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Abstract

In this paper we construct a cellular complex which is an infinite analogue to Stasheff’s associ-
ahedra. We prove that it is contractible and state that its (combinatorial) automorphism group is
isomorphic to a semi-direct product of R.J. Thompson’s group T with Z/2Z.
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1 Introduction

Although Stasheff’s associahedra were first described combinatorially in 1951 by Dov Tamari [33] in
his thesis as realizations of his poset lattice of bracketings of a word of length n, they are named after
Jim Stasheff’s construction [30, 31] as crucial ingredients to his homotopy theoretic characterization of
based loop spaces. Associahedra were proved to be polytopes by John Milnor (unpublished) and have
been realized as convex polytopes many times [26, 7, 8, 34, 19]. The vertices of the associahedron are
in bijection with all ways to put brackets in an expression of n non-associative variables (avoiding the
bracket containing all the expression and brackets containing a single variable), but also with all rooted
binary trees with n+ 1 leaves, and all the minimal triangulations of a convex polygon with n+ 2 sides.
The name associahedra comes from the bracketing viewpoint, where edges are obtained by replacing a
sub-word t(su) by (ts)u (associativity relation). The associahedron can also be constructed as the dual
of the arc complex of a polygon [25].

Stasheff associahedra play a role in different domains of mathematics such as combinatorics, homotopy
theory, cluster algebras and topology (see [29]). In this paper we construct an infinite dimensional
cellular complex C that can be seen as a generalisation of the associahedron for an infinitely sided
convex polygon. To give an idea, the vertices of C are in bijection with all possible triangulations of the
circle which differ from a given one only in finitely many diagonals. We also prove that C is contractible.
Finally, we study the group of combinatorial automorphisms of C and we prove that it is isomorphic to
the semi-direct product of Thompson’s group T with Z/2Z.

A relation between associahedra and Thompson’s group F was first established by Greenberg [20]. Thom-
spon’s group F , which is the smallest of the three classical Thompson groups F, T, V (first introduced by
McKenzie and Thompson [28], see [6] for an introduction), is usually seen as the group of all piecewise-
linear order-preserving self-homeomorphisms of [0, 1] with only finitely many breakpoints, each of which
has dyadic rational coefficients, and where every slope is an integral power of 2. Thompson’s group T is
the analogue of F when considering self-homeomorphisms of the circle S1 seen as the unit interval with
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identified endpoints. In this case one must include the condition of self-homeomorphisms preserving
set-wise the dyadic rational numbers (which for F is a consequence of the other conditions).

The two dimensional skeleton of C was introduced by Funar, Kapoudjian and Sergiescu [15, 16, 17, 18]
as a 2-dimensional complex where vertices are isotopy classes of decompositions of an infinite type
surface, edges are elementary moves and faces can be seen as relations between this elementary moves.
This is inspired from their version of Thomspon’s group T as an asymptotically rigid mapping class
group of a connected, non compact surface of genre 0 with infinitely many ends. To give a hint on
what an asymptotically rigid mapping class group is, one can think about it as homotopy classes of
homeomorphisms which preserve a given tessellation of the surface outside a compact subsurface.

Finally, it is worth to mention a few other cellular complexes where T was proved to act nicely. Brown
[4], Brown and Geoghegan [5], and Stein [32] use the action of T in complexes of basis of Jonsson-
Tarski algebras [1] to obtain, respectively, finiteness properties and homological properties. Farley uses
diagram groups to construct CAT(0) cubical complexes where Thompson’s groups act [10, 11, 9, 12].
Greenberg [21] and Martin [27] constructed contractible complexes where T acts. Unfortunately, none
of the automorphism groups of these complexes is known.
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the infinite associahedron, and Jim Stasheff for his comments and suggestions. This work was partially
supported by “Fundación Caja Madrid” Postgraduated Fellowship and the ANR 2011 BS 01 020 01
ModGroup.

2 Stasheff’s associahedra

We adapt Greenberg’s construction of Stasheff’s associahedra [20] to the language of minimal tessellations
of a convex polygon. The original idea of Greenberg’s construction in terms of planar trees is due to
Boardman and Vogt [2].

Let Pn (n ≥ 3) be a convex polygon with n vertices, v1, . . . , vn, where the vertices vi and vj are adjacent
if and only if |i− j| ≡ 1 modulo n. Let Dn be the set of interior diagonals of Pn, i.e.

Dn =
{

(vi, vj) ∈ V 2
n : |i− j| > 1(modn)

}
.

Let T (Pn) be the maximal subset of P(Dn) containing only subsets of Dn without crossing diagonals.
The empty set belongs to T (Pn) and is denoted ∅n. The set T (Pn) can be seen as the set of minimal
tessellations of Pn (minimal in the sense that there are no interior vertices).

We can define a partial order in T (Pn) by saying that α < β if β ⊂ α. Greenberg’s method consists to
associate a closed cell fα to every α ∈ T (Pn) − ∅n. The dimension of fα is n − 3 − |α|. Furthermore,
if α < β, then fα is included into fβ. Stasheff’s associahedron A(Pn) is the union of all these cells,
preserving the inclusions.

We use induction over n to define Stasheff’s associahedra. The first two cases to consider are:

1. The triangular case. Note that T (P3) = {∅3}. Thus, A(P3) is a point (the 0-cell associated to the
triangle itself as a tessellation).

2. The square case. Note that, given a square with vertices 1,2,3,4 as before, it admits only two
interior diagonals: (1, 3) and (2, 4). Furthermore, the two diagonals cross each other. Thus,
T (P4) = {{(1, 3)}, {(2, 4)}, ∅4}. The faces associated to {(1, 3)} and {(2, 4)} are the two endpoints
of a closed segment, which is itself the 1-cell associated to ∅4, and coincides with A(P4).
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Take n > 4. Suppose that:

1. The cells fα are defined for all α ∈ T (Pj) and for all j satisfying 3 ≤ j ≤ n− 1.

2. The inclusions iβα : fα → fβ are defined for all α, β ∈ T (Pj) such that α < β, and all j satisfying
3 ≤ j ≤ n− 1.

3. The cellular complex (A(Pj), ∂A(Pj)) is topologically equivalent to (Bj−3, Sj−4) for all j satisfying
3 ≤ j ≤ n− 1, where Bk, Sk respectively are the closed ball and the sphere of dimension k.

4. For all j satisfying 3 ≤ j ≤ n− 1 and for all α ∈ T (Pj), the cell fα is isomorphic to

|α|+1∏
i=1

A(Pni),

where p1, p2, . . . , p|α|, p|α|+1 (respectively n1, . . . , n|α|+1) be the polygons obtained by cutting Pn
along the diagonals of α (respectively their number of sides).

Let α ∈ T (Pn) − ∅n. Let p1, p2, . . . , p|α|, p|α|+1 (respectively n1, . . . , n|α|+1) be the polygons obtained
from Pn by cutting along the diagonals of α (respectively their number of sides) as before. Define fα as
the product space

fα ≡
|α|+1∏
i=1

A(Pni).

Let α, β ∈ T (Pn) − ∅n such that α < β. To define the inclusion iβα : fα → fβ, first suppose that
1 ≤ |β| = |α| − 1. Then, there exist a unique diagonal d which belongs to α and does not belong to β.
Enumerate the polygons obtained by cutting Pn along the diagonals of α starting by the two polygons
containing the diagonal d on the border. By construction,

fα ≡ A(Pn1)×A(Pn2)×
|α|+1∏
i=3

A(Pni),

where the third element of the product is non-empty (note that |α| ≥ 2). Furthermore,

fβ ≡ A(Pn1+n2−2)×
|α|+1∏
i=3

A(Pni),

where pn1+n2−2 is obtained by glueing pn1 and pn2 along d. Consider γ = {(1, n1)} ∈ A(Pn1+n2−2). By
induction hypothesis fγ ≡ A(Pn1)×A(Pn2) and the inclusion τ : fγ → A(Pn1+n2−2) is defined. Hence,

iβα : fα → fβ can be defined using τ and taking the identity over the factor
∏|α|+1
i=3 A(Pni).

When |α| > |β|+ 1, it suffices to consider α = α0 < α1 < . . . < αk = β such that |αi+1| = |αi|+ 1. The
composition of the applications fαi+1αi gives fβα.

Finally, define ∂A(Pn) as  ⊔
α∈T (Pn)−∅n

fα

 / ∼,

where fα ∼ iβα(fα) for all α < β. Stasheff [30] proved that ∂A(Pn) is homeomorphic to the sphere Sn−4

of dimension n− 4. Thus, A(Pn) is defined by filling the interior of ∂A(Pn) by a ball of dimension n− 3.
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Example: A(P5). There are five different triangulations of a pentagon, and there are also five tessella-
tions cutting the pentagon into one quadrilateral and one triangle, each of them being contained in two
different triangulations. Hence, the associahedron of a pentagon is itself a pentagon.

f

f

f

f

f

ff

f f f

f

Figure 1: The associahedron A(P5).

Remark: one can pass from our version to Greenberg’s by taking the dual graph of each tessellation,
rooted with respect to a marked side of the polygon Pn. In Greenberg’s construction, the poset indexing
the faces of the n-th associahedron is the set of rooted trees with n leaves, and a tree t1 is smaller than a
tree t2 if t1 can be obtained from t2 by a sequence of collapsing edges. Note that our A(Pn) corresponds
to Greenberg’s An−1 (the dual graph of a tessellation of an n-sided polygon has n vertices with valence
1, i.e. the root and n− 1 leaves).

3 The infinite associahedron

As in the finite case, the infinite associahedron is constructed as the union of closed cells, each one
indexed by an element of a given partially ordered set, modulo inclusions following the order relation.
The elements of the partially ordered set can be seen geometrically as all possible tessellations of the
circle which differ from a given triangulation only in finitely many diagonals. It is worth to mention
that, although the objects are described geometrically, only their combinatorial properties are used.

3.1 Construction

Let D be the open disk in R2 of center (0, 0) and perimeter 1. The boundary of D is denoted ∂D. Let
γ : [0, 1] → ∂D be the arc-parametrization of ∂D with γ(0) = ( 1

2π , 0). Let A be the set of geodesic
segments with (different) extremal points in γ (Z[1/2] ∩ [0, 1]), where

Z[1/2] ∩ [0, 1] =
{m

2n
∈ R : m ∈ N ∪ {0}, n ∈ N,m ≤ 2n

}
.

The elements of A are called dyadic arcs and, for x, y ∈ Z[1/2]∩ [0, 1], the pair (x, y) denotes the dyadic
arc with extremal points γ(x) and γ(y).
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Consider the following subset of A:

AF =

{(
0,

1

2

)}⋃{(
m

2n
,
m+ 1

2n

)
: m,n ∈ Z,m ∈ {0, . . . , 2n − 1}, n > 1

}
.

Note that AF defines a triangulation1 of D, meaning that D −AF is a disjoint union of open triangles.
Furthermore, the triangulation is minimal in the sense that, for every dyadic arc a of AF , the set AF−{a}
no longer defines a triangulation of D.

01
2

3
4

1
4

Figure 2: Triangulation of D defined by AF .

A subset A of A is an F -triangulation if the following conditions are satisfied:

1. D −A is a disjoint union of open triangles,

2. for every dyadic arc a of A, the set A− {a} no longer defines a triangulation of D, and

3. the subsets A and AF differ only on finitely many dyadic arcs, meaning that their symmetric
difference is a finite set.

In particular, any two different dyadic arcs a1, a2 of A do not cross each other in D (but they can have
an endpoint in common).

A subset B of A is an F -tessellation if there exists an F -triangulation A and a1, . . . , ak dyadic arcs of
A such that B = A− {a1, . . . , ak}. The number k is the rank of B and it is well-defined because all the
F -tessellations are minimal. In particular, an F -triangulation is an F -tessellation of rank 0. Note that
the F -triangulation A and the dyadic a1, . . . , ak defining B are not unique, but there are finitely many
possibilities.

Let I be the set of F -tessellations of D. Let A ∈ I of rank k. By definition, D−A is a disjoint union of
infinitely many triangles and finitely many non-triangles. Let n1, . . . , nm be the number of sides of the
non-triangular polygons of D −A. Then, we associate to A the following k-cell:

fA ≡
m∏
i=1

A(Pni).

1The pictures are in hyperbolic geometry for clarity. Furthermore, Thurston noticed that Thompson’s group T can be
seen as the group of homeomorphisms of the real projective line which are piecewise PSL(2,Z) [22, 13].
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If k = 0 the product is empty and we associate to A a point. Note that one could also take as a definition
the infinite product of all associahedra since only finitely may are different from a point.

As in the case of Stasheff’s associahedra, we can define a partial order on I: if A,B ∈ I are such
that B ⊂ A, we say that A < B. Thus, if A < B, then there is an injective map ιBA : fA −→ fB
defined as in the case of Stasheff’s associahedra. To do so, consider the smallest polygon Pm inscribed in
A∩B containing all non-triangular polygons of D−B. Let α (respectively β) be the tessellation of Pm
obtained by the restriction of A (respectively B) on Pm. Furthermore, α < β. Then, fα ≡ fA, fβ ≡ fB
and there is an inclusion iβα : fα → fβ on A(Pm) defining ιBA by composition with the two previous
isomorphisms. Note that, the vertices of an F -tessellation being indexed by all dyadic rational numbers
of the unit interval, the injections ιBA are well determined by the inclusions B ⊂ A. Note also that the
boundary ∂fB of a k-cell is isomorphic to the union of all j-cells fA such that A < B (hence j < k).

The infinite associahedra is the cellular complex

C =

(⊔
A∈I

fA

)
/ ∼,

where ∼ is the equivalence relation generated by {x ∼ fBA(x) : (A,B) ∈ I2, x ∈ A,A < B}. Remark
that C is a regular CW complex in the sense that the attaching maps are homeomorphisms.

3.2 Low dimensional cells

It can be useful to describe explicitly all kinds of cells up to dimension 3. The set of vertices of C is the
set of F -triangulations, and two F -triangulations A1, A2 are joined by an edge in C1 if and only if their
intersection A1∩A2 is an F -tessellation of rank 1. Equivalently, there exists a unique dyadic arc a1 ∈ A1

such that a1 6∈ A2, and there exists a unique dyadic arc a2 ∈ A2 satisfying a2 6∈ A1. Furthermore, a1, a2
are the two possible diagonals of the single non-triangular component of D− (A1 ∩A2) (this component
is a square).

Figure 3: Edge of C1 with its associated F -tessellations of rank 0 and 1.

The 2-skeleton C2 is constructed from C1 by attaching 2-cells as follows: let B be an F -tessellation of
rank 2. Consider the non-triangular components of D −B. One of the following situations is satisfied:

1. There are exactly two non-triangular components and both of them are squares. Let a1, a2 be
the two dyadic arcs which are interior diagonals of the first squared component, and a3, a4 the
diagonals of the second square. Define A1 = B ∪ {a1, a3}, A2 = B ∪ {a1, a4}, A3 = B ∪ {a2, a3}
and A4 = B∪{a2, a4}. For i ∈ {1, 2, 3, 4}, Ai is an F -triangulation. Furthermore, {A1, A2, A3, A4}
is the set of all F -triangulations containing B. The sub-graph of C1 induced by the set of vertices
{A1, A2, A3, A4} is a closed path of length 4. Thus, it can be seen as the boundary of a square.
One glues a 2-cell along this closed path such that the attaching map is an homeomorphism.
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Figure 4: Squared 2-cell with its associated F -tessellations of rank 0 and 2.

2. There is a unique non-triangular component and it is a pentagon. Let γ(v1), γ(v2), γ(v3), γ(v4),
γ(v5) be its vertices, where 0 ≤ v1 < v2 < v3 < v4 < v5 < 1. Define A1 = B ∪ {(v1, v3), (v1, v4)},
A2 = B ∪ {(v1, v3), (v3, v5)}, A3 = B ∪ {(v1, v4), (v2, v4)}, A4 = B ∪ {(v2, v4), (v2, v5)} and
A5 = B ∪ {(v2, v5), (v3, v5)}. For i ∈ {1, 2, 3, 4, 5}, Ai is an F -triangulation. Furthermore,
{A1, A2, A3, A4, A5} is the set of all F -triangulations containing B. The sub-graph of C1 induced
by the set of vertices {A1, A2, A3, A4, A5, A1} is a closed path of length 5. Thus, it can be seen as
the boundary of a pentagon. One glues a 2-cell along this closed path in a way that the attaching
map is a homeomorphism.

Figure 5: Pentagonal 2-cell with its associated F -tessellation of rank 0 and 2.

Let B be an F -tessellation of rank 3. One of the following is satisfied:

• There are exactly 3 non-triangular components of D−B, all of them being squares. In this case, the
set of all F -triangulations containing B has 8 elements {A1, . . . , A8} (each one obtained by adding
to B one diagonal of each squared component of D − B). The sub-complex of C2 induced by the
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set of vertices {A1, . . . , A8} is the boundary of a cube, so it is topologically a sphere of dimension
2. One glues a 3-cell inside this cube by choosing the attaching map to be a homeomorphism.

Figure 6: Cubical 3-cell with its associated F -tessellation of rank 3.

• There are exactly 2 non-triangular components, one of them being a square and the other being
a pentagon. To get an F -triangulation from B, one chooses independently a triangulation of the
pentagonal component and a triangulation of the square. Thus, the set of all F -triangulations
containing B has 10 elements and the sub-complex of C2 they induce is the boundary of the
polyhedron obtained by the cross product of a pentagon and an interval, which is topologically a
sphere of dimension 2. One glues a 3-cell inside this polyhedron by choosing the attaching map to
be a homeomorphism.

Figure 7: Prism 3-cell with its associated F -tessellation of rank 3.

• There is a unique non-triangular component, and it is an hexagon. Then, the sub-complex of C2

induced by the set of F -triangulations containing B is isomorphic to the boundary of Stasheff’s
associahedron of an hexagon, which is topologically a sphere of dimension 2. One glues a 3-cell
inside by choosing the attaching map to be an homeomorphism.
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Figure 8: Associahedral 3-cell with its associated F -tessellation of rank 3.

3.3 The complex C is aspherical and contractible

Lemma 1. The complex C is path-connected.

Proof. Let x and y be two points of C. Then, there exist A,B ∈ I such that x ∈ fA and y ∈ fB.
Consider D = A ∩ B ∈ I. Note that A < D and B < D, thus fDA(x) and fDB(y) are points of fD,
which is a cell of C of dimension rank(D), thus fD is path-connected.

Whitehead’s theorem [23, 24] states that every continuous map between connected CW-complexes which
induces isomorphisms on all homotopy groups is a homotopy equivalence. We have already seen that
C is a CW-complex. In particular, we can prove that C is contractible by showing that all homotopy
groups πn(C) (n ≥ 1) are trivial.

Lemma 2. The homotopy groups πn(C) of C are trivial for all n ≥ 1. In particular, C is aspherical
(πn are trivial for n ≥ 2).

Proof. Let g : Sn −→ C a continuous map (n ≥ 1). The image g(Sn) intersects finitely many open
cells of C, ḟA1 , . . . , ḟAk

, because Sn is compact and C is a CW-complex. By open cell we mean the
image of an open ball by its attaching map. Suppose that g(Sn) is not a single point of C. If there
exists g(x) ∈ g(Sn) such that g(x) 6∈ ḟA1 ∪ . . . ∪ ḟAk

, then g(x) is a vertex of C. Furthermore, every
open neighbourhood U of x contains a point y ∈ U such that g(y) 6= g(x), g(y) ∈ ḟA1 ∪ . . . ∪ ḟAk

(the
0-skeleton of C is totally disconnected). Hence, g(x) belongs to the closure of ḟA1 ∪ . . . ∪ ḟAk

, which is
included into fA1 ∪ . . . ∪ fAk

, proving that g(Sn) ⊂ fA1 ∪ . . . ∪ fAk
.

Let A1, . . . , Ak be the elements of I corresponding to the cells fA1 , . . . , fAk
. Define A = A1 ∩ . . . ∩ Ak.

By definition fA is a cell of C containing fA1 ∪ . . . ∪ fAk
. Hence, fA is contractible and contains g(Sn).

Thus, g(Sn) is homotopy-equivalent to a point.

The argument holds for all maps g : Sn −→ C (n ≥ 1). Thus πn(C) is trivial for all n ≥ 1.

Note that the main argument of the proof can be stated as follows: for every couple of cells of C, there
exist a third cell which contains both of them. The following result is a direct consequence of Withehead’s
theorem and the previous lemma.

Corollary 1. The infinite associahedron is contractible.
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4 The automorphism group C and isometries of C1

4.1 Non-oriented Thompson’s group T

The non-oriented Thompson’s group T is the group of piecewise linear homeomorphisms of the circle S1,
thought as the unit interval [0, 1] with identified endpoints, which:

1. map the set of dyadic rational numbers to itself,

2. are differentiable except at finitely many points, all of them being dyadic rational numbers, and

3. on intervals of differentiability, the derivatives are powers of 2.

We denote the non-oriented Thompson’s group T by Tno. Note that Tno ' T o Z/2Z because the
following short sequence

1 −→ T −→ Tno −→ Z/2Z −→ 1

t 7→
{

0, if t preserves the orientation of [0, 1]
1, if t reverses the orientation of [0, 1].

is exact and admit the section Z/2Z ' 〈−id〉.
The elements of Thompson’s group T can be seen as pairs of standard dyadic partitions of the unit
interval [6]. One can easily adapt this result to non-oriented T . This characterization will be used to
define the action of both groups on the set of F -tessellations.

A subinterval [x1, x2] of the unit interval [0, 1] is called a standard dyadic interval if it is of the form[
m

2n
,
m+ 1

2n

]
for some positive integers m and n satisfying 0 ≤ m ≤ 2n − 1.

A partition of the unit interval given by x0 = 0 < x1 < x2 < . . . < xk−1 < xk = 1 is a standard dyadic
partition if, for all i ∈ {1, . . . , k − 1}, the subinterval [xi, xi+1] is a standard dyadic interval.

Lemma 3. (analogue to [6], Lemma 2.2) Let t be an element of Tno. Then, there exists a standard
dyadic partition of the unit interval 0 = x0 < x1 < . . . < xk = 1 such that:

1. t is affine on every subinterval of the partition, and

2. the induced partition on the y axis, which is either

0 = t(xi) < t(xi+1) < . . . < t(xk) = t(x0) < . . . < t(xi−1) = 1

or
1 = t(xi) > t(xi+1) > . . . > t(xk) = t(x0) > . . . > t(xi−1) = 0

is also a standard dyadic partition of the unit interval.

Proof. Consider the x axis partition associated to t, 0 = z0 < z1 < . . . < zk = 1. As t ∈ Tno, z0, . . . , zk
are dyadic rational numbers and t is affine on each interval of the partition. Let [zi, zi+1] be an interval
of this partition and suppose that t′(x) = ±2−r, if x ∈ [zi, zi+1]. Let n be an integer such that 2nzi,
2nzi+1, 2n+rt(zi) and 2n+rt(zi+1) are integers. Then,

zi < zi +
1

2n
< zi +

2

2n
< zi +

3

2n
< . . . < zi+1

is a standard dyadic partition of the interval [zi, zi+1], and its image
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t(zi) < t(zi) +

1

2n+r
< t(zi) +

2

2n+r
< t(zi) +

3

2n+r
< . . . < t(zi+1) if t′(x) > 0,

t(zi) > t(zi) +
1

2n+r
> t(zi) +

2

2n+r
> t(zi) +

3

2n+r
> . . . > t(zi+1) if t′(x) < 0,

is a standard dyadic partition of the interval [t(zi), t(zi+1)] as well. One can repeat the previous procedure
for every interval of the x-axis partition associated to t.

Since any standard dyadic interval can be split into two standard dyadic intervals by taking the midpoint,
one can not expect the partitions of Lemma 3 to be unique. However, there exists a standard dyadic
partition satisfying Proposition 3 with a minimum number of standard dyadic intervals, which is called
the minimal standard dyadic partition. It can be proved that the minimal standard dyadic partition
exists and every partition fulfilling Lemma 3 is a sub-partition of this minimal standard dyadic partition
[6].

4.2 Action of T no on the set of I

Let A be an F -tessellation and t an element of Tno. Recall that t induces a bijection into the set of
dyadic numbers of the interval. Let a be a dyadic arc of A, with dyadic endpoints d1, d2. Then the F
tessellation t ·A contains the dyadic arc with endpoints t(d1), t(d2).

Note that the dyadic arcs of AF correspond to standard dyadic intervals of length less than (or equal
to) 1/2, where [0, 1/2] and [1/2, 1] have been identified. In particular, standard dyadic partitions of the
unit interval with at least three pieces are in one to one correspondence with inscribed polygons of AF
containing (eventually on the boundary) the center (0, 0) of D.

Lemma 4. The action of Tno on the set I of F -tessellations given before is well defined.

Proof. Let A be an F -tessellation and let t be an element of Tno. Let P be the smallest polygon inscribed
in F containing all non-triangular polygons of the F -tessellation A ∩AF , and the center of D. Let p̄ be
the standard dyadic partition associated to P , and let x̄ be the minimal standard dyadic partition of t.
Let z̄ be a common sub-partition of x̄ and p̄. By Lemma 3, t is affine in every interval of z̄, which means
that the tessellation t ·A coincides exactly with AF outside the image of the polygon P . Inside P there
are finitely many dyadic arcs, thus t · A contains finitely many dyadic arcs different from those on AF
and t ·A ∈ I. Remark that the rank of t ·A coincides with the rank of A.

Recall that the infinite associahedron has been defined by associating to each F -tessellation a closed cell.
It is thus natural to ask if the action of Tno on I induces an action on C.

A combinatorial automorphism of C (automorphism for short) is a bijection between the set of closed
cells {fA : A ∈ I} of C to itself preserving dimensions, inclusions and boundaries. Let f1, f2 be two
different cells of C of the same dimension. Note that, by construction, the boundaries ∂f1, ∂f2 are
different. Thus, for all k ∈ N,

Aut(Ck) ⊆ Aut(Ck−1).

Proposition 1. Non-oriented Tno acts faithfully on C by automorphisms. The action is given by
t · fA = ft·A. Furthermore, the automorphism group of C is isomorphic to Tno.

Proof. The action of Tno on the set of F -tessellations preserves the rank and the partial order. Thus, the
action is well-defined. Furthermore, it coincides with the action of Tno given in [14], which is faithful.
Finally, we know that Aut(C) is a subgroup of Aut(C2), and Aut(C2) ' Tno (see [14]). Hence, the two
groups are isomorphic.
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Corollary 2. For all 2 ≤ n ∈ N, the automorphism group of the n-skeleton of C is isomorphic to
non-oriented Tno.

4.3 Isometries of C1

The 1-skeleton of C can be easily realised as a metric space by identifying each edge with the unit
euclidean segment. Then, the group of isometries of the metric realisation of C1 coincides with the
automorphism group of the graph C1.

Proposition 2. The group of isometries of the metric realisation of C1 is isomorphic to Tno.

Proof. Let e1, e2 be two consecutive edges of C1. By definition, there exist A,B two different F -
tessellations of rank 1 such that e1 = fA and e2 = fB. Furthermore, A ∩ B is a F -tessellation of
rank 2, e1, e2 ∈ ∂fA∩B ⊂ C1, and ∂fA∩B is the unique minimal closed path of C1 containing e1, e2. The
length of this path is either 4 or 5, and it depends only on the number of non-triangular polygons of
D −A ∩B.

Let ϕ be an automorphism of C1, and let C and D be F -tessellations of rank 1 such that ϕ(e1) = fC
and ϕ(e2) = fD. Then, ϕ(∂fA∩B) is the unique minimal closed path containing ϕ(e1), ϕ(e2). Thus, it
coincides with ∂fC∩D, forcing ∂fC∩D and ∂fA∩B to have the same length. Hence, ϕ can be extended to
a unique automorphism of C2.

If g is an isometry of a metric space X, then its translation length is

|g| = inf{d(x, g(x)) : x ∈ X}.

We say that g is semi-simple when the infimum in the definition of |g| is realised as a minimum. Note
that C1 can be seen as a cubical complex of dimension 1 (by identifying each edge with the unit interval).
Bridson [3] proved that all isometries of a polyhedral complex where the number of isometry types of
polygons is finite are semi-simple. In particular, this result can be applied to the metric realisation of
C1.

Corollary 3. All isometries of C1 are semi-simple.
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