Samuel Le Fourn 
  
Surjectivity of Galois representations associated with quadratic Q-curves

Keywords: Galois representations, Q-curves, isogeny theorems, Serre's uniformity problem, Runge's method

We prove in this paper an uniform surjectivity result for Galois representations associated with non-CM Q-curves over imaginary quadratic elds, using various tools for the proof, such as Mazur's method, isogeny theorems, Runge's method and analytic estimates of sums of L-functions.

Introduction

For every elliptic curve E dened over a number eld K and every prime number p, the representation ρ E,p : Gal(K/K) → GL(Ep) ∼ = GL 2 (Fp),

dened by the action of Gal(Q/Q) on the p-torsion Ep of E, is a central object in the study of elliptic curves. Serre proved in 1972 [START_REF] Serre | Propriétés galoisiennes des points d'ordre ni des courbes elliptiques[END_REF] that for any elliptic curve E without complex multiplication and dened over a number eld K, the representation ρ E,p is surjective for large enough p, the bound depending on E and K. In fact, we prove here as a side result a totally explicit version of Serre's result (Theorem 4.2) which might be of independent interest : in particular, it asserts that for any such elliptic curve E, the representation ρ E,p is surjective for

p > 10 7 [K : Q] 2 (max{h F (E), 985} + 4 log[K : Q]) 2
not dividing the discriminant of K, where h F (E) is the stable Faltings height of E. What is now known as Serre's uniformity problem is determining whether this bound can be made independent on E.

So far, little is known about this problem for general number elds. Over the eld Q, Mazur proved in 1977 [START_REF] Mazur | Modular curves and the Eisenstein ideal[END_REF] that for any elliptic curve E dened over Q without complex multiplication, the representation Institut de Mathématiques de Bordeaux E-mail: Samuel.Le.Fourn@math.u-bordeaux1.fr ρ E,p is irreducible when p > 37. Recently, Bilu, Parent and Rebolledo proved that for such an E, the image of ρ E,p is also not contained in the normaliser of a split Cartan subgroup of GL 2 (Fp) for p ≥ 11, p = 13.

The present work does not deal with the uniformity problem for elliptic curves dened over Q, but for a slightly dierent object called Q-curve.

Denition. Let K be a number eld. An elliptic curve E dened over K is called a Q-curve if for every σ ∈ Gal(Q/Q), the elliptic curve E σ is isogenous to E. Its degree d(E) is then the least common multiple of the minimal degrees of isogenies between E and its conjugates.

Remark. The set of Q-curves is stable by isogeny. In particular, every elliptic curve dened over Q which is isogenous to an elliptic curve dened over Q is a Q-curve. To put aside this special case, we will say E is a strict Q-curve if it is not isogenous to an elliptic curve dened over Q.

For every Q-curve E of degree d without complex multiplication and every p not dividing d, one denes in subsection 1.1 a projective representation Pρ E,p : Gal(Q/Q) → PGL (Ep) analogous to the representation ρ E,p for Q-curves. One small dierence with elliptic curves over Q is that the Weil pairing does not always guarantee the surjectivity of the determinant anymore (but this obstruction to surjectivity only exists when p is ramied in the eld of denition of E). Therefore, we say Pρ E,p is quasi-surjective if Pρ E,p contains the projection of SL(Ep) into PGL(Ep), to ignore these questions of image of determinant.

As for modularity, Ribet proved [START_REF] Ribet | Abelian Varieties over Q and Modular Forms[END_REF], using Serre's conjectures (now proved by Khare, Kisin and Wintenberger), that the Q-curves are exactly the modular elliptic curves, that is the elliptic curves that appear as quotients of a modular curve X 1 (N ) for some N . The modular machinery therefore works for these curves too, and gives new applications for ternary diophantine equations. In fact, in a certain number of cases, one can attach to a ternary diophantine equation a Frey elliptic curve, as in the celebrated Fermat case, and this curve often happens to be a Q-curve (see, for instance, [START_REF] Ellenberg | Galois Representations Attached to Q-Curves and the Generalized Fermat Equation A 4 + B 2 = C p[END_REF] or [START_REF] Dieulefait | The Fermat-type equations x 5 + y 5 = 2z p or 3z p solved through Q-curves[END_REF]). This has been one of the motivations for the study of such objects in the recent period.

The main result of the present article is the following :

Theorem. Let K be an imaginary quadratic eld of discriminant -D K .

For every strict Q-curve E dened over K without complex multiplication of degree d(E), the representation Pρ E,p is surjective for every prime number p > max(50D

1/4 K log(D K ), 2 • 10 13 ) not dividing D K d(E).
We actually give a more precise statement of this theorem in section 4.

Let us insist that this theorem does not add to our knowledge of elliptic curves over Q (the reader will notice the hypothesis strict Q-curve). In particular, the issues arising for the nonsplit Cartan case over Q still hold, even if this case is solved in our context.

The theorem is entirely explicit in hope this might apply to diophantine equations, using Frey curves, but but our motivation was to give what seems to be the rst instance of a surjectivity theorem for families of elliptic curves. It can even be interpreted as a uniform big Galois image result for families of abelian surfaces, taking Weil restriction from K to Q for the Q-curves over quadratic imaginary elds.

The proof mechanism improves on [START_REF] Ellenberg | Galois Representations Attached to Q-Curves and the Generalized Fermat Equation A 4 + B 2 = C p[END_REF] and is akin to that of [START_REF] Bilu | Serre's Uniformity Problem in the Split Cartan case[END_REF]. More precisely, let K be an imaginary quadratic eld. For the rest of the introduction, E refers to a strict Q-curve without complex multiplication, dened over K. Here is the structure of the proof :

(0) Use classical knowledge on Q-curves to reduce the problem to a question about rational points on modular curves in subsection 1.1.

(I) Prove that for large enough p (not depending on E), if Pρ E,p is not quasi-surjective, E has potentially good reduction at every prime of O K (that is, j(E) ∈ O K ). This follows from the classical Mazur's method, designed in [START_REF] Mazur | Modular curves and the Eisenstein ideal[END_REF]. From Proposition 1.1 below, this splits as follows :

(I) = (I) B + (I) SC + (I) N SC + (I) Exc [START_REF] Bennett | The diophantine equation A 4 + 2 δ B 2 = C n[END_REF] (I) N SC will be stated in subsection 2.3 and proved in the Appendix, with a bound depending on D K and only for strict Q-curves : we only improve quantitatively Proposition 3.6 of [START_REF] Ellenberg | Galois Representations Attached to Q-Curves and the Generalized Fermat Equation A 4 + B 2 = C p[END_REF] here by using dierent estimates for weighted sums of L-functions.

(II) Use Runge's method in section 3 to get an upper bound of the shape

log |j(E)| ≤ C d(E)
for every Q-curve E of degree d(E) dened over an imaginary quadratic eld and with an integral jinvariant, where C is an absolute explicit constant.

(III) From Gaudron-Rémond's version of the period theorem ([9], Theorem 1.2), and the associated isogeny theorems (giving explicit and sharper versions of Masser-Wüstholz theorem [START_REF] Masser | Isogeny Estimates for Abelian Varieties and Finiteness Theorems[END_REF] and Pellarin's theorem [START_REF] Pellarin | Sur une majoration explicite pour un degré d'isogénie liant deux courbes elliptiques[END_REF]), we obtain in section 4 a new explicit version of Serre's surjectivity theorem, which in turns gives us a lower bound of the shape log |j(E)| ≥ C d(E)p (and even better for Cartan cases) for every Q-curve E of degree d(E), without complex multiplication, dened over a quadratic eld, whose j-invariant is integral and such that Pρ E,p is not quasi-surjective.

Here again, the constant C is absolute and explicit.

(IV) Finally, gather the previous results to obtain, for any quadratic imaginary eld K, an explicit bound p K such that for any prime number p > p K and any strict Q-curve E of degree d(E) (prime to p) over K whose representation Pρ E,p is not quasi-surjective, j(E) ∈ O K and

C d(E)p ≤ log |j(E)| ≤ C d(E)

which is impossible for large enough p (independant of d(E)). Therefore, there is a bound M K such that Pρ E,p is surjective for all p > M K not dividing D K d(E), and computing this bound gives us the main the theorem.

The problem of surjectivity for quadratic Q-curves can be asked for Q-curves on larger elds. We expect at least the (I) B , (I) SC and (I) Exc parts to be feasible in the same way for any Q-curve, giving bounds for potentially good reduction depending only on the degree of its eld of denition. Moreover, Runge's method in part (II) demands that for a Q-curve of degree d dened on K with an integral j-invariant, there are more cusps on X 0 (d) than there are innite places on K (hence the imaginary quadratic eld hypothesis), so it might be adaptable to polyquadratic elds that are not totally real. Finally, part (III) is very general and gives the same type of bounds, with constants C and C depending only on the degree of the eld of denition of the Q-curve. Consequently, there is some hope for similar results for Q-curves over larger elds, the thorniest issue remaining the nonsplit Cartan case.

Notations

In this article, unless stated otherwise, we denote by p a prime number larger than 5.

E

an elliptic curve dened over Q.

E σ the Galois conjugate of E by σ ∈ Gal(Q/Q). En or E[n] the n-torsion of E, non-canonically isomorphic to (Z/nZ) 2 .

T

the Hecke algebra for Γ 0 (p), generated over Z by the usual Hecke operators Tn, n ∈ N. (a, b) the greatest common divisor of the integers a and b.

For every scheme X = X Z over Spec Z, we denote by : X Q the generic ber of X, considered as a variety over Q.

X R := X ⊗ Z R the extension of scalars from Z to any ring R. X Fp := X ⊗ Z Fp the geometric extension of the special ber of X at p.

X the regular minimal model of X on Spec Z.

X R the regular minimal model of X on R (generally dierent from ( X) R ) if R is a Dedekind ring of characteristic 0.
For every abelian variety J = J Q dened over Q, we denote by : J Z the Néron model of J over Z.

J R the Néron model of J over any discrete valuation ring R of characteristic 0.

J Fp := J Z ⊗ Z Fp the geometric extension of the ber of J Z at p. J(Q)tors the nite group of rational torsion points of J.

1 Setup of the surjectivity problem and tools for Mazur's method 1.1 Q-curves and moduli spaces associated to the surjectivity problem

We assume throughout this article that every considered Q-curve is without complex multiplication (which is the natural hypothesis for Serre's surjectivity problem).

Denition 1.0.1. Let K be a number eld. Let E be a Q-curve without complex multiplication dened over K. For every prime number p not dividing d(E), the map

Pρ E,p : Gal(Q/Q) -→ PGL(Ep) σ -→ (D -→ Dσ := µσ(D σ ))
for every Fp-line D of Ep, is a projective representation of Gal(Q/Q) in PEp, which does not depend on the choice of the isogenies µσ : E σ → E of degree prime to p. For a xed embedding K ⊂ Q, the restriction of Pρ E,p to Gal(Q/K) is the projectivization of the natural representation ρ E,p : Gal(Q/K) → GL(Ep)

on p-torsion points of E.

To put aside the problem of surjectivity of determinant (entirely described by the degrees of the isogenies µσ : E σ → E, as the reader can check using Weil pairing), we make the following denition. The following proposition (see [START_REF] Serre | Propriétés galoisiennes des points d'ordre ni des courbes elliptiques[END_REF], § 2.4 to 2.6) is a consequence of Dickson's theorem on maximal subgroups of PGL 2 (Fp) and justies the equality (1) in the introduction.

Proposition 1.1. Let p be a prime number and K be a number eld. Let E be a Q-curve without complex multiplication, dened over K and of degree prime to p. If Pρ E,p is not quasi-surjective, its image is included in one of the four following types of groups :

• A Borel subgroup of PGL(Ep), which means Pρ E,p leaves invariant an Fp-line Cp (Borel case).

• The normaliser of a split Cartan subgroup of PGL(Ep), which means Pρ E,p leaves globally stable a pair {Ap, Bp} of distinct Fp-lines (split Cartan case).

• The normaliser of a nonsplit Cartan subgroup of PGL(Ep), which means Pρ E,p is included in the normaliser of a copy of F p 2 * in GL(Ep).

• An exceptional subgroup of PGL(Ep),that is, a copy of A 4 , A 5 or S 4 in PGL(Ep) (exceptional case).

The exceptional case is immediately solved, using well-known results of [START_REF] Serre | Propriétés galoisiennes des points d'ordre ni des courbes elliptiques[END_REF] on the action of tame inertia of Ep.

Proposition 1.2. Let K be a number eld and E an elliptic curve over K. For every prime number

p > 30[K : Q] + 1, the image of Pρ E,p : Gal(K/K) → PGL(Ep) is not contained in an exceptional subgroup A 4 , A 5 or S 4 .
To any Q-curve E for which Pρ E,p is not quasi-surjective, we can associate a point on a moduli scheme, as we will now explain. In characteristic zero, giving an isogeny on E amounts to giving its kernel (up to isomorphism), hence we will not make (unless necessary) the dierence between an isogeny and its kernel in the following.

• The scheme X 0 (N ) is, for any integer N ≥ 1, the compactied coarse moduli space over Z parametrising the isomorphism classes of couples (E, C N ) with E an elliptic curve and C N a cyclic isogeny of degree N of E. Its generic ber X 0 (N ) Q is the modular curve corresponding to the congruence subgroup Γ 0 (N ).

• The scheme X * 0 (N ) is, for any integer N ≥ 1, the quotient of X 0 (N ) by its whole group of Atkin-Lehner involutions {w d ; d|N, (d, N/d) = 1}. A noncuspidal point of X * 0 (N )(Q) is a set of isogenous elliptic curves stable by Gal(Q/Q), hence the set of conjugates of one or more isogenous Q-curves. This justies the following denition borrowed to [START_REF] Elkies | On Elliptic K-curves[END_REF]. Denition 1.2.1. Let d be a squarefree positive integer. We call central Q-curve of degree d every Q-curve

of degree d obtained from a point of X * 0 (d)(Q).
The next proposition (reformulated from the Theorem of [START_REF] Elkies | On Elliptic K-curves[END_REF] with elements of its proof ) allows us to see X * 0 (N ) as a sort of moduli space for Q-curves of degree N . Proposition 1.3. For every Q-curve E without complex multiplication dened over K, there exists an isogeny E → E of degree dividing d(E) towards a central Q-curve E dened over K and of squarefree degree d|d(E).

If E and E are two Q-curves isogenous by an isogeny of degree m, we readily see that Pρ E,p and Pρ E ,p are isomorphic for any prime p not dividing m. Therefore, with help of Proposition 1.3, the problem of quasi-surjectivity of Pρ E,p for any Q-curve E without complex multiplication of degree d prime to p boils down to the same problem for central Q-curves of degree d and p not dividing d. Hence, from now on and until the end of this article, we assume that every considered Q-curve is a central Q-curve of squarefree degree d without complex multiplication.

Let us nish with the useful moduli spaces for our problem.

• The scheme X split (p) is, for any prime p, the compactied coarse moduli scheme over Z parametrising the isomorphism classes of couples (E, {Ap, Bp}) with E an elliptic curve and Ap, Bp nonisomorphic isogenies of degree p of E. Its generic ber X split (p) Q is the modular curve corresponding to the congruence subgroup

Γ split (p) := γ ∈ SL 2 (Z), γ ≡ * 0 0 * or 0 * * 0 mod p .
• The scheme X nonsplit (p) is, for any prime p, the compactied coarse moduli scheme over Z parametrising the isomorphism classes of couples (E, αp) with E an elliptic curve and αp a copy of F p 2 in the endomorphism ring of the group scheme Ep. Its generic ber X nonsplit (p) Q is the modular curve corresponding to one/any congruence subgroup Γ nonsplit (p) which is the pullback of the normaliser of a nonsplit Cartan subgroup of GL 2 (Fp) in SL 2 (Z).

If now p is a prime number and d a squarefree integer prime to p, we dene (as in [START_REF] Ellenberg | Galois Representations Attached to Q-Curves and the Generalized Fermat Equation A 4 + B 2 = C p[END_REF]) the schemes

X s 0 (d; p) := X 0 (d) × X(1) X split (p), X ns 0 (d; p) := X 0 (d) × X(1) X nonsplit (p).
These two schemes and X 0 (dp) are endowed with an involution w d which becomes the Fricke involution on X 0 (d) by the forgetful functors towards X 0 (d). Functorially : 

w d (E, C d , Cp) = (E/C d , E d /C d , Cp/C d ) on X 0 (dp), w d (E, C d , {Ap, Bp}) = (E/C d , E d /C d , {Ap/C d , Bp/C d }) on X s 0 (d; p), w d (E, C d , α) = (E/C d , E d /C d ,
F λ = O K /λ.
Let X be an algebraic curve dened over Q with a proper model X Z on Spec Z, A an abelian variety dened on Q with Néron model A Z on Z, and f : X → A a morphism dened over Q. It naturally extends to a morphism f Z : X smooth Z → A Z by the universal mapping property of Néron models. Now, suppose there are two points x and y of X(K) such that :

• The points x and y have the same reduction modulo λ, and it belongs to X smooth Z .

• The morphism f Z is a formal immersion at x λ = y λ .

• The point f (y) -f (x) is Q-rational and torsion in A(Q).

Then, if > 2, x = y. If = 2, either x = y or f (y) -f (x) is a 2-torsion point in A(Q) generating a copy of the nite group scheme µ 2 in A Z .

Proof. Let us suppose rst that > 2. By hypothesis, z = f (y) -f (x) ∈ A(Q) tors . As e = 1 < -1, according to the specialisation lemma of Raynaud ([14], Proposition 1.1), the order of z is the same as the order of its reduction z in A Z (F ). Here, we have

z = z λ = f Z (y) λ -f Z (x) λ = f Z (y λ ) -f Z (x λ ) = 0, because x λ = y λ . Therefore, z = 0 and f (y) = f (x).
As f is a formal immersion at x λ = y λ , this implies x = y. In the case = 2, we do not have e < -1 anymore, but thanks to Proposition 4.6 of [START_REF] Mazur | Modular curves and the Eisenstein ideal[END_REF], we know that z is either 0 or a 2-torsion point in A(Q) generating a copy of µ 2 in A Z . When z is 0, the proof of the previous case works as well.

Remark 1.4.1. The main dierence with Proposition 3.1 of [START_REF] Ellenberg | Galois Representations Attached to Q-Curves and the Generalized Fermat Equation A 4 + B 2 = C p[END_REF] is that the latter one did not deal with the case = 2 or the fact that z is dened over Q while x and y are dened over a bigger eld (which will be the case here). For the case = 2, we will need to rule out the case when f (y) -f (x) is 2-torsion in A(Q) to prove Proposition 2.3. In our study, f (y) -f (x) belongs to the cuspidal subgroup C of J 0 (p)(Q), and we know ( [START_REF] Mazur | Modular curves and the Eisenstein ideal[END_REF], Proposition 11.11) its Zariski closure indeed contains a µ 2 when it is of even order. This is why we actually need the analysis of the components group of the jacobian (see proof of Lemma 2.2).

We recall the following classical result on the Albanese morphism from X 0 (p) to J 0 (p) (easily obtained from the q-expansion principle), fundamental for Mazur's method. Proposition 1.5. Let p = 11 ou p > 13 be a prime number. Let T be the Hecke subalgebra of End Q (J 0 (p)) generated over Z by the Hecke operators Tn, n ∈ N * . Let φ : X 0 (p) Q → J 0 (p) Q be the Albanese morphism sending ∞ to 0 and φ Z : X 0 (p) smooth Z → J 0 (p) Z its extension by Néron mapping property. For every t ∈ T and every prime , t • φ Z is a formal immersion at ∞ F ∈ X 0 (p)(F ) if and only if t / ∈ T.

Eisenstein quotient and components group of the jacobian

The Eisenstein ideal I of T (dened in [START_REF] Mazur | Modular curves and the Eisenstein ideal[END_REF]) is the ideal I := 1 + -T , 1 + wp, l ∈ Pp , with Pp the set of prime numbers dierent from p. The Eisenstein quotient J(p) is the quotient of J 0 (p) by the abelian subvariety generated by γ I .J 0 (p) Q , with γ I = n∈N I n . It is dened over Q, and benets the following properties (in particular, it is the rst historical example of a nontrivial rank zero quotient of J 0 (p)).

Proposition 1.6. Let p = 11 or p > 13 be a prime number. Let n = num( p-1

12 ). Let C be the cuspidal subgroup of J 0 (p)(Q), generated by cl([0] -[∞]).
(a) The rational torsion of J 0 (p) is exactly C, and it is a cyclic subgroup of order n ([13], Theorem 1.2 p.142 and Proposition 11.1).

(b)

The canonical projection J 0 (p) → J(p) is dened over Q and induces a bijection between C = J 0 (p)(Q) tors and J(p)(Q) which is therefore a cyclic subgroup of order n ([13], Corollary 1.4 p.143).

(c) The Eisenstein ideal is exactly the kernel of the map t → t. cl([0]-[∞]) from T to C, which induces an isomorphism T/I → Z/nZ ([13], Proposition 11.1). In particular, when t = 1 mod I, t acts as the identity on C.

It is crucial for the proofs of Propositions 2.3 and 2.6 for prime ideals above 2 to cancel γ I by good elements of T. The following lemma will allow us to do so. Lemma 1.7. For every prime number , there exists a Hecke operator t ∈ T\ T such that t = 1 mod I and t • γ I = 0. Moreover, for such a t ∈ T, t • (1 + wp) = 0.

Proof. As T is a noetherian ring, by Artin-Rees lemma, we have I • γ I = γ I . Hence, by Nakayama's lemma, γ I is cancelled by some element t ∈ T congruent to 1 mod I. For a xed prime , we can even choose such a t not in T : if divides n, this is automatic because of Proposition 1.6 (c), otherwise we can choose an integer prime to but congruent to mod n. Then, for k such that t ∈ k T\ k+1 T, the operator t = ( / ) k t ∈ T\ T but is still congruent to 1 mod I while cancelling γ I . Finally, such a t ∈ T automatically cancels (1 + wp) under the previous conditions, because the Eisenstein quotient is a quotient of the minus part of the jacobian J 0 (p) ([13], Chapter 2, Proposition 17.10).

We need to describe the components group of the special ber of J 0 (p) R , which is made possible by Theorem 9.6.1 of [START_REF] Bosch | Néron models[END_REF]. In short, if R is a discrete valuation ring of mixed characteristic with fraction eld K and perfect residual eld k, and Φ is the group of irreducible components of J 0 (p) R ⊗ k, this theorem gives a description of Φ by generators (C), and relations given by the irreducible components of X 0 (p) R (the minimal regular model of X 0 (p) over R) and their intersection numbers, and this description is compatible with the reduction morphism from J 0 (p)(K) to J 0 (p) R ⊗ k.

A rst application of this to J 0 (p) Z gives the following results ( [START_REF] Mazur | Modular curves and the Eisenstein ideal[END_REF], Theorem 10 and Appendix).

Proposition 1.8. Let p = 11 or p > 13 be a prime number and n = num p-1

12 . Let φ : X 0 (p) Q → J 0 (p) Q be the Albanese morphism sending ∞ to 0. (a) Reduction modulo p of the cuspidal subgroup C = cl([0] -[∞]) induces an isomorphism from C to the group of components Φ of J 0 (p) Z ⊗ Fp. (b) For every point Q ∈ J 0 (p)(Q), we dene ρ(Q) ∈ Z/nZ the image of Q by J 0 (p)(Q) → J 0 (p) Z (Fp) → Φ ∼ = C ∼ = Z/nZ.
Then, for every point P ∈ Y 0 (p)(Q) :

• If E has potentially ordinary or multiplicative reduction modulo p, ρ(φ(P )) = 0 if Cp denes a separable isogeny modulo p, and ρ(φ(P )) = 1 otherwise.

• If E has potentially supersingular reduction modulo p, either p = -1 mod 4, j(E) = 0 mod p and ρ(φ(P )) = 1/2, or p = -1 mod 3, j(E) = 1728 mod p and ρ(φ(P )) = 1/3 or 2/3.

The idea underlying (b) of Proposition is that ρ • φ(X 0 (p)(Q)) is small, and in particular it does not not the unique nontrivial 2-torsion point of C for p = 11 or p > 13. This is the same idea that we will use in a more general analysis in Lemma 2.2 Let R be a complete discrete valuation ring of characteristic 0, with fraction eld K and residual eld k that we assume perfect of characteristic p. Let π be a uniformizer of R, v be the normalised valuation on K and e = v(p) the absolute ramication of R.

The following result of Edixhoven (section 3 of the Appendix of [START_REF] Bertolini | A Rigid Analytic Gross-Zagier Formula and Arithmetic Applications[END_REF]) generalises Theorem 1.1 of the Appendix of [START_REF] Mazur | Modular curves and the Eisenstein ideal[END_REF].

Proposition 1.9. (a) The scheme X 0 (p) R is smooth over R outside its supersingular points in the special ber.

(b) The geometric special ber X 0 (p) k is made up with two copies of P 1 (k) (which are also its irreducible components) crossing transversally at supersingular elliptic curves : the rst one, called Z, parametrises elliptic curves endowed with their Frobenius isogeny, and the second one, called Z , parametrises elliptic curves endowed with their Vershiebung isogeny.

(c) Let s be a supersingular point of X 0 (p) R ⊗ R k corresponding to a couple (E, Cp) with E an elliptic curve over k and Cp a p-isogeny of E. We call width of s the integer ks = |Aut(E, Cp)|/2. The scheme X 0 (p) R is nonregular at s if and only if eks > 1. More precisely, the local completed ring of X 0

(p) R at s is isomorphic to R[[X, Y ]]/(XY -π eks ).
If p = 2, 3, then ks > 1 implies that j(E) = 0, ks = 3 and p = -1 mod 3, or j(E) = 1728, ks = 2 and p = -1 mod 4.

(d) The geometric ber ( X 0 (p) R ) k of the minimal regular model over R is therefore obtained by blowing up in X 0 (p) k every nonregular point s to a chain of eks -1 projective lines. These projective lines, as Cartier divisors, have auto-intersection -2.

For the following proposition on components group, we need some notations. First, we can suppose e > 1 because the case e = 1 is dealt with Proposition 1.8. Therefore, every supersingular point s in the special ber is nonregular. To provide some intuition on the proof, we dene (as in the Appendix of [START_REF] Bertolini | A Rigid Analytic Gross-Zagier Formula and Arithmetic Applications[END_REF]) the dual graph G associated to X 0 (p) R k : its vertices are the irreducible components of ( X 0 (p) R ) k and an edge links two vertices if and only if the two components intersect. Thanks to Theorem 9.6.1 of [START_REF] Bosch | Néron models[END_REF], the problem therefore becomes a problem on G : compute the abelian group Φ given by generators (its vertices) and relations (the image of the laplacian operator on the graph).

We dene S (resp. S ) the set of cardinality S (resp. S ) of supersingular points of X 0 (p) k (resp. supersingular points with j-invariant dierent from 0 and 1728). We also dene I = 1 if the elliptic curve with j-invariant 1728 is supersingular in k, 0 otherwise and R = 1 if the elliptic curve with j-invariant 0 is supersingular, 0 otherwise, so that

S = S + I + R and S + I 2 + R 3 = p -1 12 . (2) 
from ( [START_REF] Silverman | The Arithmetic of Elliptic Curves[END_REF], Theorem V .4.1 (c)).

For every s ∈ S, we call Cs the path of length eks between the points Z and Z associated to s ∈ S in G, due to the blowup of s in X 0 (p) R . In case s is of j-invariant 1728 (resp. 0), we also call it E (resp. G). We order the points of G (that is, the components of X 0 (p) R × k) on every one of these paths in the following way :

we call C s,0 = Z , C s,1 = Cs the unique point of Cs linked to Z , C s,2 the point of Cs linked to
Cs not yet named, and so on until

C s,eks = Z. If s is of j-invariant 1728 (resp. 0), we call E = C s,1 (resp. G = C s,1
) to remain consistent with notations of the Appendix of [START_REF] Mazur | Modular curves and the Eisenstein ideal[END_REF] (where F = C s,2 with j(s) = 0).

We use for every irreducible component C the notation

C = [C] -[Z ]
as Z is the component where reduces the cusp ∞, our choice of base point for the Albanese morphism.

The following lemma simplies the presentation of Φ.

Lemma 1.10. Let Cs be the path of length eks between Z and Z associated to s in G. In the group Φ,

for every i ∈ [|0, eks|], C s,i = iC s,1 = iCs In particular, Z = eksCs.
Proof. It is true by denition for i = 0 and 1. For every i ∈ [|1, m -1|], the relation given by the laplacian

operator on G at C s,i is -2C s,i + C s,i-1 + C s,i+1 = 0.
The lemma follows by double induction on i.

The group Φ is therefore the abelian group generated by Z and the Cs, s ∈ S, and the relations

-SZ + (2e -1)IE + (3e -1)RG + s∈S (e -1)Cs = 0 (Z) IE + RG + s∈S Cs = 0 (Z ) ∀s ∈ S , Z = eCs, (Cs) 
with additional relations

Z = 2eE (E) Z = 3eG (G)
whenever E or G exist (the name of these relations corresponding to the point where the laplacian operator is applied). Adding to (Z) the relation -(e -1)(Z ), we get a new relation (b) The cuspidal subgroup C of J 0 (p)(Q) reduces injectively in Φ, with Z being the reduction of cl([0] -[∞]). Hence, Z is of order n and we identify it with Z/nZ in the following.

-SZ + eIE + 2eRG = 0 (Z).
(c) There is an exact sequence of Z/eZ-modules

0 / / Z/eZ ∆ / / (Z/eZ) S α / / Φ/ Z / / 0 with ∆ : λ → λ • s∈S [Cs] and α : s∈S λs[Cs] → s∈S λsCs.
In particular, e • Φ = Z , and we get

∀s ∈ S , ∀i ∈ [|1, e -1|], e.C s,i = i ∀i ∈ [|1, 2e -1|], e.E i = i/2 if p = -1 mod 4 ∀i ∈ [|1, 3e -1|], e.G i = i/3 if p = -1 mod 3 s∈S Cs = 0 inΦ
Proof. We only compute Φ in the case p = 11 mod 12 so that I = R = 1, the other cases being simpler but similar. We replace Z by 2eE thanks to relation (E), and for every s ∈ S we make the variable changes

C s := Cs -2E and G := G + (2S -3)E.
The relations become e(6S -7)E + 2eG = 0 (Z) G + s∈S C s = 0 (Z ) ∀s ∈ S , e.C s = 0 (Cs)

As p = 11 mod 12, 6S -7 = 6S + 5 = (p -1)/2 = n by the mass formula of (2), and (Z) is equivalent to enE = 0 with help of the other relations. Hence, G is generated by the other generators, and the relations (Cs) , s ∈ S and (Z) are diagonal, which gives us the announced isomorphism of (a). Via this isomorphism, we have

Z = (2e, 0, • • • , 0) E i = (i, 0 • • • , 0) G i = (-(2S + 1)i, -i, • • • , -i) C s,i = (2i, 0, • • • , 0, i, 0, • • • , 0) (s ∈ S )
and this readily gives us (b) and (c).

2 Application of Mazur's method

Borel case

Let p be a xed prime and d be a squarefree positive integer prime to p. The scheme X 0 (dp) Z is smooth outside its supersingular points in characteristic dividing dp, in particular every cusp reduces in the smooth part modulo every prime number . If r is the number of prime factors of d, X 0 (dp) Q has 2 r+1 cusps on which the Atkin-Lehner group acts transitively. As d and p are coprime, the cusps of X 0 (dp) Q are in bijection via forgetful functors X 0 (dp

) Q → X 0 (d) Q and X 0 (dp) Q → X 0 (p) Q with couples of cusps of X 0 (d) Q and X 0 (p) Q . Via this correspondance, the Atkin-Lehner involutions w d , d |d on X 0 (dp) Q leave unchanged the component of the cusp in X 0 (p) Q and wp leaves unchanged the component in X 0 (d) Q . We call ∞ dp (resp. ∞ d , ∞ p ) the usual innity cusp of X 0 (dp) Q (resp. X 0 (d) Q , X 0 (p) Q ).
Denition 2.0.1. We denote by π dp,p : X 0 (dp) Q → X 0 (p) Q the forgetting d-structure morphism and by φ : X 0 (p) Q → J 0 (p) Q the Albanese morphism sending ∞ p to 0. The morphism g : X 0 (dp

) Q → J 0 (p) Q is dened by g := φ • π dp,p + φ • π dp,p • w d . Functorially, we have g(E, C d , Cp) = cl([E, Cp] + [E/C d , Cp/C d ] -2[∞ p ]).
For every t ∈ T, we note g t = t • g.

Proposition 2.1. Let p = 11 or p > 13 be a prime number, and be a prime number (possibly equal to p). For every t ∈ T, the morphism (g t ) Z : X 0 (dp) smooth Z → J 0 (p) Z extending g t by Néron mapping property is a formal immersion at ∞ dp F if and only if t / ∈ T.

Proof. Fix t ∈ T and g

t = t • φ • π so that g t = g t + g t • w d . As w d permutes cusps of X 0 (dp) Q above ∞ p ∈ X 0 (p), g t (∞ dp ) = g t • w d (∞ dp ) = 0.
The residual elds of the points ∞ dp F and 0 F are both F as ∞ dp and 0 ∈ J 0 (p) cusps are Q-rational, so we only have to check the induced maps on cotangent spaces. Notice

w d (∞ dp ) is a cusp of X 0 (dp) Q not above ∞ d , therefore (π dp,p ) C : X 0 (dp) C → X 0 (p) C is ramied at this cusp (because X 0 (d) C → X(1) C is ramied at any cusp but ∞ d ). Hence the cotangent map of g t • w d is zero at section ∞ dp Z and the cotangent map of g t at ∞ dp Z is the cotangent map of g t .
Finally the cotangent map of (π dp,p ) Z at section ∞ dp Z is an isomorphism so the cotangent map of g t at ∞ dp F is surjective if and only if t / ∈ T by Proposition 1.5, which concludes the proof by the usual formal immersion criterion.

The following lemma is essential for the case = 2.

Lemma 2.2. Let p = 11 or p > 13 be a prime number, n = num((p -1)/12) and K be a quadratic eld with ramication degree e over p. Let E be a central Q-curve of degree d dened over K such that Pρ E,p is reducible, and P the corresponding point of X 0 (dp)(K). Then g(P ) belongs to J 0 (p)(Q), and with the retraction ρ : J 0 (p)(Q) → Z/nZdened at Proposition 1.8, the possible values of ρ(g(P )) are the following : p = 1 mod 12 p = 5 mod 12 p = 7 mod 12 p = 11 mod 12 e = 1

0,2 0,1,2, 2 3 , 4 3 0,1,2 0,1,2, 2 3 , 4 3 e = 2 0,1,2 0,1,2, 1 3 , 2 3 , 4 3 , 5 3 0,1,2, 1 2 , 3 2 0,1,2, 1 3 , 1 2 , 2 3 , 4 3 , 3 2 , 5 3 
In particular, this image cannot be the unique 2-torsion point of the cuspidal subgroup C unless p = 17 or 41.

Proof. First, g(P ) ∈ J 0 (p)(K) because g is Q-rational, and for σ the nontrivial automorphism of K,

g(P ) σ = φ • π dp,p (P σ ) + φ • π dp,p • w d (P σ ) = φ • π dp,p (w d • P ) + φ • π dp,p (P ) = g(P )
by construction of P (see subsection 1.1), hence g(P ) indeed belongs to J 0 (p)(Q). Fix a prime ideal P of K above p and dene Φ the group of components of the special ber of J 0 (p) O K P . We read ρ(g(P )) via reduction modulo P, using Propositions 1.8 and 1.11 (and their notations). Notice that π dp,p (P ) and π dp,p (w d • P ) represent elliptic curves which are isogenous of degree prime to p on X 0 (p). Consequently, their stable reduction type modulo P (ordinary with separable isogeny, ordinary with unseparable isogeny, supersingular) is the same. This remark done, we use the Proposition 1.11 to compute the dierent possibilities :

• If p is unramied in O K ,
we are in the étale case of the Proposition, and the possible values of the reduction of g(P ) in Φ are then 2Z = 0, 2Z = 2, 2E = 1, 2G = 2/3, 4G = 4/3 and 3G = 1 (when E or G exist). This proves the rst line.

• If p is ramied in O K , we are in case e = 2 of the Proposition, and the possible values of the reduction of g(P

) in Φ are then 2Z = 0, 2Z = 2, 2E 1 = 1/2, 2E 2 = 1, 2E 3 = 3/2, E 1 + E 3 = 1, 2G 1 = 1/3, 2G 2 = 2/3, . . . , 2G 5 = 5/3 (
and other possibilities that do not give new values). Finally, for every s ∈ S , 2C s,1 = 1.

For the application of the result, Z/nZ admits a nontrivial 2-torsion point if and only if 2 divides n, which is possible only when p = 1 mod 8, and then this torsion point is n/2. Suppose ρ(g(P )) is equal to n/2. From the table, if p = 1 mod 12 , it means (p -1)/12 divides 1,2 or 4, whence p = 13. If p = 5 mod 12, it means (p -1)/4 divides 1, 2, 4, 8 or 10, whence p = 17 or p = 41. Proposition 2.3. Let K be a quadratic eld and E a Q-curve of squarefree degree d dened over K. If for p ≥ 11, p = 13, 17, 41 prime not dividing d, the representation Pρ E,p is reducible, E has potentially good reduction at every prime ideal of O K .

Proof. Let P ∈ X 0 (dp)(K) be the point associated to E. From Lemma 2.2, we know that g(P ) ∈ J 0 (p)(Q).

Let λ be a prime ideal of O K above , and suppose E has potentially multiplicative reduction at λ. As the Atkin-Lehner involutions group acts transitively and Q-rationally on the cusps of X 0 (dp), we can and will assume that P λ = ∞ dp λ = ∞ dp ∈ X 0 (dp) Z (F ). In particular, P λ is in the smooth part of X 0 (dp) Z . We choose t ∈ T\ T cancelling the ideal γ I and congruent to 1 modulo I (see Lemma 1.7 and above for notations). The Q-rational morphism t : J 0 (p) Q → J 0 (p) Q cancels on γ I • J 0 (p), therefore it factors through J(p) and sends the Q-rational point g(P ) on a Q-rational torsion point of J 0 (p) because J(p) is of rank zero. It allows us to apply Proposition 1.4 to x = P , y = ∞ dp , X = X 0 (dp) Q , A = J 0 (p) Q and g t (the latter being a formal immersion by Proposition 2.1). In the case > 2, we obtain P = ∞ dp , which is a contradiction, therefore E has potentially good reduction modulo λ. In the case = 2, as t = 1 mod I, ρ(g t (P )) = ρ(g(P )) (Proposition 1.6 (c)), therefore g t (P ) is not the non-trivial 2-torsion point of J 0 (p)(Q) by Lemma 2.2. So P = ∞ dp in this case too, which is a contradiction, hence E has potentially good reduction modulo λ for every prime ideal λ of O K .

Split Cartan case

Let p be a prime number and d be a squarefree positive integer prime to p. As in [START_REF] Ellenberg | Galois Representations Attached to Q-Curves and the Generalized Fermat Equation A 4 + B 2 = C p[END_REF], we dene X sp.Car. (p) Z the compactied coarse moduli scheme over Z parametrising the triples (E, Ap, Bp) with Ap, Bp nonisomorphic p-isogenies of E and X sC 0 (d; p) Z := X 0 (d) We need preparatory results inspired from [START_REF] Momose | Rational points on the modular curves X split (p)[END_REF]. We also owe this article the original idea for the following formal immersion, that [START_REF] Ellenberg | Galois Representations Attached to Q-Curves and the Generalized Fermat Equation A 4 + B 2 = C p[END_REF] adapted for Q-curves.

Proposition 2.4. Let E be an elliptic curve dened over a number eld K and p > 2[K : Q] + 1 be a prime number such that the image of ρ E,p is in the normaliser of a split Cartan subgroup of GL(Ep). Let P = (E, {Ap, Bp}) be the corresponding K-rational point of X split (p), and K an extension of degree two of K over which Ap and Bp are dened. Then, for any prime ideal P of O K above p :

(a) The elliptic curve E does not have potentially supersingular reduction at P. (b) The reduction modulo P of P in X split (p) Fp does not belong to the W component.

(c) For every prime ideal P of O K above P, the reductions modulo P of (E, Ap) and (E/Bp, Ep/Bp) belong to the same irreducible component of X 0 (p) O P × Fp.

Proof. Let p ≥ 5 be a prime number and P be a prime ideal of O = O K above p. The Gal(Q/K )modules Ep, Ap and Bp dene group schemes over K noted (Ep) K , (Ap) K and (Bp) K such that = (Ep/Bp) O . Hence, they are simultaneously constant or isomorphic to µp. As E is not potentially supersingular, the component to which belongs the reduction of (E, A) in X 0 (p) O × Fp is Z or Z , and entirely determined by the nature (étale or not) of A, hence the two points (E, Ap) and (E/Bp, Ep/Bp) reduce to the same component.

(Ep) K ∼ = (Ap) K ⊕ (Bp) K . (3) 
Recall φ : X 0 (p) Q → J 0 (p) Q is the Albanese morphism sending ∞ p to 0. Denition 2.4.1. Let p be a prime number. We note π :

X sC 0 (d; p) Q → X 0 (p) Q the forgetful morphism that sends (E, C d , Ap, Bp) to (E, Ap). The map h : X sC 0 (d; p) Q → J 0 (p) Q is dened by h := φ • π -φ • wp • (π • w) + φ • π • w d -φ • wp • (π • w • w d ). Functorially, we have h(E, C d , Ap, Bp) = cl ([E, Ap] -[E/Bp, Ep/Bp] + [E/C d , Ap/C d ] -[E/(Bp + C d ), Ep/(Bp + C d )]) .
Furthermore, h • w = -wp • h where wp is the endomorphism of J 0 (p) Q corresponding to Atkin-Lehner involution wp on X 0 (p) Q . For every t ∈ T, we dene

h t = t • h. Hence, if t(1 + wp) = 0, h t • w = h t so that h t factors through the projection X sC 0 (d; p) Q → X s 0 (d; p) Q in a Q-rational morphism h + t : X s 0 (d; p) Q → J 0 (p) Q . Remark 2.4.1.
The sum h of the rst two terms of h give the good candidate for elliptic curves over Q (see [START_REF] Bilu | Serre's Uniformity Problem in the Split Cartan case[END_REF]). As in Borel case, the generalisation to Q-curves relies in the consideration of h + h • w d . Proposition 2.5. Let be a prime number and t ∈ T. 

= g • ψ + g • wp • ψ • w. As ψ((∞, ∞)) = ∞ dp = wp • ψ • w(∞, ∞), the cotangent map of h Z at section (∞, ∞) Z is the sum of the cotangent maps of (g • ψ) Z and (g • wp • ψ • w) Z .
Notice that ψ is ramied of degree p at (∞, ∞) Z (as it can be checked out on corresponding Riemann surfaces), so that g • ψ is. Hence, the cotangent map of h Z is the cotangent map of (g•wp•ψ•w) Z . Furthermore, we readily see that g

•wp = wp •g+2 cl([0]-[∞ p ]), so (h t ) Z is a formal immersion at (∞, ∞) F if and only if (g t • ψ • w) Z is, because wp is an automorphism of J 0 (p) Z . But the cotangent map of (ψ • w) Z : X sC 0 (d; p) Z → X 0 (p) Z at the section (∞, ∞)
Z is an isomorphism (see [START_REF] Momose | Rational points on the modular curves X split (p)[END_REF], Proof of Proposition 2.5), whence the result for (h t ) Z by Proposition 2.1. The result follows for (h t ) + Z as (∞, ∞) is not a xed point of w.

We can now prove our result in split Cartan case. Proposition 2.6. Let K be a quadratic eld. For every prime number p = 11 or p > 13, if E is a Q-curve of degree d prime to p dened over K, the image of Pρ E,p is in the normaliser of a split Cartan subgroup of PGL(Ep), then E has potentially good reduction at every prime ideal of O K .

Proof. Let P ∈ X s 0 (d; p)(K) be the point associated to E. For any t ∈ T such that t(1

+ wp) = 0, h + t is a Q-rational morphism so h + t (P ) ∈ J 0 (p) Q (K). If we call σ the automorphism of K, h + t (P ) σ = h + t (P σ ) = h + t (w d .P ) = h + t (P )
because h • w d = h by construction, so that h + t (P ) is Q-rational. Now, if we also suppose that t cancels γ I and t = 1 mod I (see Lemma 1.7 and above for notations), then h + t (P ) = 0. Indeed, it is a torsion point of J 0 (p) because the Eisenstein quotient has rank zero. Taking any prime P of O K above p, by Proposition 2.4 we know that P reduces modulo P in the smooth part of X s 0 (d; p) Z (by (a) and (b)), and that (h t + ) Z (P P ) is 0 in the group of components Φ of J 0 (p) O ×F P (by (c)). Therefore, h + t (P ) = 0 as reduction from the cuspidal subgroup C to Φ is injective (Proposition 1.11 (b)). We can now apply Mazur's method. Suppose there is a prime ideal λ of O K (above the prime number ) such that E has potentially multiplicative reduction at λ. Then P reduces at a cusp c modulo λ, hence is in the smooth part of X s 0 (d; p) Z (this is obvious when λ is not above p, and we just explained why it is true when λ is above p). Actually, this cusp must be a cusp above ∞ F ∈ X split (p) F . Indeed, if = p, this is what we just proved as the other cusps are not in the smooth part (Proposition 2.4), and if

= p, simple computation shows that the image of a cusp c of X sC 0 (d; p) Q not above ∞ or 0 ∈ X sp.Car. (p) Q by h is 2 cl([0] -[∞]).
For t ∈ T as above, as h + t (P ) = 0 and the Zariski closure C Z of C in J 0 (p) Z is étale outside 2 (eg by Raynaud's Theorem 3.3.3 [START_REF] Raynaud | Schémas en groupes de type[END_REF]), if > 2 , it prevents P from reducing at c modulo λ (unless n = 1 or 2, impossible when p = 11 or p > 13), and for = 2, it is only possible when n divides 4 which is also impossible for p > 23. Now we know P reduces modulo λ at a cusp above ∞ F ∈ X split (p) Z . After applying an Atkin-Lehner involution w d , d |d, we can suppose that P reduces modulo λ at (∞, ∞) F . Take now t ∈ T\ T still satisfying the previous conditions by Lemma 1.7, so we can apply Proposition 2.5. As h + t (P ) = 0, there is no problem with the case = 2 here, and we obtain P = (∞, ∞), which is a contradiction. Therefore, E has potentially good reduction at every prime ideal λ.

Nonsplit Cartan case

In this subsection, we do not provide any qualitative improvement on the third section of [START_REF] Ellenberg | Galois Representations Attached to Q-Curves and the Generalized Fermat Equation A 4 + B 2 = C p[END_REF], but a quantitative one. The next proposition is the algebraic part of section 3 of loc. cit., which uses Mazur's method and relies on the existence of a rank zero quotient on a twisted jacobian (using crucially the results of Kolyvagin and Logachev). Small characteristic issues can be easily ruled out for p ≥ 7 in this case (see proof of Proposition 3.9 of [START_REF] Ellenberg | Galois Representations Attached to Q-Curves and the Generalized Fermat Equation A 4 + B 2 = C p[END_REF]).

Proposition 2.7 ( [START_REF] Ellenberg | Galois Representations Attached to Q-Curves and the Generalized Fermat Equation A 4 + B 2 = C p[END_REF], proof of Proposition 3.6). Let K be an imaginary quadratic number eld of discriminant -D K , χ K the associated Dirichlet character and d > 1 a squarefree positive integer. Let p ≥ 7 be a prime number not dividing dD K . If there exists an eigenform f ∈ S 2 (Γ 0 (p 2 )) new such that wp • f = f and L(f ⊗ χ K , 1) = 0, then for every strict Q-curve E of degree d dened over K such that the image of Pρ E,p is included in the normaliser of a nonsplit Cartan subgroup of PGL(Ep), E has potentially good reduction at every prime ideal of O K .

Thanks to this Proposition and using the same type of analytic estimates as in [START_REF] Ellenberg | Galois Representations Attached to Q-Curves and the Generalized Fermat Equation A 4 + B 2 = C p[END_REF], we obtain in the Appendix the following result : Proposition 2.8. Let K be an imaginary quadratic eld of discriminant -D K .

Let p > 50D 1/4 K log(D K ) be a prime number not dividing D K . If E is a Q-curve dened over K, of degree coprime with p, without complex multiplication and such that the image of Pρ E,p is in the normaliser of a nonsplit Cartan subgroup of PGL(Ep), then E has potentially good reduction at every prime ideal of O K .

Runge's method

Runge's method can be used on a modular curve X to bound the absolute logarithmic height of j-invariants of S-integral points on X, where S is a set of places of the number eld K containing the innite places, of cardinality smaller than the number of Galois orbits of cusps of X. In this article, our application of Runge's method will be a very simple case : K is an imaginary quadratic eld X = X 0 (p) with p a xed prime number, and S contains one single element : the euclidean norm on O K . We dene

X 0 (p)(O K ) := {P ∈ X 0 (p)(K), j(P ) ∈ O K } .
Our goal is to explicitly bound the j-invariant of elements of X 0 (p)(O K ). We denote by H the Poincaré upper half plane.

D the fundamental domain of H for the action of SL 2 (Z) bounded by the geodesic triangle {0, 1, ∞} qτ := exp(2iπτ ) for any τ ∈ H (the τ index will be omitted if τ is obvious). q r τ := exp(2iπrτ ) for any rational number r. Finally, for sake of precision, we denote c∞ (resp. c 0 ) the cusp of X 0 (p) which is the image of ∞ (resp. 0) by the canonical projection π : H ∪ P 1 (Q) → X 0 (p). Notice that the Runge's method will be applied for p dividing the degree of a Q-curve, so our result has to hold for any prime p.

For general Runge's method, we need some knowledge about modular units (see [START_REF] Bilu | Runge's method and modular curves[END_REF] for a general exposition in the case of modular curves), but in our case we will just use one, dened as follows. Denition 3.0.1. Let p be a xed prime number. The holomorphic function g on H is dened for all τ ∈ H by

g(τ ) = ∆(τ ) ∆(p.τ ) = q 1-p τ +∞ n=1 (p,n)=1
(1 -q n τ ) 24 .

where ∆ is the discriminant modular form on H. This is the quotient of two modular forms of weight 12 on Γ 0 (p), hence it denes a modular function U on X 0 (p).

The modular function U benets the following properties :

Proposition 3.1. (a) For every τ ∈ H :

g(-1/τ ) = p 12 g -1 (τ /p) = p 12 q (p-1)/p ∞ n=1 1 -q n 1 -q n/p 24 .
(b) For wp the Atkin-Lehner involution of X 0 (p), U • wp = p 12 U -1 .

(c) The divisor of U on X 0 (p) is supported by cusps, more precisely

div(U ) = (p -1)([c 0 ] -[c∞]). (d) The function U is a Q-rational function on X 0 (p) which is integral over Z[j].
Proof. The assertion (a) implies (b) because for every τ ∈ H of image P in X 0 (p), g(τ ) = U (P ) and -1/(pτ ) has image wp(P ) by denition. To prove (a), we only write that for every τ ∈ H, by denition of g,

g(-1/τ ) = ∆(-1/τ ) ∆(-p/τ ) = τ 12 ∆(τ ) p -12 τ 12 ∆(τ /p) = p 12 g -1 (τ /p),
because ∆ is a modular form of weight 12 on SL 2 (Z). Next, the discriminant modular form does not cancel on H, therefore the divisor of U is indeed supported by the two cusps c∞ and c 0 . The q-expansion of g at ∞ shows that the order of the pole of U at c∞ is (p -1), and the order at c 0 is necessarily the opposite, which proves (c). The modular function U is Q-rational on X 0 (p) as a quotient of two Q-rational modular forms of weight 12 on X 0 (p). Only the integrality remains to be proved. Recall that

SL 2 (Z) = Γ 0 (p) ∪ k∈Z Γ 0 (p) • 0 1 -1 -k (4) Indeed, for every γ ∈ SL 2 (Z), either γ • ∞ = γ • ∞ with γ ∈ Γ 0 (p), and in this case γ ∈ Γ 0 (p) because the stabiliser of the cusp ∞ in SL 2 (Z) is contained in Γ 0 (p), or γ • ∞ = γ • 0 with γ ∈ Γ 0 (p). The matrix w = 0 1 -1 0
sends ∞ to 0, so we can write

(γ w) -1 γ = ± 1 k 0 1
for some integer k, as (γ w) -1 γ • ∞ = ∞. This proves [START_REF] Bilu | Serre's Uniformity Problem in the Split Cartan case[END_REF]. From this equation, we know that for every γ ∈ SL 2 (Z), the q-expansion of g |γ (that is, the image of g by the usual right action of SL 2 (Z) on functions on H) is a formal series in q A consequence of (b) is that p 12 U -1 is integral over Z[j], and it seems that the theory of modular units would only have predicted that p 12p U -1 is (see [START_REF] Bilu | Runge's method and modular curves[END_REF]). We dene the involution w on H by w(τ ) = -1/τ and the function g 0 on H by g 0 := g • w.

1/p τ with algebraic integer coecients. Indeed, if γ ∈ Γ 0 (p) • 0 1 -1 -k , g |γ (τ ) = g(-1/(τ + k)) = p 12 e 2iπ(p-1)k/p qτ (p-1)/p ∞ n=1 1 -q n τ 1 -e 2iπnk/
The following lemma, that we call locating near cusps lemma allows us to reduce Runge's method to computation with the two functions g and g 0 .

Lemma 3.3. For every point P ∈ Y 0 (p)(C), there exists τ ∈ D + Z such that τ or -1/τ is above P by the canonical projection H → Y 0 (p)(C). In the rst case, we say P is near c∞, and then j(P ) = j(τ ) and U (P ) = g(τ ). In the second case, we say P is near c 0 , and then j(P ) = j(τ ) and U (P ) = g 0 (τ ).

Proof. Let P ∈ Y 0 (p)(C). Choose a lift τ 0 ∈ H of P . There exists β ∈ SL 2 (Z) such that β • τ 0 = τ 1 ∈ D. This τ 1 is not above P anymore unless β ∈ Γ 0 (p) (in this case, choose τ = τ 1 in the lemma, and P is near c∞). Suppose now β / ∈ Γ 0 (p). From (4), we can write

β -1 = γ • w • 1 k 0 1
for some k ∈ Z and γ ∈ Γ 0 (p), w = 0 1 -1 0 . Hence, τ = 1 k 0 1

• τ 1 ∈ D + Z, and w.τ = γ -1 • τ 0 is above P . In this case, we say P is near c 0 .

We now need a lemma for precise estimates of q-expansions of g and g 0 .

Lemma 3.4. For every r ∈]0, 1[ and every q ∈ C such that |q| ≤ r,

+∞ n=1 | log |1 -q n || ≤ -log(1 -r) r(1 -r) |q|.
For every q ∈ C such that |q| < 1,

+∞ n=1 | log |1 -q n || ≤ π 2 6 log |q -1 |
.

Proof. The rst inequality is a straightforward consequence of the triangular inequality and the maximum principle. The second one can be found in the proof of Lemma 3.5 of [START_REF] Bilu | Runge's method and modular curves[END_REF].

We obtain from this lemma nontrivial bounds on g and g 0 . Proof. Using the q-expansion of g and Lemma 3.4 with r = 0.005, we have

| log |g∞(τ )| + (p -1) log |qτ || = 24 n≥1 (p,n)=1 log |1 -q n τ | ≤ -24 log(0.995) 0.995 • 0.005 |qτ | ≤ 25|qτ | because |qτ | ≤ 0.005 when τ ∈ D + Z.
For the bound with g 0 , we use the other inequality of Lemma 3.4

with q-expansion of g 0 and obtain

| log |g 0 (τ )| - p -1 p log |qτ | -12 log(p)| = 24 n≥1 (p,n)=1 log |1 -q n/p τ | ≤ 4π 2 log |q -1/p τ | = 4π 2 p log |q -1 τ | .
Finally, we recall an inequality for the j-invariant (extracted from Corollary 2.2 (iii) of [START_REF] Bilu | Runge's method and modular curves[END_REF]). Proposition 3.6. For every τ

∈ D + Z, if |j(τ )| > 3500, then log |j(τ )| ≤ log |q -1 τ | + log(2).
We can now state our bound on the Proposition 3.7. Let K be an imaginary quadratic eld. For every prime number p and every point 

P ∈ Y 0 (p)(O K ),
p -1 p log |q -1 τ | ≤ 4π 2 p log |q -1 τ | + 12 log(p), hence log |q -1 τ | ≤ 2πp √ p -1 + 6p log(p) (p -1) ≤ 2π √ p + 6 log(p) + 7 (6) 
because p ≥ 2, after a small analysis on the remaining terms. In each case, ( 5) or [START_REF] Darmon | Winding quotients and some variants of Fermat's Last Theorem[END_REF] gives us the result.

Isogeny theorems and end of the proof

We now use isogeny theorems from [START_REF] Gaudron | Théorème des périodes et degrés minimaux d'isogénies[END_REF] to complete the proof and obtain completely explicit bounds. These theorems use the notion of stable Faltings height h F (see [START_REF] Gaudron | Théorème des périodes et degrés minimaux d'isogénies[END_REF], subsection 2.3 for details), but we recall that for every elliptic curve E dened over a number eld K,

h F (E) ≤ 1 12 h(j(E)) + 2.38 (7) 
with h the absolue logarithmic height of j(E) ∈ K, that is,

h(j(E)) = 1 [K : Q] v∈M max(0, log(|j(E)|v))
where M is the set of places of K : see Lemma 7.9 of [START_REF] Gaudron | Théorème des périodes et degrés minimaux d'isogénies[END_REF]. The dierent normalisations for Faltings height in [START_REF] Gaudron | Théorème des périodes et degrés minimaux d'isogénies[END_REF] have to be taken into account : with the notations of this article, h(E) = h F (E) + log(π)/2, so we obtain the constant 2.38 instead of 2.95, but this does not matter for the following, as we round up to 3.

The following result is proved in [START_REF] Gaudron | Théorème des périodes et degrés minimaux d'isogénies[END_REF] in part 7.3, but is not stated this way. We explain why after its statement.

Proposition 4.1 ([9], part 7.3). Let E be an elliptic curve without complex multiplication and B an abelian surface both dened over the number eld K. Let ψ : B → E × E be an isogeny dened over K. Suppose (hypothesis ( * )) that for every embedding σ : K → C, if Ω E,σ and Ω B,σ are the period lattices of E and B with respect to this embedding, dψ(Ω B,σ

) (which is a sublattice of Ω 2 E,σ ) contains an element (ω 1 , ω 2 ) of Ω E,σ which is a Z-basis of Ω E,σ . Then, deg(ψ) ≤ 10 7 [K : Q] 2 (max{h F (E), 985} + 4 log[K : Q]) 2 .
Proof. The bound given here is exactly the bound of Theorem 1.4 of [START_REF] Gaudron | Théorème des périodes et degrés minimaux d'isogénies[END_REF], because the computation is almost exactly the same. Consider some isogeny ψ : B → E × E satisfying hypothesis ( * ) above. For every embedding σ, there is a canonical norm • σ (coming from a principal polarization of E) on the tangent space t E,σ , which contains Ω E,σ . We x an embedding σ 0 such that there is a basis (ω 1 , ω 2 ) of Ω E,σ which is minimal amongst all minimal bases for all possible period lattices Ω E,σ . This means that

ω 1 σ0 = max σ min ω∈Ω E,σ ω =0 ω σ
and ω 2 = τ ω 1 with τ in the Siegel fundamental domain (so that y = im(τ ) is minimal amongst all choices of embeddings and minimal bases for these embeddings). This choice of σ 0 to minimise y is the same as in part 7.3 of [START_REF] Gaudron | Théorème des périodes et degrés minimaux d'isogénies[END_REF]. We now identify all considered abelian varieties with their scalar extensions to C via this embedding σ 0 , and therefore omit all further mention to the embeddings in the notation. We can compose ψ by an isomorphism of E × E so that dψ(Ω E ) contains the basis (ω 1 , ω 2 ) previously chosen, because we assumed hypothesis ( * ). We then consider

A = E × E × B and a period ω = (ω 1 , ω 2 , χ) of Ω 2 E × Ω B , with χ ∈ Ω B such that dψ(χ) = (ω 1 , ω 2 )
. The minimal abelian subvariety Aω of A containing ω in its tangent space is then

Aω = {(ψ(z), z), z ∈ B} .
Indeed, the inclusion Aω ⊂ {(ψ(z), z), z ∈ B} is clear and the projection from Aω to E × E is a subvariety of E × E containing (ω 1 , ω 2 ) in its period lattice. As E is an elliptic curve without complex multiplication, the endomorphism ring of E ×E is M 2 (Z), therefore no strict abelian subvariety of E ×E contains (ω 1 , ω 2 )

in its tangent space. This proves that the dimension of Aω is at least 2, hence the equality above. The abelian variety Aω is canonically isomorphic to B and the projection to E × E is an isogeny of degree ∆.

Everything is in place, and from now on, we can repeat the computation of part 7.3 of [START_REF] Gaudron | Théorème des périodes et degrés minimaux d'isogénies[END_REF] to obtain the bound of the proposition. There are only two small dierences to be noticed : rst, the embedding σ 0 can be real or complex, and the bound can change if σ 0 is real as part 7.3 uses that σ 0 is complex to improve slightly on the bound. To avoid this issue, we consider K = K(i) and go back from the start with K instead of K. This sticks with the proof of part 7.3 as here also, an extension of degree at most 2 of K was needed. Second, the computation of the slopes in Lemma 7.6 of [START_REF] Gaudron | Théorème des périodes et degrés minimaux d'isogénies[END_REF] is slightly dierent, but using only that B is isogenous to E × E with degree ∆ will give the exact same bound.

For our results on Q-curves, we will prove the following result that gives an explicit version of Serre's surjectivity theorem, as stated by Masser-Wüstholz in [START_REF] Masser | Galois properties of division elds of elliptic curves[END_REF].

Theorem 4.2. Let E be an elliptic curve dened over the number eld K without complex multiplication.

We dene B (resp. C) a set of prime numbers p such that the image of ρ E,p is included in a Borel subgroup (resp. the normaliser of a Cartan subgroup, split or nonsplit) of GL(Ep). Then, the following inequality holds :

p∈B p q∈C q 2 4 ≤ 10 7 [K : Q] 2 (max{h F (E), 985} + 4 log[K : Q] + 4|C| log(2)) 2 .
In particular, the Galois representation ρ E,p is surjective for every prime number

p > 10 7 [K : Q] 2 (max{h F (E), 985} + 4 log[K : Q]) 2
not dividing the discriminant of K.

First, we prove a technical lemma to help us prove our isogeny ψ satises ( * ).

Lemma 4.3. Let p be a prime number, V be an Fp-vector space of dimension 2 and v be a basis of V .

Then, for g ∈ GL(V ), the quadratic form

Q : x -→ det v (x, g.x)
is surjective in Fp if g is semisimple and not an homothety.

Proof. First, if g is simple, Q does not have any isotropic vector, and is therefore surjective (looking at its expression in an orthonormal basis). In the other cases, as for every x, y ∈ V and any bases v and v ,

det v (x, y) = det v (v) • det v (x, y)
from the properties of determinant, two quadratic forms Q built from two dierent choices of bases are proportional. Therefore, Q is surjective if and only if it is surjective for one/any other choice of basis. We assumed g is semisimple but not simple, therefore there is a basis v = (v 1 , v 2 ) in which g is diagonal with distinct eigenvalues λ and µ. In this basis, the expression of Q is simply, for x =

x 1 v 1 + x 2 v 2 , Q(x) = (µ -λ)x 1 x 2 ,
hence Q is surjective.

We can now prove Theorem 4.2.

Proof. We begin with the rst inequality and will explain afterwards how it implies the eective version of Serre's surjectivity theorem. Let us x K an extension of K of degree 2 |C| such that for every q ∈ C, the image of ρ E,q restricted to Gal(K/K ) is included in a Cartan subgroup. Dene n B = p∈B p and n C = q∈C q. Then the proposition to prove is equivalent to

n B n 2 C ≤ 10 7 [K : Q] 2 (max{h F (E), 985} + 4 log[K : Q] 2 .
Therefore, we only need to nd an abelian variety B and an isogeny ψ : B → E × E both dened over K , and such that ψ has degree n B n 2 C , satisfying the hypothesis ( * ) of Proposition 4.1. For every p ∈ B, we choose Cp an Fp-line xed by ρ E,p and dene Gp = Cp × E[p], which is a subgroup of E[p] 2 of cardinality p 3 . For every q ∈ C, we choose an element gq of the associated Cartan subgroup which is not an homothety (notice such an element is always semisimple). Then, we consider Gq :=

{(x, gq • x), x ∈ E[q]} ⊂ E[q] 2 .
This group is of cardinality q 2 and stable by the diagonal action of the Cartan subgroup (as Cartan subgroups are commutative), hence dened over K in E × E by hypothesis. We now consider

G = p∈B Gp ⊕ q∈C Gq ⊂ E[n B n C ] 2 .
This is a group of order n 3 B n 2 C , dened over K by hypothesis. We consider the quotient abelian variety B = (E × E)/G and the quotient morphism ϕ :

E × E → B with kernel G. As G is contained in E[n B n C ] 2 ,
there exists an isogeny ψ :

B → E × E such that ψ • ϕ = [n B n C ],
that is, the multiplication by n B n C on E×E. This isogeny is dened over K , and by degree multiplicativity, we nd deg(ψ) = n B n 2 C . Hence, we only have to prove now that ψ satises ( * ). Let σ : K → C be an embedding. We now prove hypothesis ( * ) for ψ and σ. For this embedding, E is naturally identied with the quotient of its tangent space t E,σ by its period lattice Ω E,σ (we then omit further reference to σ here). If π is the projection t E × t E → E × E, the lattice Ω = π -1 (G) of τ 2 E denes a quotient abelian variety t E × t E /Ω that is isomorphic to B. With these embeddings, we have the commutative diagram For p ∈ B, we choose a nonzero vector (a, b) ∈ Cp. Then, we x (c, d) such that ad -bc = 1 mod p. Therefore, the vector ((a, b), (c, d)) belongs to Gp and is of determinant 1 in the canonical basis π(e 1 /p, e 2 , p).

E × t E Id / / π t E × t E n B n C / / t E × t E π E × E ϕ / / B ψ / / E × E. Therefore, it remains to prove that Ω = n B n C Ω ⊂ Ω E × Ω E
For q ∈ C, by Lemma 4.3, we can choose x ∈ E[q] such that det π(e1/q,e2,q) (x, gq • x) = 1. Therefore, the subgroup Gq of E[q] 2 contains an element of determinant 1 in the canonical basis π(e 1 /q, e 2 , q). We just proved that for every p ∈ B, there exists a matrix γp = a b c d

∈ SL 2 (Fp) such that a b c d • e 1 e 2
∈ Ω /(pΩ E ) 2

The specialisation morphism SL 2 (Z) → p∈B∪C SL 2 (Z/pZ) is known to be surjective ( [START_REF] Lang | Algebra. Graduate Texts in Mathematics Series[END_REF], Chapter XIII, Exercise 18) , therefore there exists γ ∈ SL 2 (Z) such that

γ • e 1 e 2 ∈ Ω + (n B n C )Ω 2 E ⊂ Ω , because Ω contains Ω 2 E . Such an element γ • (e 1 , e 2 )
is by construction a basis of Ω E , therefore Ω contains a basis of Ω E . This concludes the proof of the rst inequality of the theorem. Now, this result implies the surjectivity theorem in the following way : take p a prime number such that ρ E,p is not surjective, not dividing the discriminant of K. Then, the image of ρ E,p is included in a Borel subgroup, the normaliser of a Cartan subgroup, or an exceptional subgroup. In the Borel case, we obtain

p ≤ 10 7 [K : Q] 2 (max{h F (E), 985} + 4 log[K : Q]) 2
. In the Cartan case, we obtain p ≤ 2 • 10 3.5 [K : Q] (max{h F (E), 985} + 4 log[K : Q] + 4 log(2)). In the exceptional case, we have p ≤ 30[K : Q] + 1 by Proposition 1.2. The maximum of these three bounds is obtained for the Borel case, and it gives us the eective surjectivity theorem. Remark 4.3.1. Some papers, such as [START_REF] Cojocaru | On the Surjectivity of the Galois Representations Associated to Non-CM Elliptic Curves[END_REF], give other (nonexplicit) versions of Serre's surjectivity theorem, but based on the conductor N E of E. Note however, that by [START_REF] Cojocaru | On the Surjectivity of the Galois Representations Associated to Non-CM Elliptic Curves[END_REF], Theorem 3 (which assumes the degree conjecture...), our result implies that for E dened over Q, one would have surjectivity for p log(N E ) 2 . This gives us our direct application for Q-curves.

Corollary. Let E be a Q-curve without complex multiplication, of squarefree degree d(E) over a quadratic eld K.

If Pρ E,p is reducible for some prime p not dividing d,

d(E)p ≤ 10 7 [K : Q] 2 (max{h F (E), 985} + 4 log[K : Q]) 2
If Pρ E,p has image in the normaliser of a Cartan subgroup for some prime p not dividing d,

d(E)p 2 ≤ 4 • 10 7 [K : Q] 2 (max{h F (E), 985} + 4 log(2[K : Q])) 2 .
We can now state the main theorem in detail.

Theorem 4.4. Let K be an imaginary quadratic eld of discriminant -D K . For every strict Q-curve E dened over K with degree d(E) and every prime number p coprime with d(E), Some comments are in order about the dierent steps of the proof here. First, about Mazur's method, we suspect that it can be used for any central Q-curve over any number eld in Borel and split Cartan cases, giving bounds depending only on the degree of this eld (but maybe growing exponentially in this degree). Indeed, both proofs in theses cases mainly rely on the fact that X 0 (d) → X( 1) is unramied at ∞ and ramied at 0, but it is actually ramied at every cusp of X 0 (d) dierent from ∞, so we could make use of all Atkin-Lehner involutions group and obtain a formal immersion satisfying the good conditions.

• If p ≥ 2 • 10
Furthermore, all the theoretical work is done for the analysis of components group by Proposition 1.11, although a precise equivalent of Lemma 2.2 for a general number eld is likely to be hard to write. About the nonsplit Cartan case, it is not completely clear for now what happens, but Ellenberg's trick might be applied for some (but not all) bigger number elds.

Regarding Runge's method, because for a central Q-curve of degree d, with d having r prime factors, the number of rational cusps of X 0 (d) is 2 r , which is also the expected degree of the eld of denition K of E. Therefore, for Runge's condition to hold, we need K not to be a totally real number eld. The exponent on d we should expect to bound log |j(E)| is not known for now (but it may be 1/2 as in the quadratic case).

We would also like to point out that up until now, if we know about innite families of quadratic Qcurves of degrees 2,3,5,7 or 11 over quadratic elds (see for instance [START_REF] Hasegawa | Q-curves over quadratic elds[END_REF] for parametrisations), examples on bigger elds turn out to be more rare. Of course, for reasons of genus, when the degree d is too large, there is only a nite number of Q-curves of degree d but the limit has not been precisely computed yet. Proposition 5.2. Let m, n, N be three positive integers and ε = ±1. We have

1 2π √ mn (am, an) + N = δmn -2π c>0 N |c c -1 S(m, n; c)J 1 4π √ mn c - 2πε √ N d>0 (d,N )=1 d -1 S(n, mN φ(d)-1 ; d)J 1 4π √ mn d √ N ,
where δ is the Kronecker symbol, J 1 is the Bessel function of the rst kind of order 1, (d, N ) is the greatest common divisor of d and N and φ is the Euler totient function.

Notice that summing Akbary's formula for ε = 1 and -1 gives Petersson's trace formula. As a normalized eigenform f ∈ S 2 (Γ 0 (N )) contributes for zero in (am, Lχ) if f |w N = χ(-N )f by ( 9), (am, Lχ) N = (am, Lχ) ε N with ε = -χ(-N ) = χ(N ). For every f ∈ S 2 (Γ 0 (N )) ε , we have from ( 8)

Lχ(f ) = 4π +∞ 1/(D √ N ) (f ⊗ χ)(iu)du = 2 +∞ n=1 an(f )χ(n) n e -2πn D √ N (11) 
For convenience, we use throughout this section the notation

x = 2π D √ N .
From [START_REF] Masser | Galois properties of division elds of elliptic curves[END_REF], we get (am,

Lχ) N = 2 +∞ n=1 χ(n) n e -nx (am, an) ε N hence by Akbary's formula (am, Lχ) N = 4πχ(m)e -mx -8π 2 √ m A(m, χ, N ) + ε √ N B(m, χ, N ) (12) 
with A(m, χ, N ) :

= +∞ n=1 χ(n) √ n e -nx c>0 N |c c -1 S(m, n; c)J 1 4π √ mn c B(m, χ, N ) := +∞ n=1 χ(n) √ n e -nx d>0 (d,N )=1 d -1 S(n, mN φ(d)-1 ; d)J 1 4π √ mn d √ N
This is where our approach starts to dier from [START_REF] Ellenberg | On the error term in Duke's estimate for the average special values of L-functions[END_REF] : this exact formula allows better results in general. It can be readily checked with help of the Weil bounds (Proposition 5.3) and the classical bounds for Bessel functions that these double sums converge absolutely, so we can switch the terms. We obtain

A(m, χ, N ) = c>0 N |c S A (c) c with S A (c) = +∞ n=1 χ(n) √ n S(m, n; c)J 1 4π √ mn c e -nx . ( 
) B(m, χ, N ) = d>0 (d,N )=1 S B (d) d with S B (d) = +∞ n=1 χ(n) √ n S(n, mN φ(d)-1 ; d)J 1 4π √ mn d √ N e -nx . 13 
These sums are the ones we are going to bound in two dierent ways, for every N |c and every d prime to N . Let us recall the Weil bounds on Kloosterman sums. 2) and (3). These bounds will be called Weil-induced bounds.

|S A (c)| ≤ 2D √ N τ (c/N ) √ c , |S B (d)| ≤ D √ mτ (d) √ d in cases (1), (
Proof. For every x ∈ R, 

S A (c) ≤ 2π √ p c (n,p)=1 τ c p c p e -nx + 2π √ p c +∞ n=1 τ c p √ pc e -pnx ≤ 2πτ (c/p) (e x -1) √ c + 2πpτ (c/p) (e px -1) √ c ≤ 2D √ pτ (c/p) √ c
with the same estimates.

We will now obtain other bounds for |S A | and |S B | which will happen to be really sharper for small c and d. They rely on an Abel transform on the sums denining S A and S B . For this, we use the following lemma which are analogues of Gauss sums and Polya-Vinogradov inequality for the twisting terms of ( 13) and ( 14). Remark 5.5.1. For c = 1 (no Kloosterman sum), this is one of the versions of Polya-Vinogradov inequality for Dirichlet characters (weaker than [START_REF] Pomerance | Remarks on the Pólya-Vinogradov inequality[END_REF]). For D = 1 (no Dirichlet character), this is an analogous inequality for Kloosterman sums that we could not nd in the literature but should exist in sharper versions.

Proof. We dene c = c/(c, D) and D = D/(c, D). By denition of Kloosterman sums,

F -1 n=0 χ(n)S(m, n; c)e 2iπnα/F = v∈(Z/cZ) * e 2iπmv/c F -1 n=0 χ(n)e 2iπn(v/c+α/F ) (15) = v∈(Z/cZ) * e 2iπmv/c D-1 n =0 χ(n )θ n   c -1 =0 θ D   (16) 
with θ = exp(2iπ(v/c + α/F )), because χ only depends on n mod D. As θ D is a c -th root of unity, the right term of this equality is nonzero if and only if θ D = 1, that is if and only if We now prove the second inequality, using Polya-Vinogradov approach. Take K, K any integers. By discrete Fourier transform, as χ(n)S(m, n; c) is F -periodic in n, we have 

F |(D v + α)D ⇐⇒ c |D v + α ⇐⇒ v = -(D ) -1 α mod c .
From Lemma 2 and proof of Lemma 3 of [START_REF] Pomerance | Remarks on the Pólya-Vinogradov inequality[END_REF], we know that for every n ∈ N and every x ∈ R,

n j=1 cos(jx) j > -log(2) - 2 n , (18) 
A K,F := 

The bound for A K,F is given by [START_REF] De Smit | Sur un résultat d'Imin Chen[END_REF], to there is only B m,K,F left to study. Suppose F is odd. For every

x ∈ [0, π/2], sin(x) = x -εxx 3 /6 ≥ 0 with εx ∈ [0, 1], so we have

1 sin(x) - 1 x ≤ x 6 -x 2 .
From this, we get B m,K,F = 2 Here, we use [START_REF] Serre | Propriétés galoisiennes des points d'ordre ni des courbes elliptiques[END_REF] for the rst sum and a careful sum-integral comparison for the second. Finally, as +∞ m=1 1/(4m 2 -1) = 1/2, we obtain from [START_REF] De Smit | Sur un résultat d'Imin Chen[END_REF] and (20) the inequality S K,F ≤ 4F π 2 (log(F ) + 1.09 + 4/(F -1)), which gives the result when F ≥ 11, and we complete the proof by computation for F ≤ 10. The proof works the same way for F even, except we have to take aside the term γ = F/2. Rounding up 16/π • 1.1 to 6, we obtain the desired bounds.

For the next estimates, we recall some standard bounds in the following lemma.

Lemma 5.7. For every integer λ ≥ 1, we have and from this cutting-up, we get the wanted bound after a careful computation (leaving small λ aside, but we can check the bound for them afterwards). Remark 5.7.1. The bound given here is the sharpest with integral coecients : for λ = 1, the sum is about 6.8, which is an explanation for the fact that we need to be very careful throughout the computation to obtain the coecient 8 above.

We can nally make the estimates for A(m, χ, N ) and B(m, χ, N ). Actually, these are the dominant terms of the expression for chosen λ, and it is not hard to check that the remainder is negative. If D < e 4 , the bound also holds. Notice it improves the Weil bound only when Adding these bounds together, we have the following proposition.

Proposition 5.9. Let K be the imaginary quadratic eld of discriminant -D and Dirichlet character χ.

For every prime number p > 50D 1/4 log(D) not dividing D, (a 1 , Lχ) +,new 

  that we use in replacement of the previous relation (Z). Let us now give the description of the components group Φ. Proposition 1.11. Let p = 11 or p > 13 be a prime number and n = num p-1 12 . With previous notations : (a) The group of irreducible components Φ of J 0 (p) R × k is non-canonically of the form Φ ∼ = (Z/neZ) × (Z/eZ) S-2 .

Remark 3 . 1 . 1 .

 311 This proof is somewhat elementary, but the reader will notice that we only reproved some well-known results of the theory of modular units (which is far more general) for U . Actually, with the notations of ([START_REF] Kubert | Modular units. Grundlehren der mathematischen Wissenschaften[END_REF], Chapter 2), and with results of the same chapter, we recover all the results of the previous Proposition except (b).

Proposition 3 . 5 . 1 p

 351 For every τ ∈ D + Z, | log |g(τ )| + (p -1) log |qτ || ≤ 25|qτ |. | log |g 0 (τ )| -plog |qτ || ≤ 4π 2 p log |q -1 τ | + 12 log(p).

Proposition 5 . 3 .

 53 For every positive integers m, n, c, we have |S(m, n; c)| ≤ (m, n, c) 1/2 τ (c) √ c with τ (c) the number of positive divisors of c. Furthermore, if for an odd prime p, we have c = p α c with (p, c ) = 1 and α ≥ 1, |S(m, n; c)| ≤ 2τ (c )(m, n, c) 1/2 √ c and the latter bound is replaced by τ (c )(m, n, c) 1/2 √ c when p divides m but not n (or the reverse) and τ (c/p)(m, n, c)

  we have |J 1 (x)| ≤ x/2. By triangular inequality, this gives |S A (c)| ≤ 2π √ m c +∞ n=1 |S(m, n; c)|e -nx , |S B (d)| ≤ 2π mN φ(d)-1 ; d)|e -nx . In cases (1) and (2), m = 1 so |S(m, n; c)| ≤ 2τ (c/N ) √ c and |S(n, mN φ(d)-1 ; d)| ≤ τ (d) √ d by Weil bounds, as (d, N ) = 1. the upper bounds for S A and S B . In case (3), S B gives the upper bound by the same process as (m, d) = 1. For S A , we use the third and fourth bounds of previous proposition and get

Lemma 5 . 5 .

 55 Let c = D and m be three xed positive integers and F the least common multiple of c and D. Let χ be a quadratic Dirichlet character of conductor D. Then for every integer α, F -1 n=0 χ(n)S(m, n; c)e 2iπnα/F ≤ c √ D and the sum is zero when (α, F/(c, D)) = 1. With the same notations, we have sup

LetF - 1 n=0χ

 1 Iα be the set of the invertible v ∈ (Z/cZ) * congruent to (D ) -1 α mod c . Notice rst that if (α, c ) = 1, Iα = ∅, hence the whole sum is zero. If (α, c ) = 1, Iα = ∅ and we have F -1 n=0 χ(n)S(m, kn; c)e 2iπnα/F = c )θ n . The inner sum is a Gauss sum on χ as θ is a D-th root of unit. More precisely, if we dene G(χ) = D-1 n=0 χ(n)e 2inπ/D , by the usual properties of Gauss sums, |G(χ)| = √ D and (n)S(m, n; c)e 2iπnα/F = c v∈Iα e 2iπmv/c χ D v + α c G(χ). Now, if (D , α) = 1, χ((D v + α)/c ) = 0 for all v ∈ Iα so the sum is zero. In the general case, the cardinality of Iα is at most (c, D), so F -1 n=0 χ(n)S(m, n; c)e 2iπnα/F ≤ c (c, D)

F - 1 γ=1|F - 1 γ=1|4F π 2 •

 112 The interest of the previous step of the lemma is now clear : we have a geometric sum on n that is easy to bound on the right. Notice that the sum on β at γ = 0 is zero from the previous results because (0, c D ) = 1. We obtain sin(πγ(K -K + 1)/F )| sin(πγ/F ) .Hence, it only remains to prove that for every integers F ≥ 1 and K, S K,F := sin(πγK/F )| sin(πγ/F ) ≤ (log(F ) + 1.5)

  F ) + 0.13) .

( 19 ) 2 π

 192 Using the Fourier series expansion of | sin θ|, we have S K,F =

Proposition 5 . 6 . 6 √ 6 √

 5666 These bounds on partial sums will give us new bounds on |S A | and |S B | that we write in the next proposition. For every integers N |c and (d, N ) = 1 dierent from D, we have |S A (c)| ≤ Dm(log(Dc) + 1.5) |S B (d)| ≤ Dm(log(Dd) + 1.5) )S(k, mN φ(d)-1 ; d).

16 √ 16 √J 2

 16162 .Therefore, with the Abel transform, we have|S A (c)| ≤ 4π √ m c • +∞ n=1 |An| • |f A (n) -f A (n + 1)| |S B (d)| ≤ 4π B (n) -f B (n + 1)| |S A (c)| ≤ Dm π Totvar(f A )(log(Dc) + 1.5) |S B (d)| ≤ Dm π √ N Totvar(f B )(log(Dd) + 1.5)from Proposition 5.5, with Totvar(f A ) and Totvar(f B ) the total variations of f A and f B on [0, +∞[. It is clear from their expression that these two total variations are both bounded by the total variation of J 1 (x)/x on [0, +∞[, which is equal to +∞ 0

  with τ (n) the number of positive divisors of n.Proof. The rst two bounds are given by sum-integral comparison. For the third one, we have n≥λ τ

Proposition 5 . 8 . 2 (N

 582 With the same notations as before, we have |A(m, χ, N )| ≤ min 14D D) + 12 log(D) log(N ) + 6 log 2 (N ) + τ (D) √ m √ D Now, we nish the proof of Proposition 5.1. Proof. Let λ ≥ 1 be a parameter. To bound S A (N c), we will choose the "Abel-transform bound" for c < λ and the Weil-induced bound for c > λ. This gives us |A(m, χ, N )| = c>0 S A (N c) DN ) + 1.5)(1 + log(λ)) + log(λ) Notice rst that if we choose λ < 1, this reduces to using only the Weil bound an therefore we get |A(m, χ, N )| ≤ 2D We choose λ = D/e 7/2 and develop log(λ) in the expression above. We obtain the bound |A(m, χ, N )| ≤ √ Dm N (9 log(D) 2 + 6 log(D) log(N )).

D 6 √

 6 is large enough (D > 1000 is a good order of magnitude). We obtain the Weil bound similarly for B(m, χ, N ) and for λ > D, we have|B(m, χ, N )| ≤ Dm √ N (log(D) + 1.5)(1 + log(λ)) + log(λ)The last term in the sum comes from the fact we only have a Weil bound for d = D. Similarly, calculating the Weil-only bound and then choosing λ = DN/e 4 , we obtain the desired result.

p 2 = 0 . 2 | 4π ≥ 2 - 1 - 1 p 2 - 1 ) 2 - 1 +- 1 +

 2024π21121211 Proof. Thanks to formulas[START_REF] Hasegawa | Q-curves over quadratic elds[END_REF] and[START_REF] Masser | Isogeny Estimates for Abelian Varieties and Finiteness Theorems[END_REF], we have|(a1,Lχ) +,new p (e -2π/(Dp) -p p -2π |A(1, χ, p 2 | + p|A(1,χ,p)| p |A(p,χ,p)| p 2 -1 -2π |B(1,χ,p 2 | p + √ p|B(1,χ,p)| p 2 |B(p,χ,p)| p 2 -1

  α/C d ) , for a structure H on Ep, H/C d means the transport of H on E/C d by the isogeny E → E/C d (forCp, it is (Cp + C d )/C d in E/C d for example).Assume now that K is a quadratic eld with automorphism σ. Let E be a Q-curve of degree d dened over K such that Pρ E,p is not surjective. The kernel of a minimal isogeny E → E σ is called C d . In the Borel case, Pρ E,p stabilises some subgroup Cp of order p of Ep, therefore P = (E, C d , Cp) is a K-rational point on X 0 (dp) such that P σ = w d • P K be a number eld and λ be a nonzero prime ideal of O K above . We call O λ the localised ring of O K at λ and

	on	X ns 0 (d; p),
	(because we assumed E is a central Q-curve). Similarly, in the split Cartan case (resp. nonsplit Cartan
	case), we associate to E a point P on X s 0 (d; p)(K) (resp. X ns 0 (d; p)(K)) such that P σ = w d • P . For more
	details on this, see ([7], Proposition 2.2 and above).	
	1.2 Formal immersions and Mazur's method	
	Let us now recall a key proposition for Mazur's method here.	
	Proposition 1.4.	

whereLet

  × X(1) X sp.Car. (p) Z . These schemes are proper over Spec Z, and there is a natural involution w : (E, C d , Ap, Bp) → (E, C d , Bp, Ap) so that the quotient X sC 0 (d; p) Z / w is the scheme X s 0 (d; p) Z dened in subsection 1.1. As for Borel case, the forgetting d-structure and forgetting p-structure morphisms induce a bijection between cusps of X sC 0 (d; p) Q (resp. X s 0 (d; p) Q ) and couples of cusps of X 0 (d) Q and cusps of X sp.Car.(p) Q (resp. of X split (p) Q ) because d is prime to p. Henceforth, we will note (c, c ) the unique cusp of X sC 0 (d; p) Q (resp. X s 0 (d; p) Q ) above the cusps c ∈ X 0 (d) Q and c ∈ X sp.Car. (p) Q (resp. c ∈ X split (p)).The scheme X sC 0 (d; p) Z is smooth in characteristics prime to dp. In characteristic dividing d, its singular points correspond to supersingular elliptic curves over F . In characteristic p, X sC 0 (d; p) Fp (resp. X sp.Car. (p) Fp ) is made up with three irreducible components which parametrise the quadruples (E, C d , Ap, Bp) (resp. (E, Ap, Bp)) such that respectively : • The isogeny Ap is unseparable (Z component). • The isogeny Bp is unseparable (Z component). • Neither Ap nor Bp are unseparable (W component). Cusps above ∞ p ∈ X sp.Car. (p) reduce in component Z, cusps above 0 p ∈ X sp.Car. (p) reduce in component Z , and all the others reduce to component W , which is of multiplicity p -1. Hence, the nonrational cusps do not reduce to smooth points. Considering the quotient morphism X sC 0 (d; p) Z → X s 0 (d; p) Z (resp. X sp.Car. (p) Z → X split (p) Z ), the components Z and Z identify in the ber at p to form a component called Z 0 , the other irreducible component being the image of the component W (still noted W ).

  Passing to Zariski closure in Néron model of E over O , we obtain group schemes (Ep) O , (Ap) O and (Bp) O extending the group schemes over K . As the absolute ramication index e of p in O K is smaller that 2[K : Q] < p -1, we know by Raynaud's specialisation lemma (Theorem 3.3.3 and Corollary 3.3.4 of again, the nite group schemes (Ap) O and (Bp) O are constant or isomorphic to µp. This already proves (a) because if E is potentially supersingular, (Ep) O contains a group scheme αp. Furthermore, (Ep) O is not étale since it has at most p Fp-rational points while being of rank p 2 . Therefore, (Ap) O or (Bp) O is not étale, hence isomorphic to µp. This proves (b). Finally, the Gal(Q/K )modules isomorphism Ap → Ep/Bp given by (3) extends (as e < p -1 again) to an isomorphism (Ap) O

	[17]) that
	(Ep) O
	∼

∼ = (Ap) O ⊕ (Bp) O .

Furthermore, as e < p + 1

  The morphism(h t ) Z : X sC 0 (d; p) smooth → J 0 (p) Z extending h t by Néron mapping property is a formal immersion at the cusp (∞, ∞) F of X sC 0 (d; p) F if and only if t / ∈ T. If t(1 + wp) = 0, the same condition holds for (h t ) + Z : X s 0 (d; p) smooth → J 0 (p) Z to be a formal immersion at the cusp (∞, ∞) F of X s 0 (d; p) F . Proof. We dene ψ : X sC 0 (d; p) Q → X 0 (dp) Q as the forgetting Bp-morphism that sends (E, C d , Ap, Bp) to (E, C d , Ap). With the denitions of the Borel case, π = π dp,p • ψ and h

  p q

	24
	n/p
	τ
	by (a), so this qτ -expansion has coecients in Z[e 2iπ/p ]

⊂ Z. Hence, from Lemma 2.1 of [23] (Chapter 2.2), we know that U is integral on Z[j].

  Lemma 3.2. For every P ∈ Y 0 (p)(O K ), U (P ) is a nonzero element of O K such that 0 ≤ log |U (P )| ≤ 12 log p. Proof. As U is Q-rational and integral over Z[j] (Proposition 3.1 (d)), U (P ) ∈ O K and is nonzero because U does not cancel on Y 0 (p). The same thing is true for wp • P : indeed, wp • P ∈ Y 0 (p)(O K ) because wp is Q-rational and wp • P represents an elliptic curve isogenous to the elliptic curve represented by P , so j(wp • P ) ∈ O K too. Therefore, U • wp(P ) = p 12 U -1 (P ) ∈ O K . As K is an imaginary quadratic eld, for every nonzero element α ∈ O K , log |α| ≥ 0, hence 0 ≤ log |U (P )| ≤ 12 log p.

  Proof. Let τ be a point of D+Z associated to P by the locating near cusps lemma. If we have log |j(P )| < 2π √ p, there is nothing to prove. If not, |j(τ )| > 3500 hence log |j(τ )| ≤ log |q -1 analysis (as |qτ | ≤ 0.005 here). If P is near c 0 , log |g 0 (τ )| = log |U (P )| ≥ 0 by Lemma 3.2.

	log |j(P )| < 2π	√ p + 6 log(p) + 8.
	3.2. By Proposition 3.5, we obtain				
	log |q -1 τ | ≤	25|qτ | + 12 log p p -1	≤ 2π	√ p	(5)
	after a little By Proposition 3.5, we obtain this time				

τ | + log(2) by Proposition 3.6. We now have to bound |q -1 τ |. If P is near c∞, we have log |g(τ )| = log |U (P )| ≤ 12 log p by Lemma

  contains a basis of Ω E . Choose a basis (e 1 , e 2 ) of Ω E . Now, consider the image of Ω in (Ω E /pΩ E ) 2 for p ∈ B ∪ C. Notice that after multiplication by 1/p, this image identies with a subgroup of ((Ω E /p)/(Ω E )) 2 , that is, E[p] 2 . From the denitions of Ω and Ω , the image of Ω /p in E[p] 2 is ((n B n C )/p)Gp = Gp (the prime-to-p part of Ω is mapped to Ω 2 E when multiplied by n B n C /p). A canonical Fp-basis of E[p]2 is π(e 1 /p, e 2 /p) and we now identify E[p] to Fp 2 with this choice of basis.

  13 , the representation Pρ E,p is not included in a Borel subgroup.• If p ≥ 10 7 the representation Pρ E,p is not included in the normaliser of a split Cartan subgroup.• If p ≥ max(10 7 , 50D K log(D K )) and does not divide D K , the representation Pρ E,p is not included in the normaliser of a nonsplit Cartan subgroup.• If p ≥ 67, the representation Pρ E,p is not included in an exceptional subgroup.Proof. The exceptional case is solved by Proposition 1.2. For the other cases, we use Propositions 2.3, 2.6 and 2.8 to know that with the given bounds, if Pρ E,p is included in one of the three types of maximal subgroups, j(E) ∈ O K . Consider now d 0 the smallest prime divisor of d. We use Runge's method inX 0 (d 0 )(O K ) (Proposition3.7) to obtain log |j(E)| ≤ 2π d 0 + 6 log(d 0 ) + 8. K and K is imaginary quadratic, h F (E) ≤ (log |j(E)|)/12 + 3 by (7). Computing with the previous Corollary and the Runge bound above, we nally obtain the theorem.

	1/4

As j(E) ∈ O

  1/2 √ c when p divides m and n. Proof. By multiplicativity of Kloosterman sums, this only needs to be checked for c = p α . If p|nm, this boils down to Ramanujan sums ([22], (3.2) and (3.3)). If α ≥ 2, there is an elementary proof ([22], Corollary 11.12), and if α = 1 and (p, mn) = 1, this is a famous result of Weil ([22], Theorem 11.11). Remark 5.3.1. What we gain from the second bound is 2τ (c ) instead of τ (c), which will be an advantage for the case (1) (m = 1, N = p 2 ) and the third and fourth bounds will be of use in case (3) (m = N = p) for the next proposition. Proposition 5.4. For every N |c and every d prime to N ,
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Appendix : Analytic estimates of weighted sums of L-functions

The aim of this appendix is to prove Proposition 2.8. We x an imaginary quadratic eld K of discriminant -D and χ K (often shortened in χ) its quadratic character. Thanks to Proposition 2.7 (we use the same notations), we only have to nd, for every p > 50D 1/4 log(D) not dividing D, an eigenform f ∈ S 2 (Γ 0 (p)) new such that wp • f = f and L(f ⊗ χ K , 1) = 0.

For every positive integers m, N and every vector space V ⊂ S 2 (Γ 0 (N )), we denote by am and Lχ the linear forms dened on V by

We recall that S 2 (Γ 0 (N ))

We also denote by S 2 (Γ 0 (N )) old (resp. S 2 (Γ 0 (N )) new ) the space of old (resp. new) modular forms of S 2 (Γ 0 (N )). The scalar product of am and Lχ on a vector space

where F V is any Petersson-orthonormal basis of V . This will be shortened in (am, Lχ) 

, and similarly with (am, an) V .

We will prove the following result which immediately implies Proposition 2.8. Proposition 5.1. For every imaginary quadratic eld K with discriminant -D and Dirichlet character χ, and every prime number p > 50D 1/4 log(D) not dividing D,

For any positive integer M and any eigenform g ∈ S 2 (Γ 0 (M )), the L-function of g admits a meromorphic continuation over C and L(g, 1) = 4π

(for more details, see ( [START_REF] Bump | Automorphic forms and representations[END_REF], § I.5)). Hence, for an eigenform f ∈ S 2 (Γ 0 (p 2 )) + , the sign of the functional equation of L(f ⊗ χ) is -χ(-p 2 ) = 1 because χ(-1) = -1 : this is where we need K to be imaginary to ensure that the twisting actually changes the sign of the functional equation for L. In the real quadratic case, we expect from Birch and Swinnerton-Dyer conjecture that there is no nontrivial rank zero quotient of the jacobian of X nonsplit (p 2 ), because J(X nonsplit (p 2 )) is isogenous over Q to J 0 (p 2 ) +,new [START_REF] De Smit | Sur un résultat d'Imin Chen[END_REF]. In our situation, twisting reverts the sign of the functional equation, so (a 1 , Lχ) - p 2 = 0 and

from Lemma 3.12 of [START_REF] Ellenberg | Galois Representations Attached to Q-Curves and the Generalized Fermat Equation A 4 + B 2 = C p[END_REF] and its proof. The idea is that (a 1 , Lχ) p 2 is close to 4π in modulus when p is large enough compared to D, whereas the remaining term is close to 0. From [START_REF] Hasegawa | Q-curves over quadratic elds[END_REF], we only need to estimate where for every v ∈ (Z/cZ) * , v is the inverse of v.

Next proposition is a reformulation of Akbary's trace formula in weight 2 case. and after computation, we nd that for D ≥ 15, p ≥ 50D 1/4 log(D), (a 1 , Lχ) +,new p 2 = 0. For D < 15, we have to recover this results with some more computation : when D = 7, 8 or 11, this is possible by using Weil bounds for all six terms except for |B(1, χ, p 2 )|. When D = 3 or 4, we can obtain it back from computations we can nd in [START_REF] Bennett | The diophantine equation A 4 + 2 δ B 2 = C n[END_REF]. More precisely, we mention this article provides sharp estimates for small discriminants (p ≥ 61 for D = 4 and p ≥ 97 for D = 8 in Lemma 14), hence we suggest using it in these cases rather than our own bound.

An equivalent of Akbary's trace formula for (am, an) w M N with M any divisor of N such that (M, N/M ) = 1 (Akbary deals with M = N ) could allow us to give estimates of (a 1 , L) wp,p-new dp 2 with prime p and d > 1 by the same methods, and thus prove that the jacobian of X 0 (d) × X nonsplit (p) (described in [START_REF] De Smit | Sur un résultat d'Imin Chen[END_REF]) has a rank zero quotient when p is large enough . This would extend a result of [START_REF] Darmon | Winding quotients and some variants of Fermat's Last Theorem[END_REF] (where the case g(X 0 (d)) = 0 is considered) to some more cases.