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Abstract:  
 

The main contribution of this paper is to use homogenization techniques to compute diffusion 

coefficients from experimental images of microbial biofilms. Our approach requires to analyze 

several experimental spatial structures of biofilms in order to derive from them a Representative 

Volume Element (RVE). Then, we apply a suitable procedure on the obtained RVE to compute 

the diffusion coefficients. We show that diffusion coefficients significantly vary with the biofilm 

structure. These results suggest that microbial biofilm structures can favour the nutrient access in 

some cases. 
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1. Introduction 
 

In natural, industrial and clinical settings, bacteria predominantly live in surface-associated 

communities called biofilm (Costerton et al., 1995). These biofilms, like other bacterial 

communities, have an important function in many industrial fields such as wastewater treatment 

(Daims et al., 2000), problem of biocorrosion (Beech and Sunner, 2004), biotechnology (Tijhuis 

et al., 1994; Wanner and Reichert, 1996) or medical science (Donlan and Costerton, 2002; 

Stewart and Costerton, 2001). In many industrial processes, the solute transport constitutes a key-

issue in order to determine their performance. Solutes are mainly transported in bacterial biofilms 

by a combination of advection, convection and diffusion. However, molecular diffusion is the 

main mode of mass transport within bacterial biofilms (De Beer et al., 1994, 1997). A diffusion 

process can be completely defined by the assessment of the effective diffusion tensor Deff that 

characterizes the diffusion process in all directions. 

 

Different experimental studies highlight these diffusion phenomena, often with the aim to 

evaluate the effective diffusion and to understand its impact on bacterial biofilms. They have 

shown that different factors directly influence the nutrient diffusion such as the bacteria strain, 

the reactivity of the solutes or the density of bacteria for example. Different bacteria strains have 

been used such as E. coli (Libicki et al., 1988), Z. ramigera (Beyenal and Tanyolac, 1994). The 

intrinsic cell density varies from a bacteria strain to another and therefore drastically affects the 

calculation of the effective diffusion. For instance, the intrinsic cell density for E. coli is less 

important than the intrinsic cell density for Z. ramigera (Bakken and Olsen, 1983; Bratbak and 

Dundas, 1984) and conduct to a lower value of the effective diffusion. The reactivity of solutes 

has also been studied in order to evaluate its influence on the diffusion process. Matson and 
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Characklis (Matson and Characklis, 1976) have studied the diffusion of glucose through 

microbial aggregates under various experimental conditions. Methanol solutes (La Cour Jansen 

and Harremoes, 1985) or lactate (Dibdin, 1981) solutes have also been used to determine the 

effective diffusion of biofilms. The main conclusion is that the reactivity of the solute has an 

important influence on the diffusion process because some solutes can cross cell membranes and 

diffuse within the cell while others can be excluded by the cell membrane (see (Stewart, 1998) 

for a review of the different experimental measurements of the effective diffusion coefficient). 

Predicting diffusion processes constitute a major industrial and scientific issue. Lamotta 

(Lamotta, 1976) has developed a theoretical model describing diffusion of substrate within the 

film matrix. He computed the effective diffusivity of glucose in biological films and showed that 

the fraction of substrate consumed is directly proportional to the film thickness, when thickness is 

less than a critical value. These different works determine the effective diffusion in biofilms and 

the influence of microscopic structures on the macroscopic behavior of the biofilm (Ochoa et al., 

1986; Ochoa-Tapia et al., 1994; Wood et al., 2001, 2002). The effective diffusion coefficient is 

generally assumed to be a function of both the microscopic diffusions of the extra polysaccharide 

matrix and the cell aggregates (Gujer and Wanner, 1990). The conclusion of several papers is that 

microscopic parameters play an important role on the macroscopic properties of the biofilm, 

especially diffusion (Wood et al., 2001, 2002). 

Bacterial biofilms show very complex heterogeneous structures (Jefferson, 2004; Roszak and 

Colwell, 1987), which are most probably related to their performances in the different industrial 

processes. Therefore, effective diffusion of biofilm is assumed to be a function of both 

microscopic diffusion and microstructure (Fan et al., 1990; Gujer and Wanner, 1990). In the last 

decades, the microscope gave access to the 2D and 3D observations of biofilm structures such as 

regular aggregates (Pamp and Tolker-Nielsen, 2007; Thar and Kuhl, 2005), mushroom shapes 

Author created version of the paper published in Journal of Biological Physics, Sept 2012,  Volume 38, Issue 4, pp 573-588 
Original publication available at http://link.springer.com, DOI: 10.1007%2Fs10867-012-9272-x



(Allesen-Holm et al., 2006; Rieu et al., 2008), holes or labyrinths (Xavier et al., 2009). Moreover, 

new techniques have been coupled with microscope such as fluorescent microscopy (Xavier et 

al., 2009) that shows the location and evolution of bacteria strains in the whole biofilm. The 

freeze substitution technique (Hunter and Beveridge, 2005) also provides images of the biofilm in 

its original state and with finer structural details than a classical confocal microscope. These 

techniques give new means for observing bacteria local behaviours, the detachment process and 

bacteria competition. 

The aim of this study is to show the influence of the spatial structures on the diffusion 

properties of bacterial biofilms. For this purpose, we use a suitable coupling between 

homogenization techniques and experimental images to compute the effective diffusion of 

biofilms. The first part of the paper is dedicated to the description of the experimental set-up in 

order to obtain experimental images. These images have been captured from a previous study 

(Xavier et al., 2009), and are then used to get typical structures which can be found within 

microbial biofilms. The second part of the paper is devoted to homogenization techniques. These 

techniques applied on these experimental images allow us to evaluate the macroscopic nutrient 

diffusion. They imply to define a representative volume element (RVE) and to run a suitable 

coupling between experimental images of biofilm and a finite element (FE) software. Finally, the 

paper focuses on results and on the impact of the spatial structure on the effective diffusion. 

2. Materials and Method 
 

2.1 Experimental set-up 
 

 We use the biofilm images from the paper of Xavier & al. (Xavier et al., 2009), which 

proposes a model of cell growth at a surface, to fit the development of Pseudomonas aeruginosa. 

The experimental setting consists in cultivating a biofilm on glass coverslip submerged in 
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inoculated liquid medium. This setup was incubated for 24h at room temperature in the absence 

of any agitation. Then, the coverslip was extracted and a robust biofilm was visible. Fluorescent 

microscopy of fluorescent protein-labelled biofilm has shown cells in spatial patterns with holes, 

labyrinths or worm-like shapes. The paper investigates how evolutionary competition among 

individuals affects the biological organization. Indeed, the authors highlighted that a competition 

between growth and nutrients competition can explain how observed spatial structures emerge in 

biofilms. Their contribution is to provide a formal link between higher level patterning and the 

potential for evolutionary conflict in social systems. The typical spatial structures of biofilms 

obtained in (Xavier et al., 2009) are represented in Figure 1. Three types of structures can be 

distinguished: "worm-like" (Figure 1-a), "labyrinth" (Figure 1-b) and "dense" (Figure 1-c). 

These three configurations have experimentally been obtained by varying the nutrient 

concentration. These images are continuous in time. The "worm-like" configuration is obtained at 

the beginning of the experience when cells begin to colonize the surface; the nutrient competition 

between cells is very important due to a limited substrate. The biofilm growth is therefore limited 

and small colonies form the biofilm. If we increase the substrate concentration, nutrient 

competition is less important between bacteria, growth becomes heterogeneous in space, circular 

colonies deform due to fingering (Dockery and Klapper, 2002; Xavier et al., 2009) and leads to 

the "labyrinth" configuration. Conversely, if the nutrient concentration is saturated, all bacteria 

have a nutrient access, the nutrient competition is less important; the biofilm growth is fast until 

reaching the "dense" configuration. 

The aim of this work is to evaluate the influence of these spatial structures on the effective 

nutrient diffusion and to give new means on the competition between growth and nutrient access. 

For this purpose, we use homogenization techniques on these experimental images. 
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2.2 Homogenization techniques 
 
2.2.1 Principle 
 

 The main purpose of homogenization techniques is to compute macroscopic properties from 

microscopic properties. These techniques have been successfully addressed in several 

applications, especially in mechanics (Hashin, 1983; Mathias and Tessier-Doyen, 2008). 

Homogenization techniques allow us to scale of physical quantities from the microscale to the 

macroscale. Generally, continuum mechanics deals with the evolution of continuous material 

systems in two or three dimensions and time. One of the most critical elements of the continuum 

approach is the concept of representative volume element (RVE). The RVE is an infinitesimal 

part of the considered system. More precisely, if we denote by L and l the characteristic lengths 

of respectively the structure and the RVE, the condition l << L guarantees the relevance of 

differential calculus. Furthermore, the RVE is expected to be large enough to be representative of 

the constitutive media. 

This property requires the characteristic size l of the RVE to capture the geometrical and 

physical properties of the system. Indeed, if we denote d, the characteristic length scale of the 

local heterogeneities, typically the cell size in a bacterial biofilm, the condition d << l is expected 

to ensure that the elementary volume is representative. In summary, the two conditions on the 

size of the RVE are (see Figure 2): 

 d << l << L (1) 

Relation 1 is often referred as the scale separation condition, which is a necessary condition for 

the concept of RVE to be valid. In order to compute appropriate values of l we perform a 

convergence study by calculating the homogenized parameters following several RVE sizes. 
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2.2.2 Theoretical background 
 

We model the diffusion process with the Fick law in two dimensions (experimental images are 

in two dimensions):  

 cDF ∇−=  (2) 

F corresponds to the diffusive flux vector expressed in mol.µm2− .s 1− , D to the diffusion tensor 

expressed in µm2 .s 1−  and c∇  to the concentration gradient vector expressed in mol. µm4− . In 

this study, we have considered a two-phase system consisting of bacteria (the σ-phase) in the 

domain Ωσ and bulk liquid (the β-phase) in the domain Ωβ (see Figure 3). Then, the diffusion 

process follows the Fick law at the subcellular scale: 

 σσσσ Ω∇− incDF =  (3) 

 in the intercellular phase (σ-phase) and  

 ββββ Ω∇− incDF =  (4) 

 in the extracellular phase (β-phase). 

The idea is to calculate the effective diffusion Deff of the domain Ω defined as follows:   

 cDF eff ∇−=  (5) 

We define the volume average theorem considering that Deff is independent of position:   

 ><>=< cDF eff ∇−  (6) 

with 

 FdsFdsF ∫∫ ΩΩ
+

σβ
>=<  (7) 

 cdscdsc ∇+∇∇ ∫∫ ΩΩ σβ
>=<  (8) 

Then relevant boundary conditions are imposed in order to simplify these equations. These 

boundary conditions can be expressed in terms of homogeneous flux or homogeneous 
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concentration gradient. In the following, concentration gradients macc∇  are imposed at the 

boundary δΩ (see Figure 3). We obtain the relation between c∇  and c using the Gauss theorem:  

 

mac
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mac

ji
mac

jj

c

dxc

dSnxc

dScndc
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∫
∫

∫∫

Ω

Ω

ΩΩ

=

=

=

=
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 (9) 

It yields the following relationship between the microscopic concentration gradient c∇  and the 

macroscopic concentration gradient macc∇  with the average operator:   
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j
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∇

Ω
Ω
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∫

∫

Ω

Ω

=

1
=
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Finally, we can identify Deff as follows:  

 ><= FDc eff
mac −∇  (11) 

In the following, we consider a two-dimensional problem depending on the x- and y-directions. In 

this case, the effective tensor Deff writes as follows:   

 












yy
eff

xy
eff

xy
eff

xx
eff

eff dd

dd
D =  (12) 

  Note that in the case of an isotropic behavior, this tensor is diagonal, with yy
eff

xx
eff dd = . However, 

in the general case, some couplings between the x- and y-directions may occur and it is necessary 

to calculate the complete effective diffusion matrix. Some analytical solutions have been 

developed in the literature in some simple cases (see Section 2.3). These analytical solutions will 

be used as reference solutions in the following. However, in the general case, it is not possible to 

apply these solutions: therefore we use a numerical resolution. 
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2.2.3 Numerical resolution 

We use a numerical procedure to calculate the effective tensor of diffusion Deff on the domain 

Ω. The experimental images constitute our representative volume element (RVE). The images are 

threshold, vectorized and imported on the finite element code Comsol 3.3, and then we perform 

the meshing. The geometry is discretized with 2D triangular elements (see Figure 4). 

In order to determine Deff (see Equation 12), it is necessary to perform two tests for the 

assessment of the effective diffusion coefficients (see Figure 5). For this purpose, we consider a 

square RVE (with the length of the side equal tol ). For the first test, we 

impose: 0=)( 1Lc ,
l

xa
LcLc

*
=)(=)( 42 , aLc =)( 3 , leading to:  

 













∇

0
=1 l

a
cmac

test  (13) 

For the second test, we impose: 
l

ya
LcLc

*
=)(=)( 31 , aLc =)( 4 , 0=)( 2Lc . It leads to:  

 













∇

l

acmac
test

0
=2  (14) 

From these tests and using Equation 11, the components of the effective diffusion matrix are 

calculated as follows:  
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Fl
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 (15) 
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>< i
testkF  corresponds to the numerical integration of the component i  of the vector F  for the 

thk -test. These numerical tests enable us to assess the effective diffusion matrix. In order to 

validate the current procedure and to highlight the influence of the spatial structure, analytical 

solutions are now presented for validating and comparing our approach. 

2.3 Analytical Solutions 
 

As explained in the introduction, different theoretical models have been developed in order to 

calculate the effective diffusion Deff. These models are essentially based on the assumption of a 

uniform distribution of the bacteria. The influence of the spatial structure is neglected in this type 

of model which constitutes a mean field approximation of the effective diffusion in the case of a 

uniform distribution. In the following, we used the Maxwell's solution (Maxwell, 1891) which 

takes the form:  

 β
βσβσ

βσβσ

ρ
ρ

D
DDDD

DDDD
Deff *

)(**2*2

)(**2
=

−−+
−++

 (16) 

with  

 
totS

Sσρ =  (17) 

Sσ is the surface of the σ-phase and Stot is the total surface of the domain. We can also referred to 

the Chang's unit cell (Chang, 1983) where the periodic assumption has been replaced by Dirichlet 

conditions:  

 
ρρ

ρρ

β

σ

σβ

++−

++−

1*)(1

)(1*)(1
=

D

D

DD
Deff  (18) 

 These analytical solutions are used as reference solutions in order to validate the current 

approach and to highlight the influence of the spatial structure. Both analytical solutions can be 
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used in order to calculate effective parameters in two-phase media. They have already been used 

as reference solutions for effective diffusion in the case of bacterial biofilms (Wood and 

Whitaker, 1998; Wood et al., 2002). 

3 Applications 
 
3.1 VER convergence 
 

Representative volume elements (RVE) have to be used for homogenization procedures. If the 

RVE size is too small, it will not be representative. If the RVE size is too big, it will be 

representative but the calculation time will be important. We perform a convergence study to 

determine the suitable size of the RVE. Moreover, we investigate the variation of the 

homogenized parameter, here, the effective diffusion, according to different RVE sizes. On 

Figure 6, we can see different sizes of RVE that we tested. The results obtained on the case of 

labyrinth configuration are presented in Figure 7 as an example. It shows the evolution of xx
effd  

following the surface of the RVE. The "min/max" bar enables us to characterize the scattering of 

the results which is directly linked to the representativeness of the RVE. Indeed, if the minimum 

value is close to the maximum value computed by the current procedure, all RVE lead to the 

same result. In this case, we can conclude that the RVE leads to a good representativeness of the 

volume. This phenomenon is clearly shown on Figure 7. The "min/max" bar is very important for 

small surfaces of RVE, and decreases with respect to the RVE surface. For small surfaces, it 

means that all RVE with this area have homogeneous properties. Moreover, the mean value 

converges for a RVE area superior to 10000 µm2 . In this configuration, i.e. labyrinth 

configuration, we can conclude that a domain with a size of 100 µm by 100 µm is representative. 

In the following, we have therefore performed calculations with a RVE area of 13000 µm2  in 

order to completely minimize the scattering of the results. We performed the same study on the 
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two other configurations (dense and worm-like configurations) and we conclude the RVE is also 

representative with a area of 13000 µm2  for both of them. 

3.2 Calculation of the effective diffusion 
 

Homogenization techniques are now applied on the three biofilm spatial structures that can be 

observed on Figure 1. For the tests described in section 2, we have used a=10 and l=114µm. The 

value of a has no influence on the results because of the linearity of the Fick equation (see 

Equation 2). The length l is directly deduced from the convergence study of the RVE, described 

in the precedent section. 

Afterward, we have to choose the diffusion coefficient of the bacteria and of the bulk liquid. 

Within the bacteria, the diffusion process is limited whereas it is important in the bulk liquid. We 

have decided to impose a value Dσ of the diffusion within the bacteria equal to 1 µm2 .s 1−  and a 

value Dβ of the diffusion in the bulk liquid equal to 100 µm2 .s 1− . The ratio between these two 

coefficients plays an important role and is analysed in section 3.3. 

The idea is to perform the calculation in the case of a negligible diffusion within bacteria. 

Moreover, all following calculations depend on the microbial density. In this study, the microbial 

density varies according to the spatial configuration. Indeed, the density is equal to 0.97, 0.33, 

0.17 for dense, labyrinth and worm-like configurations, respectively. 

We have obtained the following diffusion tensor for the dense configuration:  

 12.sµm
1.130.017

0.0151.13
= −









effD  (19) 

For the labyrinth configuration, calculations lead to:  

 12.sµm
27.160.18

0.1529.94
= −









effD  (20) 

Finally, for the worm-like configuration, we have:  
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 12.sµm
62.611.12

0.8967.58
= −









effD  (21) 

In the case of "dense" configuration, the nutrient concentration is high. There is no nutrient 

competition between cells, the biofilm growth is therefore important and leads to a dense biofilm. 

Indeed, bacteria fill the whole domain; the microbial density (equal to 0.97) is almost maximal. 

Consequently, the effective diffusion is low and the diffusion process has a minor role. Note that 

the value of effective diffusion is close to the parameter of diffusion in the bacteria (Dσ = 1 

µm2 .s 1− ). 

In the case of "worm-like" configuration, the nutrient concentration is limited. The nutrient 

competition between cells is very important and the growth condition is therefore unfavourable, 

small colonies form the biofilm. The bacteria density is low and leads to the higher value of the 

effective diffusion. 

The case of "labyrinth" configuration is an intermediate step between both previous cases. The 

nutrient concentration is higher than the "worm-like" case, there is a nutrient competition 

between bacteria but the growth is heterogeneous in space. The phenomenon of fingering and the 

mechanical pushing lead to this "labyrinth" configuration. The value of effective diffusion is 

between the previous values. The substrate diffusion is facilitated along the direction created by 

both phenomena. However, the substrate diffusion remains lower than in the case of the worm-

like configuration because of the spatial structure and of the higher bacteria density is higher. 

It is interesting to note that for the three spatial structures, non-diagonal terms (xy
effd  and yx

effd ) 

can be neglected in comparison with the diagonal terms. In the case of the "dense" configuration, 

diagonal terms are equal ( yy
eff

xx
eff dd = ). We can consider that the biofilm presents an isotropic 

behaviour in this case. In the case of "labyrinth" (respectively "worm-like") configuration, the 
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biofilm presents an orthotropic behaviour with an orthotropic coefficient equal to 1.10=
yy

eff

xx
eff

d

d
 

(respectively 1.08). This orthotropic behaviour can also be explained by the mechanical pushing 

in the flow direction. Note that the diffusion in the x -direction is higher than the diffusion in the 

y -direction expressing a higher diffusion in the direction of the flow. 

3.3 Sensitivity analysis of the ratio of the microscopic diffusions 
 

In the precedent calculations, we have chosen Dσ =1 µm2 .s 1−  and Dβ =100 µm2 .s 1− . 

However, it is very difficult to measure these values. In order to analyse the influence of these 

values, we perform a sensitivity analysis on the ratio of the subscellular parameters (Dσ / Dβ). We 

have computed the effective diffusion xx
effd  for four values of Dσ (0.1; 1; 5; 10) leading to four 

values of the ratio 
β

σ

D

D
 (0.001; 0.01; 0.05; 0.1). The results are presented on Figure 8. The 

effective diffusion of "dense" configuration is lower than the effective diffusion of the "labyrinth" 

configuration which is lower than the "worm-like" configuration. This is because the bacteria 

density of the "dense" configuration is higher than the bacteria density of the "labyrinth" 

configuration which is higher than the density of the "worm-like" configuration. 

In the "dense" configuration, the numerical results are very close to the Maxwell's model and 

to the Chang unit cell because the spatial structure is very close to a uniform distribution, which 

is the main hypothesis of these analytical solutions (see section 2.3). Moreover, the effective 

diffusion is very close to the bacteria diffusion because of a high density of bacteria. 

Numerical results for the "worm-like" configuration present some differences with the 

analytical results. There is a shift between the models and numerical results are ranged between 

these models. However, there is a low nonlinearity because this configuration presents an 
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orthotropic behaviour. This curve remains enough close to the analytical solutions. It may be 

because the worm-like spatial structure is composed of uniformly distributed cell clusters. This 

uniform distribution can also be explained by the fact that the nutrient competition is very 

important with this configuration and consequently, small colonies remain enough distant from 

each other leading to this uniform distribution. 

When computed numerically, the effective diffusion xx
effd  of the "labyrinth" configuration is 

non linear with respect to the ratio
β

σ

D

D
. Indeed, this configuration presents privileged directions 

due to fingering and mechanical pushing which facilitate the substrate diffusion and create 

orthotropic behaviour. These directions affect drastically the calculation of the effective diffusion 

coefficients. This phenomenon is accentuated for low ratios because the diffusion process is high. 

The higher the ratio
β

σ

D

D
, the closer to the linearity is the curve because the effect of privileged 

directions decreases. Indeed, a ratio close to 1 leads to a homogeneous diffusion in the domain. 

Note also that when the ratio
β

σ

D

D
, tends to 1, all curves reach a value of xx

effd  equal to 100 

µm2 .s 1−  because the diffusion tends to be homogeneous, which decreases the effect of the spatial 

structure. 

These results have clearly shown that the spatial structure influences the nutrient diffusion. 

However, the reaction has to be considered to analyse the competition between growth and 

nutrient access. Indeed, the nutrient concentration widely influences the spatial structures (Xavier 

et al., 2009). The next section focuses on substrate consumption using Monod equation. 
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3.4 Calculation of the substrate consumption ratio 
 

As explained above, experimental spatial structures have been obtained by varying the nutrient 

concentration (Xavier et al., 2009). In this section, we investigate the influence of the initial 

solute concentration 0c  on the substrate consumption ratio. For this purpose, we consider that 

diffusion-reaction phenomena are present in the bacteria clusters. There is no reaction term 

elsewhere. Considering the reaction term R leads to:  

 { σσσ Ω∇∇ inRcD
reactiondiffusion

,=).(
444 3444 21

 (22) 

and  

 βββ Ω∇∇ incD
diffusion

0,=).(
444 3444 21

 (23) 

 

The reaction term R  (mol.µm 3− .s 1− ) is expressed following a Monod equation (Kreft et al., 

2001; Monod, 1942; Picioreanu et al., 2004):  

 
ksc

c
R

+σ

σ
σρµ **=  (24) 

where µ =1 s 1−  and ks =0.5 mol.µm3− . The coefficient µ represents the maximum growth rate 

coefficient expressed in s1− , σρ  the biomass density expressed in mol.µm3−  and ks is the Monod 

coefficient expressed in mol.µm3− . This is also called the half-saturation coefficient because it 

corresponds to the concentration at which is one-half of its maximum. We can assess the 

macroscopic substrate consumption subc  as follows:  

 Ω
Ω ∫Ω

cdcsub

1
=  (25) 

The diffusion parameters are the same as the parameters used in section 3.2. Initial conditions 
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are: 04321 =)(=)(=)(=)( cLcLcLcLc . Figure 9 presents the calculation of the macroscopic 

substrate consumption subc  with respect to the initial solute concentration 0c  for the three 

configurations. 

For <0c  1 mol.µm 3− , nutrient competition between bacteria is very important, biofilm growth 

is therefore difficult, small colonies form the biofilm. The "worm-like" configuration presents the 

higher value of consumption ratio in the case of low initial substrate concentration. Moreover, the 

"dense" configuration has the lowest substrate consumption. We can conclude that the "worm-

like" configuration is optimal for low values of0c . It also corresponds to the results observed in 

experimental studies where the growth is limited by the nutrient access. 

For 1 << 0c 100 mol.µm 3− , the nutrient concentration is too low to generate a dense biofilm 

but high enough to heterogeneously feed bacteria. In this case, the "labyrinth" configuration 

presents a higher substrate consumption than the "worm-like" configuration despite a higher 

density. We can conclude, in this range of values of0c , that the "labyrinth" configuration is the 

most appropriate configuration. It is the optimal organization when the competition between 

growth and nutrient access is important as observed in experimental studies. 

For >0c  100 mol.µm3− , the substrate concentration is high, there is no competition between 

cells. In this case, the initial concentration 0c  is sufficient to feed all bacteria. The substrate 

consumption ratio is therefore the highest with the "dense" configuration. We can conclude that, 

with a saturated substrate concentration, the biofilm growth is maximal with a "dense" 

configuration. 

These results strengthen the experience of Joao & al. and therefore explain the continuity in 

term of spatial structures obtained by increasing the initial substrate concentration (see Figure 1). 
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4 Conclusion 
 

The competition between growth and nutrient access plays a major role in the emergence of 

different biofilm spatial structures and this variety of spatial structures leads to different physical 

properties of the biofilm. In order to explore more deeply this phenomenon, we have proposed a 

numerical procedure investigating the impact of spatial structures on the effective diffusion and 

on the substrate consumption ratio. We have applied this procedure on three kinds of spatial 

structure. The results have shown that the effective diffusion depends on the spatial structure of 

the RVE, the subcellular-scale parameters (Dσ and Dβ) and also the bacterial density in the RVE. 

With the "dense" configuration, the nutrient concentration is important, there is no competition 

between growth and nutrient access, all bacteria have an important nutrient access, the growth is 

maximal and the diffusion process has therefore a minor role. The results are very close to the 

analytical solutions. 

On the contrary, with the "worm-like" configuration, the nutrient concentration is limited, the 

competition between growth and nutrient access is therefore very important. The biofilm is 

composed of small colonies, the diffusion process has a major role. 

The "labyrinth" configuration is an intermediate step, the biofilm growth is heterogeneous. 

Mechanical pushing and fingering lead to this configuration because of the competition between 

growth and nutrient access. The labyrinth configuration has shown a good compromise between 

the diffusion and the substrate consumption. 

The calculation of effective diffusion coefficients has shown an orthotropic behaviour of the 

structures in the case of "worm-like" and "labyrinth" configurations. In these cases, the 

mechanical pushing and the fingering lead to a configuration with privileged directions and to 

higher values of effective diffusion in the direction of the flow. This orthotropic behaviour 
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explains the non linear evolution of the effective diffusion following the microscopic diffusion 

coefficients. 

It is interesting to note that the conclusions of Xavier & al. (Xavier et al., 2009) in terms of 

nutrient competition and biofilm growth clearly correspond to these results in terms of effective 

diffusion and substrate consumption ratio. We have provided a link between nutrient competition, 

biofilm growth and effective diffusion in the spatial structure of bacterial biofilms. 

Moreover, this study has highlighted the importance of the bacteria density on the calculation 

of effective diffusion coefficients and on the substrate consumption ratio. It seems to be 

interesting to compare the value of effective diffusion of spatial structures with the same density 

in order to clearly distinguish the effect of the spatial structure and the effect of the density. 
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Figure  2: Schematic description of the homogenization process 
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Figure  3: Subcellular-scales 
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Figure  4: Numerical flowchart 
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Figure  5: Boundary conditions for the RVE 
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Figure  6: RVE convergence: different sizes have to be tested in order to 
determine the suitable size. 
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Figure  7: Convergence study 
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Figure  8: Sensitivity analysis 
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Figure  9: Variation of the substrate consumption ratio 
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