
HAL Id: hal-00801813
https://hal.science/hal-00801813v1

Submitted on 18 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Healthcare trajectory mining by combining
multidimensional component and itemsets

Elias Egho, Chedy Raïssi, Dino Ienco, Nicolas Jay, Amedeo Napoli, Pascal
Poncelet, Catherine Quantin, Maguelonne Teisseire

To cite this version:
Elias Egho, Chedy Raïssi, Dino Ienco, Nicolas Jay, Amedeo Napoli, et al.. Healthcare trajectory mining
by combining multidimensional component and itemsets. ECML-PKDD 2012, Sep 2012, Bristol,
United Kingdom. p. 116 - p. 127. �hal-00801813�

https://hal.science/hal-00801813v1
https://hal.archives-ouvertes.fr


Healthcare Trajectory Mining by Combining
Multidimensional Component and Itemsets
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Abstract. Sequential pattern mining is aimed at extracting correlations
among temporal data. Many different methods were proposed to either
enumerate sequences of set valued data (i.e., itemsets) or sequences con-
taining multidimensional items. However, in real-world scenarios, data
sequences are described as events of both multidimensional items and
set valued information. These rich heterogeneous descriptions cannot be
exploited by traditional approaches. For example, in healthcare domain,
hospitalizations are defined as sequences of multi-dimensional attributes
(e.g. Hospital or Diagnosis) associated with two sets, set of medical pro-
cedures (e.g. { Radiography, Appendectomy }) and set of medical drugs
(e.g. { Aspirin, Paracetamol }) . In this paper we propose a new approach
called MMISP (Mining Multidimensional Itemset Sequential Patterns) to
extract patterns from a complex sequences including both dimensional
items and itemsets. The novelties of the proposal lies in: (i) the way in
which the data can be efficiently compressed; (ii) the ability to reuse
and adopt sequential pattern mining algorithms and (iii) the extraction
of new kind of patterns. We introduce as a case-study, experimented on
real data aggregated from a regional healthcare system and we point
out the usefulness of the extracted patterns. Additional experiments on
synthetic data highlights the efficiency and scalability of our approach.

Keywords: Sequential Patterns, Multi-dimensional Sequential Patterns,
Data Mining

1 Introduction

Data warehouses are constituting a large source of data that can be used to ex-
tract information for expert analysis and decision makers [5]. In temporal data
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warehouses, every bit of information is associated with a timeline describing a
total order over events. This total ordering introduces complexity in the extrac-
tion process. Many efficient approaches were developed to mine these patterns
(i.e., sequential patterns) like PrefixSpan [9], SPADE [17], ClosSpan [14],...etc.
However, all these techniques and algorithms, without any exception, focus solely
on sequences of set valued data (i.e., itemsets) and do not pay attention to real-
world data that is described over multiple dimensions. To overcome this problem,
Pinto et al. [10] introduced the notion of multi-dimensionality in sequences and
proposed an efficient algorithm. Later works, like Zhang et al. [18] or Yu et al.
[16] extended the initial Pinto’s approach for different scenarios and use-cases.
While in set valued approaches the events are represented by itemsets, in multi-
dimensional temporal databases the events are defined over a fixed schema where
all attributes appear in the extracted patterns. Furthermore, and this is particu-
larly true in the data warehouse environment, background knowledge is usually
available and can be represented as a hierarchy over the values of the attributes.
Taking advantage of this observation, Plantevit et al. introduced M3SP [11], an
efficient algorithm that is able to incorporate different dimensions and their tax-
onomies in the sequential pattern mining process. The benefit of this approach
is to extract patterns with the most appropriate level of granularity. Still, this
ideal representation of data is uncommon in real-world applications where het-
erogeneity is usually elevated to a foundational concept. In this study, we focus
on extracting knowledge from medical data warehouse representing information
about patients in different hospitals. The successive hospitalizations of a patient
can be expressed as a sequence of multidimensional attributes associated with a
set of medical procedures and a set of medical drugs. Our goal is to be able to
extract patterns that express patients stays along with combinations of proce-
dures over time. This type of pattern is very useful to healthcare professionals
to better understand the global behavior of patients over time. Unfortunately
this kind of complex data cannot be mined by any traditional sequential pattern
approach. In this paper, we propose a new method to extract patterns from se-
quences which include multidimensional items and itemsets at the same time.
In addition, the proposed approach incorporates background knowledge in the
form of hierarchies over attributes.
The remainder of this paper is organized as follows, Section 2 describes the ex-
isting work in the classical and multidimensional sequential patterns. Section 3
introduces the problem statement as well as a running example. The method for
extracting multidimensional itemset frequent patterns is described in Section 4.
Section 5 presents experimental results from both quantitative and qualitative
point of views and Section 6 concludes the paper.

2 Related Work

Let I be a finite set of items. An itemset X is a non-empty subset of I. A
sequence S over I is an ordered list 〈X1 · · ·Xn〉, where Xi (1 ≤ i ≤ n, n ∈ N) is
an itemset. A sequence T = 〈Y1 · · ·Ym〉 is a subsequence of S = 〈X1 . . . Xn〉,
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denoted by T � S, if there exist indices 1 ≤ i1 < i2 < · · · < im ≤ n such
that Yj ⊆ Xij for all j = 1 . . .m and m ≤ n. S is said to be a supersequence
of T . Let SDB = {S1, S2 . . . Sn} be a database of sequences. The support of a
sequence s in D is the proportion of sequences of D containing s. Given a minsup

threshold, the problem of frequent sequential pattern mining consists in finding
the set FS of sequences whose support is not less than minsup. Following the first
work of Agrawal and Srikant [1] and the Apriori algorithm, many studies have
contributed to the efficient mining of sequential patterns. The main algorithms
are PrefixSpan [9], SPADE [17], SPAM [3], PSP [8], DISC [4], PAID [15], FAST
[12]. All of these algorithms aim to discover sequential patterns from a set of
sequences of itemsets.

Usually, the information in a sequence is based on several dimensions. Pinto et
al [10] propose the first work by including for mining multidimensional sequential
patterns, by including dimensions in the first or the last itemset of the sequence.
But this works only for dimensions that remain constant over time, such as
gender of the patient. Among other proposals addressed in this area, Yu et al
[16] consider multidimensional sequential pattern mining in the web domain.
Here, dimensions are pages, sessions and days. They present two algorithms:
AprioriMD and PrefixMDSpan.

in real world applications, each dimension can be represented at different
levels of granularity, by using a taxonomy. The interest lies in the capacity of
extracting more or less general/specific sequential patterns and overcome prob-
lems of excessive granularity and low support. Although Srikant and Agrawal
[13] combined the use of hierarchy of values in the extraction of association rules
and sequential patterns, their approach is not scalable in a multidimensional con-
text. Han et al [7] proposed a method for mining multiple level association rules
in large databases. But their approach could not extract patterns containing
items from different levels in the taxonomy. Appice et al [2] proposed SPADA,
an algorithm for discovering multi-level spatial association rules. Plantevit et al
[11] proposed M3SP , an algorithm taking both multilevel and multidimensional
aspects into account. M3SP is able to find sequential patterns with the most ap-
propriate level of granularity. Egho et al [6] proposed an extension for M3SP for
extracting both general and specific sequences, they iteratively applied M3SP ,
decreasing threshold by one objects at each step. Their proposition allows the
extraction of more interesting sequences than using a single minsup threshold.

3 Problem Statement

In this section we list some preliminary definitions needed to formalize the prob-
lem. First of all, we introduce a motivating example from a real data set related
to the PMSI (Program of medical information systems). This French nationwide
information system describes hospital activities from both economical and medi-
cal points of view. In this system, each hospitalization is related to the recording
of administrative, demographical and medical data. Let SDB be a database of
multidimensional itemsets data sequences. Figure 1 illustrates such a database.
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Patients Trajectories
P1 〈(UHParis, C1, {p1, p2}, {drug1, drug2}), (UHParis, C1, {p1}, {drug2}), (GHLyon, R1, {p2}, {drug2})〉
P2 〈(UHParis, C1, {p1}, {drug2}), (UHParis, C1, {p1, p2}, {drug1, drug2}), (GHLyon, R1, {p2}, {drug2})〉
P3 〈(UHParis, C1, {p1, p2}, {drug1, drug2, drug3}), (GHLyon, R1, {p2}, {drug2, drug4})〉
P4 〈(UHParis, C1, {p2}, {drug1, drug2}), (UHParis, R2, {p3}, {drug2}), (GHLyon, R2, {p2}, {drug3})〉

Fig. 1. An example of a database of patient trajectories

Definition 1. (Dimensions and specialization down(d)) A dimension (D,6) is
a partially ordered set where D is the set of all items of dimension. For a given
d ∈ D, down(d) (resp. up(d)) denotes the set of all specializations {x ∈ D|x 6 d}
(resp. generalizations {x ∈ D|d 6 x}) of d.

Example 1. Figure 2 shows two dimensions (hospital and diagnosis). For hospi-
tal dimension,Dhospital = {Thospital, UH,GH,UHParis, UHNancy, GHParis, GHLyon}
and UHParis ∈ down(UH) as UHParis is a direct descendant of UH.

University	  Hospital	  (UH)	   General	  Hospital	  (GH)	  

UHParis	   UHNancy	   GHLyon	  GHParis	  

Respiratory	   	  Cancer	  

	  Pneumoni;s	  (R1)	   Asthma	  (R2)	   	  Breast	  Cancer	  (C2)	  	  	  Lung	  Cancer	  (C1)	  

Hospitals	   Diseases	  

Thospital	   Tdisease	  

Fig. 2. Hospital and diagnoses taxonomies

By taking into account the multidimensional items and the sets of items, we
define an event as follows.

Definition 2. (Event) An event e = (d1, ..., dn, itemsetn+1, ..., itemsetn+m) is
a vector of n multidimensional items and m sets of items where di ∈ Di, i =
1, · · · , n. Given two events e = (d1, ..., dn , itemsetn+1, ..., itemsetn+m) and e′ =
(d

′

1, ..., d
′

n , itemset
′

n+1, ..., itemset
′

n+m), e is more general than e′, denoted by
e′ ≤e e, if and only if:

– ∀ i ; 1 6 i 6 n ; d′i ∈ down(di).

– ∀ j ; 1 6 j 6 m ; itemsetn+j ⊆ itemset
′

n+j.

Example 2. e′ = (UHParis, C1, {p1, p2, p3}, {drug2, drug3, drug4}) is an event,
where:

– UHParis, C1 are two multidimensional items representing the two dimensions
(hospital and diagnosis).

– {p1, p2, p3}, {drug2, drug3, drug4} are two sets of items representing the med-
ical procedures and the medical drugs.

The event e = (UH, Tdisease, {p1, p2}, {drug2, drug3}) is more general than e′,
e′ ≤e e, because of:
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– UHParis ∈ down(UH) and C1 ∈ down(Tdisease).
– {p1, p2} ⊆ {p1, p2, p3} and {drug3, drug4} ⊆ {drug2, drug3, drug4}.

A multidimensional itemsets data sequence is composed of events.

Definition 3. (Multidimensional Itemsets Sequence) A multidimensional item-
sets sequence s =< e1, e2, ..., el > is an ordered list of events ei. Given two mul-
tidimensional itemsets sequences s =< e1, e2, ..., el > and s′ =< e′1, e

′
2, ..., e

′
l′ >,

s is more general than s′, denoted by s ≤s s
′, if there exist indices 1 ≤ i1 < i2 <

... < il ≤ l′ such that ej ≤e e
′
ij

for all j = 1 . . . l and l 6 l′.

Example 3. The multidimensional itemsets sequence s = 〈(UHParis, C1, {p1, p2},
{drug1, drug2, drug3}), (GHLyon, R1, {p2}, {drug2, drug4})〉 is a sequence of two
events. It expresses the fact that a patient was admitted to the University Hos-
pital of Paris UHParis for a lung cancer C1, underwent procedures p1 and p2
and was treated with {drug1, drug2, drug3}, then he went to the General Hospi-
tal of Lyon GHLyon for pneumonitis R1 where he underwent procedure p2 and
received {drug2, drug4} .

The sequence s′ = 〈(UHParis, Cancer, {p1}, {drug1, drug2})〉 is more gen-
eral than s, s ≤s s

′, because (UHParis, C1, {p1, p2}, {drug1, drug2, drug3}) ≤e

(UHParis, Cancer, {p1}, {drug1, drug2}).

Definition 4. (Patient Trajectory) A patient trajectory is defined as a multidi-
mensional itemsets sequence.

Example 4. In Table 1, the multidimensional itemsets sequence s = 〈(UHParis

, C1, {p1, p2}, {drug1, drug2}), (UHParis, C1, {p1}, {drug2}), (GHLyon, R1, {p2} ,
{drug2})〉 represents the trajectory for the patient P1.

Let supp(s) be the number of sequences that includes s in SDB . Furthermore
σ be a minimum support threshold specified by the end-user.

Definition 5. (Most Specific Frequent Multidimensional Itemsets Sequence) Let
s be multidimensional itemsets sequence, we say that s is the most specific fre-
quent multidimensional itemsets sequence in SDB, if and only if: supp(s) ≥ σ
and @s′ ∈ SDB, where supp(s) = supp(s′) and s ≤s s

′.

The problem of mining multidimensional itemsets sequences is to extract
the set of all most specific frequent multidimensional itemsets sequence in SDB

such as supp(s) ≥ σ. By using the dimensions we can extract general or specific
patterns and overcome problems of excessive granularities and low supports.

Example 5. Let σ = 0.75 (i.e. a sequence is frequent if it appears at least three
times in SDB). The sequence s1 = 〈(UHParis, C1, {p1, p2}, {drug1, drug2}),
(GHLyon, R1, {p2}, {drug2})〉 is frequent. s2 = 〈(UH,Cancer, {p1, p2} , {drug1,
drug2}), (GH,Respiratory, {p2}, {drug2})〉 is also frequent. Nevertheless, s2 is
not kept since it is too general compared to s1.
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4 Mining multidimensional itemsets sequential patterns

In this section, we present the MMISP (Mining Multidimensional Itemsets Se-
quential Patterns) algorithm for extracting multidimensional itemsets sequential
patterns with different levels of granularity over each dimension. MMISP follows
a bottom-up approach by first focusing on extracting frequent multidimensional
items that can exist at different level of granularity, then it considers the item-
sets part of the events and compute the support of every item is SDB for each
itemset. After these two steps, frequent multidimensional items and frequent
itemsets are combined to generate events. In the final step, the frequent events
are mapped to a new representation and a standard sequential mining algorithm
is applied to enumerate multidimensional itemsets sequential patterns.

In the next subections, we provide the details of each step of our work and
discuss the different challenges.

4.1 Generating frequent multidimensional items

MMISP starts by processing the n multidimensional items of the events in the
sequences. Basically it considers three types of dimensions: a temporal dimen-
sion Dt, a set of analysis dimension DA and a set of reference dimension DR.
MMISP splits SDB into blocks according to dimension DR. Then, MMISP sorts
each block according to the temporal dimension Dt. This is a classic way of
partitioning the database and was introduced in [11]. The tuples of n multidi-
mensional items appearing in an event are defined w.r.t. analysis dimensions DA.
The support of n multidimensional items is computed according to dimension of
DR. It is the ratio of the number of blocks supporting the n multidimensional
items over the total number of blocks.

Date Hospital Diagnosis
1 UHParis C1

2 UHParis C1

3 GHLyon R1

Block: Patient1

Date Hospital Diagnosis
1 UHParis C1

2 UHParis C1

3 GHLyon R1

Block: Patient2

Date Hospital Diagnosis
1 UHParis C1

2 GHLyon R1

Block: Patient3

Date Hospital Diagnosis
1 UHParis C1

2 UHParis R2

3 GHLyon R2

Block: Patient4

Fig. 3. Block partition of the database according to DR={Patient}

Example 6. In the running example, H (hospitals) and D (diseases) are the
analysis dimensions, Date is the temporal dimension, and P (patients) is the
reference dimension. By using P (patients) to split the dataset, we obtain four
blocks defined by Patient1, Patient2, Patient3 and Patient4 as shown in Fig-
ure 3.
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To simplify our works we will represent the n multidimensional items of the
event as follows:

Definition 6. (multidimensional component) Given a dimension (D,6), a mul-
tidimensional component over D, denoted (mdc,6mdc), is a tuple (d1, ..., dn)
where di ∈ D, i = 1, · · · , n. For two given multidimensional components mdc =
(d1, ..., dn) and mdc′ = (d′1, ..., d

′
n), mdc′ 6mdc mdc denotes that mdc is more

general than mdc′, if for every i = 1, ..., n, d′i ∈ down(di).

Example 7. Let (UHParis, Lung Cancer) and (UH, Cancer) be two multidi-
mensional components. (UHParis, Lung Cancer) 6mdc (UH, Cancer) because
UHParis ∈ down(UH) and Lung Cancer ∈down( Cancer).

The first steps in MMISP is generation all the frequent multidimensional
components. This generation is given by the product of all partially ordered
sets of the dimensions. The result of this product is a semilattice which has a
top element (T1, ..., Tm) and each node in this semilattice is a multidimensional
component. Extracting only the frequent multidimensional components can be
done by choosing minsup and building the iceberg semi-lattice. The iceberg semi-
lattice is a semi-lattice where its elements have a support greater than minsup.
Figure 4 shows iceberg semi-lattice generated by the product of the two partially
ordered sets (hospital and diagnosis) in Figure 2 with minsup= 3

4 patients.

(Thospital,Tdisease)	  

(UH,Tdisease)	   (GH,Tdisease)	   (Thospital,Respiratory)	  (Thospital,Cancer)	  

(UHParis,Tdisease)	   (UH,	  Cancer)	   (GHLyon,Tdisease)	   (GH,	  Respiratory)	   (Thospital,R1)	  (Thospital,C1)	  

(UHParis,	  Cancer)	   (UH,	  C1)	   (GHLyon,	  Respiratory)	   (GH,	  R1)	  

(UHParis,	  C1)	   (GHLyon,	  R1)	  

Fig. 4. Iceberg semilattice generated by the product of the two partially ordered sets
(hospital and diagnosis) in Figure 2 with minsup= 3

4
patient

Handling the product of several partial order sets is a cumbersome process.
The result of a product is exponential in the number of partial order sets and
the cardinality of each set. So, we present a simple and efficient algorithm to
generate all frequent multidimensional components.

Following the previous partitioning, algorithm generates all the frequent mul-
tidimensional components as follows: firstly, we generate the most general multi-
dimensional component, that is (T1, ..., Tn). In our running example, we have two
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dimensions (hospital and disease), so the most general multidimensional compo-
nent is (Thospital, Tdisease). Then, the algorithm generates all multidimensional
components of the form (T1, ...Ti−1, di, Ti+1, ..., Tn) where di ∈ down(Ti). We
take only the frequent multidimensional component which has support greater
than σ. In the running example and for σ = 75% (3 blocks from 4), there are
four new frequent multidimensional components: (UH, Tdisease), (GH,Tdisease),
(Thospital, Respiratory) and (Thospital, Cancer).

The recursive generation of the new multidimensional components contin-
ues by using each previously generated frequent multidimensional component
(a). This is done with an indexing method that identifies an integer z which
is the position of the last dimension in a and is not top T . For example if
a=(UH, TDisease), z is equal to one, which is the first dimension (hospital)
because the value for the hospital dimension (UH) and the second dimension
(disease) has the value Tdisease.

For each dimension dk in a, where k ∈ [z,m], we replace dk with each of its
specialization from the set down(dk). For example, if a=(UH, TDisease), we have
z=1 and we can generate four newmdcs: {(UHParis, TDisease), (UHNancy, TDisease),
(UH, Respiratory), (UH,Cancer)}. The first and the second multidimensional
components are generated by replacing UH by down(UH) = {UHParis, UHNancy},
the third and the forth multidimensional components are generated by replacing
TDisease by down(TDisease) = {Respiratory, Cancer}.

At each step, we select only the frequent multidimensional components. For
our previously example with σ = 75%, {(UHParis, TDisease), (UH,Cancer)} are
the new frequent multidimensional components generated by (UH, TDisease).

Finally, from all frequent multidimensional components generated, we select
only the most specific multidimensional component.

Definition 7. (Most specific multidimensional component) Let a be multidi-
mensional component, we can say that, a is the most specific multidimensional
component, if and only if @ a′ multidimensional component, where supp(a) =
supp(a′) and a′ 6mdc a.

Frequent multidimensional component
(UHParis,C1)
(GHLyon,R1)

Table 1. The most specific frequent multidimensional components

Example 8. Figure 5 illustrates the generation of all frequent multidimensional
components on the running example with σ = 3

4 . The most specific components
are (UHParis,C1) and (GHLyon,R1).

4.2 Generating Frequent Itemsets

In this step, MMISP focuses onm itemsets part of the events, (d1, ..., dn, itemsetn+1

, ..., itemsetn+m). We will study separately each itemset in this part. Basically,
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(Thopital, Tdisease) 
 

(UH, Tdisease) 

(GH, Tdisease) 

(Thopital, Respiratory) 

(Thopital, Cancer) 

(UHParis, Tdisease) 

(UH, Cancer) 

(GHLyon, Tdisease) 

(GH, Respiratory) 

(THopital, R1) 

(THopital, C1) 

(UHParis, Cancer) (UHParis, C1) 

(UH, C1) 

(GHLyon, Respiratory) (GHLyon, R1) 

(GH, R1) 
4	  
	  

4	  
	  4	  
	  
4	  
	  
4	  
	  

4	  
	  4	  
	  

4	  
	  4	  
	  

3	  
	  

4	  
	  

3	  
	  

4	  
	  

4	  
	  

4	  
	  

4	  
	  

3	  
	  

	  
	  

Frequent multidimensional 
Component 

The most specific frequent 
multidimensional Component 

Support 

Fig. 5. Frequent multidimensional components generation

this step aims at extracting the set of all items that are frequent in a se-
quence of length 1. Recall that, in level-wise approaches, either itemset-extension
or sequence-extension can be considered. For example, if we have a sequence
s1 = 〈{1, 2, 3}〉, then s2 = 〈{1, 2, 3}{4}〉 is an extended sequence of s1 and
s3 = 〈{1, 2, 3, 4}〉 is an itemset-extended sequence of s1. In our context we only
consider itemset-extension. This task can be easily done by adapting any stan-
dard sequential pattern algorithm to extract only the sequence of length 1.

Patients Sequences of medical procedures
P1 〈{p1, p2}{p1}{p2}〉
P2 〈{p1}{p1, p2}{p2}〉
P3 〈{p1, p2}{p2}〉
P4 〈{p2}{p3}{p2}〉

Sequences of medical procedures

Frequent medical procedures
{p1}
{p2}
{p1, p2}

Frequent medical procedures candidates

Patients Sequences of procedures
P1 〈{drug1, drug2}{drug2}{drug2}〉
P2 〈{drug2}{drug1, drug2}{drug2}〉
P3 〈{drug1, drug2, drug3}{drug2, drug4}〉
P4 〈{drug2, drug3}{drug2}{drug3}〉

Sequences of medical drugs

Frequent medical drugs
{drug1}
{drug2}

{drug1, drug2}

Frequent medical drugs candidates

Fig. 6. The frequent itemset generated

Example 9. Figure 6 shows the sequences of medical procedures and medical
drugs for patients, and also the frequent medical procedures and medical drugs
candidates for σ = 3

4 .

4.3 Generating Frequent Events

Generating frequent events is achieved by combining frequent multidimensional
components with frequent itemsets. This task has be done by building a prefix
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tree such that the first level in this tree is composed of the frequent multidimen-
sional components and from the second level to leafs, each level is composed the
frequent itemset candidates for each itemset part in the vector of itemsets. More
precisely, each branch in the tree represents an event. Then a scan is performed
over the database to prune irrelevant events from the tree. For example, Figure
7 illustrates the tree before and after pruning infrequent events for σ = 3

4 .

(UHParis,	  C1)	   (GHLyon,	  R1)	  

Support	  

T 

{p1}	   {p2}	   {p1,p2}	  

{drug1}	  {drug2}	  {drug1,drug2}	  {drug1}	  {drug2}	  {drug1,drug2}	  {drug1}	  {drug2}	  {drug1,drug2}	  

{p1}	   {p2}	   {p1,p2}	  

{drug1}	  {drug2}	  {drug1,drug2}	  {drug1}	  {drug2}	  {drug1,drug2}	  {drug1}	  {drug2}	  {drug1,drug2}	  

3	   3	   3	   3	   4	   3	   3	   3	   3	   0	   0	   0	   0	   3	   0	   0	   0	   0	  

Combination tree before pruning

(UHParis,	  C1)	   (GHLyon,	  R1)	  

T 

{p1}	   {p2}	   {p1,p2}	  

{drug1}	  {drug2}	  {drug1,drug2}	  {drug1}	  {drug2}	  {drug1,drug2}	  {drug1}	  {drug2}	  {drug1,drug2}	  

{p2}	  

{drug2}	  

3	   3	   3	   3	   4	   3	   3	   3	   3	   3	  

event	


Combination tree after pruning

Fig. 7. An example of the tree for generating frequent events before and after the
pruning

4.4 Extracting frequent multidimensional itemsets pattern

Frequent sequences can then be mined by using any standard sequential pattern
mining algorithm. As these algorithms require that the dataset to be mined is
composed of pairs in the form (id, seq), where id is a sequence identifier and seq
is a sequence of itemsets, we transform the initial dataset as follows:

– Each branch in the prefix tree after pruning is assigned a unique id which
will be used during the mining operation. This is illustrated in Table 2 .

– Each block (patient) is assigned a unique id of the form Pi.
– Every block b is transformed into a pair (Pi,S(pi)), where S(Pi) is built ac-

cording to the date and the content of the blocks. The final result is reported
in Table 3.

A standard sequence mining algorithm can be applied on the transformed database.
Then, the extraction of frequent sequences can be carried out. With σ = 0.75,

the pattern 〈{e9}{e10}〉 is frequent. This sequence corresponds to 〈(UHParis, C1
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event-id Frequent Event
e1 (UHParis,C1,{p1}, {drug1})
e2 (UHParis,C1 {p1}, {drug2})
e3 (UHParis,C1,{p1}, {drug1, drug2})
e4 (UHParis,C1,{p2}, {drug1})
e5 (UHParis,C1,{p2}, {drug2})
e6 (UHParis,C1,{p2}, {drug1, drug2})
e7 (UHParis,C1, {p1, p2}, {drug1})
e8 (UHParis,C1,{p1, p2}, {drug2})
e9 (UHParis,C1, {p1, p2}, {drug1, drug2})
e10 (GHLyon,R1, {p2}, {drug2})

Table 2. Identification each branch (Event) in T

id Sequence data
P1 〈{e1, e2, e3, e4, e5, e6, e7, e8, e9}{e2}{e10}〉
P2 〈{e2}{e1, e2, e3, e4, e5, e6, e7, e8, e9}{e10}〉
P3 〈{e1, e2, e3, e4, e5, e6, e7, e8, e9}{e10}〉
P4 〈{e5}〉

Table 3. Transformed database

{p1, p2}, {drug1, drug2}), (GHLyon, R1, {p2}, {drug2})〉 by using the identifica-
tion in Table 2.

5 Experiments

We conduct experiments on both real and synthetic datasets. The algorithm
is implemented in Java and the experiments are carried out on a MacBook
Pro with a 2.5GHz Intel Core i5, 4GB of RAM Memory running OS X 10.6.8.
The extraction of sequential patterns is based on the public implementation of
CloSpan algorithm [14]. We use the implementation supplied by the IlliMine6

toolkit.
In order to assess the effectiveness of our approach, we run several experi-

ments on the PMSI dataset. This database includes the following informations
for each stay: patient id and gender, hospital id, principal diagnosis and date
of the stay, a set of associated diagnosis and a set of medical procedures. Our
dataset contains 486 patients suffering from lung cancer and living in the East
of France. The average length of data sequences is 27. The data is encoded using
controlled vocabularies. In particular, diagnoses are encoded with the Interna-
tional Classification of Diseases (ICD10)7. This classification is used as an input
taxonomy for MMISP. The ICD10 can be seen as a tree with two levels. As
illustrated in Figure 8, 3-characters codes such as C34 (Lung cancer) have spe-
cializations: C340 is cancer of the main bronchus, C341 is cancer of upper lobe
etc.

Figure 9 shows an example of care trajectories described over two dimensions
(diagnosis, hospital ID) coupled with two sets of medical procedures and associ-

6 http://illimine.cs.uiuc.edu/
7 http://apps.who.int/classifications/apps/icd/icd10online/
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Tdisease	  

C34	  

C341	   C342	  

ICD	  10	  

K21	  

K214	  

Z45	  

Z451	   Z452	  

Thospital	  

CHU/CHR	  

750712184	  

Ins>tu>ons	  Taxonomy	  

PSPH	  
CL	  

2100392	   210780136	  

CH	  

Fig. 8. Examples of taxonomies used in multilevel sequential pattern mining

Patients Trajectories

P1 〈(C341,750712184, {ZBQK002}, {D123,K573, C780}), (Z452,580780138, {ZZQK002}, {C189}), . . .〉
P2 〈(C770,100000017, {ZBQK002}, {C189}), (C770,210780581, {ZZQK002, Y Y Y Y 030}, {D123, T573}), . . .〉
P3 〈(H259,210780110, {Y Y Y Y 030}, {D123, T573}), (H259,210780110, {ZZQK002}, {D123, T573}), . . .〉
P4 〈(R91,210780136, {Y Y Y Y 030}, {D123, C780}), (C07,210780136, {ZBQK002}, {C780}), . . .〉

Fig. 9. Care trajectories of 4 patients

ated diagnosis. For example (C341, 750712184, {ZBQK002}, {D123,K573, C780})
represents the stay of a patient in the University Hospital of Dijon (coded as
750712184) treated for a lung cancer (C341), where the patient underwent chest
radiography (coded as ZBQK002) and during his treatment, he has the set of
associated diagnosis {D123,K573, C780}.

The experiments extract multidimensional sequential patterns for describ-
ing and analyzing patient trajectories. For this experiment the support value is
set to 15 (i.e. σ = 0.03). MMISP generates 156 different frequent trajectories.
Figure 10 shows some results of the experiment. Pattern 2 can be interpreted
as follows: 40% of patients had a hospitalization in the University Hospital of
Dijon (750712184) for any diagnosis (ALL), where they underwent a chest radio-
graphy (coded as ZBQK002) and an Electrocardiography (coded as DEQP003),
with supplementary billing (coded as YYYY030); they had a malignant tumor
of the lung as associated diagnosis. Then, the same patients had another stay for
acute respiratory failure (J960), and they underwent tests with supplementary
billing (coded as YYYY030). This second stay could occur in any hospital (ALL)
and had the same associated diagnosis(C349).

id Support Trajectory Patterns

1 53% 〈(710780263, All, {DEQP003}, {C349})〉
2 40% 〈(750712184, All, {ZBQK002, Y Y Y Y 030, DEQP003}, {C349})(All, J960, {Y Y Y Y 030}, {C349})〉
3 34% 〈(710780263, All, {ZBQK002, Y Y Y Y 030, DEQP003}, {C349})(710780263, All, {ZBQK002, Y Y Y Y 030, DEQP003}, {C349})〉

Fig. 10. Some healthcare patients trajectories obtained by MMISP

In the second experiment, we study the scalability of the approach. We con-
sider the number of extracted patterns and the running time with respect to
two different parameters, the number of dimensions and the average length of
itemsets in the event. The first batch of synthetic data generated contains 10000
sequences defined over (2, 3, 4 and 5) analysis dimensions. Each sequence con-
tains 30 events and each event is described, in average, by 15 items in the itemset.
Each dimension is defined over 5 levels of granularity between elements of each
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Fig. 11. Running Time (left) and Number of extracted pattern (right) obtained by
MMISP with varying in the number of dimension

analysis dimension. Figure 11 reports the results according to different values of
support threshold for different number of dimension in event. The running time
increases for each newly added dimension. The second batch of generated syn-
thetic data contains 10000 sequences with varying number of items 5, 10, 15 and
20. The sequences in the four generated data sets have an average cardinality of
30 events, by 3 dimensions. The dimensions are defined over 5 levels of granular-
ity between elements of each dimension. Figure 12 reports the results according
to different values of support threshold for different lengths of itemsets.
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Fig. 12. Number of extracted pattern (right) and Running Time (left) obtained by
MMISP with varying itemsets’ cardinalities

Another experiment is aimed at comparing the performance of MMISP with
M3SP on a synthetic dataset. In comparison we consider both the number of
extracted patterns and the running time. The synthetic data generated contains
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10000 sequences defined over two dimensions with one itemsets described by
5 items. Figure 13 reports the results according to different values of support
threshold for both M3SP and MMISP. MMISP is able to extract less patterns
than M3SP while from the point of view of time execution the two approaches
show comparable performances. The reduced size of the MMISP results is related
to its ability in extracting a multidimensional itemsets sequential patterns.
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Fig. 13. Running Time (left) and Number of extracted pattern (right) obtained by
MMISP and M3SP over the synthetic dataset

6 Conclusion

In this paper, we propose a new approach to mine multidimensional itemset se-
quential patterns. Our approach is based on multidimensional items and the set
of items. We provide formal definitions and propose a new algorithm MMISP
to mine this new kind of pattern. We conduct experiments on both real and
synthetic datasets. The method was applied on real-world data where the prob-
lem was to mine healthcare patients trajectories and gave potential interesting
patterns for healthcare specialists.
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