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Abstract

The conventional Unconstrained Binary Quadratic ProgrargrfUBQP) problem is known to be a unified modeling and soluti
framework for many combinatorial optimization problemshid paper extends the single-objective UBQP to the mukicibje
case (MUBQP) where multiple objectives are to be optimizadisaneously. We propose a hybrid metaheuristic whichluioes
an elitist evolutionary multiobjective optimization algfhm and a state-of-the-art single-objective tabu seproleedure by using
an achievement scalarizing function. Finally, we definerenfid model to generate mUBQP instances and validate thenpesthce
of the proposed approach in obtaining competitive resultame-size mUBQP instances with two and three objectives.

Key words: Unconstrained binary quadratic programming, Multiobjeetombinatorial optimization, Hybrid Metaheuristic,
Evolutionary Multiobjective Optimization, Tabu searcltafarizing function

1. Introduction the UBQP itself is clearly a NP-hard problem [7]. During the
past few decades, a large number of algorithms and appreache
Given a collection oh items such that each pair is associatedhave been proposed for the single-objective UBQP in the lite
with a profit value that can be positive, negative or zeropmRc  ature. This includes several exact methods based on bradch a
strained binary quadratic programming (UBQP) seeks a subsgound or branch and cut [8, 9, 10] and a number of heuristic
of items that maximizes the sum of their paired values. Theand metaheuristic methods like simulated annealing [Bbj, t
value of a pair is accumulated in the sum only if the two corresearch [12, 13, 14, 15, 16], path-relinking [17], evolution
sponding items are selected. A candidate solution to a UBQBnd memetic algorithms [18, 19, 20, 21].
instance can be specified by a binary string of sizeuch that
each variable indicates whether the corresponding item-is i
cluded in the selection or not. More formally, the convemdibo
and single-objective UBQP problem is to maximize the folow
ing objective function.

In this paper, we extend this conventional single-objectiv
UBQP problem to the multiobjective case, denoted by mUBQP,
where multiple objectives are to be optimized simultanBous
Such an extension naturally increases the expressiveyadifili
the UBQP and provides a convenient formulation to fit situa-

, n.n tions where the single-objective UBQP cannot accommodate.
f(x) = XQx= Z Z 0fj Xi X; (1) For instance, UBQP can recast the vertex coloring problem
i=1 j=1 (of determining the chromatic number of a graph) [5] and the

whereQ = (q;) is ann by n matrix of constant values and sum coloring prpblem (of (_:Ietermining th_e chromatic sum of a
is a vector ofn binary (zero-one) variablese., x € {0,1), i e~ 9raph) [22]. Still, UBQP is not convenient to formulate the
(1....n). bi-objective colon_ng problem whlch requires 'Fo dgtermme

The UBQP is known to be a general model able to reprelegal vertex coloring of a graph while minimizing simultane .
sent a wide range of important problems, including thosefro CUSIY the number of colors used and the sum of colors. For this
financial analysis [1], social psychology [2], computereaid b|-0bject|V(_e colorln_g problem, the mUBQP formulation can b
design [3] and cellular radio channel allocation [4]. More- €Mployed in a straightforward way.

over, ar_lumberof NP-hard problems can be_ conveniently4rans |n addition of introducing the mUBQP problem, the paper
formed into the UBQP, such as graph coloring problems, maxhas two additional contributions. First, given that thegiin
cut problem, set packing problem, set partitioning problemobjective UBQP is NP-hard, its generalized mUBQP formula-
maximum clique problem and so on [5, 6]. As a consequenceion is also a diicult problem to solve in the general case. For
the purpose of approximating the Pareto set of a given mUBQP
- . _ instance, heuristic approaches are then compulsory. Wollo
Eo"‘?s"ond'”g author, Tek:33 3 59 35 86 30. ing the studies on memetic algorithms for the UBQP and many
mail addressesarnaud.liefooghe@univ-1illel.fr . .
(Arnaud Liefooghe)yerel@i3s.unice.fr (S€ébastien Verel), other problems, we adopt as Ogl’ solution approach the memetl
hao@info.univ-angers.fr (Jin-Kao Hao) framework and propose a hybrid metaheuristic which consbine




an elitist evolutionary multiobjective optimization algghm
with a state-of-the-art single-objective tabu search gdoce

thePareto setdenoted byXps, and its mapping in the objective
space is called thPareto front One of the most challenging

based on an achievement scalarizing function. The last conissue in multiobjective combinatorial optimization is tentify
tribution of this work is to define a formal and flexible model a minimal complete Pareto sék.,one Pareto optimal solution
to generate hard mUBQP instances. An experimental analynapping to each point from the Pareto front. Note that such a

sis validates the interest of the proposed hybrid metabiguiri

set may not be unique, since multiple solutions can map to the

by achieving a clear improvement over non-hybrid and convensame non-dominated vector.

tional algorithms on large-size mUBQP instances with twad an

three objectives.

2.3. Properties

The paper is organized as follows. Section 2 introduces the £o; many multiobjective combinatorial optimization prob-
multiobjective formulation of the UBQP problem (mUBQP). | computing the Pareto set is computationally praiabit

Section 3 presents the hybrid metaheuristic (HM) proposed f ¢5: two main reasons.

the mUBQP and its main ingredients, including the scalagzi
evaluation function, the tabu search procedure, the liziditon

First, the question of deciding if
a candidate solution is dominated is known to be NP-hard
for numerous multiobjective combinatorial optimizatiorop-

phase and the variation operators. Section 4 gives an expejbms [23, 24]. This is also the case for the mUBQP problem

mental analysis of the HM algorithm on a large set of mMUBQP,

since its single-objective counterpart is NP-hard [7]. &ek

instances of dferent structure and size. The last section CONthe number of Pareto optimal solutions typically grows expo

cludes and suggests further research lines.

2. Multiobjective Unconstrained Binary Quadratic Pro-
gramming

This section first introduces the multiobjective uncoriated

nentially with the size of the problem instance [24]. In that
sense, most multiobjective combinatorial optimizatiookpr
lems are said to biatractable In the following, we prove that
the mUBQP problem is intractable.

Proposition 1. The multiobjective unconstrained binary

binary quadratic programming problem. Some definitions reduadratic programming problem (2) is intractable, even for

lated to multiobjective combinatorial optimization aretthre-
called, followed by problem complexity-related propestand
a link with similar problem formulations. Last, the constru
tion of problem instances, together with an experimental\st
on the objective values correlation and the cardinalityhef t
Pareto set, are presented.

2.1. Problem Formulation

The multiobjective unconstrained binary quadratic pragra
ming (MUBQP) problem can be stated as follows.

n n
max fi(x) = Z Z O X X;

i=1 j=1
subject tox; € {0, 1}

ke{l,...,m}

)

ief{l,....n}

wheref = (f, f2,..., fy) IS an objective vector function with
m> 2,nis the problem size, and we havematricesQ" = (qf))
of sizen by nwith constant value% € {1, ..., m}. The decision
spaceX is defined on binary strings of size

2.2. Definitions

Let X = {0, 1}" be the set of feasible solutions in tlecision
spaceof Problem (2). We denote [& ¢ R™ the feasible region
in theobjective spacé.e.,the image of feasible solutions when
using the vector maximizing functioh The Pareto dominance
relation is defined as follows. A solutione X is dominated
by a solutionx’ € X, denoted byx < X, if fy(X) < fi(X) for
allk € {1,...,m}, with at least one strict inequality. If neither
X A X norx’ £ xholds, then both anmutually non-dominated
A solutionx € X is Pareto optimalor efficient, non-dominated)
if there does not exist any other solutiah € X such that<’

m= 2.
Proof. Consider the following bi-objective mUBQP instance.

1 2n(i—1)—L£1)+j—l if i > J
ij — 0

e ibje{l,...,n
ifi<]j Jel }
Letq’ = —qj foralli, j € {1,...,n}. Asillustrated in Figure 1
for n = 3, it is obvious that all solutions are mutually non-
dominated. Therefore, all feasible solutions are Paretionah,
and|Xps| = |X| = 2. O

In order to cope with NP-hard and intractable multiobjestiv
combinatorial optimization problems, researchers hawelde
oped approximate algorithms that identiffPareto set approx-
imationhaving both good convergence and distribution proper-
ties [25, 26]. To this end, metaheuristics in general, amduev
tionary algorithms in particular, have received a growintgi-
est since the late eighties [27].

2.4. Links with Existing Problem Formulations

The single-objective UBQP problem is of high interest in
practice, since many existing combinatorial optimizatoob-
lems can be formalized in terms of UBQP [5]. As a conse-
quence, multiobjective versions of such problems can poten
tially be defined in terms of mUBQP. However, to the best
of our knowledge, the UBQP problem has never been explic-
itly defined in the multiobjective formulation given in EQ)(
Existing multiobjective formulations of classical comain-
rial optimization problems with binary variables includeilm
tiobjective linear assignment problems [24, 28], multabj
tive knapsack problems [29, 30], multiobjective maxcuttpro
lems [31], or multiobjective set covering and partitionprgb-

dominatesx. The set of all Pareto optimal solutions is called lems [28], just to mention a few. Nevertheless, the objectiv
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Figure 1: Enumeration of all feasible solutions for the mUBgroblem instance considered in the proof of Propositiofitfe input data of th&@'-matrix (left),
the enumeration of feasible solutions (middle), and thregresentation in the objective space (right). The problemisn = 3.

functions of such formulations are linear, and not quadragi  of the Spearman correlation dtieient over 30 dierent and in-

in mMUBQP. Still, they often contain additional constrajiy-  dependentinstances foffiirent parameter combinationsm,
ically the unimodularity of the constraint matrix for lineas- andd. Clearly, the correlation cdgcientp tunes the objective
signment, or the capacity constraint for knapsack. Thismaea correlation with a high accuracy.

that many existing binary multiobjective combinatorialtiop To summarize, the four parameters used to define a mUBQP
mization problems can be formalized in terms of mMUBQP byinstance arei) the problem sizen, (ii) the matrix densityd,
adapting and generalizing the techniques from [5] to the-mul(iii) the number of objective functions, and {v) the objec-
tiobjective case, whereas the opposite does not hold inrgkne tive correlation cofficientp. The mUBQP problem instances
due to the quadratic nature of mMUBQP. The mUBQP problenused in the paper and an instance generator are available at t
is also diferent from the multiobjective quadratic assignmentfollowing URL: http://mocobench.sf.net/.

problem (mMQAP) [32, 33], which seeks an assignmenmt olf-

jects ton locations under multiple flow matrices. The solution 2.6. Cardinality of the Pareto Set

representation is then usually based on a permutation f&xnQ  |n this section, we analyze the impact of the mUBQP prob-

whereas it is based on a binary string for mUBQP. lem instance features (in particuldr,m andp) on the number
of Pareto optimal solutions. The Pareto set cardinalitypla
2 5. Problem Instances an important role on the problem complexity (in terms of in-

tractability), and then on the behavior and the performarice
We propose to define correlated mUBQP problem instancesolution approaches. Indeed, the higher the number of ®aret
as follows. Each objective function is defined by means of aptimal solutions, the more computational resources redui
matrix Q¢, k € {1,..., m}. Based on the single-objective UBQP to identify a minimal complete Pareto set.
instances available in the OR-lib [34], non-null matrixagér We setn = 18 in order to enumerate the decision space
values are randomly generated according to a uniform bistri  exhaustively. We report the average values over 3t@mint
tion in [-100, +100]. As in the single-objective case, the den-and independent mUBQP instances of same structure. Figure 3
sity d gives the proportion of non-null numbers in the matrix. gives the proportion of Pareto optimal solutions. Unsispri
In order to define matrices of a given densitywe setq}‘j =0 ingly, the matrix densityd has a low influence on the results.
for all k € {1,...,m} at the same time, following a Bernoulli However, the number of objective functiomsand the objective
distribution of parameted. correlationo both modify the proportion of Pareto optimal so-
Moreover, we define a correlation between the data containddtions to several orders of magnitude. Indeed, this pridpor
in themmatricesQ¥, k € {1,..., m}. The positive (respectively decreases from 16 forp = —0.9 to 107 for p = +0.9 for two-
negative) data correlation decreases (respectivelyase® the and three-objective mUBQP problem instances. As well, for a
degree of conflict between the objective function valuest Fonegative objective correlation = —0.2, this proportion goes
simplicity, we use the same correlation between all paisef  from 104 up to 10, whereas it goes from 1®up to 103 for
jective functions, given by a correlation dieientp > n;—ll a positive objective correlatign= +0.9, form =2 andm =5,
The generation of correlated data follows a multivariaté un respectively. Figure 4 shows three examples of mUBQP prob-
form law of dimensiorm[35]. In order to validate the behavior lem instances represented in a two-objective space. When th
of the objective correlation céigcient experimentally, we con- objective correlation is negative, the objective functi@mne in
duct an empirical study fon = 18 in order to enumerate the conflict, and the Pareto set is large (left). When the objecti
decision space exhaustively. Figure 2 reports the averalge v correlation is null, the objective space can be embedded in a
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Figure 2: Average value of the Spearman correlationffznent between the objective function values and the cdioelecodficient p. The decision space is
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Figure 4: Representation of feasible solutions of a mUBQ@lem instance in a two-objective space. The problem sime=id8, the Q-matrix density id = 0.8,
the number of objective functions s = 2, and the objective correlation is= —0.9 (left), p = 0.0 (middle) ando = 0.9 (right). Green points are the objective
vectors of random solutions (10% of the decision space,sire) red points corresponds to non-dominated objectiviorgec

multidimensional ball (middle). Last, when the objectiva@-c  Algorithm 1 Pseudo-code of the hybrid metaheuristic (HM) for
relation is positive, there exist few solutions in the Paursgt mUBQP
(right). Input:  matrix Q (dimensiormx nx n)

Output:  Pareto set approximatioh

3. A Hybrid Metaheuristic for mUBQP 1: initialize the archiveA /* see Section 3.4/
. - 2: repeat

The hybrid metaheurlsu-c propgsed for the mUBQP prgb- 3:  randomly select two individuals, x; from A
lem is based on a memetic algorithm framework [36], which . . )
. . . L 4: X« recombinex;, X;) /* see Section 3.5/
is known to be an féective approach for discrete optimiza- _ X*  tabusearchg) /* see Section 3.3/*
tion [37, 38]. Our approach uses one of the best performing )

i X : N

local search algorithm for single-objective UBQP as ondof i 6: A < non d-ommate.dlsollutlon§ frorﬂ\(u )
: 7: until a stopping condition is satisfied

main components [12, 13].

3.1. General Principles evaluation function used by tabu search is based on a sdaari

Memetic algorithms are hybrid metaheuristics combining anechnique of the initial objective function values (Sect&2).
evolutionary algorithm and a local search algorithm. Miti  The corresponding achievement scalarizing function iéefi
jective memetic algorithms [39] seek an approximation &f th jn such a way that the tabu search procedure focuses itshsearc
Pareto set (not only a subpart of it). A simple elitist mWtio \yithin the objective space area enclosed by the positiopaef
jective population-based evolutionary algorithm opes@®the  ent solutions. Another crucial component of the HM algarith
main metaheuristic, whereas an advanced single soluiseeb  gppears at the initial phase (Section 3.4), where a conipngat
local search is used as an improvement operator in placeof thefort is made in order to identify close-to-optimal solutidms
mutation step. Keeping the exploratius. exploitation trade-  cated at the extreme regions of the objective space. The algo
off in mind, the idea behind such an approach is that the evaithm is iterated until a user-given stopping condition asis-
lutionary algorithm will dfer more facilities for diversification, fied. An outline of the hybrid metaheuristic (HM) is given in

while the local search algorithm will provide more capal@8  Algorithm 1. The main components of the HM algorithm are
for intensification. detailed below.

The search space is composed of all binary vectors ofrsize
The size of the search space is then equaltd’'Be evaluation
function is the canonical objective function given in EQ. (&n
unboundedrchiveof mutually non-dominated solutions found  The tabu search procedure, that will be presented later in
so far is maintained with respect to the Pareto dominance rehe paper, is known to be well-performing for solving single
lation defined in Section 2.2. Throughout the search processbjective UBQP instances offtirent structures and sizes [12,
solutions are discarded as soon as they are detected toive equl 3, 14, 15, 16]. Of course, given that it manipulates a single
alent to, or dominated by, at least one other solution froen th solution only, a scalarization of the multiple objectiva@tions
archive. At each iteration, two parents are selected atarand is required due to the multiobjective nature of the mUBQR Th
from the archive and recombined to produce a sindiispoing  goal is totemporarily transform the mUBQP problem into a
solution (Section 3.5). Thefispring solution is further im-  single-objective one so that the tabu search algorithm ean b
proved by means of a tabu search algorithm (Section 3.3). Thesed in a straightforward way. Many general-purpose sSealar
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ing functions have been proposed for multiobjective optami  integrations of the achievement scalarizing function ievo-

tion [40], generally with the aim of incorporating prefecen lutionary multiobjective optimization algorithms can bmuhd

information coming from a decision-maker. The matter issher elsewhere [44, 45, 46]. However, in existing approaches, th

different since we are interested in approximating the whol@arameters of the achievement scalarizing function arallysu

Pareto set. Hence, the parameters required by the scatarizikept static or randomly chosen throughout the search pspces

function aredynamicallyset according to the current state of whereas they are adapted to appropriate values according to

the search process. This will be discussed in Section 3.5. current state of the search process in the HM proposed in the
In multiobjective memetic algorithms, the most popularpaper, as will be detailed in Section 3.5.

scalarizing function is the weighted-sum aggregation {39,

where a weighting cd&cient vector represents the relative im- 3.3. Tabu Search

portancg of (_each objective function. ngever, th|s appnoac The following tabu search algorithm, used as a subroutine

cannot identify a number of Pareto optimal solutions, whose

. : - of the HM, is reported to be one of the best-performing ap-
corresponding non-dominated objective vectors are |ocaite . S
the convex hull of the Pareto front [24, 40]. Another ex- proaches for the single-objective UBQP problem [13]. Ineord

. . . . to extend it to the multiobjective case, we use the achieméme
ample is theachievement scalarizing functipproposed by

Wierzbicki [42]. This technique is based on a reference poin scalarizing function, so that the initial objective vect@atues

L ) are transformed into a single scalar value. Notice, however
A reference point gives desirable or acceptable valuesdon e ; . : .
o . o . that the nature of the evaluation function considered irpthe
objective function. These objective values are calsgira-

tion levelsand the resulting objective vector is calledefer- per has a dferent structure than the classical evaluation func-

ence pointand can be defined either in the feasible or in thetIon of single-objective UBQP. We describe the main prifesp

infeasible region of the objective space. One of the fasiie of the tabu search below.

. . . The neighborhood structure is based on the 1-flip operator.
achievement scalarizing functions can be stated as follbets : . . . i
o o . Two feasible solutions are neighbors if theyfdi exactly on
us recall that the maximization of the objective functions a . . .
assumed one variable. In other words, a given neighbor can be reached

by changing the value of a binary variable to its complement
cra9(X) = max {/lk(4 _ fk(x))} (3) fromthe current solgtion. The size of_the 1-fl?p neighborth\oo

ke(L....m) structure is linear with the problem size As in the single-

il objective UBQP, each mUBQP objective function can be eval-
+ EZ:’lk(4 h fk(x)) uated incrementally. We follow the fast incremental evabra

k=1 procedure proposed by Glover and Hao [47] to calculate the

whereo is a mapping function fronX to R, x € X is a fea- move gain of a given neighboring solution. For a given ob-
sible solution,Z € R™ is a reference point vector, € R™ jective function, the whole set of neighbors can be evatlime
is a weighting cofficient vector, anct is an arbitrary small linear time. As a consequence, the objective values of ajhae
positive number (< ¢ < 1). We keep the parameter con- boring solutions are evaluated@(m- n) in the multiobjective

stant throughoutthe search process. The following achiemé  case. Once the objective values of a given neighboring solu-

scalarizing optimization problem can be formalized. tion have been (incrementally) evaluated, we compute &fasc
) fithess value with respect to Eq. (3).
min- o@19(X) (4) As a short-term memory, we maintain the tabu list as fol-
subjectto  xe X lows. Revisiting solutions is avoided within a certain nenb

of iterations, called the tabu tenure. Tiadbu tenureof a given
variablex; is denoted byenurdi). Hence, variableg will not
(i) if x* = argminex o@.10(X), thenx* is a Pareto optimal be flipped again for a number tdnur€i) iterations. Following

solution; LU et al.[20], we set the tabu tenure of a given variaklafter

it has been flipped as follows.
(ii) if x* is a Pareto optimal solution, then there exists a func-

tion oz 1,9 such thatx* is a (global) optimum of Prob- tenurdi) = tt + rand(10) (5)
lem (4).

Interestingly, two properties are ensured [43]:

wherett is a user-given parameter arahd(10) gives a random
This makes the achievement scalarizing function attractiv-  integer value between 1 and 10. From the set of neighboring so
deed, as noticed earlier, only a subset of Pareto optimat sol lutions produced by all non-tabu moves, we select the onte wit
tions, known as supported solutions [24], can be found withi the best (smallest) fithess value according to Eq. (3). lddee
a weighted-sum aggregation function, since the second-props recall at this point that the aim of the tabu search algarit
erty (i) is not satisfied. Those solutions are known as supis to find a good approximate solution for Problem (4), for a
ported Pareto optimal solutions, and their correspondong n  given definition ofZ andA. However, all neighboring solutions
dominated objective vectors are located on the convex Hull oare always evaluated, and a tabu move can still be seledted if
the Pareto front. On the contrary, the achievement scalgriz produces a better solution than the current global bests iEhi
function potentially enables the identification of bothgoged  called anaspiration criterionin tabu search. The stopping con-
and non-supported Pareto optimal solutions [40]. Sucuakssf dition of the tabu search algorithm is met when no improveimen
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has been performed within a given number of maveshe pa- A A
rameter is called thamprovement cuji For more details on ) g
the tabu search algorithm for the single-objective UBQE, th
reader is referred to Glovet al.[13, 20].

3.4. Initial Phase

The goal of the initial phase is to identify good-quality so-
lutions with respect to each objective function of the mUBQP
i.e.,solutions mapping to the extreme points of the Pareto front
in the objective space. This set of solutions initializesgharch
process in order to ensure that the HM provides a good cov-
ering of the Pareto front. To this end, we define the follow-
ing achievement scalarizing function parameter settinge W
set the reference poit = {Z'"®...,Z3*} such thatz®* is
higher than any possibl&-value. This (unfeasible) objective
vector can be seen as a rough approximation of the utopia £

point [24, 40]. Now, let us consider a particular objective ) ] ) o
Figure 5: Graphical representation of the improvement @iraa two-objective

functionk € {1,....m}j. We seti = 1, and4 = O for all space, where; andx; are the parent solutions,is the dfspring solution and
le{l,...,m\{k}. x* is the solution improved by means of the tabu search proeetivough the
The tabu search algorithm, seeded with a random solution, ischievement scalarizing evaluation function defined byréference point'

then considered within the corresponding achievemenascal and the weighting cdgcient vectorl.

izing function as an evaluation function. Those initiallg@ns

have a high impact on the performance of the HM, particularly

in terms of diversification. As a consequence, we perferm 4 Experimental Analysis

independent restarts of the tabu segpeh objective function

in order to increase the chance of getting high-performg s This section presents an experimental analysis of the pro-

lutions in all extreme regions of the Pareto front. This [BIERC posed approach on abroad range of mUBQP prob|em instances.
is iterated for every objective function of the mUBQP prable

instance under consideration.

\

4.1. Experimental Design

3.5. Variation Operator We conduct an experimental study on the influence of the
At each iteration of the HM algorithm, a singldtspring _proplem size lﬁ)_, the number of objectivest), and the ob-
S S . jective correlation 4) of the mUBQP problem on the per-
solution is created by a recombination operator. First, & s . .
formance of the HM algorithm proposed in the paper. In

lect two mutually non-dominated parent solutions at random__ . : . : .
from the current archives, x; € A such thatq # x,. Then particular, we investigate the following parameter settin

. S . . n € {1000200Q300Q40005000, m € {2,3}, andp €
an cffsprmg solution is created with uniform CroSsOver. com {—0.5,-0.2,0.0,+0.2, +0.5}. The density of the matrices is set
mon variables between both parents are thus assigned tfithe

. : . L . tod = 0.8. One instance, generated at random, is considered
spring solution, while the remaining ones are assignedrat ra S .
. S . per parameter combination. This leads to a total of 50 problem
dom. The dfspring solution is further improved by means of .
. . . instances.
the tabu search procedure presented in Section 3.3. We aim a

obtaining a new solution in an unexplored region of the Raret e compare ihe performance of our algorithm against a
g P 9 ._steady-state evolutionary algorithm that follows the sainec-

ing function properly. The procedure attempts to find a nonz_ture as the HM, but where the tabu search is replaced by a ran-

dominated point that “fills the gap” between the objective-ve dom mutation. This aII_ov_vs us to appreciate the |m_pa_1?t Qf the
: : : o tabu search and scalarizing procedure. The same initii@liza
tors associated witk andx;. The region of the objective space

where the tabu search algorithm operates is then delimited tPh?SG than n the HM is appheo_l. Then, at each |teratlonfhn 0
. : ) . 7. spring solution is created by uniform crossover and an iadep
the position of parent solutions, given by the following déefi

tion of the achievement scalarizing function dent bit-flip operator is appliede., each variable is randomly
9 ' flipped with a probability In. We refer to this algorithm as SS-

Z, = max fu(x), fu(X))} ke{l,...,m (6)  EA, for steady-state evolutionary algorithm. We also corapa
1 the results of the algorithms to a baseline algorithm, thi-we
Ak kef{l,....m (7)  known NSGA-II [48]. NSGA-II maintains a population of con-

[14) = fC3)l stant size, initialized at random, and produces the saméeaum
This procedure allows the HM to improve, at each iteration, aof offspring solutions at every iteration. Selection for reprdu
particular part of the Pareto front, dynamically choserhwé-  tion and replacementis based on dominance-depth rankgtg fir
spect to the pair of parent solutions under selection. Tleeatv  and on crowding distance at second-level. At each iteration
variation procedure is illustrated in Figure 5. non-dominated solutions from the current population a fir



Table 1: Parameter setting for the experimental analysis.

Description | Parameter| Value(s)

Instances
Problem size n {100Q 200Q 300Q 400Q 5000
Matrix density d 0.8
Number of objectives m (2,3}
Objective correlation o {-0.5,-0.2,0.0, +0.2, +0.5}
Algorithms
Crossover rate 1.0
Mutation rate (SS-EA, NSGA-II) 1.0/n
Population size (NSGA-II) 100
Tabu tenure tt n/150
Tabu improvement cutd @ 5n
Number of restarts (initialization) y 5
reference point z adaptively set during the search process; see Section 3.5
weighting codficient vector A adaptively set during the search process; see Section 3.5
e-parameter (achievement scalarizing functign) e 108
Stopping condition (CPU time (n-m-10°%) minutes

assigned a rank of 1 and are discarded from consideration, nohave been executed under comparable conditions and share
dominated solutions from the remaining solutions of theipop the same base components for a fair comparison. The exper-
lation are then assigned a rank of 2 and are discarded from coiments have been conducted on an Intel Core 2 quad-core pro-
sideration, and so on. This process is iterated until thefssi-  cessor (40 GHZ, 4GB RAM) running under Ubuntu 184,
lutions with no rank is empty. The crowding distance estemat All codes were compiled withg+ 4.4.3 using the-03 compi-

the density around a particular objective vector. The ciogd lation option.

value is computed among solutions with the same rank. A so-

lution is said to be better than another solution if the farhvess 4.2, Performance Assessment

a better rank, or in the case of equality, if it is less crowd&d .
. : . o A set of 30 rungper instance has been performed for each
binary tournament is used for selection, and an elitistesga . . i
algorithm. In order to evaluate the quality of the approxima

is used for replacement. The same crossover and mutation 0p- :

. tions found for each instance, we follow the performance as-
erators as for SS-EA are considered. In other words, the maill - nt orotocol proposed by Knowdesl [26]. Such awa
differences between SS-EA and NSGA-II arig:§S-EA uses P prop y L Y

an unbounded population whereas NSGA-Il maintains a fixed9f comparing multiple stochastic multiobjective optinmigés a

X oo . L common practice in the specialized literature. Let us aers
size population,ii) selection for reproduction is performed at

. . ” . .
random within SS-EA whereas it is based on dominance—dept\%g/cetg:2#5}?2"p trr?:ﬁ;e'?(f?entc:' fxir%itlizisgi)%?;?rﬁg\ée d
and crowding distance within NSGA-II, andi] the archive bp

i i I ; }
is initialized as detailed in Section 3.4 for SS-EA wherédwges t :Egtgg gﬁzeﬁgﬁ.réngri?;ztgjoiF:ifvenz,iit%?gtas'i?]fgt; diomn a
NSGA-II initial population is generated at random. However ) ' gipe

an external unbounded archive has been added to the cahonigéo)('m?tlon may contain points dominating the ones of aeoth

H i i in _ in in
NSGA-II in order to prevent the loss of non-dominated Solu_approxmanon, andice versa\We definez™ = (Z™,.. ., 7")

ax _ ax E} in i a _
tions. We did not experience any memory issues by maintainz—indzm = (@, z"), wherez™ (respectivelyz™) de

ing the whole set of non-dominated solutions found durirgy th notes the lower (respectively upper) bound of kfeobjective

. ) . for all the points contained i@?", vk € {1,...,m}. In order
search process with any of the competing algorithms. : Do .
to give a roughly equal range to the objective functions; val

All the algorithms stop aftem(- m- 10°) minutes of CPU 65 are normalized between 1 and 2 with respeatband
time, i.e.,from 2 minutesper run for smaller instances up to 15 zmax Then, we compute a reference gétcontaining the non-
minutes for large-size instances. Since neighboring &mlst  gominated points oZ?'. In order to measure the quality of
are evaluated incrementally within HM during the tabu searc pareto front approximations, we use both the Pareto dora@an
phases, a maximum number of evaluations cannot be used g§ation extended to sets and théfelience hypervolume indi-
a stopping condition. Following [20], the tabu tenure canst  5tor (k) [25]. They are illustrated in Figure 6 and Figure 7,
is set tott = n/150, and the improvement cdfdo @ = 5n.  respectively. The Pareto dominance relation over sets ean b
During the initialization phase, the number of random mésta defined as follows. A given Pareto front approximatihis
per objective function is set tg = 5. Last, thee-parameter of  jominated by another approximatiad, if for all objective vec-
the achievement scalarizing function is setete= 10%. The o 7L ¢ Al there exists an objective vectr € A2 such that
population size of NSGA-Ilis set to 100 solutions. A summary;t is dominated by2. The I,-indicator value of a given ap-
of all the parameters is given in Table 1. proximationA gives the portion of the objective space that is

HM, SS-EA and NSGA-II have been implemented within thedominated byZ* and not byA, Z = (0.9,...,0.9) being the
ParadisEO software framework [49, 50]. All the algorithmsreference point. Note thaf tvalues are to be minimized. The
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Figure 6: lllustration of the Pareto dominance relationrd®@reto front approx-

imations: () the approximation«) dominates the approximatiorx), (ii) the
approximations ) and @) are incomparable, andi( the approximationsx)
and @) are incomparable.

f

—

fy

Figure 7: lllustration of the hypervolumeftirence quality indicator {J). The
reference set is represented by boxes, the Pareto front approximation by
bullets ¢) and the reference poigt by a crossx). The shaded area represents
the hypervolume dierence }, (e, ).

experimental results report averagevalues and a Wilcoxon  while the reverse holds for eight cases. For such problem in-

signed rank statistical test withfavalue of Q05. This proce-

stances, the number of non-dominated solutions can become

dure has been achieved using the performance assessmient tagry |arge, such that there is probably a lack of diversitytiie

provided in PISA [26].

4.3. Computational Results and Discussion

HM algorithm compared to its non-hybrid counterpart.
Overall, we can conclude that the HM algorithm gives sig-
nificantly better results on most mUBQP problem instances. |

Computational results are presented in Table 2. Let us stafi€arly outperforms the conventional NSGA-Il algorithmtbe
with an example. The left part of the first line corresponds tohole set of instances, whereas it is outperformed by SS+#EA o

the following mUBQP problem instance: = 1000,p = —0.5

andm = 2. The average_}value obtained by HM, NSGA-II

and SS-EA over the 30 executions i942, 0325 and (085,

only ten out of fifty mUBQP instances.

respectively. According to the;lindicator, the ranking de- - Conclusions

duced from the statistical test is as follows:HM, (ii) SS-EA,

and {ii) NSGA-II. The Pareto set approximations obtained by The contributions of the paper are three-fold. First, the un
NSGA-II are reported to be statistically outperformed bg th constrained binary quadratic programming (UBQP) problem
ones from HM in terms of Pareto dominance. Similarly, SS-has been extended to the multiobjective case (mMUBQP) which
EA is outperformed by HM in terms of hypervolume indicator- involves an arbitrary number of UBQP objective functions to

values.

be maximized simultaneously over the same decision space of

First, compared against NSGA-II, the HM algorithm clearly binary strings of siz&. In the single-objective case, the UBQP

performs better. Indeed, the Pareto set approximationdidyn

problem is one of the most challenging problem from combina-

NSGA-Il is always dominated by the one obtained by HM. Thattorial optimization, and is known to enable the formulatifra
is, every solution found by NSGA-II is dominated by at leastlarge number of practical applications in many areas. Thie mu
one solution found by HM for all the runs over all the instasice tiobjective UBQP problem introduced in this paper will afio

The only cases where this does not happen igrfos 3 and
p = —0.5 as well as the following instance = 1000,m = 3

andp = -0.2. Still, HM outperforms NSGA-II in terms of

hypervolume for the corresponding instances.

more practical applications to be formulated and solved.
Second, multiobjective UBQP problem instances and an in-

stance generator have been made available at the following

URL: http://mocobench.sf.net. These problem instances

With respect to SS-EA, the hypervolume indicator is alwaysare characterized by a problem size, a matrix density, a Bumb

required to dfferentiate approximation sets.

For all the in- of objective functions, and a correlation ¢beient between the

stances withn < 3000, HM gives better results, except for objective values. In particular, the objective correlatt@n be

m = 3 andp =

—-0.5. However, for large-size instances tuned precisely, allowing one to study the impact of thisdea

(n > 4000), HM seems to have more trouble in finding a betteion the size of the Pareto front, and then on the performance
approximation set than SS-EA in some cases, particulargnwh of solution approaches. These instances are useful fooperf
the objective functions are in conflict. Indeed, HM performsmance assessment and comparison of new algorithms for the
better than SS-EA on nine out of the twenty largest instancegeneral mUBQP problem.



Table 2: Comparison of the proposed HM against NSGA-Il andEBSThe symbol &’ (resp. ‘<) means that HM significantly outperforms (resp. is sigrifity
outperformed by) the algorithm under consideration wipeet to the set-based Pareto dominance relation. The $yrilfeesp. '<’) means that HM significantly
outperforms (resp. is significantly outperformed by) trgoathm under consideration with respect to thffefence hypervolume indicator;(l. The symbol &'
means that no algorithm outperforms the other in terms oétBatominance norl-values. The averagg,ivalue is reported in brackets for HM, NSGA-Il and
SS-EA, respectively (lower is better).

m=2 m=3
n o HM NSGA-II SS-EA HM NSGA-II SS-EA

1000 -0.5 (0.042) > (0.325) > (0.085) (0.104) > (0.273) > (0.113)
-0.2 (0052) > (0.336) = (0.094) (0120) > (0410) = (0339)

0.0 (0037) > (0.336) = (0109) (0127) > (0449) = (0405)

+0.2 (0.037) > (0.348) = (0.120) (0.096) > (0.471) > (0.420)

+0.5 (0.032) > (0.385) > (0.132) (0.092) > (0.508) > (0.409)

2000 -0.5 (0.099) > (0416) = (0176) (0140) > (0248) < (0.080)
-0.2 (0112) > (0473) = (0188) (0221) > (0434) = (0335)

0.0 (0070) > (0520) > (0177) (0.208) > (0518) > (0427)

+0.2 (0.097) > (0.587) > (0.215) (0.193) > (0577) > (0.477)

+0.5 (0.054) > (0.757) > (0.229) (0171) > (0.738) > (0.556)

3000 -0.5 (0136) > (0471) = (0153) (0159) > (0239) < (0071)
-0.2 (0.125) > (0.566) > (0.192) (0.262) > (0.417) > (0.288)

0.0 (0.111) > (0.640) > (0.223) (0.321) > (0.529) > (0.394)

+0.2 0177) > (0.728) > (0.303) (0.282) > (0.639) > (0.470)

+0.5 (0.131) > (0.931) = (0.341) (0.254) > (0.845) > (0572)

4000 -0.5 (0.216) > (0.497) < (0.178) (0.188) > (0.235) < (0.051)
-0.2 (0.195) > (0.607) > (0.238) (0.311) > (0.405) < (0.267)

0.0 (0157) > (0687) = (0233) (0325) > (0441) < (0.280)

+0.2 (0.147) > (0.813) = (0.271) (0.349) > (0.647) > (0.450)

+0.5 (0.089) > (1.001) = (0.263) (0.299) > (0.860) = (0568)

5000 -0.5 (0.267) > (0.500) < (0.153) (0.201) > (0.231) < (0.056)
-0.2 (0.250) > (0624) = (0.204) (0.283) > (0319) < (0156)

0.0 (0219) > (0.725) = (0.235) (0.305) > (0403) < (0238)

+0.2 (0.192) > (0.802) > (0.253) (0.359) > (0.576) = (0.393)

+0.5 (0.125) > (1.023) > (0.236) (0.359) > (0.859) > (0.518)

Third, we have presented an hybrid evolutionary-tabu $earction problems like the multiobjective variants of assigmtye
algorithm for the multiobjective UBQP. The proposed apploa covering, partitioning, packing and quadratic knapsaabpr
integrates a state-of-the-art tabu search algorithm fosithgle-  lems. This would enable the identification of a Pareto frgmt a
objective UBQP, together with Pareto-based evolutiongry o proximation for many problems from multiobjective combina
timization principles. Based on the achievement scalagizi torial optimization under a unified modeling, either as adta
function, the proposed algorithm is able to generate boph su alone methodology, or to provide a fast computation of a fowe
ported and unsupported solutions, with the aim of finding abound set for improving the performance of exact approaches
well-converged and well-diversified Pareto set approxiomat
We have showed that this hybrid metaheuristic obtains igni
cantly better results than two conventional evolutionanjtin
objective optimization techniques for large-size muljsative [1] R. D. McBride, J. S. Yormark, An implicit enumeration alithm for

UBQP problem instances offtrent structure and size guadratic integer programming, Management Science 26 880) 282—
: 296.

. . . .. [2] F.Harary, On the notion of balanced of a signed graph higien Mathe-
A better understanding of the main problem characteristics™ | .ical Journal 2 (1953) 143-146.

would allow us to improve the design of heuristic search al- [3] J. Krarup, P. M. Pruzan, Computer-aided layout design Mathemati-
gorithms by incorporating a deeper problem knowledge. To  cal Programming in Use, Vol. 9 of Mathematical Programmingdges,

this end, we plan to study the correlation between the main__ SPringer, 1978, Ch. 6, pp. 75-94.
P y [4] P. Chardaire, A. Sutter, A decomposition method for gatid zero-one

problem features and_the alg_orit.hm.performa.nce throug@g‘ﬂn programming, Management Science 41 (4) (1994) 704-712.
landscapes analysis in multiobjective combinatorial mjta- [5] G.Kochenberger, F. Glover, B. Alidaee, C. Rego, A unifieddeling and
tion [35, 51]. Last, we hope that the challenge proposed dy mu solution framework for combinatorial optimization protvis, OR Spec-

L . . . trum 26 (2004) 237-250.
tiobjective UBQP will gain the attention of other reseamshe (6] M. Lewis, G. Kochenberger, B. Alidace, A new modeling asalution

|_n particular, a stronger link is _re_qUired be_tweer_] multi_nb_j approach for the set-partitioning problem, Computers & 1@fiens Re-
tive UBQP formulations and existing combinatorial optiaziz search 35 (3) (2008) 807-813.
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