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Abstract

The conventional Unconstrained Binary Quadratic ProgrargrfUBQP) problem is known to be a unified modeling and soluti
framework for many combinatorial optimization problemshid paper extends the single-objective UBQP to the mukicibje
case (MUBQP) where multiple objectives are to be optimizadisaneously. We propose a hybrid metaheuristic whichluioes
an elitist evolutionary multiobjective optimization algfhm and a state-of-the-art single-objective tabu seproleedure by using
an achievement scalarizing function. Finally, we definerenfid model to generate mUBQP instances and validate thenpesthce
of the proposed approach in obtaining competitive resultame-size mUBQP instances with two and three objectives.

Key words: Unconstrained binary quadratic programming, Multiobjeetombinatorial optimization, Hybrid Metaheuristic,
Evolutionary Multiobjective Optimization, Tabu searcltafarizing function

1. Introduction During the past few decades, a large number of algorithms and
) ) ) ) ) approaches have been proposed for the single-objectiveRUBQ

~ Given a collection of items such that each pair of items i, the literature. This includes several exact methodscase

is associated with a profit value that can be positive, negati pranch and bound or branch and cut [8, 9, 10] and a number

or zero, unconstra!ned binary qua_tdr_atlc programming (_UBQ_Pof heuristic and metaheuristic methods like simulated akne

seeks a subset of items that maximizes the sum of their pairgflg [11], tabu search [12, 13, 14, 15, 16], path-relinking][1

values. The value of a pair is accumulated in the sum only ikyolutionary and memetic algorithms [18, 19, 20, 21].
the two corresponding items are selected. A feasible swluti

to a UBQP instance can be specified by a binary string of size N this paper, we extend this conventional single-objectiv
n, such that each variable indicates whether the correspgndi UBQP problem to the multiobjective case, denoted by mUBQP,
item is included in the selection or not. More formally, trome where multiple ijectlves are to be optimized S|mulltanl;ogs
ventional and single-objective UBQP problem is to maximizeSUch an extension naturally increases the expressiveyabili

the following objective function. the UBQP and provides a convenient formulation to fit situa-
tions which the single-objective UBQP cannot accommodate.

n.n For instance, UBQP can recast the vertex coloring problem

f(x) =xQx= Z Z 0ij Xi X; (1) (of determining the chromatic number of a graph) [5] and the

=1 =1 sum coloring problem (of determining the chromatic sum of a

graph) [22]. Still, UBQP is not convenient to formulate the
bi-objective coloring problem which requires to determae
legal vertex coloring of a graph while minimizing simultane
rRusly the number of colors used and the sum of colors. For this
bi-objective coloring problem, the mUBQP formulation can b
employed in a straightforward way.

whereQ = (g;j) is ann by n matrix of constant valuesy is
a vector ofn binary (zero-one) variablegge., ¥ € {0,1}, i €
{1,...,n}, andx is the transpose of.
The UBQP is known to be a general model able to represe
a wide range of important problems, including those from fi-
nancial analysis [1], social psychology [2], computer dide-
sign [3] and cellular radio channel allocation [4]. Morenwe In addition of introducing the mUBQP problem, the paper
number of NP-hard problems can be conveniently transformedas two contributions. First, given that the single-obiject
into the UBQP, such as graph coloring, maxcut, set packingyBQP is NP-hard, its generalized mUBQP formulation is also
set partitioning, maximum clique, and so on [5, 6]. As a con-a difficult problem to solve in the general case. For the pur-
sequence, the UBQP itself is clearly a NP-hard problem [7]pose of approximating the Pareto set of a given mUBQP in-
stance, heuristic approaches are appealing. Followingttite
. ies on memetic algorithms for the UBQP and many other prob-
“Corresponding author, Tel:33 3 59 35 86 30. lems, we adopt as our solution approach the memetic frame-
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a state-of-the-art single-objective tabu search proeetased is called thePareto set denoted byXps, and its mapping in
on an achievement scalarizing function. The last contidbut the objective space is called tRareto front One of the most
of this work is to define a formal and flexible model to generatechallenging issues in multiobjective combinatorial optiation
hard mUBQP instances. An experimental analysis validatest is to identify a minimal complete Pareto ség., one Pareto
effectiveness of the proposed hybrid metaheuristic by achiewsptimal solution mapping to each point from the Pareto front
ing a clear improvement over non-hybrid and conventional al Note that such a set may not be unique, since multiple solsitio
gorithms on large-size mUBQP instances with two and threean map to the same non-dominated vector.

objectives.

The paper is organized as follows. Section 2 introduces th
multiobjective formulation of the UBQP problem (mUBQP).
Section 3 presents the hybrid metaheuristic (HM) proposed f - £or many multiobjective combinatorial optimization prob-
the mUBQP problem and its main ingredients, including th&ems computing the Pareto set is computationally prakibit
scalarizing evaluation function, the tabu search proagdhe o two main reasons. First, the question of deciding if
initialization phase and the variation operators. Secli@ves 5 candidate solution is dominated is known to be NP-hard
an experimental analysis of the HM algorithm on a large sefor numerous multiobjective combinatorial optimizatiorop-
of mUBQP instances of fferent structure and size. The last |ems [23, 24]. This is also the case for the mUBQP problem
section concludes the paper and suggests further resé@@sh | gjnce its single-objective counterpart is NP-hard [7]. et

the cardinality of the Pareto front typically grows expotially
2. Multiobjective Unconstrained Binary Quadratic Pro-  With the size of the problem instance [24]. In that sense,tmos
gramming multiobjective combinatorial optimization problems aggdsto
be intractable In the following, we prove that the mUBQP

This section first introduces the multiobjective uncorisgd  problem is intractable.
binary quadratic programming problem. Some definitions re-
lated to multiobjective combinatorial optimization arethre- ~ Proposition 1. The multiobjective unconstrained binary
called, followed by problem complexity-related propestand ~ quadratic programming problem (2) is intractable, even for
a link with similar problem formulations. Last, the constru M= 2.
tion of problem instances, together with an experimental\st
on the correlation of objective values and the cardinalithe ~ Proof. Consider the following bi-objective mUBQP instance.
Pareto set, are presented.

3.3. Properties

1 { 2n(i—l)—m£—1)+j—l if i > J

i =1 0 i < | i,je{l,...,n}

2.1. Problem Formulation

The multiobjective unconstrained binary quadratic pragra

_ > 1 . . .
ming (MUBQP) problem can be stated as follows. Letq; = —q; foralli,j € {1....n}. Itis obvious that all
solutions are mutually non-dominated, and that each swluti

5 maps to a dierent vector in the objective space. Therefore,
max f(x) = Z Z af %X ke{l,...,m @ \Zop| = [Xps| = |X| = 2" 0
i=1 j=1
subject tox; € {0, 1} ief{l,....n}

The bi-objective mUBQP instance used in the proof is illus-
wheref = (fi, f,,..., f) is an objective function vector with trated in Figure 1 fon = 3.
m > 2,nis the problem size, and we havematricesQX = (qrj) In order to cope with NP-hard and intractable multiobjestiv
of sizen by n with constant positive, negative or zero values,combinatorial optimization problems, researchers hawelde
ke {1,...,m}. The solution spack is defined on binary strings oped approximate algorithms that identiff{Pareto set approx-

of sizen. imationhaving both good convergence and distribution proper-
ties [25, 26]. To this end, metaheuristics in general, amduev
2.2. Definitions tionary algorithms in particular, have received a growintgi-

Let X = {0, 1}" be the set of feasible solutions in thelution St Since the late eighties [27].
spaceof Problem (2). We denote [& ¢ R™ the feasible region
in theobjective spacg.e., the image of feasible solutions when 2 4. | inks with Existing Problem Formulations
using the maximizing function vectdr The Pareto dominance
relation is defined as follows. A solutione X is dominated The single-objective UBQP problem is of high interest in
by a solutionx’ € X, denoted by < X, if fy(x) < f(X) for  practice, since many existing combinatorial optimizajioob-
all k € {1,...,m}, with at least one strict inequality. If neither lems can be formalized in terms of UBQP [5]. As a conse-
X £ X norx 4 xholds, then both solutions amutually non-  quence, multiobjective versions of such problems can poten
dominated A solutionx € X is Pareto optimal(or efficient, tially be defined in terms of mUBQP. However, to the best
non-dominated) if there does not exist any other solution X  of our knowledge, the UBQP problem has never been explic-
such that’ dominates<. The set of all Pareto optimal solutions itly defined in the multiobjective formulation given in EQ®)(
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Figure 1: Enumeration of all feasible solutions for the mUBgroblem instance considered in the proof of Propositiofitle input data of th&@!-matrix (left),
the enumeration of feasible solutions (middle), and tregiresentation in the objective space (right). The problemisn = 3.

Existing multiobjective formulations of classical combin-  of the objective correlation céiécient experimentally, we con-
rial optimization problems with binary variables includellm  duct an empirical study fon = 18 in order to enumerate the
tiobjective linear assignment problems [24, 28], multexb] feasible sef0, 1}" exhaustively. Figure 2 reports the average
tive knapsack problems [29, 30], multiobjective maxcuttpro value of the Spearman correlation ddeent over 30 dferent
lems [31], or multiobjective set covering and partitionprgb-  and independent instances foffdrent combinations g, m,
lems [28], just to mention a few. Nevertheless, the objectiv andd. Clearly, the correlation cd&cientp tunes the objective
functions of such formulations are linear, and not quadrasi  correlation with a high accuracy.

in mMUBQP. Still, they often contain additional constrajrygp- To summarize, the four parameters used to define a mUBQP
ically the unimodularity of the constraint matrix for lineas-  instance arei) the problem sizen, (ii) the matrix densityd,
signment, or the capacity constraint for knapsack. Thisnsea (iii) the number of objective functions, and {v) the objec-
that many existing binary multiobjective combinatorialtiop tive correlation cofficientp. The mUBQP problem instances
mization problems can be formalized in terms of mUBQP byused in the paper and an instance generator are available at t
adapting and generalizing the techniques from [5] to the- mulfollowing URL: http://mocobench.sf .net/.

tiobjective case, whereas the opposite does not hold inrgene

due to the quadratic nature of mMUBQP. The mUBQP problen2.6. Cardinality of the Pareto Set

is also diferent from the multiobjective quadratic assignment |, ihis section. we analyze the impact of the mUBQP prob-
problem (MQAP) [32, 33], which seeks an assignmemtob- o jnstance features (in particular,m andp) on the number
jects ton locations under multiple flow matrices. The solution ¢ pareto optimal solutions. The Pareto set cardinalitysla
representation is then usually based on a permutation fexnQ 5, important role on the problem complexity (in terms of in-

whereas it is based on a binary string for mUBQP. tractability), and then on the behavior and the performace
solution approaches. Indeed, the higher the number of ¢*aret
2.5. Problem Instances optimal solutions, the more computational resources are re

quired to identify a minimal complete Pareto set.

We propose to construct correlated mUBQP problem in- We setn = 18 in order to enumerate the feasible &t1}"
stances as follows. Each objective function is defined bynsiea exhaustively. We report the average values over J@mint
of a matrixQ¥, k € {1,...,m}. Based on the single-objective and independent mUBQP instances of same structure. Figure 3
UBQP instances available in the OR-lib [34], non-zero mxatri gives the proportion of Pareto optimal solutions. Unsuspri
integer values are randomly generated according to a umifor ingly, the matrix densityd has a low influence on the results.
distribution in 100, +100]. As in the single-objective case, However, the number of objective functiomsand the objective
the densityd gives the expected proportion of non-zero num-correlationo both modify the proportion of Pareto optimal so-
bers in the matrix. In order to define matrices of a given den{utions to several orders of magnitude. Indeed, this priogor
sity d, we setgf = O for all k € {1,...,m} at the same time, decreases from T for p = 0.9 to 1075 for p = +0.9 for two-
following a Bernoulli distribution of parametei and three-objective mUBQP problem instances. As well, for a

Moreover, we define a correlation between the data containegkegative objective correlation = —0.2, this proportion goes
in them matricesQ¥, k € {1,..., m}. The positive (respectively from 10 up to 10, whereas it goes from 1B up to 1072 for
negative) data correlation decreases (respectivelyases the a positive objective correlatign= +0.9, form =2 andm = 5,
degree of conflict between the objective function valuest Forespectively. Figure 4 shows three examples of mMUBQP prob-
simplicity, we use the same correlation between all paigef lem instances represented in a two-objective space. Wheen th
jective functions, given by a correlation ddeientp > n;—ll objective correlation is negative, the objective functi@me in
The generation of correlated data follows a multivariateé un conflict, and the Pareto front is large (left). When the otijec
form law of dimensiorm[35]. In order to validate the behavior correlation is zero, the image of the feasible set in theativje
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Figure 2: Average value of the Spearman correlatiorifament between the objective function values and the cdioel@odficientp.
exhaustively fom = 18 on a set of 30 independent random instances. The numbbjeatives ism = 2 (left) andm = 3 (right).
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Figure 4: Representation of feasible solutions of a mUBQ@lem instance in a two-objective space. The problem sime=id8, the Q-matrix density id = 0.8,
the number of objective functionsiis = 2, and the objective correlation is= —0.9 (left), p = 0.0 (middle) ando = 0.9 (right). The objective vectors of (random)
dominated solutions (10% of the solution space size) anesepted by a& while (all) non-dominated objective vectors are represeity ax.

space can be embedded in a multidimensional ball (middle}Algorithm 1 Pseudo-code of the hybrid metaheuristic (HM) for
Last, when the objective correlation is positive, therselaw ~ MmMUBQP

solutions in the Pareto front (r|ght) |nput: matrixQ (dimension'n X N X n)
Output:  Pareto set approximatioh

3. A Hybrid Metaheuristic for mUBQP 1: initialize the archiveA /* see Section 3.4/
. - 2: repeat

The hybrid metaheurlsu-c propgsed for the mUBQP prgb- 3:  randomly select two individuals, x; from A
lem is based on a memetic algorithm framework [36], which . . )
. . . L 4: X« recombinex;, X;) /* see Section 3.5/
is known to be an féective approach for discrete optimiza- _ X*  tabusearchg) /* see Section 3.3/*
tion [37, 38]. Our approach uses one of the best performing _ )

i X : N

local search algorithm for single-objective UBQP as ondof i 6: A < non d-ommate.dlsollutlon§ frorﬂ\(u )
: 7: until a stopping condition is satisfied

main components [12, 13].

3.1. General Principles evaluation function used by tabu search is based on a sdaari

Memetic algorithms are hybrid metaheuristics combining anechnique of the initial objective function values (Sect&2).
evolutionary algorithm and a local search algorithm. Miiti  The corresponding achievement scalarizing function ieefi
jective memetic algorithms [39] seek an approximation &f th jn such a way that the tabu search procedure focuses itshsearc
Pareto set (not only a subpart of it). A simple elitist mWtio \yithin the objective space area enclosed by the positiopaef
jective population-based evolutionary algorithm opesatethe  ent solutions. Another crucial component of the HM algarith
main metaheuristic, whereas an advanced single solutseeb appears at the initial phase (Section 3.4), where a compngt
local search is used as an improvement operator in placeof thufort is made in order to identify high-quality solutions faod
mutation step. Keeping the exploratius. exploitation trade- individual objective function, independently of the remiag
off in mind, the idea behind such an approach is that the evaypjective functions. The algorithm is iterated until a ugien
lutionary algorithm will dfer more facilities for diversification, stopping condition is satisfied. An outline of the hybrid met
while the local search algorithm will provide more capal@  heuyristic (HM) is given in Algorithm 1. The main components

for intensification. of the HM algorithm are detailed below.
The search space is composed of all binary vectors ofrsize

The size of the search space is then equaltd’Be evaluation
function is the canonical objective function given in EQ. (&n
unboundedrchiveof mutually non-dominated solutions found  The tabu search procedure, that will be presented later in
so far is maintained with respect to the Pareto dominance rehe paper, is known to be well-performing for solving single
lation defined in Section 2.2. Throughout the search processbjective UBQP instances offtirent structures and sizes [12,
solutions are discarded as soon as they are detected toive equl 3, 14, 15, 16]. Of course, given that it manipulates a single
alent to, or dominated by, at least one other solution froen th solution only, a scalarization of the multiple objectiva@tions
archive. At each iteration, two parents are selected atarand is required due to the multiobjective nature of the mUBQR Th
from the archive and recombined to produce a sindfispoing  goal is totemporarily transform the mUBQP problem into a
solution (Section 3.5). Thefispring solution is further im- single-objective one so that the tabu search algorithm ean b
proved by means of a tabu search algorithm (Section 3.3). Thesed in a straightforward way. Many general-purpose sSealar
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ing functions have been proposed for multiobjective optami  tions [40]. Successful integrations of the achievemeriasiza
tion [40], generally with the aim of incorporating prefecen ing function into evolutionary multiobjective optimizati algo-
information coming from a decision-maker. The matter issher rithms can be found elsewhere [44, 45, 46]. However, in exist
different since we are interested in approximating the wholéng approaches, the parameters of the achievement saadpriz
Pareto set. Hence, the parameters required by the scatarizifunction are usually kept static or randomly chosen thraugh
function aredynamicallyset according to the current state of the search process, whereas they are adapted to approptiate
the search process. This will be discussed in Section 3.5. ues according to the current state of the search procesg in th
In multiobjective memetic algorithms, the most popularHM proposed in the paper, as will be detailed in Section 3.5.
scalarizing function is the weighted sum aggregation [39, 4
where a weighting cdcient vector represents the relative im- 3.3. Tabu Search
portance of each objective function. However, this appnoac e following tabu search algorithm, used as a subroutine
cannot identify a number of Pareto optimal solutions, whosgy; ihe HM, is reported to be one of the best-performing ap-
corresponding non-dominated objective vectors are |dcite proaches for the single-objective UBQP problem [13]. Inevrd
theinterior of the convex hull of the feasible set in the objective 1q extend it to the multiobjective case, we use the achiememe
space [24, 40]. Another example is thehievement scalariz- - gcalarizing function, so that the initial objective vectalues
ing function proposed by Wierzbicki [42]. This technique is gre ransformed into a single scalar value. Notice, however
based on a reference point. A reference point gives desicabl 4¢ the evaluation function considered in the paper has-a di
acceptable values for each objective function. These OC  ferent structure than the classical evaluation functiosindgle-

values are calle@spiration levelsand the resulting objective objective UBQP. We describe the main principles of the tabu
vector is called aeference poinaand can be defined either in goarch below.

the feasible or in the infeasible region of the objectivecepa g neighborhood structure is based on the 1-flip operator.

One of the families of achievement scalarizing functions ca 1,4 feasible solutions are neighbors if theyfei exactly on
be stated as follows. Let us recall that the maximizatiohef t ;.a variable. In other words. a given neighbor can be reached

objective functions is assumed. by changing the value of a binary variable to its complement
from the current solution. The size of the 1-flip neighborthoo
a(X) = max {A(z — (X 3 L ] . . .
7z aa) KelLo., ml{ (%= ()] ®) structure is linear with the problem size As in the single-

m objective UBQP, each mUBQP objective function can be eval-
+ EZ A(Z — fk(¥) uated incrementally. We follow the fast incremental evitra
k=1 procedure proposed by Glover and Hao [47] to calculate the
wherec is a function fromX to R, x € X is a feasible solution, Move gain of a given neighboring solution. For a given ob-
Z € R"is a reference point} € R™ is a weighting cofiicient  jective function, the whole set of neighbors can be evatliate
vector, ance is an arbitrary small positive number (0 ¢ «  lineartime. As a consequence, the objective values of ajlne
1). We keep the parameter constant throughout the searcH0ring solutions are evaluatedd{m- n) in the multiobjective
process. The following achievement scalarizing optinizat case. Once the objective values of a given neighboring solu-

problem can be formalized. tion have been (incrementally) evaluated, we compute ékasc
fithess value with respect to Eq. (3).
min - o@z.1.(X) (4) As a short-term memory, we maintain the tabu list as fol-
subjectto  xe X lows. Revisiting solutions is avoided within a certain nwenb
) ) of iterations, called the tabu tenure. Tiadu tenureof a given
Interestingly, two properties are ensured [43]: variablex; is denoted byenurdi). Hence, variable; will not

be flipped again for a number té#nurdi) iterations. Following
LU et al.[20], we set the tabu tenure of a given variaklafter
it has been flipped as follows.
(ii) if x* is a Pareto optimal solution, then there exists a func- _
tion oz 19 such thatx* is a (global) optimum of Prob- tenurgi) = tt + rand(10) )
lem (4).

(i) if x* = argminex oz 1.¢(X), thenx* is a Pareto optimal
solution;

wherett is a user-given parameter arahd(10) gives a random
This makes the achievement scalarizing function attractiv-  integer value between 1 and 10. From the set of neighboring so
deed, as noticed earlier, only a subset of Pareto optimat sol lutions produced by all non-tabu moves, we select the onte wit
tions, known as supported solutions [24], can be found witlthe best (smallest) fithess value according to Eq. (3). lddee
a weighted sum aggregation function, since the second props recall at this point that the aim of the tabu search algarit
erty (i) is not satisfied. Those solutions are known as supis to find a good approximate solution for Problem (4), for a
ported Pareto optimal solutions, and their correspondong n  given definition ofZ andA. However, all neighboring solutions
dominated objective vectors are located on the boundatyeof t are always evaluated, and a tabu move can still be seledted if
convex hull of the Pareto front. On the contrary, the achieveproduces a better solution than the current global best ihi
ment scalarizing function potentially enables the iderdaHi called amaspiration criterionin tabu search. The stopping con-
tion of both supported and non-supported Pareto optimal sol dition of the tabu search algorithm is met when no improveimen
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has been performed within a given number of maveshe pa- ) N
rameter is called thamprovement cuji For more details on £, x()
the tabu search algorithm for the single-objective UBQE, th
reader is referred to Glovet al.[13, 20].

3.4. Initial Phase

The goal of the initial phase is to identify good-qualitysol
tions with respect to each individual objective functiontioé
mUBQP. This set of solutions initializes the search pro@ess
order to ensure that the HM provides a good covering of the
Pareto front. To this end, we define the following achieve-
ment scalarizing function parameter setting. We set the ref
erence poing' = {Z"® ..., z1*} such thatz**is higher than
any possiblefg-value. This (unfeasible) objective vector is an f
utopia point [24, 40]. Now, let us consider a particular abje !
tive functionk € {1,...,m}. We settx = 1, andA; = O for all  Figure 5: Graphical representation of the improvement @ivaa two-objective
le{d,...,m\ (k. space, whera® andx()) are the parent solutionsjs the dfspring solution and

The tabu search algorithm, seeded with a random solution, i i the solution improved by means of the tabu search proedtioough the
then considered within the Corresponding achievemenascal achlevemept s_calarlzmg evaluation function defined byréference point'

o ) . - N . and the weighting cdicient vectori.

izing function as an evaluation function. Those initiallg@ns

have a high impact on the performance of the HM, particularly

in terms of diversification. As a consequence, we perfgrm

independent restarts of the tabu seapeh objective function 4. Experimental Analysis

in order to increase the chance of getting high-performing s

lutions with respect to each individual objective functidmis This section presents an experimental analysis of the pro-

process is iterated for every objective function of the mWBQ posed approach on a broad range of mMUBQP problem instances.
problem instance under consideration.

Y

3.5. Variation Operator 4.1. Experimental Design

At each iteration of the HM algorithm, a singl&spring so- We conduct an experimental study on the influence of the
lution is created by a recombination operator. First, weatel Problem size if), the number of objectivesr, and the ob-
two mutually non-dominated parent solutions at random fronj€ctive correlation £) of the mUBQP problem on the per-
the current archived®, x0 ¢ A such thatx® # x(. Then, formance of the HM algorithm proposed in the paper. In
an dfspring solution is created with uniform crossover. Com-Particular, we investigate the following parameter setin
mon variables between both parents are thus assigned tithe g € {10002000300040005000, m € {2,3}, and p €
spring solution, while the remaining ones are assignedrat ra {~0.5,-0.2,0.0,+0.2,+0.5}. The density of the matrices is set
dom. The dfspring solution is further improved by means of 10 d = 0.8. One instance, generated at random, is considered
the tabu search procedure presented in Section 3.3. We aim Rgr parameter combination. This leads to a total of 50 problem
obtaining a new solution in an unexplored region of the Raret INstances.
front by defining the parameters of the achievement scalariz We compare the performance of our algorithm against a
ing function properly. The procedure attempts to find a nonsteady-state evolutionary algorithm that follows the satnec-
dominated point that “fills the gap” between the objective-ve ture as the HM, but where the tabu search is replaced by a ran-
tors associated witt® andx(). The region of the objective dom mutation. This allows us to appreciate the impact of the
space where the tabu search algorithm operates is then-deliigbu search and scalarizing procedure. The same initiaiiza
ited by the position of parent solutions, given by the follogy ~ Phase as in the HM is applied. Then, at each iteration,fan o

definition of the achievement scalarizing function. spring solution is created by uniform crossover and an iadep
‘ ' dent bit-flip operator is appliedg., each variable is randomly
Z. = max{f(xV), i)} ke {d,...,m) (6) flipped with a probability In. We refer to this algorithm as SS-
1 EA, for steady-state evolutionary algorithm. We also corapa
Ak ef{l,....m (7

the results of the algorithms to a baseline algorithm, thi-we
known NSGA-II [48]. NSGA-Il maintains a population of con-
This procedure allows the HM to improve, at each iteration, estant size, initialized at random, and produces the saméeum
particular part of the Pareto front approximation, dynaattyc  of offspring solutions at every iteration. Selection for reprdu
chosen with respect to the pair of parent solutions undecsel tion and replacementis based on dominance-depth rankgg fir
tion. The overall variation procedure is illustrated indiig 5.  and on crowding distance at second-level. At each iteration
non-dominated solutions from the current population a fir

HCORCD)



Table 1: Parameter setting for the experimental analysis.

Description| Parameter Value(s)

Instances
Problem size n {100Q 200Q 300Q 400Q 5000
Matrix density d 0.8
Number of objectives m {2,3}
Objective correlation e {=0.5,-0.2,0.0, +0.2, +0.5}
Algorithms
Crossover rate 10
Mutation rate (SS-EA, NSGA-II 1.0/n
Population size (NSGA-II 100
Tabu tenure tt n/150
Tabu improvement cutd a 5n
Number of restarts (initialization y 5
reference point z adaptively set; see Section 3.5
weighting codicient vector A adaptively set; see Section 3.5
e-parameter (achievement function) € 1078
Stopping condition (CPU time (n-m-107%) minutes

assigned a rank of 1 and are discarded from consideration, noof all the parameters is given in Table 1.

dominated solutions from the remaining solutions of theggop ~ HM, SS-EA and NSGA-II have been implemented within the
lation are then assigned a rank of 2 and are discarded from coRaradisEO software framework [49, 50]. All the algorithms
sideration, and so on. This process is iterated until thefs&-  have been executed under comparable conditions and share
lutions with no rank is empty. The crowding distance estémat the same base components for a fair comparison. The exper-
the density around a particular objective vector. The ciogd iments have been conducted on an Intel Core 2 quad-core pro-
value is computed among solutions with the same rank. A soeessor (40 GHZ, 4GB RAM) running under Ubuntu 1.
lution is said to be better than another solution if the fartres  All codes were compiled with-g+ 4.4.3 using the-03 compi-

a better rank, or in the case of equality, if it is less crowd&d lation option.

binary tournament is used for selection, and an elitistesira

is used for replacement. The same crossover and mutation OR">. Performance Assessment

erators as for SS-EA are considered. In other words, the main

differences between SS-EA and NSGA-II arg:§S-EA uses A set of 30 runger instance has been performed for each
an unbounded population whereas NSGA-II maintains a fixedalgorithm. In order to evaluate the quality of the approxima
size population,ii) selection for reproduction is performed at tions found for each instance, we follow the performance as-
random within SS-EA whereas it is based on dominance-deptiessment protocol proposed by Knowd¢sl. [26]. Such a way

and crowding distance within NSGA-II, andi} the archive  of comparing multiple stochastic multiobjective optimizés a

is initialized as detailed in Section 3.4 for SS-EA wherdws t common practice in the specialized literature. Let us aars
NSGA-II initial population is generated at random. However given mUBQP problem instance. L&Y' be the set of objective

an external unbounded archive has been added to the cahoniwactors from all the Pareto set approximations we obtained d
NSGA-II in order to prevent the loss of non-dominated solu-ing all our experiments. Note thZf" may contain both dom-
tions. We did not experience any memory issues by maintaininated and non-dominated objective vectors, since a gipen a
ing the whole set of non-dominated solutions found durirgy th proximation may contain points dominating the ones of a@oth
search process with any of the competing algorithms. approximation, andice versaWe define™" = (Z"", ..., Zn")

Al the algorithms stop aftem(- m- 10-%) minutes of CPU  andz™ = (2 ..., Zn®), wherez"" (respectivelyZ'®) de-
time, i.e.,from 2 minutegerrun for smaller instances up to 15 notes the smallest (respectively largest) value ofidh@bjec-
minutes for large-size instances. Since neighboring soist tive for all the points contained i@?!, ¥k € {1,...,m}. In
are evaluated incrementally within HM during the tabu skarc order to give a roughly equal range to the objective fun&jon
phases, a maximum number of evaluations cannot be used aalues are normalized between 1 and 2 with respeztfand
a stopping condition. Following [20], the tabu tenure canst Z"#% Then, we compute a reference gétcontaining the non-
is set tott = n/150, and the improvement cffdo ¢ = 5n.  dominated points oZ2'. In order to compare the quality of
During the initialization phase, the number of random msta Pareto front approximations, we firstly use the Pareto domi-
per objective function is set tg = 5. Last, thec-parameter of nance relation extended to sets, illustrated in Figure 6e Th
the achievement scalarizing function is seicte= 108, The  Pareto dominance relation over sets can be defined as follows
population size of NSGA-Il is set to 100 solutions. A summaryA given Pareto front approximatiok® is dominated by another
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Figure 6: lllustration of the Pareto dominance relationrd®@reto front approx-

imations: () the approximation«) dominates the approximatiorx), (ii) the
approximations ) and @) are incomparable, andi( the approximationsx)
and @) are incomparable.

approximationA?, if for all objective vectors € Al, there ex-

f

—

fy

Figure 7: lllustration of the hypervolumeftirence quality indicator {J). The
reference set is represented by boxes, the Pareto front approximation by
bullets ¢) and the reference poigt by a crossx). The shaded area represents
the hypervolume dierence }, (e, ).

andp = -0.2. Still, HM outperforms NSGA-II in terms of

ists an objective vectar? € A? such thatz! is dominated by  hypervolume for the corresponding instances.
7. However, in the case of incomparability with respect to the With respect to SS-EA, the hypervolume indicator is always

Pareto dominance relation, we use the hypervolurtferdince

required to dfiferentiate approximation sets. For all the in-

indicator (I;) [25], illustrated in Figure 7, as a second crite- stances withn < 3000, HM gives better results, except for

rion. The [;-indicator value of a given approximatigngives
the portion of the objective space that is dominated&byand

m = 3 andp = -0.5. However, for large-size instances
(n > 4000), HM seems to have more trouble in finding a better

not by A, Z = (0.9,...,0.9) being the reference point. Note approximation set than SS-EA in some cases, particularnwh
that I -values are to be minimized. This indicator allows us tothe objective functions are in conflict. Indeed, HM performs
obtain a total order between approximation sets. The experbetter than SS-EA on nine out of the twenty largest instances
mental results report average-Values and a Wilcoxon signed while the reverse holds for eight cases. For such problem in-
rank statistical test with g-value of Q05. This procedure has stances, the number of non-dominated solutions can become
been achieved using the performance assessment toold@dovi very large, such that there is probably a lack of diversitytte
in PISA [26]. HM algorithm compared to its non-hybrid counterpart.

Overall, we can conclude that the HM algorithm gives sig-
4.3. Computational Results and Discussion nificantly better results on most mUBQP problem instances. |

Computational results are presented in Table 2. Let us staF‘Jearly outperforms the conventional NSGA-Il algorithmtbe

with an example. The left part of the first line corresponds toWhOIe set of instances, whereas it is outperformed by SS{EA 0

the following mUBQP problem instance: = 1000,p = —0.5 only ten out of fifty mUBQP instances.
andm = 2. The average_}value obtained by HM, NSGA-II
and SS-EA over the 30 executions i942, 0325 and 085,
respectively. According to thelindicator, the ranking de-
duced from the statistical test is as followg:HM, (ii) SS-EA, The contributions of the paper are three-fold. First, the un
and (i) NSGA-II. The Pareto set approximations obtained byconstrained binary quadratic programming (UBQP) problem
NSGA-II are reported to be statistically outperformed bg th has been extended to the multiobjective case (MUBQP) which
ones from HM in terms of Pareto dominance. Similarly, SS-involves an arbitrary number of UBQP objective functions to
EA is outperformed by HM in terms of hypervolume indicator- be maximized simultaneously over the same feasible solutio
values. set of binary strings of size. In the single-objective case, the
First, compared against NSGA-II, the HM algorithm clearly UBQP problem is one of the most challenging problems from
performs better. Indeed, the Pareto set approximationdtwyn combinatorial optimization, and is known to enable the form
NSGA-Ilis always dominated by the one obtained by HM. Thatlation of a large number of practical applications in marses:
is, every solution found by NSGA-II is dominated by at least The multiobjective UBQP problem introduced in this papdt wi
one solution found by HM for all the runs over all the instasice allow more practical applications to be formulated and sdlv
The only cases where this does not happen igrfos 3 and Second, multiobjective UBQP problem instances and an in-
p = —0.5 as well as the following instance: = 1000,m = 3  stance generator have been made available at the following

5. Conclusions



Table 2: Comparison of the proposed HM against NSGA-Il andEBSThe symbol &’ (resp. ‘<) means that HM significantly outperforms (resp. is sigrifity
outperformed by) the algorithm under consideration wipeet to the set-based Pareto dominance relation. The $yrilfeesp. '<’) means that HM significantly
outperforms (resp. is significantly outperformed by) trgoathm under consideration with respect to thffefence hypervolume indicator;(l. The symbol &'
means that no algorithm outperforms the other in terms béeiPareto dominance by, values. The averagg tvalue is reported in brackets for HM, NSGA-Il and
SS-EA, respectively (lower is better).

m=2 m=3
n o HM NSGA-II SS-EA HM NSGA-II SS-EA

1000 -0.5 (0.042) > (0.325) > (0.085) (0.104) > (0.273) > (0.113)
-0.2 (0052) > (0.336) = (0.094) (0120) > (0410) = (0339)

0.0 (0037) > (0.336) = (0109) (0127) > (0449) = (0405)

+0.2 (0.037) > (0.348) = (0.120) (0.096) > (0.471) > (0.420)

+0.5 (0.032) > (0.385) > (0.132) (0.092) > (0.508) > (0.409)

2000 -0.5 (0.099) > (0416) = (0176) (0140) > (0248) < (0.080)
-0.2 (0112) > (0473) = (0188) (0221) > (0434) = (0335)

0.0 (0070) > (0520) > (0177) (0.208) > (0518) > (0427)

+0.2 (0.097) > (0.587) > (0.215) (0.193) > (0577) > (0.477)

+0.5 (0.054) > (0.757) > (0.229) (0171) > (0.738) > (0.556)

3000 -0.5 (0136) > (0471) = (0153) (0159) > (0239) < (0071)
-0.2 (0.125) > (0.566) > (0.192) (0.262) > (0.417) > (0.288)

0.0 (0.111) > (0.640) > (0.223) (0.321) > (0.529) > (0.394)

+0.2 0177) > (0.728) > (0.303) (0.282) > (0.639) > (0.470)

+0.5 (0.131) > (0.931) = (0.341) (0.254) > (0.845) > (0572)

4000 -0.5 (0.216) > (0.497) < (0.178) (0.188) > (0.235) < (0.051)
-0.2 (0.195) > (0.607) > (0.238) (0.311) > (0.405) < (0.267)

0.0 (0157) > (0687) = (0233) (0325) > (0441) < (0.280)

+0.2 (0.147) > (0.813) = (0.271) (0.349) > (0.647) > (0.450)

+0.5 (0.089) > (1.001) = (0.263) (0.299) > (0.860) = (0568)

5000 -0.5 (0.267) > (0.500) < (0.153) (0.201) > (0.231) < (0.056)
-0.2 (0.250) > (0624) = (0.204) (0.283) > (0319) < (0156)

0.0 (0219) > (0.725) = (0.235) (0.305) > (0403) < (0238)

+0.2 (0.192) > (0.802) > (0.253) (0.359) > (0.576) = (0.393)

+0.5 (0.125) > (1.023) > (0.236) (0.359) > (0.859) > (0.518)

URL: http://mocobench.sf.net. These problem instances would allow us to improve the design of heuristic search al-
are characterized by a problem size, a matrix density, a eumbgorithms by incorporating a deeper problem knowledge. To
of objective functions, and a correlation ¢heient between the this end, we plan to study the correlation between the main
objective values. In particular, the objective correlatt@n be  problem features and the algorithm performance througed#n
tuned precisely, allowing one to study the impact of thisgdfem  landscape analysis in multiobjective combinatorial ojxan

on the size of the Pareto front, and on the performance of sdion [35, 51]. Last, we hope that the challenge proposed by mu
lution approaches. These instances are useful for perfarena tiobjective UBQP will gain the attention of other reseamshe
assessment and comparison of new algorithms for the general particular, a stronger link is required between multamb]
mUBQP problem. tive UBQP formulations and existing combinatorial optiatiz

Third, we have presented a hybrid evolutionary-tabu searchon Problems like the multiobjective variants of assigmte
algorithm for the multiobjective UBQP. The proposed apptoa COVering, partitioning, packing and quadratic knapsadbpr
integrates a state-of-the-art tabu search algorithm tosiingle- lems. This would enable the identification of a Pareto frgmt a
objective UBQP, with Pareto-based evolutionary optimigat Proximation for many problems from multiobjective combina
principles. Based on the achievement scalarizing functtza torial optimization under a unlfled modeling, elthgr as adta
proposed algorithm is able to generate both supported and ufi!on€ methodology, or to provide a fast computation of a fowe
supported solutions, with the aim of finding a well-converge bound set for improving the performance of exact approaches

and well-diversified Pareto set approximation. We have gttow

that this hybrid metaheuristic obtains significantly bet-  acknowledgementsThe authors would like to acknowledge

sults than two conventional evolutionary multiobjectivetio  he reviewers for their valuable feedback that highly dbated

mization techniques for large-size multiobjective UBQBIBT 1 improve the quality of the paper. We are also grateful tf.Pr

lem instances of dierent structure and size. Fred Glover and Prof. Gary Kochenberger for fruitful discus
A better understanding of the main problem characteristicsions related to the subject of this work.
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