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HAUSDORFF AND HARMONIC MEASURES ON

NON-HOMOGENEOUS CANTOR SETS

ATHANASIOS BATAKIS AND ANNA ZDUNIK

Abstract. We consider (not self-similar) Cantor sets defined by a sequence of piecewise
linear functions. We prove that the dimension of the harmonic measure on such a set
is strictly smaller than its Hausdorff dimension. Some Hausdorff measure estimates for
these sets are also provided.

1. Introduction. Statement of results.

In this paper, we deal with the Hausdorff dimension and the harmonic measure of a
certain type of Cantor sets X in the plane. Recall the definition of the Hausdorff dimension
of a (probability) Borel measure µ:

dimH(µ) = inf
Z:µ(Z)=1

dimH(Z)

where infimum is taken over all Borel subsets Z with µ(Z) = 1.

Let ω be the harmonic measure on Ĉ \ X evaluated at ∞. By celebrated results of
N. Makarov [Ma] and P. Jones, T. Wolff [JV] the Hausdorff dimension of ω is not larger
than one. On the other hand, it is clear that the Hausdorff dimension of ω is at most
dimH(X). Obviously, if dimH(X) > 1 then dimH(ω) < dimH(X). It has been observed,
for several self-similar, self-conformal sets, or, more generally, conformal repellers, that
dimH(ω) < dimH(X) (see, e.g. [Ba1], [Ca], [MV], [Vol1], [Vol2], [Zd1], [Zd3], [UZ]).
Nevertheless, the intriguing question about the inequality of dimensions for an arbitrary
self -conformal Cantor repeller, remains open.

Let us also recall that in Rd, d ≥ 3, a general result of Bourgain [Bou] states that for all
domains Ω, the dimension of harmonic measure is bounded above by d − ǫ(d), where ǫ(d)
is a positive constant depending only on d, whose exact value remains unknown.

All the proofs of the strict inequality dimH(ω) < dimH(X) for conformal repellers rely on
the ergodic theory tools: one constructs an invariant measure equivalent to the harmonic
measure and its ergodic properties play a crucial role in the arguments (see also [LV]).

On the other hand, the inequality dimH(ω) < dimH(X) is not true for more general
Cantor sets, even after assuming a strict regularity of the construction ([Ba1]).

In this paper we prove the inequality dimH(ω) < dimH(X) for a class of non-homogeneous
Cantor sets. In this case there is no invariant ergodic measure equivalent to harmonic mea-
sure and hence previously mentioned tools are inapplicable. This has also been the case
of [Ba1], where an analogous result was proved for a class of non-homogeneous 4-corner
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”translation invariant” Cantor sets. That proof made use of special symmetries of the set.
In the present paper, using an entirely different approach, we prove a general result. In
fact, the results of [Ba1] are a special case of our Theorem A.

More precisely, we consider the following class of Cantor sets in the plane (even though
proofs can be easily generalized to higher dimensions).

Let Q be a Jordan domain in C. Let M > 0, 0 < a < a < 1 be fixed. We fix a positive
integer N > 1.

Definition 1. Let Q = (Q1, . . . QN) be a family of Jordan domains such that each Qi is a
preimage of Q under some (expanding) similitude (ai)

−1z + bi.
We call a family Q = (Q1, . . . QN) admissible if the following holds:

(1) a ≤ |ai| ≤ a
(2) clQi ⊂ Q
(3) there exists an annulus A ⊂ Q with mod(A) > M and separating ∂Q from

⋃

j Qj

(i.e ∂Q and
⋃

j Qj are in different components of C \ A.
Definition 2. Note that, in this way, we have introduced a piecewise linear map f defined
on the union of admissible discs: f :

⋃

Qi∈Q
Qi → Q by the formula

f(z) =

N
∑

i=1

(a−1
i z + bi)11Qi

,

where a−1
i Qi + bi = Q. If Q satisfy the conditions in Definition 1 then we call the map f

admissible.

Definition 3. A set X0 ⊂ C is called admissible if

X0 =
∞
⋂

n=1

(fn ◦ fn−1 ◦ · · · ◦ f1 ◦ f0)−1 (Q).

for some sequence of admissible maps fk:

fk(z) =
N
∑

i=1

(a−1
k,iz + bk,i)11Qk,i

,

where a−1
k,iQk,i+ bk,i = Q. So, the map fk is defined on the union of the domains {Qk,i}Ni=1,

and fk (Qk,i) = Q, for all i = 1, ..., N .

Remark 4. Note that (fn ◦ fn−1 ◦ · · · ◦ f0)−1 (Q) is a descending family of sets. Moreover,
since f−1 (clQ) ⊂ Q for every admissible map, we have

X0 =
∞
⋂

n=1

(fn ◦ fn−1 ◦ · · · ◦ f0)−1 (clQ),

thus X0 is a compact set, actually- a Cantor set. The last follows from item (1) in the
definition of an admissible family (expanding property).
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In the present paper we prove the following

Theorem A. Let X be an admissible Cantor set. Let ω be the harmonic measure on X.
Then

dimH(ω) < dimH(X).

This is the main result of this paper. The idea is to create an alternative between two
situations, the one implying the result (section 8) and the other being impossible (as we
prove in sections 9 and 10). In the first situation we make use of a tool due to Bourgain
[Bou]. In the second situation we refer to some ideas due to Volberg [Vol1].

Note also that we can find a uniform strictly positive lower bound of dimX−dimω that
only depends on a, M and N as will be pointed out in section 11.

Moreover, we have the result of independent interest:

Theorem B. Let (fk)(z) =
∑N

i=1(a
−1
k,iz + bk,i)11Qk,i

be a sequence of admissible maps and
let X = X0 be the associated admissible Cantor set. There exist a sequence of admissible
functions (f̃k), (f̃k)(z) =

∑N

i=1(ã
−1
k,iz + b̃k,i)11Q̃k,i

such that

(1) limk→∞maxi(|ãk,i − ak,i|+ |bk,i − b̃k,i|) = 0

(2) the associated Cantor set X̃ is admissible and dimH(X̃) = dimH(X)

(3) 0 < HdimH(X̃)(X̃) < ∞.

(4) If ω and ω̃ are the harmonic measures of X and X̃ respectively, then dimω = dim ω̃.

The proof of items (1), (2) and (3) of this theorem are carried out in section 5. Item (4)
follows from results of [Ba2] and [BaHa].

The paper is organized in 11 sections. Section 2 contains some well known facts and
introduces notation. Some basic remarks on Hausdorff dimension of the Cantor sets con-
sidered here and on conformal measures can be found in sections 3 and 4. Adapted tools
from potential theory are presented in section 6 and in section 7 we apply all previous
results to study limits of sequences of Cantor sets.

The proof of the main theorem is carried out in sections 8,9,10. Section 8 provides a
sufficient condition to have dimH X > dimω. In section 9, we study the alternative case,
when condition of section 8 fails. Using results of section 7 we deduce that if the sufficient
condition fails there is a set where harmonic and geometric measure cöıncide. Then, in
section 10 we prove that this last claim cannot hold.

Finaly, in section 11, we show that the assumptions of the main theorem are somehow
optimal: we construct a Cantor set X slightly different from the ones studied here, for
which dimH X = dimω.

2. Definitions and basic facts

In this Section we present the notation and some introductory remarks.

Remark 5. Using the Harnack inequality and the condition (3) in definition 1 we conclude
that there exists a universal constant C (depending only onM) with the following property:
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Let Q = (Q1, . . . QN) be an arbitrary admissible family of domains. Then there exists a
smooth Jordan curve γ ⊂ Q \

⋃

j Qj (depending on the family of domains), and separating

∂Q from
⋃

j Qj such that, for every positive harmonic function φ : Q \
⋃

Qj → R,

(1)
supγ φ

infγ φ
< C

Notation. Note that f0 mapsX0 onto the Cantor setX1 :=
⋂∞

n=1 (fn ◦ fn−1 ◦ · · · ◦ f1)−1 (Q),
and, generally, denoting

Xk =

∞
⋂

n=k

(fn ◦ fn−1 ◦ · · · ◦ fk+1 ◦ fk)−1 (Q)

we have

(2) X0
f0−→ X1

f1−→ X2
f2−→ . . .Xk

fk−→ Xk+1 . . .

We shall use the notation fk for the composition fk−1 ◦ fk−2 ◦ · · · ◦ f1 ◦ f0.

Let x ∈ Xk+1. Then, for every i = 1, . . . N there exists a unique point yk,i ∈ Qk,i such
that fk(yk,i) = x.

Definition 6. Let Lk,s : C(Xk) → C(Xk+1) be the operator defined as

Lk,s(φ)(x) =
N
∑

i=1

φ(yk,i)|ak,i|s

(where we use the common notation C(X) to denote the space of continuous functions
defined on a compact metric space X).

Definition 7. We shall use the natural coding C0 of the set X0 by the symbolic space Σ,
consisting of infinite sequences of digits j ∈ {1, . . . , N}. As usually, the k’th digit in the
code C0(x) equals j if fk(x) = fk−1 ◦ fk−2 ◦ · · · ◦ f1 ◦ f0 ∈ Qk,j. Similarly, the coding of the
set Xk is defined, so that Ck+1(fk(x)) = σ(Ck(x)) where σ is the left shift.

Notation. In what follows, we often identify the symbolic cylinder I and the corresponding
subset of the Cantor set C−1

0 (I).
The family of all cylinders I ⊂ Σ, of length n will be denoted by En.
Each cylinder I of length n defines a branch of the map (fn−1 ◦ · · · ◦ f1 ◦ f0)

−1. The
image of Q under this branch will be denoted by QI . Note that

QI ∩X0 = C−1
0 (I)

and the sets QI are just the connected components of the set (fn−1 ◦ · · · ◦ f0)−1(Q).

We will denote by the same letter C a constant which may vary in the proofs.
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3. Hausdorff dimension

The following simple proposition gives an explicit formula for the Hausdorff dimension
of the set X .

Proposition 8. Let |ak,1|, . . . |ak,N | be the sequence of ’scales” used in the construction of
X0. Then ρ = dimH(X0) is characterized in the following way:

(3) ρ = inf{s : lim inf
n→∞

n
∏

k=1

(|ak,1|s + |ak,2|s + . . . |ak,N |s) = 0}

Proof First, note that lim infn→∞

∏n
k=1 (|ak,1|s + |ak,2|s + . . . |ak,N |s) = 0 for all s > ρ. Pick

some s > ρ. There exists a subsequence nj → ∞ with

nj
∏

k=1

(|ak,1|s + |ak,2|s + . . . |ak,N |s) → 0

Let Dn be the family of the domains {QI : I ∈ En} which appear at the n’th step of the
construction of the Cantor set X . Then the above product is the same as

1

(diamQ)s

∑

QI∈Dnj

(diamQI)
s.

So we have:
∑

QI∈Dnj
(diamQI)

s → 0. This shows that dimH(X) ≤ ρ.

The inequality dimH(X) ≥ ρ will follow from the estimate of the Hausdorff dimen-
sion of the measure νρ, see Section 4, Proposition 9. Another argument is provided by
Proposition 15. •

The observation in Proposition 9 below will be used is Section 6.

Proposition 9. There exist K ∈ N, C > 0 such that the following holds. Let X be an
admissible Cantor set, I is a cylinder in the symbolic space Σ and J is another cylinder of
length K (so IJ is a subcylinder of I, with K symbols added). Let z ∈ QIJ . Then

dist(z, ∂QI ) > C diamQI .

Proof It is well known that every topological annulus A with sufficiently large modulus N
contains ”essentially” a round annulus R with a modulus Ñ > N−constant. ”Essentially”
means here that R separates the boundary components of A. Fix N so large that Ñ > 1.
Fix K such that KM > N . Consider the annulus A = QI \ QIJ . It follows from the
definition of an admissible Cantor set that mod(A) > KM > N . Since this annulus

separates QIJ from ∂QI , we conclude that, for z ∈ QIJ , dist(z, ∂QI ) > eÑ diamQIJ >
diamQIJ > aK diamQI . •
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4. Conformal measures

Let, as above, X0 be an admissible set, Xk = fk(X0).

Definition 10. Fix h > 0. The sequence of probability measures ν0, ν1, . . . is called a
collection of h− conformal measures if supp νk = Xk and the following holds: there exists
a sequence λk,h of positive ”scaling factors” such that

(4) L∗
k,h(νk+1) = λk,hνk

Note that the condition (4) is equivalent to the following: if B is a Borel measurable set,
B ⊂ Qk,i then

(5) νk+1(fk(B)) = λk,h · (|ak,i|−h) · νk(B) = λk,h

∫

B

|f ′
k|hdνk

If ρ is the common value of Hausdorff dimension of the sets Xk and the ρ-dimensional
Hausdorff measure Hρ of X0 (and thus of all Xk) is positive and finite then the collection
of normalized Hausdorff measures can be taken as ρ- conformal measures νk in (10), with
λk,ρ = (|ak,1|ρ + . . . |ak,N |ρ) for all k.

But, even if Hρ(X) equals zero or infinity, the collection of ρ conformal measures exists,
and, generally, the collection of h- conformal measures exists for every h ≥ 0. The measure
ν0 is uniquely determined by assigning to every cylinder I, of length m, the value of the
measure ν0(I), or, more precisely, of the set C0(I) ⊂ X0:

(6) ν0(I) =

(

|(fm−1 ◦ · · · ◦ f1 ◦ f0)′|−h
)

|I

λ0,hλ1,h . . . λm−1,h

The measures νk, k > 0, are defined in a similar way:

(7) νk(I) =

(

|(fm−1+k ◦ · · · ◦ f1+k ◦ fk)′|−h
)

|I

λk,hλ1+k,h . . . λm−1+k,h

The normalizing factors are given explicitly:

(8) λn,h = (|an,1|h + . . . |an,N |h),
n = 0, 1, 2, . . . .

Let us note the following straightforward

Proposition 11. For every h, the sequence of h-conformal measures νk is invariant, i.e.

(fk)∗(νk) = νk+1.

Proof This follows directly from the conformality condition (4). It is enough to check for
k = 0. Let A ⊂ X1 be an arbitrary Borel set. Then f−1

0 (A) = A1 ∪ A2 ∪ · · · ∪ AN , where
Aj ⊂ Q0,j . Using (5) we write

ν0(Aj) = |a0,j|h ·
1

λ0,h

ν1(A)



HARMONIC MEASURE 7

and

ν0(f
−1
0 (A)) =

N
∑

j=1

ν0(Aj) =
1

λ0,h

(

N
∑

j=0

|a0,j|h
)

ν1(A) = ν1(A).

•

We note the following.

Proposition 12. Let ρ be the number characterized by (3). If νk is the sequence of ρ-
conformal measures then, for every k ≥ 0

(9) dimH(νk) = ρ

Proof It is obvious that the dimensions of all the measures νk are the same. So, we check
(9) for ν0. Fix an arbitrary s < ρ. It follows from condition (3) in Definition 1 that there
exists r0 < diamQ such that, if z ∈ Xk then the ball B(z, r0) is contained in some domain
Qk,i (so the map fk is injective and continuous in B(z, r0)).

Now, take an arbitrary ball B = B(z, r) with z ∈ X0 and r < r0 and let n be the least
iterate such that the diameter of fn−1 ◦ · · · ◦ f1 ◦ f0(B) becomes larger than r0. Then we
have, using (5),

ν0(B) =

∫

fn(B)
|(f−n)′|ρdνn

λ0,ρ . . . λn−1,ρ

The nominator of the last fraction is just, up to a bounded factor, (diam(B))ρ ≍ rρ ≤
(diam(B))s.

After neglecting this bounded factor we can write the above ratio as

(10) (diam(B))s · diam(B)ρ−s

λ0,ρλ1,ρ . . . λn−1,ρ

Since all the maps fk are expanding, with expansion factor bounded from below by 1
a
> 1 ,

n is related to diamB = 2r, namely r ≤ exp(−nδ) for some positive δ, and we can estimate
the second factor in (10) from above by

(11) C exp(−n(ρ− s)δ)
1

λ0,ρλ1,ρ . . . λn−1,ρ

.

where C > 0 is a constant. Now, choose s′ ∈ (s, ρ) sufficiently close to ρ so that, for all k,
λk,s′ ≤ λk,ρ exp(δ(ρ− s)). Then

exp(−n(ρ− s)δ)
1

λ0,ρλ1,ρ . . . λn−1,ρ
≤ 1

λ0,s′λ1,s′ . . . λn−1,s′

Since ρ was a ”transition parameter”, λ0,s′λ1,s′ . . . λn−1,s′ → ∞ for every s′ < ρ. This
proves that for all z ∈ X0

lim
r→0

ν0(B(z, r))

rs
= 0,

which implies that dimH(ν0) ≥ s and, consequently, dimH(ν0) ≥ ρ. Together with the
evident estimate dimH(X0) ≤ ρ, this gives dimH(ν0) = ρ.
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This also gives the required argument for the equality ρ = dimH(X0) (Proposition 8).
•

5. Hausdorff and harmonic measures

In this section we prove Theorem B. We start with

Theorem 13. Let (fn) be a sequence of admissible maps and let X the associated Cantor

set. There exist a sequence of admissible functions (f̃n) =
∑N

i=1(ã
−1
k,iz+ b̃k,i)11Q̃k,i

such that

(1) limk→∞maxi(|ãk,i − ak,i|+ |bk,i − b̃k,i|) = 0

(2) the associated Cantor set X̃ satisfies dimH(X̃) = dimH(X)
(3) 0 < HdimH(X̃)(X̃) < ∞.

We can also deduce

Corollary 14. Let X̃ be the admissible Cantor set, constructed in Theorem 13. If ω and
ω̃ are the harmonic measures of X and X̃ respectively, then dimω = dim ω̃.

In [Ba2] the author prove that if all squares of a given generation k are of equal size
ak (i.e. ak,i = ak, for any i, j = 1, ...N and for all k), then the dimension of harmonic
measure is a continuous function with respect to the ℓ∞ norm of the sequence (ak). More
recently, in [BaHa] the authors extended this result to Cantor sets defined by a sequence
of conformal maps. In particular, applied to our case, this implies that if two Cantor sets
X,X ′ are defined by sequences (ak,i, bk,i), (a

′
k,i, b

′
k,i) respectively, such that limk maxi{|ak,i−

a′k,i|+ |bk,i − b′k,i|} = 0, then the associated harmonic measures have the same dimension.

Thus, Theorem 13 and Corollary 14 imply Theorem B. The rest of this section is devoted
to the proof of Theorem 13.

The following proposition is a refinement of proposition 8.

Proposition 15. Let ak,1, . . . ak,N be the sequence of ’scales” used in the construction of
X. For all h > 0 then there is a constant C > such that

1

C
lim inf
n→∞

n
∏

k=1

λk,h ≤ Hh(X) ≤ lim inf
n→∞

n
∏

k=1

λk,h

Proof Below, we identify, through the coding, the subsets of the Cantor set X and the
cylinders on the symbolic space Σ. The upper bound ofHh(X) is immediate since

∏n

k=1 λk,h

corresponds to the natural covering of X by its cylinders of the nth generation.
To prove the lower bound take any ball U intersecting X and define IU to be the cylinder

of the highest generation s containing U ∩X . More precisely, take

s(U) = max{n ; ∃IUn ∈ En : U ∩X ⊂ IUn },
and let IU = IUs(U).
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Clearly, diam(U ∩ X) ≤ diam(IU). On the other hand, U intersects two distinct sub-
cylinders of IUs . By the modulus separation condition (3) in definition 1, we deduce that
there is a constant C = C(M,Q) such that diam(U) ≥ aC diam(IU).

This implies that we can replace all balls U of a given covering R of X by cylin-
ders IU of similar size and still control the variation of the sum

∑

U∈R diam(U)h ≥
(aC)h

∑

U∈R diam(IU)
h.

Since we can only consider coverings with cylinders it is straightforward to conclude that
we get optimal coverings using cylinders of the same generation. Indeed, for n ∈ N we say
that a covering R with cylinders is n-optimal for Hh if

∑

I∈R

diam(I)h = min

{

∑

R′

diam(I)h ; R′ covering with cylinders of generation ≤ n

}

.

Take an n- optimal covering R, of minimal cardinality. Choose I a cylinder in R of the
minimal generation and let I ′ be any cylinder of the same generation not contained in R.
There is hence a subcovering R∩ I ′ = {I ′J1, ..., I

′Jℓ} of I ′ with subcylinders of I ′.

Clearly, by the definition of R we have diam(I ′)h >
∑ℓ

i=1 diam(I ′Ji)
h or, equivalently,

∑ℓ
i=1

diam(I′Ji)
h

diam(I′)h
< 1. But this latter sum is equal to

∑ℓ
i=1

diam(IJi)
h

diam(I)h
and hence diam(I)h >

∑ℓ
i=1 diam(IJi)

h which contradicts I ∈ R.
It follows that all cylinders of the same generation as I are in R, and the proof is

complete. •

Let us now turn to the proof of theorem 13.

Proof We construct the sequence f̃n satisfying (1) and (3). Recall that ρ denotes the
dimension of X .

Let us distinguish two cases
Case 1: Hρ(X) = 0

Since Hρ−ε(X) = +∞ for all ε > 0, proposition 15 implies that

(12) lim
n→∞

n
∏

k=1

λk,ρ−ε = +∞.

The construction is carried out by induction.

Step 1. Define, for n ∈ N, ε1,n to be a real number such that
n
∏

k=1

λk,ρ−ε1,n = 1.

Note that ε1,n does not have to be positive. However, since Hρ(X) = 0, we have,
using Proposition 15 that lim infn Π

n
k=1λk,ρ = 0. Thus, ε1,n is positive for infinitely

many n’s.
By (12) lim

n→∞
ε1,n = 0+. We can therefore choose n1 such that

ε1,n1 = max{ε1,n ; n ∈ N} > 0
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For k = 1, ..., n1 and i = 1, ..., N , put

ãk,i = ak,i|ak,i|−
ε1,n1

ρ .

This implies :
∏n1

k=1 (|ãk,1|ρ + |ãk,2|ρ + · · ·+ |ãk,N |ρ) = 1 and, by the choice of ε1,n1,
∏n

k=1 (|ãk,1|ρ + ãk,2|ρ + · · ·+ |ãk,N |ρ) ≥ 1, for n ≤ n1 . Remark also that, |ãk,i| ≥
|ak,i|.

Step 2. Define for n > n1, ε2,n to be a real number such that

n
∏

k=n1+1

λk,ρ−ε2,n = 1.

Clearly, limn→∞ ε2,n = 0. As before we can now choose n2 such that ε2,n2 =
max{ε2,n ; n > n1} > 0
Now, we have, for n ≥ n1

1 =

n
∏

k=1

λk,ρ−ε1,n =

n1
∏

k=1

λk,ρ−ε1,n

n
∏

k=n1+1

λk,ρ−ε1,n.

Since, for n > n1, ε1,n ≤ ε1,n1 we get

n1
∏

k=1

λk,ρ−ε1,n ≤
n1
∏

k=1

λk,ρ−ε1,n1
= 1.

This implies that
n
∏

k=n1+1

λk,ρ−ε1,n ≥ 1

and therefore ε2,n ≤ ε1,n, for all n > n1. In particular, ε2,n2 ≤ ε1,n1.
For k = n1 + 1, ...n2 and i = 1, ..., N put

ãk,i = ak,i|ak,i|−
ε2,n2

ρ .

The same reasoning as above now gives
∏n2

k=1 (|ãk,1|ρ + |ãk,2|ρ + · · ·+ |ãk,N |ρ) = 1
and by the choice of ε2,n2,

∏n

k=1 (|ãk,1|ρ + |ãk,2|ρ + · · ·+ |ãk,N |ρ) ≥ 1, for n ≤ n1 .
Again, |ãk,i| ≥ |ak,i|.

Step 3. Proceed by induction.

Since ε1,n ≥ εk,n for all k, n we have that limk εk,nk
= 0. This implies that |ãk,i−ak,i| → 0

as k → ∞. Moreover,

lim inf
n→∞

n
∏

k=1

(|ãk,1|ρ + |ãk,2|ρ + · · ·+ |ãk,N |ρ) = 1,

which proves Hρ(X̃) = 1.
Case 2: Hρ(X) = +∞ This case can be treated in the same way as Case 1. Nevertheless,
there is a simple way to deal with it. Clearly, since ρ is the dimension of the set, for all
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δ < 1 we get that lim inf
n

δn
n
∏

k=1

λk,ρ = 0 and therefore we can find a sequence (δj)j < 1,

limj→∞ δj = 1 and a strictly increasing sequence of positive integers nj such that

lim inf
K→∞

K
∏

j=1

nj+1
∏

ℓ=nj

δ
nj+1−nj

j λℓ,ρ = 0.

We can now modify the sequence (ak,i), by putting for all j ∈ N and k = nj + 1, ..., nj+1

a′k,i = δ
1
ρ

j ak,i,

the sequence (bk,i) is left unchanged. This yields a Cantor set X ′ (of the same Hausdorff

dimension) satisfying lim
k

max
i

{|ak,i − a′k,i|} = 0 and lim inf
n→∞

n
∏

k=1

λ′
k,ρ = 0 = Hρ(X

′), which

puts the situation back to case one. •

6. Green’s functions and capacity

Let X = X0 be an admissible Cantor set, and let (Xk)
∞
k=0 be the associated sequence

of consecutive Cantor sets, according to (2). Denote by ωk the harmonic measure on the
Cantor set Xk, evaluated at ∞. Denote by Gk the Green’s function in C \Xk. Note that
all the sets Xk are regular in the sense of Dirichlet, thus each function Gk has a continuous
extension to the whole plane C and Gk |Xk

= 0. We have ωk = ∆Gk.

Given an admissible Cantor set X , denote by GX the family of all functions F : Q → R

such that F is continuous in Q, F|Q\X is harmonic and strictly positive, while F|X = 0.
Obviously, such a function is subharmonic in Q and we require, additionally, that for
F ∈ GX , the measure µF = ∆(F ) is normalized, i.e µF (X) = 1.

We introduce the following operators in a way similar to those proposed in [Zd1].

Definition 16. Let Pk : GXk
→ GXk+1

be defined as

Pk(F )(x) =
∑

y∈f−1
k

(x)

F (y)

Recall the notation: if µ is a measure in Xk then (fk)∗µ is the image of the measure µ
under fk; in other words (fk)∗µ = µ ◦ f−1

k .

Proposition 17. If F ∈ GXk
then

(fk)∗(µF ) = ∆Pk(F ).
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Proof Let φ ∈ C∞
0 (Q) be a test function. Then

∆Pk(F )(φ) =

∫

Q

∆φ · Pk(F ) =
N
∑

i=1

∫

Qk,i

∆φ ◦ fk · F · |f ′
k|2

=

N
∑

i=1

∫

Qk,i

∆(φ ◦ fk) · F =

∫

Q

φ ◦ fkdµF = (fk)∗(φ),

which proves the statement. •

Remark 5 and the Maximum Principle give the following observation (see also [MV],
[Zd2]).

Proposition 18. There exists a universal constant D > 0 such that if X is an admissible
Cantor set and F1, F2 ∈ GX then the measures µF1, µF2 are equivalent, with density bounded
by D.

Proof Let F ∈ GX , let G be the standard Green’s function for X . Let γ(X) be the

curve described in Remark 5. Since µF is a probability measure, the ratio G(x)
F (x)

cannot

be larger than 1 everywhere in γ(X). Indeed, if G(x)
F (x)

≥ L > 1 in γ then the Maximum

Principle implies that the inequality G(x) ≥ LF (x) holds everywhere in Q. This would
imply µ(X) ≥ Lω(X) = 1, a contradiction. By the same reason, the above ratio cannot be
smaller than 1 everywhere in γ(X). Together with Remark 5 this implies that there exists
a constant C > 0, independent of both the set X and F ∈ GX such that, for an arbitrary
function F ∈ GX ,

1
C
≤ F|γ(X) ≤ C. Using the Maximum Principle again, we conclude that

1
C2 ≤ dµF1

dµF2
≤ C2. •

As usually, we denote by Cap(X) the logarithmic capacity of X . Let us note the follow-
ing.

Proposition 19. There exists a constant κ > 0, depending only on M, a, a,Q,N , such
that, if X is an admissible Cantor set then Cap(X) > κ.

Proof One can assume that diamQ = 1. Fix h positive and so small that P = Nah > 1.
We shall use the measure νh to estimate the capacity from below. Then, using (6) we get,
for every cylinder I,

νh(I) ≤ (diamQI)
h 1

P n
< (diamQI)

h

The logarithimic potential of the measure νh can be estimated pointwise. Let z ∈ X ;
denote by In(z) the cylinder containing x (under the identification of X with the symbolic
space Σ). Then, using Proposition 9, we get

Uνh(z) =

∫

log
1

|z − w|dνh(w) ≤
∑

n

νh(In(z)) · inf
w∈In(z)\In+1(z)

log
1

|z − w|

≤
∑

n

νh(In(z)) log
1

C diamQIn+1(z)

≤
∑

n

diamQIn(z) log
1

C diamQIn+1(z)



HARMONIC MEASURE 13

Since diamQIn(z) < an and diamQIn(z) > an, this easily gives a common bound on Uνh(z).
Consequently, we get a common bound for the energy function:

I(νh) =

∫

Uνh(z)dνh(z) ≤ I0 < ∞

and cap(X) ≥ exp(−I0). •

Proposition 20 (Uniform decay of Green’s functions). There exist constants 0 < γ < 1,
C > 0 (depending on Q,M, a, a,N) such that, for every admissible Cantor set X, for an
arbitrary function F ∈ GX , and an arbitrary cylinder I of length n,

(13) sup
z∈QI

F (z) ≤ Cγn

Proof First, notice that there is a common bound on F|γ(X), over all admissible sets X ,
and all functions F ∈ GX (see the proof of Proposition 18). This implies that there exists
a constant C > 0 such that FQI

≤ C for every cylinder I of length 1.
Now, let I be an arbitrary cylinder of length n and IJ its subcylinder of length n + 1.

Let z ∈ ∂QIJ . Put XI = QI ∩X . Then

F (z) =

∫

∂QI

F (w)ω(z, ∂QI , QI \XI).

Thus,

(14) sup
z∈∂QIJ

F (z) ≤ sup
w∈∂QI

F (w) · ω(z, ∂QI , QI \XI)

It remains to check that

(15) ω(z, ∂QI , QI \XI) < γ

for some 0 < γ < 1. This follows from the standard estimate (from below) of the harmonic
measure by the capacity (see, e.g, [GM], Theorem 9.1).

Indeed, since the required estimate is invariant under conformal maps, and the pair
(QI , XI) is mapped under fn onto the pair (Q,Xn), it is enough to prove that there exists
γ ∈ (0, 1) such that, for an arbitrary admissible Cantor set X ,

ω(z,X,Q \X) > 1− γ

where z ∈ QJ and |J | = 1. Since we have the estimate of the capacity Cap(X) from below
by κ, and since the set X is separated from ∂Q by some annulus with modulus larger than
M , the estimate (15) follows. Thus, (14) implies, by induction, that, if I is a cylinder of
length n then

sup
z∈∂QI

F (z) < Cγn.

The required estimate on supz∈QI
F (z) follows now from the Maximum Principle. •
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7. Sequences and convergence of admissible Cantor sets

Recall that Q is a fixed Jordan domain. Recall that a non-homogeneous Cantor set is
given by a sequence of maps fk(z) =

∑N

i=1(a
−1
k,iz + bk,i)11Qk,i

, where a−1
k,iQk,i + bk,i = Q and

k = 0, 1, 2 . . . . Obviously, fk is N -to-one and the branches (fk)
−1
i : Q → Qk,i are given by

(fk)
−1
i (w) = ak,i(w − bk,i).

Assume that we are given an infinite sequence of admissible Cantor sets X(0), X(1), . . . ,
X(n), . . .

Let us note the following:

Proposition 21. Let X(0), X(1), . . .X(n), . . . be a sequence of admissible Cantor sets of the
same Hausdorff dimension ρ. For each n denote by (nfk)

∞
k=0, the sequence of maps defining

the set X(n).
Let h > 0 be given (not necessarily equal to the Hausdorff dimension of the sets X(n)).

For every n, let {ν(n)
k }∞k=0 be the sequence of h-conformal measures associated to the set

X(n).
Then one can extract a subsequence ns so that, for all k ∈ N, and all i = 1, . . . N the

following holds:

(1) The limit lims→∞(nsfk)
−1
i = (∞fk)

−1
i exists (which, equivalently, means simply that

for all k the coefficients of the piecewise linear map nsfk converge to the coefficient
of the piecewise linear map ∞fk). The Cantor set X(∞), built with the maps ∞fk is
admissible.

(2) For all k ≥ 0, the following (weak-*) limits exist:

ν
(ns)
k → ν

(∞)
k

and ν
(∞)
k is the system of h- conformal measures for X(∞). The corresponding

normalizing factors are

λ∞
k,h = lim

s→∞
λns

k,h.

Proof The proof of convergence of the maps uses only the diagonal argument. Note that
we do not require (and do not prove) this convergence to be uniform with respect to k.

To prove the convergence of the conformal measures, it is enough to recall the explicit
formulas (6) and (7). Let us fix an arbitrary cylinder I, of length m. Then

ν
(ns)
0 (I) =

(

|(nsfm−1 ◦ · · · ◦ns f1 ◦ns f0)
′|−h
)

|I

λns

0,hλ
ns

1,h . . . λ
ns

m−1,h

and it is clear that the convergence of the coefficients of the maps nsfk for k = 0, . . .m− 1

gives the convergence of ν
(ns)
0 (I) to ν

(∞)
0 (I). This easily implies that ν

(ns)
0 converge weakly

to ν
(∞)
0 , treated as measures in Σ and also as measures in C. The same reasoning applies

for the measures ν
(ns)
k . Here, as usually, we identify, through an appropriate coding, the

measures on the Cantor sets X
(ns)
k and the measures on the symbolic space Σ. •
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Now, let X(n) be a sequence of admissible Cantor sets, converging to X(∞) in the sense
of item (1) in Proposition 21.

Proposition 22. Let X(0), X(1), . . .X(n), . . . be a sequence of admissible Cantor sets, con-
verging to X(∞) in the sense of item (1) in Proposition 21. Assume that a sequence of
subharmonic functions F (n) : Q → R is given:

F (n) ∈ GX(n) .

Then one extract a subsequence of the function F (ns) such that F (ns) converges uniformly
on compact subsets of Q to

F (∞) ∈ GX(∞) .

Moreover, the sequence of measures µns
= ∆(F (ns)) converges weakly to µ(∞) = ∆(F (∞)).

Proof The proof, again, uses the diagonal argument.
Write Q \X(∞) as a countable union

⋃

Cm of compact connected subsets of Q \X(∞),
where Cm+1 ⊃ Cm:

Cm = Q
′

m \
⋃

|J |=m

QJ

where, QJ correspond to the coding for the limit set X(∞) and Q′
m is an increasing sequence

of topological discs, with X(∞) ⊂ Q′
m ⊂ Q

′

m ⊂ Q′
m+1 and

⋃

Q′
m = Q.

Fix m. As X(n) → X(∞), the functions F (n) form a uniformly bounded sequence of
harmonic functions in a neighbourhood of Cm, starting from some n = n(m). Thus,
one can extract a subsequence converging uniformly in Cm to some function F (∞) defined
in Cm and harmonic in int(Cm). In the inductive construction, we choose yet another
subsequence, converging uniformly in Cm+1. The limit must coincide in int(Cm) with the
previously found limit F (∞).

The required subsequence ns is now chosen according to the Cantor diagonal argument.
It is obvious from the construction that F (∞) is positive and harmonic in Q \ X(∞). It
remains to check that setting F (∞)(x) = 0 for x ∈ X(∞) gives a continuous (thus: also
subharmonic) extension of F (∞) to the whole domain Q.

Let I be an arbitrary cylinder, denote by l the length of I. Let I ′ be the cylinder of length
l − 1 containing I, and let QI (resp. QI′) be the domain corresponding to I (I ′), defined

by the coding for X(∞). Similarly, denote by Q
(n)
I (resp. Q

(n)
I′ ) the domain corresponding

to I (resp. I ′), defined by the coding for X(n).

Then, for large ns, QI ⊂ Q
(ns)
I′ . Let z ∈ QI . Using the estimate (13) we get that

F (ns)(z) ≤ Cγl−1

and, therefore,

F (∞)(z) ≤ Cγl−1.

Thus F (∞)(z) tends to 0 as z → X(∞).
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The above reasoning shows also that the convergence F (ns) → F (∞) is uniform in each

set Q
′

m. Once the convergence F (ns) ⇉ F (∞) has been established, the convergence of the
measures µns

is standard: if φ ∈ C∞
0 (Q) then

∆G̃(ns)(φ) =

∫

∆φG̃(ns) →
∫

∆φG̃(∞) = ∆G̃(∞)(φ).

•

8. Sufficient condition for the inequality dim(X) > dim(ω)

In this section we show how to adapt the argument proposed by J. Bourgain in [Bou]
to prove the inequality dim(X) > dim(ω). In this way, we obtain some explicit sufficient
condition which guarantees the inequality dim(X) > dim(ω) (see Proposition 23 below).

Recall that ω = ω0 is the standard harmonic measure in X0, evaluated at the point at
∞. Similarly, the harmonic measure on the set Xk is denoted by ωk. We shall use the
natural codings C0, C1, . . . introduced in Definition 7.

In what follows, we often identify the symbolic cylinder I and the corresponding subset
of the Cantor set QI ∩X0 = C−1

0 (I).

Proposition 23. Let X = X0 be the admissible Cantor set. Let, as above, ω = ω0 be the
harmonic measure on X0, ρ = dimH(X) and let ν = ν0 be the ρ-conformal measure on X0.
Assume the following:

* There exists K > 0 and γ > 1 such that for every cylinder I = (I)n ⊂ X of length
n there exists a subcylinder IJ = (IJ)n+K(I), K(I) ≤ K such that

max

(

ω(IJ)

ω(I)
:
ν(IJ)

ν(I)
,
ν(IJ)

ν(I)
:
ω(IJ)

ω(I)

)

> γ.

Then dimH(ω) < dimH(X)− δ where δ is a constant depending only on a, K, N , γ.

Proof Given I = In ∈ En, denote by En+K(I)(I) the family of all cylinders of generation
n + K(I), which are contained in I. First, we check that it follows from (*) that there
exists 0 < β < 1 such that, for every I = In ∈ En,
(16)

∑

IJ∈En+K(I)(I)

(ω(IJ))
1
2 (ν(IJ))

1
2 ≤ βω(I)

1
2 ν(I)

1
2

The constant β depends on K, a, a and γ.
This can be seen as follows: Notice that, given two sequences of positive numbers c1, . . . cκ

and d1, . . . dκ such that
∑

ci =
∑

di = 1 we have, by Schwarz inequality,
∑

c
1
2
i d

1
2
i ≤ 1 and

the equality holds iff the sequences are equal.
Let κ be a positive integer and B0 = {(p1, ..., pκ, q1, ...qκ) ∈ [0, 1]2κ ;

∑

i pi =
∑

i qi = 1}
and, for γ > 1 take the compact subset Bγ of B0 :

Bγ =

{

(p1, ..., pκ, q1, ...qκ) ∈ [0, 1]2κ ;
∑

i

pi =
∑

i

qi = 1 and ∃j ∈ {1, .., κ} ;; pj ≥ γqj

}

.
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The function (p1, ..., pκ, q1, ..., qκ) 7→
∑

i

√
piqi being continuous we get that there exists

β = β(γ, κ) < 1 such that

sup
Bγ

∑

i

√
piqi ≤ β < 1.

Finally, to get (16), one can now apply the previous to pi = ω(IJ)/ω(I) and qi =
ν(IJ)/ν(I).

Now, (16) implies easily that for n > K,

(17)
∑

I∈En

ω(I)
1
2 ν(I)

1
2 ≤ β̃n

with some β < β̃ < 1.
Next, fix some s > ρ such that

(18) β̃aρ−s < 1

Since s > ρ = dimH(X), we have

lim inf
n→∞

λ1,sλ2,s . . . λn,s = 0.

Thus, there exists a sequence ni → ∞ such that limi→∞ λ1,sλ2,s . . . λni,s = 0. Fix such a
sequence.

Obviously, one can assume that diamX = 1. Now, formula (6) gives

ν(Ini
) =

(diam Ini
)ρ

λ1,ρλ2,ρ . . . λni,ρ

.

Since λk,ρ ≤ aρ−sλk,s, we can write, for every cylinder I ∈ Eni
,

ν(Ini
) ≥ (diam Ini

)ρ(a)(s−ρ)ni
1

λ1,sλ2,s . . . λni,s

≥ (diam Ini
)ρ(a)(s−ρ)ni ,

for ni large, since the value of the omitted fraction tends to ∞.
Inserting this inequality to (17) and using (18) we get, for small positive ε,

(19)

∑

J∈Eni

(ω(J))
1
2 (diam(J))

ρ−ε

2 ≤

∑

J∈Eni

(ω(J))
1
2 (ν(J))

1
2a

ρ−s

2
ni diam(J)−

ε
2 ≤

∑

J∈Eni

(ω(J))
1
2 (ν(J))

1
2 (a)(

ρ−s−ε

2
)ni ≤

β̃ni(a)(
ρ−s−ε

2
)ni =

(

β̃aρ−sa
s−ρ−ε

2

)ni

< β̂ni

with some β̂ < 1, if ε is small (since s has been chosen so that β̃aρ−s < 1).
We shall show that (19) implies that dimω < ρ.
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Denote by Fni
the family of all cylinders I ∈ Eni

for which ω(I) < diam(I)ρ−ε, and by
Hni

the family of the remaining cylinders in Eni
. Then

∑

I∈Hni

(diam I)ρ−ε ≤
∑

I∈Hni

ω(I) ≤ 1

and
∑

I∈Fni

ω(I) =
∑

I∈Fni

ω(I)
1
2ω(I)

1
2 ≤

∑

I∈Fni

ω(I)
1
2 diam(I)

ρ−ε

2 ≤ β̂ni

Thus, by Borel-Cantelli lemma,

ω





⋃

i0

∞
⋂

i=i0

(
⋃

I∈Hni

I)



 = 1

On the other hand, we see, directly from the definition of Hausdorff measure, that (ρ− ε)-
dimensional Hausdorff measure of the above set is σ–finite,

Therefore, dimH(ω) ≤ ρ− ε. •

9. The alternative case

We will investigate the case when condition (*) of proposition 23 fails. We keep the
notation of the previous sections. In particular, X = X0 is an admissible Cantor set of
dimension ρ. Let νk be the collection of ρ-conformal measures associated to X . Note that
(although this fact in not used in our proof), we can assume, using Theorem B, that the
starting measures νk are just the normalized ρ dimensional Hausdorff measures.

Proposition 24. Suppose that for all 1 > γ > 0 and K ∈ N there exist a cylinder I such
that for all subcylinders IJ , where J is a word of length ≤ K we have

(20) γ <

∣

∣

∣

∣

ω(IJ)

ω(I)
:
ν0(IJ)

ν0(I)

∣

∣

∣

∣

<
1

γ
.

Then we can construct another admissible Cantor set X̃ (not necessarily of dimension ρ),
a ρ-conformal measure ν̃ on X̃ and a bounded subharmonic function F ∈ GX̃ such that
∆F = ν̃.

Proof Let (γn) be a sequence of numbers in (0, 1), such that limn→∞ γn = 1. Under the
hypothesis we can find a sequence (In)n of cylinders of size kn, such that for every word J
of length ≤ n

(21) γn <

∣

∣

∣

∣

ω(InJ)

ω(In)
:
ν0(InJ)

ν0(In)

∣

∣

∣

∣

<
1

γn
.

For any cylinder I of length k, denote by fI the linear map fk−1 ◦ · · · ◦ f0 mapping QI

onto Q. Consider the functions Gkn defined in Q by

Gkn(x) =
1

ω(In)
G(f−1

In
(x)).
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Observe that Gkn ∈ GXkn
. Denote µkn = ∆Gkn. Thus, µkn is a probability measure on

Xkn. Let J be a cylinder, identified, through the coding, with the appropriate subset of
Xnk

. Then

µkn(J) =
ω(IknJ)

ω(Ikn)

The formula (21) can be now rewritten as follows: for every cylinder J of length ≤ n:

(22) γn < |µkn(J) : νkn(J)| <
1

γn
.

We can now apply Propositions 21 and 22 to the sequence of admissible Cantor sets X(n) :=

Xkn, the associated ρ-conformal measures ν
(n)
0 := νkn (and ν

(n)
m := νkn+m, m = 1, 2 . . . )

and the sequence of functions

F (n) := Gkn ∈ G(Xkn) = G(X(n)).

We obtain an admissible Cantor set X̃ and a function G̃ ∈ GX̃ such that ∆G̃ = µ̃, µ̃ being
the limit of (a subsequence of) the measures µnk

. Moreover, the measures νkn converge

weakly to the ρ- conformal measure ν̃ on X̃ .
On the other hand, the relation (22), implies that, for every cylinder J ,

µkn(J)

νkn(J)
→ 1

(where, again J is identified with an appropriate subset of Xkn). This implies (cf . propo-
sition 21) that µ̃ is a ρ-conformal measure on X̃ , which completes the proof. •

10. Rigidity argument

In this section we prove the following result which implies that the “alternative case”
considered in the previous section cannot hold.

Proposition 25. Let X = X0 be an admissible Cantor set, and let (νk)
∞
k=0 be the collec-

tion of associated ρ conformal measures, where ρ is not necessarily equal to the Hausdorff
dimension of the sets Xk. Further, let G̃ ∈ GX and let ω̃ = ∆G̃. Then the measures ω̃ and
ν = ν0 do not coincide.

Proof
Consider, again, the sets

(23) X = X0
f0−→ X1

fl−→ X2
f2−→ . . .

and the family of functions G̃j defined inductively by setting G̃0 = G̃, G̃k+1 = Pk(G̃k),

and the corresponding measures ω̃0 = ω̃ = ∆G̃0, ω̃k = ∆G̃k.
The proof of Proposition 25 will be divided into two parts.
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10.1. Non-real case.

Lemma 26. Assume that none of the sets X0, X1, X2 . . . is contained in a set of zeros of
a harmonic function defined in Q. If ω̃ = ν then for every cylinder I ∈ Ek there exists a
constant αI such that the equality

(24) G̃k ◦ fk = G̃0 · αI

holds everywhere in QI .

Proof of the lemma
Since ω̃k is the image of ω̃0 under the map fk, νk is the image of ν0 under fk and also

ω̃0 = ν0, we have: ω̃k = νk.
Consider now two measures in QI : (ω̃0)|QI

and ω̃k ◦ fk
QI
. We have

ω̃k ◦ fk
|QI

= νk ◦ fk
QI

= (αI · ν0)|QI

where αI = |(fk)′|ρ|QI
· λ0,ρ · · · · · λk−1,ρ . But (ω̃0)|QI

= ∆((G̃0)|QI
and (ω̃k ◦ fk)|Qj

=

∆((G̃k ◦ fk)|QI
). Since the measures are equal in QI , we get

(25) (G̃k ◦ fk)|QI
= (G̃0)|QI

· αI +H

where H is a harmonic function in QI . On the other hand, both G̃k ◦ fk and G̃0 are equal
to 0 in QI ∩X = I and by assumption the set Xk (thus: also X ∩QI = I) is not contained
in a set of zeros of a harmonic function. We deduce that H must be equal to 0 and the
lemma follows. •

We continue the proof of Proposition 25. We keep the assumption of Lemma 26. Consider
two cylinders I, I ′ of the same length k. Then fk(I) = fk(I ′) = Xk. Denote by f−k

I′ the
branch of f−k mapping Xk to I ′ (and Q to QI′). Let g = gII′ = f−k

I′ ◦ fk : QI → QI′.
Then, by lemma 26, everywhere in QI ,

(26)
αI

αI′
G̃0 ◦ g = G̃0

Now consider two cases.

(1) case 1: There exists D > 0 such that for every k ∈ N, for all I, I ′ ∈ Ek,
diamQI

diamQI′
< D

(2) case 2: the opposite

First, we deal with case 2. In this case, we can choose the cylinders I, I ′ so that g is a
strong contraction; since it is a linear map, it is actually defined everywhere in C and we
have clg(Q) ⊂ Q, so

⋃

k

g−k(Q) = C.
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Now, two functions:
αI′

αI
G̃0 ◦ g and G̃0 are defined and subharmonic in Q, harmonic in an

open connected dense set Q \ (X ∪ g−1(X)). Since they coincide in an open set QI (see
(26)), they coincide everywhere in Q. So, the formula

αI′

αI

G̃0 ◦ g

gives an extension of G̃0 to a subharmonic function defined in g−1(Q) and, in the same
way, to a subharmonic function defined everywhere in C.

Now, choosing another pair of cylinders, we can produce another relation of the type
(26) and another extension of G̃0, say

αJ ′

αJ

G̃0 · h = G̃0.

By the same argument as above, these two extensions must coincide. We use the same
letter G̃0 to denote this, just described, extension.

In the reasoning below we use the following argument from A.Volberg’s paper [Vol1].
Denote

Z = {z ∈ C : G̃0(z) = 0},
in particular,

(27) Z ∩Q = X

The set Z is invariant under the action of both contractions h and g, and, consequently, the
action of the group generated by them. It is easy to see that this group contains arbitrarily
small translations. Thus, there exists such a small translation T that T (X) ⊂ Q. This
would imply T (X) ⊂ X , a contradiction.

So, we are left with Case 1. Given k ∈ N, we consider all cylinders of length k. There
are Nk of them, and, by the assumption,

(28)
diamQI

diamQI′
< D

for I, I ′ ∈ Ek.
For I, I ′ ∈ Ek let, as above gII′ = f−k

I′ ◦ fk : QI → QI′. Using (28) and the fact that
card(Ek) = Nk it is easy to see the following.

Claim. Let δ = dist(X, ∂Q). There exists 0 < b0 < δ and a sequence kn → ∞ such that
for every kn one can find two cylinders I, I ′ ∈ Ekn such that, putting

gII′ = γnz + bn

we have

(29) γn → 1, bn → b0.

The functions G̃0 and G̃0 ∩ gII′ are continuous in R := Q ∩ g−1
II′(Q) and harmonic in the

open connected dense set R \ (X ∪ g−1
II′X). Since they coincide in an open set QI , they

coincide everywhere in R.
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For n sufficiently large we have X ⊂ R and g−1
II (X) ⊂ R. Since both sets can be defined

as sets of zeros of G̃0 and G̃0 ◦ gII′ respectively, they must coincide. Passing to a limit in
(29), we see that X would be invariant under a (small) translation; again a contradiction.
This ends the proof of Proposition 25 in the first case.

10.2. Real case. This case can be reduced to the previous one. We briefly describe the
procedure: the previous proof goes through unchanged, until the formula (25). Now, we
cannot conclude that H = 0. However, (25) implies that some Xk is contained in a set of
zeros of a harmonic function H . Replacing X0 by Xk, we can assume that k = 0.

Proposition 27. Le X = X0 be an admissible Cantor set. Assume that there exists a
harmonic function H in Q such that X ⊂ {z : H(z) = 0}. Then there exists k ≥ 0 such
that Xk is contained in a straight line.

Proof Denote by l = {z ∈ Q : H(z) = 0}. Note that, after diminishing slightly the set Q
so that it still contains the whole set X , we can assume that l is a union of finitely many
real analytic arcs l = l1 ∪ · · · ∪ lr, and that the set of intersections lj ∩ lj is finite. One can
also assume that each such arc has infinitely many intersections with the set X . Let x ∈ X
be an intersection point of some arcs, say x ∈ l1 ∩ l2 ∩X . Let I be a cylinder containing
x, let I ′ be another cylinder of the same length and let x′ = gII′(x).

We claim that x is an isolated point in either l1 ∩X or l2 ∩ X . Indeed, otherwise take
x′ = gII′(x) and observe that the set X in a neighborhood of x′ (more precisely: the set
X ∩QI′) would be contained in a union of two intersecting arcs, and not contained in one
arc. Since the total number of intersections of the arcs l1, . . . lr is finite, and the number
of possible choices of x′ is infinite, we get a contradiction.

Therefore, one can assume that X is contained in a union of a finite number of analytic
arcs l1, . . . lr, which do not intersect. Pick a point x ∈ X and a cylinder I containing x, of
sufficiently high generation k so that the neighborhood QI of x intersects only one curve
lj . Then fk(QI) = Q, fk(lj ∩QI) is an analytic arc L ⊂ Q, and Xk ⊂ L.

The conclusion is that, replacing X = X0 by some Xk, one can assume that X is
contained in one analytic arc L. We claim that L is, actually, a straight line. To check it,
first notice that gII′(L ∩ I) = L ∩ I ′, thus

(30) gII′(L ∩QI) = L ∩QI′

Assume first that there are arbitrarily strong contractions among the maps gII′. Then,
for such a strong contraction, (30) implies that gII′(L) ⊂ L. If L is not a straight line
then there are three points in L which are non-collinear. Applying the maps (contracting
similitudies) gII′ and using the fact gII′(L) ⊂ L we conclude that the curve L would not
be differentiable, a contradiction.

If there are no strong contractions among the maps gII′ (case one in the proof of part 1)
then, as before, one can produce arbitrarily small translations τ such that τ(L) ∩ Q ⊂ L.
Thus, L is a straight line. •
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Composing the maps fk with rotations, we can assume that all the sets Xk are contained
in the real line R. Thus, since all the functions H in the formulas (25) must be equal to

0 in R, H(z) = −H(z) and we can symmetrize all the formulas (25) by taking Ĝk(z) =

G̃k(z) + G̃(z). Then we get, instead of (25),

(Ĝk ◦ fk)|QI
= (Ĝ0)|QI

· αI

and the proof of the previous case applies. •

Final conclusion-proof of Theorem A.

Proof of Theorem A is now clear. Indeed, either harmonic and ρ-conformal measure of X
satisfy relation (∗) and hence dimω < dimH X by proposition 23 or (∗) fails and we get a
contradiction by combining propositions 25 and 24. •

11. Further comments and remarks

In this paper the number of subdomains associated to an admissible map is fixed (equal
to some N , cf section 1). Modulo some technical but small modifications the proofs can be
carried out if we consider sequences of admissible funtions (fn) with varying multiplicities
2 ≤ Nn ≤ N .

We can also easily modify the proof to get a uniform bound on dimX − dimω. To see
this, observe that the difference dimX−dimω depends only on γ and K in proposition 23.
Therefore, we need to show that γ and K can be chosen uniformly for a, M and N fixed.
But then, if the uniformity of (*) fails, for all γ > 1 and K > 0 there exists a set X and a
cylinder I as in proposition 24. Using once again the diagonal argument (proposition 22)
we return to the situation of section 10 and deduce the contradiction.

Nevertheless, the hypothesis on the upper bound of multiplicities (and hence lower bound
a of contracting ratios) cannot be omitted as shows the following proposition.

Proposition 28. There exists a (unbounded) sequence Nn and a sequence of admissible
functions (fn) of multiplicities Nn such that the dimension of harmonic measure ω of the
Cantor set X associated to (fn) is equal to the Hausdorff dimension of the set.

Let us give a sketch of the proof of this statement.

Proof Consider, for instance, the self-similar triadic linear Cantor set X0 that we identify
with the symbolic dyadic tree. If σ is the left shift, I ∈ En a cylinder of length n and K
any set, we will write IK for the set σ−n(K) ∩ I. So, IK is a subset of I.

It is well known that the dimension τ of the harmonic measure ωX0 of R
2 \X0 is strictly

smaller than the Hausdorff dimension of the set X0. Take K0 ⊂ X0 to be a compact set
of dimension τ and of harmonic measure ωX0(K0) >

1
2
. Then, we can find a finite covering

J1 of K0 with cylinders (I1j )j with I1j ∈ J1 ⊂ E1 ∪ ...∪ EN1 such that
∑

j diam(I1j )
τ+ τ

2 < 1
2
.

Choose K1 ⊃ K0 compact of dimension τ and such that ωX0(K1) >
3
4
. Since dimH(I ∩

K0) ≤ τ for all cylinders I, we can augment K1 with all images σn(K0), n = 1, ..., N1. We
can therefore assume that I ∩K0 ⊂ IK1 for all I ∈ J1 (but still dimH(K1) = τ).
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There is a finite collection J2 of cylinders (I2j )j with I2j ∈ J2 ⊂ E1 ∪ ... ∪ EN2 covering
K1 and verifying

∑

j

diam(II2j )
τ+ τ

4 <
1

22
diam(I)τ+

τ
2 ,

for any cylinder I ∈ J1.
We proceed by induction. Assume we have constructed Jn ⊂ E1 ∪ ... ∪ ENn

, a finite
collection of cylinders covering a compact set Kn−1 satisfying

• K0 ⊂ · · · ⊂ Kn−1 and I ∩Kn−2 ⊂ IKn−1 for all I ∈ Jn−1

• dimKn−1 = τ
• ωX0(Kn−1) > (1− 1

2n−1 )

• ∑J∈Jn
diam(IJ)τ+

τ
2n < 1

2n
diam(I)τ+

τ

2n−1 , for all I ∈ Jn−1.

Take Kn ⊃ Kn−1, a compact set of dimension τ , such that I ∩ Kn−1 ⊂ IKn, for all
I ∈ Jn and verifying

ωX0(Kn) > (1− 1

2n
).

There is a finite collection Jn+1 of cylinders (In+1
j )j with In+1

j ∈ Jn+1 ⊂ E1 ∪ ... ∪ ENn+1

such that the sets (In+1
j )j cover Kn and verify

∑

j

diam(IIn+1
j )τ+

τ

2n+1 <
1

2n+1
diam(I)τ+

τ
2n ,

for every cylinder I from Jn.
Note that by Harnack’s principle there exist a constant C > 0 such that, for all cylinders

I,

ωX0(IKn) >

(

1− C
1

2n

)

ωX0(I).

Consider the Cantor set

X =
⋂

n∈N

⋃

I1∈J1

...
⋃

In∈Jn

I1...In.

Note that K0 ⊂ X ⊂ X0. Moreover, by construction, the Hausdorff dimension of X
is less or equal to τ and since K0 ⊂ X0 it is equal to τ . On the other hand, by the
monotonicity of the measure, ωX(A) ≥ ωX0(A), for all A ⊂ X .

We only need to show that dimωX = τ . Suppose that dimωX < τ . Then, there exists
A ⊂ X such that dimA < τ and ωX(A) = 1. We deduce that ωX(X \ A) = 0 and a
fortiori, ωX0(X \ A) = 0. Therefore, ωX0(K0) = ωX0(K0 ∩ A) and dim(K0 ∩A) < τ which
is absurd. •
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