay τ = 0.69 10−3s, which is close to the stable/unstable

transition found in Fig. 20. Helmholtz calculations are then made, this time



Chemistry Equivalent global delay τ (s) Frequency (Hz) Amplification (s−1)

Standard 1.01 10−3 633 32

Fast 0.69 10−3 650 -11

Table 5: Frequency and amplification of the first azimuthal mode obtained by the Helmholtz

solver for two different chemistries yielding different nu(x) and τu(x) fields.

taking into account the field of local time delay τu(x), for the standard and the

fast chemistry (Table 5). The fast chemistry is predicted to be stable for the

two azimuthal modes, contrary to the the standard one.

Full annular LES are then carried out with the fast chemistry. These calcula-

tions are initialised with fields coming from the standard chemistry full annular

LES. Mean temperature fields for both the standard and the fast chemistry are

displayed Fig. 24. There is no strong evidence of a difference in flame topology,

although some burners in the fast chemistry simulation show a flame that is

anchored somewhat upstream when compared to the standard chemistry.

While the flame positions with the standard and fast chemistries are very

similar, an observation of the magnitude of pressure fluctuations reveals a totally

different behavior between both chemistries (Fig. 25). The standard chemistry

shows a strong level of fluctuations with two nodes and two antinodes, corre-

sponding to the structure displayed on the left part of Fig. 9. On the other

hand, the fast chemistry shows very weak pressure fluctuations. Most of the

fluctuating activity is limited to the swirlers.

To quantify this reduction, merely plotting pressure signals at a local probe

is not sufficient because of the low frequency modulation (Fig. 8) typical of Type

3 rotating modes (Table 1). However, since the mode structure is known, it is

possible to use the indicator C(t) proposed by [65] (Eq. 12). The time evolutions

of this indicator for both standard and fast chemistry, considering 12 angular

locations θk, are displayed in Fig. 26. The fast chemistry simulation, started at

t = 0.136 ms, shows a drastic reduction of pressure fluctuations. After around 6

periods of the first azimuthal mode identified in the standard chemistry annular



Figure 24: Mean temperature on a un-rolled surface of a cylinder passing through the Bi

probes. Top: standard chemistry showing all burners, middle: fast chemistry showing all

burners. On the bottom left, a zoom on two burners is shown for the standard chemistry. On

the bottom right, a zoom on two burners is shown for the fast chemistry.

Figure 25: Magnitude of the pressure fluctuations on a un-rolled surface of a cylinder passing

through the Bi probes. Top: standard chemistry, bottom: fast chemistry.
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Figure 26: C(t) indicator modulus, considering 12 probes evenly distributed, for the standard

(continuous line) and the fast chemistry (dotted line).

LES, the value of C(t) for the fast chemistry is damped by nearly an order of

magnitude. Note also that the fluctuations of the standard chemistry case are

harmonic at a frequency of 1500 Hz, which is twice the frequency of the first

azimuthal mode identified in Fig. 6 due to the construction of the indicator.

The fast chemistry LES on the other hand presents a non-periodic indicator.

Spectra of pressure fluctuations for both chemistries are shown in Fig. 27. A

strong peak appears for the standard chemistry at 750 Hz. On the other hand,

the spectrum obtained with the fast chemistry confirms observations made with

the C(t) indicator and evidences a reduced level of quasi aperiodic fluctuations.

9. Conclusion

This paper describes a compressible Large Eddy simulation of the reacting

flow in a full annular combustion chamber corresponding to a real helicopter

engine. LES captures the azimuthal modes which develop in these chambers,

both in frequency and amplitude range. More than 100 cycles of oscillation

at the dominant first azimuthal mode frequency were computed and analysed:

the observed modes are shown to be a combination of the two first azimuthal
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Figure 27: Pressure fluctuation spectra of the B1 probe located in the combustion chamber

for the standard (continuous line) and the fast chemistry (dotted line).

turning modes of the chamber with no dependance on the axial direction. The

relative amplitudes of the azimuthal modes change with time so that the nature

of the resulting pressure oscillations varies between purely standing and turn-

ing modes. However, the dominant mode is an almost purely standing mode.

Moreover, a mean swirling convection velocity is created within the combustor

so that the acoustic structure rotates slowly (at the mean swirl velocity). LES

was also used to verify typical model assumptions, for example the linear de-

pendance between pressure and heat release fluctuations postulated by [2]: the

Rayleigh criterion was found to be mostly valid over the whole combustor.

In addition to the LES, an acoustic solver was used to compute stability

maps. The results suggest that reducing the flame delay below a critical thresh-

old should be sufficient to stabilise combustion. This was verified in the LES by

artificially increasing the reaction kinetics, leading to a faster flame and a re-

duced flame delay. With this new chemistry, the LES stabilised to an oscillation

free regime in 4 to 6 cycles, confirming the predictions of the acoustic solver.

Despite their costs, these results confirm that LES and three-dimensional

acoustic analysis are powerful tools to investigate combustion instabilities even

in complex geometries such as annular chambers. Embedding these steps at an

early stage of conception will help creating intrinsically stable combustors.
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Appendix A. Acoustic boundary conditions uncertainties and their

influence on Helmholtz calculations

This section discusses the effects of acoustic boundary conditions on the re-

sults of the acoustic solver. These conditions are often difficult to specify: in

a real engine, they are controlled by the compressor and the turbine. In the

present LES, they are imposed by the numerical boundary conditions chosen at

the inlet and outlet. Since the outlet is a choked section, where u′ = 0 is a rea-

sonable approximation in the low frequency limit [71, 72], this section focuses on

the effects of the inlet condition. The frequency found by the Helmholtz solver

for the first azimuthal eigenmode is 615 Hz when u′ = 0 is used on all boundaries

(inlet, outlet and walls). The discrepancy between the 750 Hz frequency mea-

sured in the full annular LES and the eigenfrequency found by the Helmholtz

solver may come from uncertainties on the inlet boundary condition. Numerical

experiments have been conducted without using a FTF (i.e. no modelling of the

flame/acoustic interactions) and the frequency of the first azimuthal mode shifts

from 615 Hz when considering null acoustic velocity on the air inlet (see Fig. 1)

to 770 Hz when considering null acoustic pressure on the inlet. To evaluate

the actual acoustic boundary condition in the full annular LES, the reflection

coefficient R at the inlet is reconstructed from the full annular LES: R = w+

w
−

,

w+ being the acoustic wave that enters the domain and w− the outgoing wave.

Both waves are assumed to be planar waves propagating in the direction normal

to the boundary condition. This reflection coefficient, displayed in Fig. A.28, is

linked to the acoustic admittance Y prescribed in the Helmholtz solver [30]:

Y =
R− 1

R+ 1
=

ρ0c0u
′ · nBC

p′
(A.1)

In the low frequency regime, the inlet boundary condition used in the LES

seems to behave as a null acoustic velocity condition, which can be rewritten

as a Neumann condition for pressure, with the help of Eq. 6: ∇p′ · nBC = 0.

However, in the frequency range of interest for the first azimuthal mode (600-

800 Hz), the inlet condition used in the LES seems to be less reflective.
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Figure A.28: Modulus and phase of the inlet reflection coefficient extracted from the full

annular LES (continuous lines) and from the analytical model (dotted lines).

In the LES, the inlet condition is imposed using the NSCBC method [10]:

the amplitude L5 of the incoming acoustic wave is proportional to u−ut, where

u is the instantaneous local velocity and ut the target local velocity.

This ensures an almost non-reflecting boundary condition while avoiding

drifts in the mean imposed flow [10, 73]. Based on this description, one can

derive the reflection coefficient of the inlet used in the LES in a similar fashion

to the derivation proposed for an outlet in [73]:

R =
L5

L1
=

1

1− 2jρcω
K

(A.2)

Modulus and phase of the inlet reflection coefficient are then respectively:

|R| =
1

√

1 + (2ρcωK )2
(A.3)

Φ = arg(R) = arctan

(

2ρcω

K

)

(A.4)

These are plotted in Fig. A.28 in dotted lines. Both the modulus and phase

of the model agree well with the LES in the low frequency domain, where the

boundary condition behaves acoustically as a totally reflective wall. The model

of Eqs. A.3 and A.4 then becomes less reflective for a much lower frequency

than the reconstructed reflection coefficient, while its phase shifts from 0 to

π/2. An increase is also seen for the phase of the LES reconstructed coefficient,

although the phase reaches π for high frequencies, and even 3π/2 around 750 Hz.

Results for the Helmholtz solver simulations obtained for the different boundary



Boundary condition Frequency (Hz) Amplification (s−1)

u′ = 0 613 75

YLES 630 23

Ymodel 611 29

Table A.6: Frequency and amplification obtained by the Helmholtz solver for three different

boundary conditions: u′ = 0, the admittance derived from the full annular LES reflection

coefficient (YLES) and the admittance obtained for the modelled NSCBC inlet used in the

LES (Ymodel). The global time delay τ is 1.0 10−3 s.

conditions are summarised in Table A.6. Frequencies are found to be fairly close.

The mode is found to be unstable for all boundary conditions, with positive

amplifications. However, while both boundary conditions using admittance are

predicted to have similar amplifications, the u′ = 0 condition is found to be

more amplified.

Appendix B. An indicator for azimuthal mode type

This appendix shows how N pressure probes in an annular chamber can be

used to identify azimuthal modes. An indicator C(t) is defined as:

C(t) =
1

N

N
∑

k=1

p1(θk, t)e
jθk (B.1)

where N evenly distributed pressure signals around the azimuthal direction are

taken into account (Probes are spaced by 2π/N radians). The real valued

pressure signal at probe k can be written as:

p1(θk, t) = Acos(θk − φ(t)) for a turning mode

and

p1(θk, t) = 2Acos(θk)cos(φ(t)) for a standing mode

For a right turning mode: φ(t) = ωt so that

C(t) =
A

2
ejωt (B.2)



C(t) |C(t)| Phase of C(t)

Type 1 or 3 A cos(ωt) A|cos(ωt)| constant Standing

Type 2 Right turning: A
2 e

jωt A
2 Right turning: ωt Turning

Left turning: A
2 e

−jωt Left turning: −ωt

Table B.7: Classification of modes and corresponding C(t) indicator.

For a left turning mode: φ(t) = −ωt and

C(t) =
A

2
e−jωt (B.3)

If the mode is standing, φ(t) = −ωt and

C(t) = A cos(ωt). (B.4)

Table Appendix B summarises how C(t) can be used to identify the nature

of the mode: standing modes (Type 1 or 3) are characterised by a modulus of

C(t) that oscillates with a pulsation 2ω and a constant phase. Turning modes

(Type 2) will lead to a constant modulus of C(t) and a phase that linearly

evolves with time.
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[57] B. Franzelli, E. Riber, M. Sanjosé, T. Poinsot, A two-step chemical scheme

for Large-Eddy Simulation of kerosene-air flames, Combust. Flame 157 (7)

(2010) 1364–1373.

[58] O. Colin, F. Ducros, D. Veynante, T. Poinsot, A thickened flame model

for large eddy simulations of turbulent premixed combustion, Phys. Fluids

12 (7) (2000) 1843–1863.

[59] J.-P. Légier, T. Poinsot, D. Veynante, Dynamically thickened flame LES

model for premixed and non-premixed turbulent combustion, in: Proc.

of the Summer Program , Center for Turbulence Research, NASA AMES,

Stanford University, USA, 2000, pp. 157–168.

[60] L. Crocco, Aspects of combustion instability in liquid propellant rocket

motors. part I., J. American Rocket Society 21 (1951) 163–178.

[61] C. Sensiau, F. Nicoud, T. Poinsot, A tool to study azimuthal and spinning

modes in annular combustors, Int. Journal Aeroacoustics 8 (1) (2009) 57–

68.



[62] T. Poinsot, Analyse des instabilités de combustion de foyers turbulents
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