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Introduction

For every elliptic curve E de�ned over a number �eld K and every prime number p, the representation

ρE,p : Gal(K/K)→ GL(Ep) ∼= GL2(Fp),

de�ned by the action of Gal(Q/Q) on the p-torsion Ep of E, is a central object in the study of elliptic

curves. Serre proved in 1972 [18] that for any elliptic curve E without complex multiplication and de�ned

over a number �eld K, the representation ρE,p is surjective for large enough p, the bound depending on

E and K. In fact, we prove here as a side result a totally explicit version of Serre's result (Theorem 4.2)

which might be of independent interest : in particular, it asserts that for any such elliptic curve E, the

representation ρE,p is surjective for

p > 107[K : Q]2 (max{hF (E), 985}+ 4 log[K : Q])
2

not dividing the discriminant of K, where hF (E) is the stable Faltings height of E. What is now known

as �Serre's uniformity problem� is determining whether this bound can be made independent on E.

So far, little is known about this problem for general number �elds. Over the �eld Q, Mazur proved in

1977 [13] that for any elliptic curve E de�ned over Q without complex multiplication, the representation
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ρE,p is irreducible when p > 37. Recently, Bilu, Parent and Rebolledo proved that for such an E, the

image of ρE,p is also not contained in the normaliser of a split Cartan subgroup of GL2(Fp) for p ≥ 11,
p 6= 13.

The present work does not deal with the uniformity problem for elliptic curves de�ned over Q, but for
a slightly di�erent object called Q-curve.

De�nition. Let K be a number �eld. An elliptic curve E de�ned over K is called a Q-curve if for every
σ ∈ Gal(Q/Q), the elliptic curve Eσ is isogenous to E. Its degree d(E) is then the least common multiple

of the minimal degrees of isogenies between E and its conjugates.

Remark. The set of Q-curves is stable by isogeny. In particular, every elliptic curve de�ned over Q which

is isogenous to an elliptic curve de�ned over Q is a Q-curve. To put aside this special case, we will say E

is a strict Q-curve if it is not isogenous to an elliptic curve de�ned over Q.
For every Q-curve E of degree d without complex multiplication and every p not dividing d, one de�nes

in subsection 1.1 a projective representation

PρE,p : Gal(Q/Q)→ PGL(Ep)

analogous to the representation ρE,p for Q-curves. One small di�erence with elliptic curves over Q is

that the Weil pairing does not always guarantee the surjectivity of the determinant anymore (but this

obstruction to surjectivity only exists when p is rami�ed in the �eld of de�nition of E). Therefore, we

say PρE,p is quasi-surjective if PρE,p contains the projection of SL(Ep) into PGL(Ep), to ignore these

questions of image of determinant.

As for modularity, Ribet proved [28], using Serre's conjectures (now proved by Khare, Kisin and

Wintenberger), that the Q-curves are exactly the modular elliptic curves, that is the elliptic curves that

appear as quotients of a modular curve X1(N) for some N . The �modular machinery� therefore works

for these curves too, and gives new applications for ternary diophantine equations. In fact, in a certain

number of cases, one can attach to a ternary diophantine equation a Frey elliptic curve, as in the celebrated

Fermat case, and this curve often happens to be a Q-curve (see, for instance, [7] or [30]). This has been
one of the motivations for the study of such objects in the recent period.

The main result of the present article is the following :

Theorem. Let K be an imaginary quadratic �eld of discriminant −DK .

For every strict Q-curve E de�ned over K without complex multiplication of degree d(E), the repre-

sentation PρE,p is surjective for every prime number p > max(50D
1/4
K log(DK), 2 · 1013) not dividing

DKd(E).

We actually give a more precise statement of this theorem in section 4.

Let us insist that this theorem does not add to our knowledge of elliptic curves over Q (the reader will

notice the hypothesis �strict Q-curve�). In particular, the issues arising for the nonsplit Cartan case over

Q still hold, even if this case is solved in our context.

The theorem is entirely explicit in hope this might apply to diophantine equations, using Frey curves,

but but our motivation was to give what seems to be the �rst instance of a surjectivity theorem for families

of elliptic curves. It can even be interpreted as a �uniform big Galois image� result for families of abelian

surfaces, taking Weil restriction from K to Q for the Q-curves over quadratic imaginary �elds.

The proof mechanism improves on [7] and is akin to that of [4]. More precisely, let K be an imaginary

quadratic �eld. For the rest of the introduction, E refers to a strict Q-curve without complex multiplication,

de�ned over K. Here is the structure of the proof :

(0) Use classical knowledge on Q-curves to reduce the problem to a question about rational points on

modular curves in subsection 1.1.

(I) Prove that for large enough p (not depending on E), if PρE,p is not quasi-surjective, E has

potentially good reduction at every prime of OK (that is, j(E) ∈ OK). This follows from the classical

Mazur's method, designed in [13]. From Proposition 1.1 below, this splits as follows :

(I) = (I)B + (I)SC + (I)NSC + (I)Exc (1)
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where (I)∗ means that for large enough p, if PρE,p is contained in a maximal subgroup of PGL(Ep) of the
shape (∗), then j(E) ∈ OK , with the four possible types of maximal subgroups of PGL(Ep) are denoted
by B for Borel subgroup, SC (resp. NSC) for the normaliser of a split (resp. nonsplit) Cartan subgroup

and Exc for an exceptional subgroup.

This step improves Theorem 3.14 of [7], as with the same hypothesis, we obtain potentially good

reduction everywhere for E, even for primes above 2 and 3. This improvement is crucial for Runge's

method in part (II) below. The four cases are of various di�culty :

(I)Exc does not use Mazur's method, as PρE,p is not in the exceptional case for large enough p (see

subsection 1.1, using results of [18] on the action of tame inertia).

(I)B et (I)SC will respectively be proved in subsections 2.1 and 2.2 with bounds independent of K,

and even for elliptic curves de�ned over Q and Q-curves over K real quadratic. The Borel and split Cartan

case use results from subsections 1.2 and 1.3. Our results improve (as explained above) Propositions 3.2

and 3.4 of [7].

(I)NSC will be stated in subsection 2.3 and proved in the Appendix, with a bound depending on DK
and only for strict Q-curves : we only improve quantitatively Proposition 3.6 of [7] here by using di�erent

estimates for weighted sums of L-functions.

(II) Use Runge's method in section 3 to get an upper bound of the shape

log |j(E)| ≤ C
√
d(E)

for every Q-curve E of degree d(E) de�ned over an imaginary quadratic �eld and with an integral j-

invariant, where C is an absolute explicit constant.

(III) From Gaudron-Rémond's version of the period theorem ([9], Theorem 1.2), and the associated

isogeny theorems (giving explicit and sharper versions of Masser-Wüstholz theorem [12] and Pellarin's

theorem [16]), we obtain in section 4 a new explicit version of Serre's surjectivity theorem, which in turns

gives us a lower bound of the shape

log |j(E)| ≥ C′
√
d(E)p

(and even better for Cartan cases) for every Q-curve E of degree d(E), without complex multiplication,

de�ned over a quadratic �eld, whose j-invariant is integral and such that PρE,p is not quasi-surjective.

Here again, the constant C′ is absolute and explicit.

(IV) Finally, gather the previous results to obtain, for any quadratic imaginary �eld K, an explicit

bound pK such that for any prime number p > pK and any strict Q-curve E of degree d(E) (prime to p)

over K whose representation PρE,p is not quasi-surjective, j(E) ∈ OK and

C′
√
d(E)p ≤ log |j(E)| ≤ C

√
d(E)

which is impossible for large enough p (independant of d(E)). Therefore, there is a bound MK such that

PρE,p is surjective for all p > MK not dividing DKd(E), and computing this bound gives us the main

the theorem.

The problem of surjectivity for quadraticQ-curves can be asked forQ-curves on larger �elds. We expect

at least the (I)B , (I)SC and (I)Exc parts to be feasible in the same way for any Q-curve, giving bounds

for potentially good reduction depending only on the degree of its �eld of de�nition. Moreover, Runge's

method in part (II) demands that for a Q-curve of degree d de�ned on K with an integral j-invariant,

there are more cusps on X0(d) than there are in�nite places on K (hence the �imaginary quadratic �eld�

hypothesis), so it might be adaptable to polyquadratic �elds that are not totally real. Finally, part (III)
is very general and gives the same type of bounds, with constants C and C′ depending only on the degree

of the �eld of de�nition of the Q-curve. Consequently, there is some hope for similar results for Q-curves
over larger �elds, the thorniest issue remaining the nonsplit Cartan case.
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Notations

In this article, unless stated otherwise, we denote by
p a prime number larger than 5.

E an elliptic curve de�ned over Q.
Eσ the Galois conjugate of E by σ ∈ Gal(Q/Q).
En or E[n] the n-torsion of E, non-canonically isomorphic to (Z/nZ)2.
T the Hecke algebra for Γ0(p), generated over Z by the usual Hecke operators Tn, n ∈ N.
(a, b) the greatest common divisor of the integers a and b.

For every scheme X = XZ over SpecZ, we denote by :

XQ the generic �ber of X, considered as a variety over Q.
XR := X ⊗Z R the extension of scalars from Z to any ring R.

XFp := X ⊗Z Fp the geometric extension of the special �ber of X at p.

X̃ the regular minimal model of X on SpecZ.
X̃R the regular minimal model of X on R (generally di�erent from (X̃)R) if R is a Dedekind ring of

characteristic 0.

For every abelian variety J = JQ de�ned over Q, we denote by :

JZ the Néron model of J over Z.
JR the Néron model of J over any discrete valuation ring R of characteristic 0.

JFp := JZ ⊗Z Fp the geometric extension of the �ber of JZ at p.

J(Q)tors the �nite group of rational torsion points of J .

1 Setup of the surjectivity problem and tools for Mazur's method

1.1 Q-curves and moduli spaces associated to the surjectivity problem

We assume throughout this article that every considered Q-curve is without complex multiplication (which

is the natural hypothesis for Serre's surjectivity problem).

De�nition 1.0.1. Let K be a number �eld. Let E be a Q-curve without complex multiplication de�ned

over K. For every prime number p not dividing d(E), the map

PρE,p : Gal(Q/Q) −→ PGL(Ep)
σ 7−→ (D 7−→ Dσ := µσ(D

σ))

for every Fp-line D of Ep, is a projective representation of Gal(Q/Q) in PEp, which does not depend on

the choice of the isogenies µσ : Eσ → E of degree prime to p. For a �xed embedding K ⊂ Q, the restriction
of PρE,p to Gal(Q/K) is the projectivization of the natural representation ρE,p : Gal(Q/K) → GL(Ep)
on p-torsion points of E.

To put aside the problem of surjectivity of determinant (entirely described by the degrees of the

isogenies µσ : Eσ → E, as the reader can check using Weil pairing), we make the following de�nition.

De�nition 1.0.2. Let E be a Q-curve and p a prime number not dividing d(E). The representation

PρE,p is quasi-surjective if its image contains PSL(Ep) (it is then PSL(Ep) or PGL(Ep)).

The following proposition (see [18], § 2.4 to 2.6) is a consequence of Dickson's theorem on maximal

subgroups of PGL2(Fp) and justi�es the equality (1) in the introduction.

Proposition 1.1. Let p be a prime number and K be a number �eld. Let E be a Q-curve without complex

multiplication, de�ned over K and of degree prime to p. If PρE,p is not quasi-surjective, its image is

included in one of the four following types of groups :

• A Borel subgroup of PGL(Ep), which means PρE,p leaves invariant an Fp-line Cp (Borel case).
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• The normaliser of a split Cartan subgroup of PGL(Ep), which means PρE,p leaves globally stable a

pair {Ap, Bp} of distinct Fp-lines (split Cartan case).

• The normaliser of a nonsplit Cartan subgroup of PGL(Ep), which means PρE,p is included in the

normaliser of a copy of Fp2∗ in GL(Ep).
• An exceptional subgroup of PGL(Ep),that is, a copy of A4, A5 or S4 in PGL(Ep) (exceptional

case).

The exceptional case is immediately solved, using well-known results of [18] on the action of tame

inertia of Ep.

Proposition 1.2. Let K be a number �eld and E an elliptic curve over K. For every prime number

p > 30[K : Q] + 1, the image of PρE,p : Gal(K/K) → PGL(Ep) is not contained in an exceptional

subgroup A4, A5 or S4.

To any Q-curve E for which PρE,p is not quasi-surjective, we can associate a point on a moduli scheme,

as we will now explain. In characteristic zero, giving an isogeny on E amounts to giving its kernel (up to

isomorphism), hence we will not make (unless necessary) the di�erence between an isogeny and its kernel

in the following.

• The schemeX0(N) is, for any integerN ≥ 1, the compacti�ed coarse moduli space over Z parametris-

ing the isomorphism classes of couples (E,CN ) with E an elliptic curve and CN a cyclic isogeny of degree

N of E. Its generic �ber X0(N)Q is the modular curve corresponding to the congruence subgroup Γ0(N).
• The scheme X∗0 (N) is, for any integer N ≥ 1, the quotient of X0(N) by its whole group of Atkin-

Lehner involutions {wd; d|N, (d,N/d) = 1}. A noncuspidal point of X∗0 (N)(Q) is a set of isogenous elliptic
curves stable by Gal(Q/Q), hence the set of conjugates of one or more isogenous Q-curves. This justi�es
the following de�nition borrowed to [26].

De�nition 1.2.1. Let d be a squarefree positive integer. We call central Q-curve of degree d every Q-curve
of degree d obtained from a point of X∗0 (d)(Q).

The next proposition (reformulated from the Theorem of [26] with elements of its proof) allows us to

see X∗0 (N) as a sort of moduli space for Q-curves of degree N .

Proposition 1.3. For every Q-curve E without complex multiplication de�ned over K, there exists an

isogeny E → E′ of degree dividing d(E) towards a central Q-curve E′ de�ned over K and of squarefree

degree d|d(E).

If E and E′ are two Q-curves isogenous by an isogeny of degree m, we readily see that PρE,p and

PρE′,p are isomorphic for any prime p not dividingm. Therefore, with help of Proposition 1.3, the problem

of quasi-surjectivity of PρE,p for any Q-curve E without complex multiplication of degree d prime to p

boils down to the same problem for central Q-curves of degree d and p not dividing d. Hence, from now on

and until the end of this article, we assume that every considered Q-curve is a central Q-curve of squarefree

degree d without complex multiplication.

Let us �nish with the useful moduli spaces for our problem.

• The schemeXsplit(p) is, for any prime p, the compacti�ed coarse moduli scheme over Z parametrising

the isomorphism classes of couples (E, {Ap, Bp}) with E an elliptic curve and Ap, Bp nonisomorphic

isogenies of degree p of E. Its generic �ber Xsplit(p)Q is the modular curve corresponding to the congruence

subgroup

Γsplit(p) :=

{
γ ∈ SL2(Z), γ ≡

(
∗ 0
0 ∗

)
or

(
0 ∗
∗ 0

)
mod p

}
.

• The schemeXnonsplit(p) is, for any prime p, the compacti�ed coarse moduli scheme over Z parametris-

ing the isomorphism classes of couples (E,αp) with E an elliptic curve and αp a copy of Fp2 in the endo-

morphism ring of the group scheme Ep. Its generic �ber Xnonsplit(p)Q is the modular curve corresponding

to one/any congruence subgroup Γnonsplit(p) which is the pullback of the normaliser of a nonsplit Cartan

subgroup of GL2(Fp) in SL2(Z).
If now p is a prime number and d a squarefree integer prime to p, we de�ne (as in [7]) the schemes

Xs
0(d; p) := X0(d)×X(1) Xsplit(p), Xns

0 (d; p) := X0(d)×X(1) Xnonsplit(p).
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These two schemes and X0(dp) are endowed with an involution wd which becomes the Fricke involution

on X0(d) by the forgetful functors towards X0(d). Functorially :

wd(E,Cd, Cp) = (E/Cd, Ed/Cd, Cp/Cd) on X0(dp),
wd(E,Cd, {Ap, Bp}) = (E/Cd, Ed/Cd, {Ap/Cd, Bp/Cd}) on Xs

0(d; p),
wd(E,Cd, α) = (E/Cd, Ed/Cd, α/Cd) on Xns

0 (d; p),

where, for a structure H on Ep, H/Cd means the transport of H on E/Cd by the isogeny E → E/Cd (for

Cp, it is (Cp + Cd)/Cd in E/Cd for example).

Assume now that K is a quadratic �eld with automorphism σ. Let E be a Q-curve of degree d de�ned
over K such that PρE,p is not surjective. The kernel of a minimal isogeny E → Eσ is called Cd. In the

Borel case, PρE,p stabilises some subgroup Cp of order p of Ep, therefore P = (E,Cd, Cp) is a K-rational

point on X0(dp) such that

Pσ = wd · P

(because we assumed E is a central Q-curve). Similarly, in the split Cartan case (resp. nonsplit Cartan

case), we associate to E a point P on Xs
0(d; p)(K) (resp. Xns

0 (d; p)(K)) such that Pσ = wd ·P . For more

details on this, see ([7], Proposition 2.2 and above).

1.2 Formal immersions and Mazur's method

Let us now recall a key proposition for Mazur's method here.

Proposition 1.4. Let K be a number �eld and λ be a nonzero prime ideal of OK above `. We call Oλ
the localised ring of OK at λ and Fλ = OK/λ.

Let X be an algebraic curve de�ned over Q with a proper model XZ on SpecZ, A an abelian variety

de�ned on Q with Néron model AZ on Z, and f : X → A a morphism de�ned over Q. It naturally extends

to a morphism fZ : Xsmooth
Z → AZ by the universal mapping property of Néron models. Now, suppose

there are two points x and y of X(K) such that :

• The points x and y have the same reduction modulo λ, and it belongs to Xsmooth
Z .

• The morphism fZ is a formal immersion at xλ = yλ.

• The point f(y)− f(x) is Q-rational and torsion in A(Q).
Then, if ` > 2, x = y. If ` = 2, either x = y or f(y)− f(x) is a 2-torsion point in A(Q) generating a

copy of the �nite group scheme µ2 in AZ.

Proof. Let us suppose �rst that ` > 2. By hypothesis, z = f(y) − f(x) ∈ A(Q)tors. As e = 1 < ` − 1,
according to the specialisation lemma of Raynaud ([14], Proposition 1.1), the order of z is the same as the

order of its reduction z` in AZ(F`). Here, we have

z` = zλ = fZ(y)λ − fZ(x)λ = fZ(yλ)− fZ(xλ) = 0,

because xλ = yλ. Therefore, z = 0 and f(y) = f(x). As f is a formal immersion at xλ = yλ, this implies

x = y. In the case ` = 2, we do not have e < ` − 1 anymore, but thanks to Proposition 4.6 of [13], we

know that z is either 0 or a 2-torsion point in A(Q) generating a copy of µ2 in AZ. When z is 0, the proof

of the previous case works as well.

Remark 1.4.1. The main di�erence with Proposition 3.1 of [7] is that the latter one did not deal with the

case ` = 2 or the fact that z is de�ned over Q while x and y are de�ned over a bigger �eld (which will be

the case here). For the case ` = 2, we will need to rule out the case when f(y)− f(x) is 2-torsion in A(Q)
to prove Proposition 2.3. In our study, f(y)− f(x) belongs to the cuspidal subgroup C of J0(p)(Q), and
we know ([13], Proposition 11.11) its Zariski closure indeed contains a µ2 when it is of even order. This is

why we actually need the analysis of the components group of the jacobian (see proof of Lemma 2.2).

We recall the following classical result on the Albanese morphism from X0(p) to J0(p) (easily obtained
from the q-expansion principle), fundamental for Mazur's method.
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Proposition 1.5. Let p = 11 ou p > 13 be a prime number. Let T be the Hecke subalgebra of EndQ(J0(p))
generated over Z by the Hecke operators Tn, n ∈ N∗. Let φ : X0(p)Q → J0(p)Q be the Albanese morphism

sending ∞ to 0 and φZ : X0(p)
smooth
Z → J0(p)Z its extension by Néron mapping property. For every t ∈ T

and every prime `, t ◦ φZ is a formal immersion at ∞F` ∈ X0(p)(F`) if and only if t /∈ `T.

1.3 Eisenstein quotient and components group of the jacobian

The Eisenstein ideal I of T (de�ned in [13]) is the ideal I := 〈1 + `− T`, 1 +wp, l ∈ Pp〉, with Pp the set

of prime numbers di�erent from p. The Eisenstein quotient J̃(p) is the quotient of J0(p) by the abelian

subvariety generated by γI .J0(p)Q, with γI =
⋂
n∈N I

n. It is de�ned over Q, and bene�ts the following

properties (in particular, it is the �rst historical example of a nontrivial rank zero quotient of J0(p)).

Proposition 1.6. Let p = 11 or p > 13 be a prime number. Let n = num(p−1
12 ). Let C be the cuspidal

subgroup of J0(p)(Q), generated by cl([0]− [∞]).
(a) The rational torsion of J0(p) is exactly C, and it is a cyclic subgroup of order n ([13], Theorem

1.2 p.142 and Proposition 11.1).

(b) The canonical projection J0(p) → J̃(p) is de�ned over Q and induces a bijection between C =
J0(p)(Q)tors and J̃(p)(Q) which is therefore a cyclic subgroup of order n ([13], Corollary 1.4 p.143).

(c) The Eisenstein ideal is exactly the kernel of the map t 7→ t. cl([0]− [∞]) from T to C, which induces

an isomorphism T/I → Z/nZ ([13], Proposition 11.1). In particular, when t = 1 mod I, t acts as the

identity on C.

It is crucial for the proofs of Propositions 2.3 and 2.6 for prime ideals above 2 to cancel γI by �good

elements of T�. The following lemma will allow us to do so.

Lemma 1.7. For every prime number `, there exists a Hecke operator t ∈ T\`T such that t = 1 mod I
and t · γI = 0. Moreover, for such a t ∈ T, t · (1 + wp) = 0.

Proof. As T is a noetherian ring, by Artin-Rees lemma, we have I · γI = γI . Hence, by Nakayama's

lemma, γI is cancelled by some element t ∈ T congruent to 1 mod I. For a �xed prime `, we can even

choose such a t not in `T : if ` divides n, this is automatic because of Proposition 1.6 (c), otherwise we

can choose an integer `′ prime to ` but congruent to ` mod n. Then, for k such that t ∈ `kT\`k+1T,
the operator t′ = (`′/`)kt ∈ T\`T but is still congruent to 1 mod I while cancelling γI . Finally, such a

t ∈ T automatically cancels (1 + wp) under the previous conditions, because the Eisenstein quotient is a

quotient of the minus part of the jacobian J0(p) ([13], Chapter 2, Proposition 17.10).

We need to describe the components group of the special �ber of J0(p)R, which is made possible by

Theorem 9.6.1 of [20]. In short, if R is a discrete valuation ring of mixed characteristic with fraction �eld K

and perfect residual �eld k, and Φ is the group of irreducible components of J0(p)R⊗k, this theorem gives

a description of Φ by generators (C), and relations given by the irreducible components of X̃0(p)R (the

minimal regular model of X0(p) over R) and their intersection numbers, and this description is compatible

with the reduction morphism from J0(p)(K) to J0(p)R ⊗ k.
A �rst application of this to J0(p)Z gives the following results ([13], Theorem 10 and Appendix).

Proposition 1.8. Let p = 11 or p > 13 be a prime number and n = num
(p−1

12

)
. Let φ : X0(p)Q → J0(p)Q

be the Albanese morphism sending ∞ to 0.

(a) Reduction modulo p of the cuspidal subgroup C = 〈cl([0]− [∞])〉 induces an isomorphism from C

to the group of components Φ of J0(p)Z ⊗ Fp.
(b) For every point Q ∈ J0(p)(Q), we de�ne ρ(Q) ∈ Z/nZ the image of Q by

J0(p)(Q)→ J0(p)Z(Fp)→ Φ ∼= C ∼= Z/nZ.

Then, for every point P ∈ Y0(p)(Q) :
• If E has potentially ordinary or multiplicative reduction modulo p, ρ(φ(P )) = 0 if Cp de�nes a

separable isogeny modulo p, and ρ(φ(P )) = 1 otherwise.

• If E has potentially supersingular reduction modulo p, either p = −1 mod 4, j(E) = 0 mod p and

ρ(φ(P )) = 1/2, or p = −1 mod 3, j(E) = 1728 mod p and ρ(φ(P )) = 1/3 or 2/3.
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The idea underlying (b) of Proposition is that ρ ◦ φ(X0(p)(Q)) is small, and in particular it does not

not the unique nontrivial 2-torsion point of C for p = 11 or p > 13. This is the same idea that we will use

in a more general analysis in Lemma 2.2

Let R be a complete discrete valuation ring of characteristic 0, with fraction �eld K and residual �eld

k that we assume perfect of characteristic p. Let π be a uniformizer of R, v be the normalised valuation

on K and e = v(p) the absolute rami�cation of R.

The following result of Edixhoven (section 3 of the Appendix of [2]) generalises Theorem 1.1 of the

Appendix of [13].

Proposition 1.9. (a) The scheme X0(p)R is smooth over R outside its supersingular points in the special

�ber.

(b) The geometric special �ber X0(p)k is made up with two copies of P1(k) (which are also its irreducible
components) crossing transversally at supersingular elliptic curves : the �rst one, called Z, parametrises

elliptic curves endowed with their Frobenius isogeny, and the second one, called Z′, parametrises elliptic

curves endowed with their Vershiebung isogeny.

(c) Let s be a supersingular point of X0(p)R⊗R k corresponding to a couple (E,Cp) with E an elliptic

curve over k and Cp a p-isogeny of E. We call width of s the integer ks = |Aut(E,Cp)|/2. The scheme

X0(p)R is nonregular at s if and only if eks > 1. More precisely, the local completed ring of X0(p)R at s

is isomorphic to R[[X,Y ]]/(XY − πeks).
If p 6= 2, 3, then ks > 1 implies that j(E) = 0, ks = 3 and p = −1 mod 3, or j(E) = 1728, ks = 2

and p = −1 mod 4.

(d) The geometric �ber (X̃0(p)R)k of the minimal regular model over R is therefore obtained by blowing

up in X0(p)k every nonregular point s to a chain of eks − 1 projective lines. These projective lines, as

Cartier divisors, have auto-intersection −2.

For the following proposition on components group, we need some notations. First, we can suppose

e > 1 because the case e = 1 is dealt with Proposition 1.8. Therefore, every supersingular point s in the

special �ber is nonregular. To provide some intuition on the proof, we de�ne (as in the Appendix of [2])

the dual graph G̃ associated to X̃0(p)Rk : its vertices are the irreducible components of (X̃0(p)R)k and

an edge links two vertices if and only if the two components intersect. Thanks to Theorem 9.6.1 of [20],

the problem therefore becomes a problem on G̃ : compute the abelian group Φ given by generators (its

vertices) and relations (the image of the laplacian operator on the graph).

We de�ne S (resp. S′) the set of cardinality S (resp. S′) of supersingular points of X0(p)k (resp.

supersingular points with j-invariant di�erent from 0 and 1728). We also de�ne I = 1 if the elliptic curve

with j-invariant 1728 is supersingular in k, 0 otherwise and R = 1 if the elliptic curve with j-invariant 0
is supersingular, 0 otherwise, so that

S = S′ + I +R and S′ +
I

2
+
R

3
=
p− 1

12
. (2)

from ([25], Theorem V .4.1 (c)).

For every s ∈ S, we call Cs the path of length eks between the points Z and Z′ associated to s ∈ S
in G̃, due to the blowup of s in X̃0(p)R. In case s is of j-invariant 1728 (resp. 0), we also call it E (resp.

G). We order the points of G̃ (that is, the components of X̃0(p)R × k) on every one of these paths in

the following way : we call Cs,0 = Z′, Cs,1 = Cs the unique point of Cs linked to Z′, Cs,2 the point of

Cs linked to Cs not yet named, and so on until Cs,eks = Z. If s is of j-invariant 1728 (resp. 0), we call

E = Cs,1 (resp. G = Cs,1) to remain consistent with notations of the Appendix of [13] (where F = Cs,2
with j(s) = 0).

We use for every irreducible component C the notation

C = [C]− [Z′]

as Z′ is the component where reduces the cusp ∞, our choice of base point for the Albanese morphism.

The following lemma simpli�es the presentation of Φ.
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Lemma 1.10. Let Cs be the path of length eks between Z and Z′ associated to s in G̃. In the group Φ,

for every i ∈ [|0, eks|],
Cs,i = iCs,1 = iCs

In particular,

Z = eksCs.

Proof. It is true by de�nition for i = 0 and 1. For every i ∈ [|1,m−1|], the relation given by the laplacian

operator on G̃ at Cs,i is

−2Cs,i + Cs,i−1 + Cs,i+1 = 0.

The lemma follows by double induction on i.

The group Φ is therefore the abelian group generated by Z and the Cs, s ∈ S, and the relations

−SZ + (2e− 1)IE + (3e− 1)RG+
∑
s∈S′(e− 1)Cs = 0 (Z)

IE +RG+
∑
s∈S′ Cs = 0 (Z′)

∀s ∈ S′, Z = eCs, (Cs)

with additional relations
Z = 2eE (E)
Z = 3eG (G)

whenever E or G exist (the name of these relations corresponding to the point where the laplacian operator

is applied). Adding to (Z) the relation −(e− 1)(Z′), we get a new relation

−SZ + eIE + 2eRG = 0 (Z).

that we use in replacement of the previous relation (Z). Let us now give the description of the components

group Φ.

Proposition 1.11. Let p = 11 or p > 13 be a prime number and n = num
(p−1

12

)
. With previous

notations :

(a) The group of irreducible components Φ of J0(p)R × k is non-canonically of the form

Φ ∼= (Z/neZ)× (Z/eZ)S−2.

(b) The cuspidal subgroup C of J0(p)(Q) reduces injectively in Φ, with Z being the reduction of cl([0]−
[∞]). Hence, 〈Z〉 is of order n and we identify it with Z/nZ in the following.

(c) There is an exact sequence of Z/eZ-modules

0 // Z/eZ ∆ // (Z/eZ)S α // Φ/〈Z〉 // 0

with ∆ : λ 7→ λ ·
∑
s∈S [Cs] and α :

∑
s∈S λs[Cs] 7→

∑
s∈S λsCs.

In particular, e · Φ = 〈Z〉, and we get

∀s ∈ S′, ∀i ∈ [|1, e− 1|], e.Cs,i = i

∀i ∈ [|1, 2e− 1|], e.Ei = i/2 if p = −1 mod 4
∀i ∈ [|1, 3e− 1|], e.Gi = i/3 if p = −1 mod 3∑

s∈S Cs = 0 inΦ

Proof. We only compute Φ in the case p = 11 mod 12 so that I = R = 1, the other cases being simpler

but similar. We replace Z by 2eE thanks to relation (E), and for every s ∈ S′ we make the variable

changes

C′s := Cs − 2E and G′ := G+ (2S − 3)E.

The relations become
e(6S − 7)E + 2eG′ = 0 (Z)′

G′ +
∑
s∈S′ C

′
s = 0 (Z′)′

∀s ∈ S′, e.C′s = 0 (Cs)
′
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As p = 11 mod 12, 6S − 7 = 6S′+5 = (p− 1)/2 = n by the mass formula of (2), and (Z)′ is equivalent
to enE = 0 with help of the other relations. Hence, G′ is generated by the other generators, and the

relations (Cs)
′, s ∈ S′ and (Z)′ are diagonal, which gives us the announced isomorphism of (a). Via this

isomorphism, we have

Z = (2e, 0, · · · , 0)
Ei = (i, 0 · · · , 0)
Gi = (−(2S′ + 1)i,−i, · · · ,−i)
Cs,i = (2i, 0, · · · , 0, i, 0, · · · , 0) (s ∈ S′)

and this readily gives us (b) and (c).

2 Application of Mazur's method

2.1 Borel case

Let p be a �xed prime and d be a squarefree positive integer prime to p. The scheme X0(dp)Z is smooth

outside its supersingular points in characteristic dividing dp, in particular every cusp reduces in the smooth

part modulo every prime number `. If r is the number of prime factors of d, X0(dp)Q has 2r+1 cusps on

which the Atkin-Lehner group acts transitively. As d and p are coprime, the cusps of X0(dp)Q are in

bijection via forgetful functors X0(dp)Q → X0(d)Q and X0(dp)Q → X0(p)Q with couples of cusps of

X0(d)Q and X0(p)Q. Via this correspondance, the Atkin-Lehner involutions wd′ , d
′|d on X0(dp)Q leave

unchanged the component of the cusp in X0(p)Q and wp leaves unchanged the component in X0(d)Q. We

call ∞dp (resp. ∞d, ∞p) the usual in�nity cusp of X0(dp)Q (resp. X0(d)Q, X0(p)Q).

De�nition 2.0.1. We denote by πdp,p : X0(dp)Q → X0(p)Q the �forgetting d-structure� morphism and

by φ : X0(p)Q → J0(p)Q the Albanese morphism sending ∞p to 0. The morphism g : X0(dp)Q → J0(p)Q
is de�ned by g := φ ◦ πdp,p + φ ◦ πdp,p ◦ wd. Functorially, we have

g(E,Cd, Cp) = cl([E,Cp] + [E/Cd, Cp/Cd]− 2[∞p]).

For every t ∈ T, we note gt = t ◦ g.

Proposition 2.1. Let p = 11 or p > 13 be a prime number, and ` be a prime number (possibly equal

to p). For every t ∈ T, the morphism (gt)Z : X0(dp)
smooth
Z → J0(p)Z extending gt by Néron mapping

property is a formal immersion at ∞dp
F` if and only if t /∈ `T.

Proof. Fix t ∈ T and g′t = t ◦ φ ◦ π so that gt = g′t + g′t ◦ wd. As wd permutes cusps of X0(dp)Q above

∞p ∈ X0(p), g
′
t(∞dp) = g′t ◦ wd(∞dp) = 0. The residual �elds of the points ∞dp

F̀ and 0F̀ are both F̀
as ∞dp and 0 ∈ J0(p) cusps are Q-rational, so we only have to check the induced maps on cotangent

spaces. Notice wd(∞dp) is a cusp of X0(dp)Q not above ∞d, therefore (πdp,p)C : X0(dp)C → X0(p)C is

rami�ed at this cusp (because X0(d)C → X(1)C is rami�ed at any cusp but ∞d). Hence the cotangent

map of g′t ◦ wd is zero at section ∞dp
Z and the cotangent map of gt at ∞dp

Z is the cotangent map of g′t.

Finally the cotangent map of (πdp,p)Z at section ∞dp
Z is an isomorphism so the cotangent map of g′t at

∞dp
F̀ is surjective if and only if t /∈ ` T by Proposition 1.5, which concludes the proof by the usual formal

immersion criterion.

The following lemma is essential for the case ` = 2.

Lemma 2.2. Let p = 11 or p > 13 be a prime number, n = num((p− 1)/12) and K be a quadratic �eld

with rami�cation degree e over p. Let E be a central Q-curve of degree d de�ned over K such that PρE,p
is reducible, and P the corresponding point of X0(dp)(K). Then g(P ) belongs to J0(p)(Q), and with the
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retraction ρ : J0(p)(Q)→ Z/nZde�ned at Proposition 1.8, the possible values of ρ(g(P )) are the following
:

p = 1 mod 12 p = 5 mod 12 p = 7 mod 12 p = 11 mod 12

e = 1 0,2 0,1,2,23 ,
4
3 0,1,2 0,1,2,23 ,

4
3

e = 2 0,1,2 0,1,2,13 ,
2
3 ,

4
3 ,

5
3 0,1,2,12 ,

3
2 0,1,2,13 ,

1
2 ,

2
3 ,

4
3 ,

3
2 ,

5
3

In particular, this image cannot be the unique 2-torsion point of the cuspidal subgroup C unless p = 17
or 41.

Proof. First, g(P ) ∈ J0(p)(K) because g is Q-rational, and for σ the nontrivial automorphism of K,

g(P )σ = φ ◦ πdp,p(Pσ) + φ ◦ πdp,p ◦ wd(Pσ) = φ ◦ πdp,p(wd · P ) + φ ◦ πdp,p(P ) = g(P )

by construction of P (see subsection 1.1), hence g(P ) indeed belongs to J0(p)(Q). Fix a prime ideal P
of K above p and de�ne Φ the group of components of the special �ber of J0(p)OKP

. We read ρ(g(P ))
via reduction modulo P, using Propositions 1.8 and 1.11 (and their notations). Notice that πdp,p(P ) and
πdp,p(wd · P ) represent elliptic curves which are isogenous of degree prime to p on X0(p). Consequently,
their stable reduction type modulo P (ordinary with separable isogeny, ordinary with unseparable isogeny,

supersingular) is the same. This remark done, we use the Proposition 1.11 to compute the di�erent

possibilities :

• If p is unrami�ed in OK , we are in the étale case of the Proposition, and the possible values of the

reduction of g(P ) in Φ are then 2Z′ = 0, 2Z = 2, 2E = 1, 2G = 2/3, 4G = 4/3 and 3G = 1 (when E or

G exist). This proves the �rst line.

• If p is rami�ed in OK , we are in case e = 2 of the Proposition, and the possible values of the

reduction of g(P ) in Φ are then 2Z′ = 0, 2Z = 2, 2E1 = 1/2, 2E2 = 1, 2E3 = 3/2, E1 + E3 = 1,
2G1 = 1/3, 2G2 = 2/3, . . . , 2G5 = 5/3 (and other possibilities that do not give new values). Finally, for

every s ∈ S′, 2Cs,1 = 1.
For the application of the result, Z/nZ admits a nontrivial 2-torsion point if and only if 2 divides n,

which is possible only when p = 1 mod 8, and then this torsion point is n/2. Suppose ρ(g(P )) is equal
to n/2. From the table, if p = 1 mod 12 , it means (p− 1)/12 divides 1,2 or 4, whence p = 13. If p = 5
mod 12, it means (p− 1)/4 divides 1, 2, 4, 8 or 10, whence p = 17 or p = 41.

Proposition 2.3. Let K be a quadratic �eld and E a Q-curve of squarefree degree d de�ned over K. If

for p ≥ 11, p 6= 13, 17, 41 prime not dividing d, the representation PρE,p is reducible, E has potentially

good reduction at every prime ideal of OK .

Proof. Let P ∈ X0(dp)(K) be the point associated to E. From Lemma 2.2, we know that g(P ) ∈ J0(p)(Q).
Let λ be a prime ideal of OK above `, and suppose E has potentially multiplicative reduction at λ. As

the Atkin-Lehner involutions group acts transitively and Q-rationally on the cusps of X0(dp), we can and

will assume that Pλ = ∞dp
λ = ∞dp

` ∈ X0(dp)Z(F̀ ). In particular, Pλ is in the smooth part of X0(dp)Z.
We choose t ∈ T\`T cancelling the ideal γI and congruent to 1 modulo I (see Lemma 1.7 and above

for notations). The Q-rational morphism t : J0(p)Q → J0(p)Q cancels on γI · J0(p), therefore it factors

through J̃(p) and sends the Q-rational point g(P ) on a Q-rational torsion point of J0(p) because J̃(p)
is of rank zero. It allows us to apply Proposition 1.4 to x = P , y = ∞dp, X = X0(dp)Q, A = J0(p)Q
and gt (the latter being a formal immersion by Proposition 2.1). In the case ` > 2, we obtain P = ∞dp,

which is a contradiction, therefore E has potentially good reduction modulo λ. In the case ` = 2, as t = 1
mod I, ρ(gt(P )) = ρ(g(P )) (Proposition 1.6 (c)), therefore gt(P ) is not the non-trivial 2-torsion point of

J0(p)(Q) by Lemma 2.2. So P =∞dp in this case too, which is a contradiction, hence E has potentially

good reduction modulo λ for every prime ideal λ of OK .

2.2 Split Cartan case

Let p be a prime number and d be a squarefree positive integer prime to p. As in [7], we de�ne Xsp.Car.(p)Z
the compacti�ed coarse moduli scheme over Z parametrising the triples (E,Ap, Bp) with Ap, Bp noniso-

morphic p-isogenies of E and XsC
0 (d; p)Z := X0(d) ×X(1) Xsp.Car.(p)Z . These schemes are proper over
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SpecZ, and there is a natural involution

w : (E,Cd, Ap, Bp)→ (E,Cd, Bp, Ap)

so that the quotient XsC
0 (d; p)Z/〈w〉 is the scheme Xs

0(d; p)Z de�ned in subsection 1.1. As for Borel case,

the �forgetting d-structure� and �forgetting p-structure� morphisms induce a bijection between cusps of

XsC
0 (d; p)Q (resp.Xs

0(d; p)Q) and couples of cusps ofX0(d)Q and cusps ofXsp.Car.(p)Q (resp. ofXsplit(p)Q)
because d is prime to p. Henceforth, we will note (c, c′) the unique cusp of XsC

0 (d; p)Q (resp. Xs
0(d; p)Q)

above the cusps c ∈ X0(d)Q and c′ ∈ Xsp.Car.(p)Q (resp. c′ ∈ Xsplit(p)). The scheme XsC
0 (d; p)Z is

smooth in characteristics prime to dp. In characteristic ` dividing d, its singular points correspond to

supersingular elliptic curves over F̀ . In characteristic p, XsC
0 (d; p)Fp (resp. Xsp.Car.(p)Fp) is made up with

three irreducible components which parametrise the quadruples (E,Cd, Ap, Bp) (resp. (E,Ap, Bp)) such
that respectively :

• The isogeny Ap is unseparable (Z component).

• The isogeny Bp is unseparable (Z′ component).

• Neither Ap nor Bp are unseparable (W component).

Cusps above ∞p ∈ Xsp.Car.(p) reduce in component Z, cusps above 0p ∈ Xsp.Car.(p) reduce in

component Z′, and all the others reduce to component W , which is of multiplicity p − 1. Hence, the
nonrational cusps do not reduce to smooth points. Considering the quotient morphism XsC

0 (d; p)Z →
Xs

0(d; p)Z (resp. Xsp.Car.(p)Z → Xsplit(p)Z), the components Z and Z′ identify in the �ber at p to form a

component called Z0, the other irreducible component being the image of the component W (still noted

W ).

We need preparatory results inspired from [15]. We also owe this article the original idea for the

following formal immersion, that [7] adapted for Q-curves.

Proposition 2.4. Let E be an elliptic curve de�ned over a number �eld K and p > 2[K : Q] + 1 be a

prime number such that the image of ρE,p is in the normaliser of a split Cartan subgroup of GL(Ep). Let
P = (E, {Ap, Bp}) be the corresponding K-rational point of Xsplit(p), and K

′ an extension of degree two

of K over which Ap and Bp are de�ned. Then, for any prime ideal P of OK above p :

(a) The elliptic curve E does not have potentially supersingular reduction at P.

(b) The reduction modulo P of P in Xsplit(p)Fp does not belong to the W component.

(c) For every prime ideal P′ of OK′ above P, the reductions modulo P′ of (E,Ap) and (E/Bp, Ep/Bp)
belong to the same irreducible component of X0(p)OP′

× Fp.

Proof. Let p ≥ 5 be a prime number and P′ be a prime ideal of O′ = OK′ above p. The Gal(Q/K′)-
modules Ep, Ap and Bp de�ne group schemes over K′ noted (Ep)K′ , (Ap)K′ and (Bp)K′ such that

(Ep)K′ ∼= (Ap)K′ ⊕ (Bp)K′ . (3)

Passing to Zariski closure in Néron model of E over O′, we obtain group schemes (Ep)O′ , (Ap)O′ and
(Bp)O′ extending the group schemes over K′. As the absolute rami�cation index e′ of p in OK′ is smaller

that 2[K : Q] < p− 1, we know by Raynaud's specialisation lemma (Theorem 3.3.3 and Corollary 3.3.4 of

[17]) that

(Ep)O′
∼= (Ap)O′ ⊕ (Bp)O′ .

Furthermore, as e′ < p+1 again, the �nite group schemes (Ap)O′ and (Bp)O′ are constant or isomorphic

to µp. This already proves (a) because if E is potentially supersingular, (Ep)O′ contains a group scheme

αp. Furthermore, (Ep)O′ is not étale since it has at most p Fp-rational points while being of rank p2.

Therefore, (Ap)O′ or (Bp)O′ is not étale, hence isomorphic to µp. This proves (b). Finally, the Gal(Q/K′)-
modules isomorphism Ap → Ep/Bp given by (3) extends (as e′ < p − 1 again) to an isomorphism

(Ap)O′
∼= (Ep/Bp)O′ . Hence, they are simultaneously constant or isomorphic to µp. As E is not potentially

supersingular, the component to which belongs the reduction of (E,A) in X0(p)O′ × Fp is Z or Z′, and
entirely determined by the nature (étale or not) of A, hence the two points (E,Ap) and (E/Bp, Ep/Bp)
reduce to the same component.
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Recall φ : X0(p)Q → J0(p)Q is the Albanese morphism sending ∞p to 0.

De�nition 2.4.1. Let p be a prime number. We note π : XsC
0 (d; p)Q → X0(p)Q the forgetful morphism

that sends (E,Cd, Ap, Bp) to (E,Ap). The map h : XsC
0 (d; p)Q → J0(p)Q is de�ned by h := φ ◦ π − φ ◦

wp ◦ (π ◦ w) + φ ◦ π ◦ wd − φ ◦ wp ◦ (π ◦ w ◦ wd). Functorially, we have

h(E,Cd, Ap, Bp) = cl ([E,Ap]− [E/Bp, Ep/Bp] + [E/Cd, Ap/Cd]− [E/(Bp + Cd), Ep/(Bp + Cd)]) .

Furthermore, h ◦ w = −wp ◦ h where wp is the endomorphism of J0(p)Q corresponding to Atkin-Lehner

involution wp on X0(p)Q. For every t ∈ T, we de�ne ht = t◦h. Hence, if t(1+wp) = 0, ht ◦w = ht so that

ht factors through the projection XsC
0 (d; p)Q → Xs

0(d; p)Q in a Q-rational morphism h+t : Xs
0(d; p)Q →

J0(p)Q.

Remark 2.4.1. The sum h′ of the �rst two terms of h give the good candidate for elliptic curves over Q
(see [4]). As in Borel case, the generalisation to Q-curves relies in the consideration of h′ + h′ ◦ wd.

Proposition 2.5. Let ` be a prime number and t ∈ T.
The morphism (ht)Z : XsC

0 (d; p)smooth → J0(p)Z extending ht by Néron mapping property is a formal

immersion at the cusp (∞,∞)F` of X
sC
0 (d; p)F` if and only if t /∈ `T. If t(1+wp) = 0, the same condition

holds for (ht)
+
Z : Xs

0(d; p)
smooth → J0(p)Z to be a formal immersion at the cusp (∞,∞)F` of Xs

0(d; p)F̀ .

Proof. We de�ne ψ : XsC
0 (d; p)Q → X0(dp)Q as the �forgetting Bp�-morphism that sends (E,Cd, Ap, Bp)

to (E,Cd, Ap). With the de�nitions of the Borel case, π = πdp,p ◦ ψ and h = g ◦ ψ + g ◦ wp ◦ ψ ◦ w. As
ψ((∞,∞)) = ∞dp = wp ◦ ψ ◦ w(∞,∞), the cotangent map of hZ at section (∞,∞)Z is the sum of the

cotangent maps of (g◦ψ)Z and (g◦wp ◦ψ◦w)Z. Notice that ψ is rami�ed of degree p at (∞,∞)Z (as it can

be checked out on corresponding Riemann surfaces), so that g◦ψ is. Hence, the cotangent map of hZ is the

cotangent map of (g◦wp◦ψ◦w)Z. Furthermore, we readily see that g◦wp = wp◦g+2cl([0]−[∞p]), so (ht)Z
is a formal immersion at (∞,∞)F` if and only if (gt ◦ψ ◦w)Z is, because wp is an automorphism of J0(p)Z.
But the cotangent map of (ψ ◦w)Z : XsC

0 (d; p)Z → X0(p)Z at the section (∞,∞)Z is an isomorphism (see

[15], Proof of Proposition 2.5), whence the result for (ht)Z by Proposition 2.1. The result follows for (ht)
+
Z

as (∞,∞) is not a �xed point of w.

We can now prove our result in split Cartan case.

Proposition 2.6. Let K be a quadratic �eld. For every prime number p = 11 or p > 13, if E is a Q-curve

of degree d prime to p de�ned over K, the image of PρE,p is in the normaliser of a split Cartan subgroup

of PGL(Ep), then E has potentially good reduction at every prime ideal of OK .

Proof. Let P ∈ Xs
0(d; p)(K) be the point associated to E. For any t ∈ T such that t(1 + wp) = 0, h+t is

a Q-rational morphism so h+t (P ) ∈ J0(p)Q(K). If we call σ the automorphism of K,

h+t (P )
σ = h+t (P

σ) = h+t (wd.P ) = h+t (P )

because h ◦ wd = h by construction, so that h+t (P ) is Q-rational.
Now, if we also suppose that t cancels γI and t = 1 mod I (see Lemma 1.7 and above for notations),

then h+t (P ) = 0. Indeed, it is a torsion point of J0(p) because the Eisenstein quotient has rank zero.

Taking any prime P of OK above p, by Proposition 2.4 we know that P reduces modulo P in the smooth

part of Xs
0(d; p)Z (by (a) and (b)), and that (ht

+)Z(PP) is 0 in the group of components Φ of J0(p)O′×F′P
(by (c)). Therefore, h+t (P ) = 0 as reduction from the cuspidal subgroup C to Φ is injective (Proposition

1.11 (b)). We can now apply Mazur's method.

Suppose there is a prime ideal λ of OK (above the prime number `) such that E has potentially

multiplicative reduction at λ. Then P reduces at a cusp c modulo λ, hence is in the smooth part of

Xs
0(d; p)Z (this is obvious when λ is not above p, and we just explained why it is true when λ is above

p). Actually, this cusp must be a cusp above ∞F̀ ∈ Xsplit(p)F̀ . Indeed, if ` = p, this is what we just

proved as the other cusps are not in the smooth part (Proposition 2.4), and if ` 6= p, simple computation

shows that the image of a cusp c of XsC
0 (d; p)Q not above ∞ or 0 ∈ Xsp.Car.(p)Q by h is 2 cl([0]− [∞]).

For t ∈ T as above, as h+t (P ) = 0 and the Zariski closure CZ of C in J0(p)Z is étale outside 2 (eg by

Raynaud's Theorem 3.3.3 [17]), if ` > 2 , it prevents P from reducing at c modulo λ (unless n = 1 or
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2, impossible when p = 11 or p > 13), and for ` = 2, it is only possible when n divides 4 which is

also impossible for p > 23. Now we know P reduces modulo λ at a cusp above ∞F̀ ∈ Xsplit(p)Z. After
applying an Atkin-Lehner involution wd′ , d

′|d, we can suppose that P reduces modulo λ at (∞,∞)F̀ .
Take now t ∈ T\`T still satisfying the previous conditions by Lemma 1.7, so we can apply Proposition

2.5. As h+t (P ) = 0, there is no problem with the case ` = 2 here, and we obtain P = (∞,∞), which is a

contradiction. Therefore, E has potentially good reduction at every prime ideal λ.

2.3 Nonsplit Cartan case

In this subsection, we do not provide any qualitative improvement on the third section of [7], but a

quantitative one. The next proposition is the algebraic part of section 3 of loc. cit., which uses Mazur's

method and relies on the existence of a rank zero quotient on a twisted jacobian (using crucially the results

of Kolyvagin and Logachev). Small characteristic issues can be easily ruled out for p ≥ 7 in this case (see

proof of Proposition 3.9 of [7]).

Proposition 2.7 ([7], proof of Proposition 3.6). Let K be an imaginary quadratic number �eld of dis-

criminant −DK , χK the associated Dirichlet character and d > 1 a squarefree positive integer.

Let p ≥ 7 be a prime number not dividing dDK . If there exists an eigenform f ∈ S2(Γ0(p2))new such

that wp · f = f and L(f ⊗ χK , 1) 6= 0, then for every strict Q-curve E of degree d de�ned over K such

that the image of PρE,p is included in the normaliser of a nonsplit Cartan subgroup of PGL(Ep), E has

potentially good reduction at every prime ideal of OK .

Thanks to this Proposition and using the same type of analytic estimates as in [7], we obtain in the

Appendix the following result :

Proposition 2.8. Let K be an imaginary quadratic �eld of discriminant −DK .

Let p > 50D
1/4
K log(DK) be a prime number not dividing DK . If E is a Q-curve de�ned over K, of

degree coprime with p, without complex multiplication and such that the image of PρE,p is in the normaliser

of a nonsplit Cartan subgroup of PGL(Ep), then E has potentially good reduction at every prime ideal of

OK .

3 Runge's method

Runge's method can be used on a modular curveX to bound the absolute logarithmic height of j-invariants

of S-integral points on X, where S is a set of places of the number �eld K containing the in�nite places,

of cardinality smaller than the number of Galois orbits of cusps of X. In this article, our application of

Runge's method will be a very simple case : K is an imaginary quadratic �eld X = X0(p) with p a �xed

prime number, and S contains one single element : the euclidean norm on OK . We de�ne

X0(p)(OK) := {P ∈ X0(p)(K), j(P ) ∈ OK} .

Our goal is to explicitly bound the j-invariant of elements of X0(p)(OK). We denote by

H the Poincaré upper half plane.

D the fundamental domain of H for the action of SL2(Z) bounded by the geodesic triangle {0, 1,∞}
qτ := exp(2iπτ) for any τ ∈ H (the τ index will be omitted if τ is obvious).

qrτ := exp(2iπrτ) for any rational number r.

Finally, for sake of precision, we denote c∞ (resp. c0) the cusp of X0(p) which is the image of∞ (resp.

0) by the canonical projection π : H ∪ P1(Q) → X0(p). Notice that the Runge's method will be applied

for p dividing the degree of a Q-curve, so our result has to hold for any prime p.

For general Runge's method, we need some knowledge about modular units (see [3] for a general

exposition in the case of modular curves), but in our case we will just use one, de�ned as follows.
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De�nition 3.0.1. Let p be a �xed prime number. The holomorphic function g on H is de�ned for all

τ ∈ H by

g(τ) =
∆(τ)

∆(p.τ)
= q1−pτ

+∞∏
n=1

(p,n)=1

(1− qnτ )24.

where ∆ is the discriminant modular form on H. This is the quotient of two modular forms of weight 12

on Γ0(p), hence it de�nes a modular function U on X0(p).

The modular function U bene�ts the following properties :

Proposition 3.1. (a) For every τ ∈ H :

g(−1/τ) = p12g−1(τ/p) = p12q(p−1)/p
∞∏
n=1

(
1− qn

1− qn/p

)24

.

(b) For wp the Atkin-Lehner involution of X0(p), U ◦ wp = p12U−1.

(c) The divisor of U on X0(p) is supported by cusps, more precisely

div(U) = (p− 1)([c0]− [c∞]).

(d) The function U is a Q-rational function on X0(p) which is integral over Z[j].

Proof. The assertion (a) implies (b) because for every τ ∈ H of image P in X0(p), g(τ) = U(P ) and

−1/(pτ) has image wp(P ) by de�nition. To prove (a), we only write that for every τ ∈ H, by de�nition

of g,

g(−1/τ) = ∆(−1/τ)
∆(−p/τ)

=
τ12∆(τ)

p−12τ12∆(τ/p)
= p12g−1(τ/p),

because ∆ is a modular form of weight 12 on SL2(Z). Next, the discriminant modular form does not cancel

on H, therefore the divisor of U is indeed supported by the two cusps c∞ and c0. The q-expansion of g at

∞ shows that the order of the pole of U at c∞ is (p− 1), and the order at c0 is necessarily the opposite,

which proves (c). The modular function U is Q-rational on X0(p) as a quotient of two Q-rational modular

forms of weight 12 on X0(p). Only the integrality remains to be proved. Recall that

SL2(Z) = Γ0(p) ∪
⋃
k∈Z

Γ0(p) ·
(

0 1
−1 −k

)
(4)

Indeed, for every γ ∈ SL2(Z), either γ · ∞ = γ′ · ∞ with γ′ ∈ Γ0(p), and in this case γ ∈ Γ0(p) because
the stabiliser of the cusp ∞ in SL2(Z) is contained in Γ0(p), or γ ·∞ = γ′ · 0 with γ′ ∈ Γ0(p). The matrix

w =

(
0 1
−1 0

)
sends ∞ to 0, so we can write

(γ′w)−1γ = ±
(
1 k
0 1

)
for some integer k, as (γ′w)−1γ · ∞ = ∞. This proves (4). From this equation, we know that for every

γ ∈ SL2(Z), the q-expansion of g|γ (that is, the image of g by the usual right action of SL2(Z) on functions

on H) is a formal series in q
1/p
τ with algebraic integer coe�cients. Indeed, if γ ∈ Γ0(p) ·

(
0 1
−1 −k

)
,

g|γ(τ) = g(−1/(τ + k)) = p12e2iπ(p−1)k/pqτ
(p−1)/p

∞∏
n=1

(
1− qnτ

1− e2iπnk/pqn/pτ

)24

by (a), so this qτ -expansion has coe�cients in Z[e2iπ/p] ⊂ Z. Hence, from Lemma 2.1 of [23] (Chapter

2.2), we know that U is integral on Z[j].
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Remark 3.1.1. This proof is somewhat elementary, but the reader will notice that we only reproved some

well-known results of the theory of modular units (which is far more general) for U . Actually, with the

notations of ([23], Chapter 2),

g :=

p−1∏
a=1

g12p
( ap ,0)

,

and with results of the same chapter, we recover all the results of the previous Proposition except (b).
A consequence of (b) is that p12U−1 is integral over Z[j], and it seems that the theory of modular units

would only have predicted that p12pU−1 is (see [3]).

Lemma 3.2. For every P ∈ Y0(p)(OK), U(P ) is a nonzero element of OK such that

0 ≤ log |U(P )| ≤ 12 log p.

Proof. As U is Q-rational and integral over Z[j] (Proposition 3.1 (d)), U(P ) ∈ OK and is nonzero because

U does not cancel on Y0(p). The same thing is true for wp · P : indeed, wp · P ∈ Y0(p)(OK) because wp
is Q-rational and wp · P represents an elliptic curve isogenous to the elliptic curve represented by P , so

j(wp ·P ) ∈ OK too. Therefore, U ◦wp(P ) = p12U−1(P ) ∈ OK . As K is an imaginary quadratic �eld, for

every nonzero element α ∈ OK , log |α| ≥ 0, hence

0 ≤ log |U(P )| ≤ 12 log p.

We de�ne the involution w on H by w(τ) = −1/τ and the function g0 on H by g0 := g ◦ w.
The following lemma, that we call �locating near cusps lemma� allows us to reduce Runge's method

to computation with the two functions g and g0.

Lemma 3.3. For every point P ∈ Y0(p)(C), there exists τ ∈ D + Z such that τ or −1/τ is above P by

the canonical projection H → Y0(p)(C). In the �rst case, we say P is near c∞, and then j(P ) = j(τ) and
U(P ) = g(τ). In the second case, we say P is near c0, and then j(P ) = j(τ) and U(P ) = g0(τ).

Proof. Let P ∈ Y0(p)(C). Choose a lift τ0 ∈ H of P . There exists β ∈ SL2(Z) such that β · τ0 = τ1 ∈ D.
This τ1 is not above P anymore unless β ∈ Γ0(p) (in this case, choose τ = τ1 in the lemma, and P is near

c∞). Suppose now β /∈ Γ0(p). From (4), we can write

β−1 = γ · w ·
(
1 k
0 1

)

for some k ∈ Z and γ ∈ Γ0(p), w =

(
0 1
−1 0

)
. Hence, τ =

(
1 k
0 1

)
· τ1 ∈ D+Z, and w.τ = γ−1 · τ0 is above

P . In this case, we say P is near c0.

We now need a lemma for precise estimates of q-expansions of g and g0.

Lemma 3.4. For every r ∈]0, 1[ and every q ∈ C such that |q| ≤ r,

+∞∑
n=1

| log |1− qn|| ≤ − log(1− r)
r(1− r)

|q|.

For every q ∈ C such that |q| < 1,

+∞∑
n=1

| log |1− qn|| ≤ π2

6 log |q−1| .

Proof. The �rst inequality is a straightforward consequence of the triangular inequality and the maximum

principle. The second one can be found in the proof of Lemma 3.5 of [3].

We obtain from this lemma nontrivial bounds on g and g0.
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Proposition 3.5. For every τ ∈ D + Z,

| log |g(τ)|+ (p− 1) log |qτ || ≤ 25|qτ |.

| log |g0(τ)| −
p− 1

p
log |qτ || ≤

4π2p

log |q−1
τ |

+ 12 log(p).

Proof. Using the q-expansion of g and Lemma 3.4 with r = 0.005, we have

| log |g∞(τ)|+ (p− 1) log |qτ || = 24

∣∣∣∣∣∣∣∣
∑
n≥1

(p,n)=1

log |1− qnτ |

∣∣∣∣∣∣∣∣ ≤ −24
log(0.995)

0.995 · 0.005 |qτ | ≤ 25|qτ |

because |qτ | ≤ 0.005 when τ ∈ D + Z. For the bound with g0, we use the other inequality of Lemma 3.4

with q-expansion of g0 and obtain

| log |g0(τ)| −
p− 1

p
log |qτ | − 12 log(p)| = 24

∣∣∣∣∣∣∣∣
∑
n≥1

(p,n)=1

log |1− qn/pτ |

∣∣∣∣∣∣∣∣ ≤
4π2

log |q−1/p
τ |

=
4π2p

log |q−1
τ |

.

Finally, we recall an inequality for the j-invariant (extracted from Corollary 2.2 (iii) of [3]).

Proposition 3.6. For every τ ∈ D + Z, if |j(τ)| > 3500, then log |j(τ)| ≤ log |q−1
τ |+ log(2).

We can now state our bound on the j-invariant.

Proposition 3.7. Let K be an imaginary quadratic �eld. For every prime number p and every point

P ∈ Y0(p)(OK),

log |j(P )| < 2π
√
p+ 6 log(p) + 8.

Proof. Let τ be a point of D+Z associated to P by the �locating near cusps lemma�. If we have log |j(P )| <
2π
√
p, there is nothing to prove. If not, |j(τ)| > 3500 hence log |j(τ)| ≤ log |q−1

τ |+ log(2) by Proposition

3.6. We now have to bound |q−1
τ |. If P is near c∞, we have log |g(τ)| = log |U(P )| ≤ 12 log p by Lemma

3.2. By Proposition 3.5, we obtain

log |q−1
τ | ≤

25|qτ |+ 12 log p

p− 1
≤ 2π

√
p (5)

after a little analysis (as |qτ | ≤ 0.005 here). If P is near c0, log |g0(τ)| = log |U(P )| ≥ 0 by Lemma 3.2.

By Proposition 3.5, we obtain this time(
p− 1

p

)
log |q−1

τ | ≤
4π2p

log |q−1
τ |

+ 12 log(p),

hence

log |q−1
τ | ≤

2πp√
p− 1

+
6p log(p)

(p− 1)
≤ 2π

√
p+ 6 log(p) + 7 (6)

because p ≥ 2, after a small analysis on the remaining terms. In each case, (5) or (6) gives us the result.
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4 Isogeny theorems and end of the proof

We now use isogeny theorems from [9] to complete the proof and obtain completely explicit bounds. These

theorems use the notion of stable Faltings height hF (see [9], subsection 2.3 for details), but we recall that

for every elliptic curve E de�ned over a number �eld K,

hF (E) ≤
1

12
h(j(E)) + 2.38 (7)

with h the absolue logarithmic height of j(E) ∈ K, that is,

h(j(E)) =
1

[K : Q]

∑
v∈M

max(0, log(|j(E)|v))

where M is the set of places of K : see Lemma 7.9 of [9]. The di�erent normalisations for Faltings height

in [9] have to be taken into account : with the notations of this article, h(E) = hF (E) + log(π)/2, so we

obtain the constant 2.38 instead of 2.95, but this does not matter for the following, as we round up to 3.

The following result is proved in [9] in part 7.3, but is not stated this way. We explain why after its

statement.

Proposition 4.1 ([9], part 7.3). Let E be an elliptic curve without complex multiplication and B an

abelian surface both de�ned over the number �eld K. Let ψ : B → E × E be an isogeny de�ned over K.

Suppose (hypothesis (∗)) that for every embedding σ : K → C, if ΩE,σ and ΩB,σ are the period lattices

of E and B with respect to this embedding, dψ(ΩB,σ) (which is a sublattice of Ω2
E,σ) contains an element

(ω1, ω2) of ΩE,σ which is a Z-basis of ΩE,σ. Then,

deg(ψ) ≤ 107[K : Q]2(max{hF (E), 985}+ 4 log[K : Q])2.

Proof. The bound given here is exactly the bound of Theorem 1.4 of [9], because the computation is

almost exactly the same. Consider some isogeny ψ : B → E×E satisfying hypothesis (∗) above. For every
embedding σ, there is a canonical norm ‖ · ‖σ (coming from a principal polarization of E) on the tangent

space tE,σ, which contains ΩE,σ. We �x an embedding σ0 such that there is a basis (ω1, ω2) of ΩE,σ
which is minimal amongst all minimal bases for all possible period lattices ΩE,σ. This means that

‖ω1‖σ0 = max
σ

min
ω∈ΩE,σ
ω 6=0

‖ω‖σ

and ω2 = τω1 with τ in the Siegel fundamental domain (so that y = im(τ) is minimal amongst all choices

of embeddings and minimal bases for these embeddings). This choice of σ0 to minimise y is the same as in

part 7.3 of [9]. We now identify all considered abelian varieties with their scalar extensions to C via this

embedding σ0, and therefore omit all further mention to the embeddings in the notation. We can compose

ψ by an isomorphism of E ×E so that dψ(ΩE) contains the basis (ω1, ω2) previously chosen, because we

assumed hypothesis (∗). We then consider A = E×E×B and a period ω = (ω1, ω2, χ) of Ω
2
E ×ΩB , with

χ ∈ ΩB such that dψ(χ) = (ω1, ω2). The minimal abelian subvariety Aω of A containing ω in its tangent

space is then

Aω = {(ψ(z), z), z ∈ B} .
Indeed, the inclusion Aω ⊂ {(ψ(z), z), z ∈ B} is clear and the projection from Aω to E×E is a subvariety

of E×E containing (ω1, ω2) in its period lattice. As E is an elliptic curve without complex multiplication,

the endomorphism ring of E×E isM2(Z), therefore no strict abelian subvariety of E×E contains (ω1, ω2)
in its tangent space. This proves that the dimension of Aω is at least 2, hence the equality above. The

abelian variety Aω is canonically isomorphic to B and the projection to E ×E is an isogeny of degree ∆.

Everything is in place, and from now on, we can repeat the computation of part 7.3 of [9] to obtain the

bound of the proposition. There are only two small di�erences to be noticed : �rst, the embedding σ0 can

be real or complex, and the bound can change if σ0 is real as part 7.3 uses that σ0 is complex to improve

slightly on the bound. To avoid this issue, we consider K′ = K(i) and go back from the start with K′

instead of K. This sticks with the proof of part 7.3 as here also, an extension of degree at most 2 of K

was needed. Second, the computation of the slopes in Lemma 7.6 of [9] is slightly di�erent, but using only

that B is isogenous to E × E with degree ∆ will give the exact same bound.
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For our results on Q-curves, we will prove the following result that gives an explicit version of Serre's

surjectivity theorem, as stated by Masser-Wüstholz in [11].

Theorem 4.2. Let E be an elliptic curve de�ned over the number �eld K without complex multiplication.

We de�ne B (resp. C) a set of prime numbers p such that the image of ρE,p is included in a Borel subgroup

(resp. the normaliser of a Cartan subgroup, split or nonsplit) of GL(Ep). Then, the following inequality

holds : ∏
p∈B

p
∏
q∈C

q2

4
≤ 107[K : Q]2 (max{hF (E), 985}+ 4 log[K : Q] + 4|C| log(2))2 .

In particular, the Galois representation ρE,p is surjective for every prime number

p > 107[K : Q]2 (max{hF (E), 985}+ 4 log[K : Q])
2

not dividing the discriminant of K.

First, we prove a technical lemma to help us prove our isogeny ψ satis�es (∗).

Lemma 4.3. Let p be a prime number, V be an Fp-vector space of dimension 2 and v be a basis of V .

Then, for g ∈ GL(V ), the quadratic form

Q : x 7−→ det
v
(x, g.x)

is surjective in Fp if g is semisimple and not an homothety.

Proof. First, if g is simple, Q does not have any isotropic vector, and is therefore surjective (looking at

its expression in an orthonormal basis). In the other cases, as for every x, y ∈ V and any bases v and v′,

det
v′

(x, y) = det
v′

(v) · det
v
(x, y)

from the properties of determinant, two quadratic forms Q built from two di�erent choices of bases are

proportional. Therefore, Q is surjective if and only if it is surjective for one/any other choice of basis. We

assumed g is semisimple but not simple, therefore there is a basis v = (v1, v2) in which g is diagonal with

distinct eigenvalues λ and µ. In this basis, the expression of Q is simply, for x = x1v1 + x2v2,

Q(x) = (µ− λ)x1x2,

hence Q is surjective.

We can now prove Theorem 4.2.

Proof. We begin with the �rst inequality and will explain afterwards how it implies the e�ective version

of Serre's surjectivity theorem. Let us �x K′ an extension of K of degree 2|C| such that for every q ∈ C,
the image of ρE,q restricted to Gal(K/K′) is included in a Cartan subgroup. De�ne nB =

∏
p∈B p and

nC =
∏
q∈C q. Then the proposition to prove is equivalent to

nBn
2
C ≤ 107[K′ : Q]2

(
(max{hF (E), 985}+ 4 log[K′ : Q]

)2
.

Therefore, we only need to �nd an abelian variety B and an isogeny ψ : B → E×E both de�ned over K′,
and such that ψ has degree nBn

2
C , satisfying the hypothesis (∗) of Proposition 4.1. For every p ∈ B, we

choose Cp an Fp-line �xed by ρE,p and de�ne Gp = Cp×E[p], which is a subgroup of E[p]2 of cardinality

p3. For every q ∈ C, we choose an element gq of the associated Cartan subgroup which is not an homothety

(notice such an element is always semisimple). Then, we consider Gq := {(x, gq · x), x ∈ E[q]} ⊂ E[q]2.
This group is of cardinality q2 and stable by the diagonal action of the Cartan subgroup (as Cartan

subgroups are commutative), hence de�ned over K′ in E × E by hypothesis. We now consider

G =
⊕
p∈B

Gp ⊕
⊕
q∈C

Gq ⊂ E[nBnC ]2.
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This is a group of order n3Bn
2
C , de�ned over K′ by hypothesis. We consider the quotient abelian variety

B = (E×E)/G and the quotient morphism ϕ : E×E → B with kernel G. As G is contained in E[nBnC ]
2,

there exists an isogeny ψ : B → E × E such that

ψ ◦ ϕ = [nBnC ],

that is, the multiplication by nBnC on E×E. This isogeny is de�ned overK′, and by degree multiplicativity,
we �nd deg(ψ) = nBn

2
C . Hence, we only have to prove now that ψ satis�es (∗).

Let σ : K′ → C be an embedding. We now prove hypothesis (∗) for ψ and σ. For this embedding,

E is naturally identi�ed with the quotient of its tangent space tE,σ by its period lattice ΩE,σ (we then

omit further reference to σ here). If π is the projection tE × tE → E × E, the lattice Ω = π−1(G) of τ2E
de�nes a quotient abelian variety tE × tE/Ω that is isomorphic to B. With these embeddings, we have

the commutative diagram

tE × tE
Id //

π

��

tE × tE
nBnC //

��

tE × tE

π

��
E × E

ϕ // B
ψ // E × E.

Therefore, it remains to prove that Ω′ = nBnCΩ ⊂ ΩE × ΩE contains a basis of ΩE . Choose a basis

(e1, e2) of ΩE .
Now, consider the image of Ω′ in (ΩE/pΩE)

2 for p ∈ B ∪ C. Notice that after multiplication by 1/p,
this image identi�es with a subgroup of ((ΩE/p)/(ΩE))

2, that is, E[p]2. From the de�nitions of Ω and

Ω′, the image of Ω′/p in E[p]2 is ((nBnC)/p)Gp = Gp (the prime-to-p part of Ω is mapped to Ω2
E when

multiplied by nBnC/p). A canonical Fp-basis of E[p]2 is π(e1/p, e2/p) and we now identify E[p] to Fp2
with this choice of basis.

For p ∈ B, we choose a nonzero vector (a, b) ∈ Cp. Then, we �x (c, d) such that ad − bc = 1
mod p. Therefore, the vector ((a, b), (c, d)) belongs to Gp and is of determinant 1 in the canonical basis

π(e1/p, e2, p).
For q ∈ C, by Lemma 4.3, we can choose x ∈ E[q] such that detπ(e1/q,e2,q)(x, gq · x) = 1. Therefore,

the subgroup Gq of E[q]
2 contains an element of determinant 1 in the canonical basis π(e1/q, e2, q).

We just proved that for every p ∈ B, there exists a matrix γp =

(
a b

c d

)
∈ SL2(Fp) such that

(
a b

c d

)
·
(
e1
e2

)
∈ Ω′/(pΩE)2

The specialisation morphism SL2(Z)→
∏
p∈B∪C SL2(Z/pZ) is known to be surjective ([24], Chapter XIII,

Exercise 18) , therefore there exists γ ∈ SL2(Z) such that

γ ·
(
e1
e2

)
∈ Ω′ + (nBnC)Ω

2
E ⊂ Ω

′,

because Ω contains Ω2
E . Such an element γ ·(e1, e2) is by construction a basis of ΩE , therefore Ω

′ contains
a basis of ΩE . This concludes the proof of the �rst inequality of the theorem.

Now, this result implies the surjectivity theorem in the following way : take p a prime number such that

ρE,p is not surjective, not dividing the discriminant of K. Then, the image of ρE,p is included in a Borel

subgroup, the normaliser of a Cartan subgroup, or an exceptional subgroup. In the Borel case, we obtain

p ≤ 107[K : Q]2 (max{hF (E), 985}+ 4 log[K : Q])
2
. In the Cartan case, we obtain p ≤ 2 · 103.5[K :

Q] (max{hF (E), 985}+ 4 log[K : Q] + 4 log(2)). In the exceptional case, we have p ≤ 30[K : Q] + 1 by

Proposition 1.2. The maximum of these three bounds is obtained for the Borel case, and it gives us the

e�ective surjectivity theorem.

Remark 4.3.1. Some papers, such as [5], give other (nonexplicit) versions of Serre's surjectivity theorem,

but based on the conductor NE of E. Note however, that by [5], Theorem 3 (which assumes the degree

conjecture...), our result implies that for E de�ned over Q, one would have surjectivity for p� log(NE)
2.
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This gives us our direct application for Q-curves.

Corollary. Let E be a Q-curve without complex multiplication, of squarefree degree d(E) over a quadratic

�eld K.

If PρE,p is reducible for some prime p not dividing d,

d(E)p ≤ 107[K : Q]2(max{hF (E), 985}+ 4 log[K : Q])2

If PρE,p has image in the normaliser of a Cartan subgroup for some prime p not dividing d,

d(E)p2 ≤ 4 · 107[K : Q]2(max{hF (E), 985}+ 4 log(2[K : Q]))2.

We can now state the main theorem in detail.

Theorem 4.4. Let K be an imaginary quadratic �eld of discriminant −DK . For every strict Q-curve E

de�ned over K with degree d(E) and every prime number p coprime with d(E),

• If p ≥ 2 · 1013, the representation PρE,p is not included in a Borel subgroup.

• If p ≥ 107 the representation PρE,p is not included in the normaliser of a split Cartan subgroup.

• If p ≥ max(107, 50D
1/4
K log(DK)) and does not divide DK , the representation PρE,p is not included

in the normaliser of a nonsplit Cartan subgroup.

• If p ≥ 67, the representation PρE,p is not included in an exceptional subgroup.

Proof. The exceptional case is solved by Proposition 1.2. For the other cases, we use Propositions 2.3, 2.6

and 2.8 to know that with the given bounds, if PρE,p is included in one of the three types of maximal

subgroups, j(E) ∈ OK . Consider now d0 the smallest prime divisor of d. We use Runge's method in

X0(d0)(OK) (Proposition 3.7) to obtain

log |j(E)| ≤ 2π
√
d0 + 6 log(d0) + 8.

As j(E) ∈ OK and K is imaginary quadratic, hF (E) ≤ (log |j(E)|)/12 + 3 by (7). Computing with the

previous Corollary and the Runge bound above, we �nally obtain the theorem.

Some comments are in order about the di�erent steps of the proof here. First, about Mazur's method,

we suspect that it can be used for any central Q-curve over any number �eld in Borel and split Cartan

cases, giving bounds depending only on the degree of this �eld (but maybe growing exponentially in this

degree). Indeed, both proofs in theses cases mainly rely on the fact that X0(d) → X(1) is unrami�ed at

∞ and rami�ed at 0, but it is actually rami�ed at every cusp of X0(d) di�erent from∞, so we could make

use of all Atkin-Lehner involutions group and obtain a formal immersion satisfying the good conditions.

Furthermore, all the theoretical work is done for the analysis of components group by Proposition 1.11,

although a precise equivalent of Lemma 2.2 for a general number �eld is likely to be hard to write. About

the nonsplit Cartan case, it is not completely clear for now what happens, but Ellenberg's trick might be

applied for some (but not all) bigger number �elds.

Regarding Runge's method, because for a central Q-curve of degree d, with d having r prime factors,

the number of rational cusps of X0(d) is 2r, which is also the expected degree of the �eld of de�nition

K of E. Therefore, for Runge's condition to hold, we need K not to be a totally real number �eld. The

exponent on d we should expect to bound log |j(E)| is not known for now (but it may be 1/2 as in the

quadratic case).

We would also like to point out that up until now, if we know about in�nite families of quadratic Q-
curves of degrees 2,3,5,7 or 11 over quadratic �elds (see for instance [10] for parametrisations), examples

on bigger �elds turn out to be more rare. Of course, for reasons of genus, when the degree d is too large,

there is only a �nite number of Q-curves of degree d but the limit has not been precisely computed yet.
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5 Appendix : Analytic estimates of weighted sums of L-functions

The aim of this appendix is to prove Proposition 2.8. We �x an imaginary quadratic �eld K of discrim-

inant −D and χK (often shortened in χ) its quadratic character. Thanks to Proposition 2.7 (we use

the same notations), we only have to �nd, for every p > 50D1/4 log(D) not dividing D, an eigenform

f ∈ S2(Γ0(p))new such that wp · f = f and L(f ⊗ χK , 1) 6= 0.
For every positive integers m,N and every vector space V ⊂ S2(Γ0(N)), we denote by am and Lχ the

linear forms de�ned on V by

am : f 7→ am(f), Lχ : f 7→ L(f ⊗ χK , 1).

We recall that S2(Γ0(N))+ (resp. S2(Γ0(N))−)) is the space of modular forms of S2(Γ0(N)) such that

wN · f = f (resp. wN · f = −f). We also denote by S2(Γ0(N))old (resp. S2(Γ0(N))new) the space

of old (resp. new) modular forms of S2(Γ0(N)). The scalar product of am and Lχ on a vector space

V ⊂ S2(Γ0(N)) is

(am, Lχ)V :=
∑
f∈FV

am(f)L(f ⊗ χK , 1),

where FV is any Petersson-orthonormal basis of V . This will be shortened in (am, Lχ)N (resp. (am, Lχ)
new
N ,

(am, Lχ)
old
N , (am, Lχ)

+,new
N , (am, Lχ)

+
N , (am, Lχ)

−
N ) for V = S2(Γ0(N)) (resp.

S2(Γ0(N))new, S2(Γ0(N))old, S2(Γ0(N))+,new, S2(Γ0(N))+, S2(Γ0(N))−), and similarly with (am, an)V .
We will prove the following result which immediately implies Proposition 2.8.

Proposition 5.1. For every imaginary quadratic �eld K with discriminant −D and Dirichlet character

χ, and every prime number p > 50D1/4 log(D) not dividing D,

(a1, Lχ)
+,new
p2 6= 0.

For any positive integer M and any eigenform g ∈ S2(Γ0(M)), the L-function of g admits a meromor-

phic continuation over C and

L(g, 1) =

{
4π
∫+∞
1/
√
M
g(iu)du if g|wM = −g.

0 if g|wM = g
(8)

Moreover, if f is a modular form in S2(Γ0(N)) with N prime to D, f ⊗ χK ∈ S2(Γ0(D2N)) and

(f ⊗ χ)|wD2N
= χ(−N)(f|wN ⊗ χ) (9)

(for more details, see ([21], § I.5)). Hence, for an eigenform f ∈ S2(Γ0(p2))+, the sign of the functional

equation of L(f ⊗ χ) is −χ(−p2) = 1 because χ(−1) = −1 : this is where we need K to be imaginary to

ensure that the twisting actually changes the sign of the functional equation for L. In the real quadratic

case, we expect from Birch and Swinnerton-Dyer conjecture that there is no nontrivial rank zero quotient

of the jacobian of Xnonsplit(p
2), because J(Xnonsplit(p

2)) is isogenous over Q to J0(p
2)+,new [19]. In our

situation, twisting reverts the sign of the functional equation, so (a1, Lχ)
−
p2 = 0 and

(a1, Lχ)
new
p2 = (a1, Lχ)

+,new
p2 = (a1, Lχ)p2 −

p

p2 − 1
(a1, Lχ)p +

χ(p)

p2 − 1
(ap, Lχ)p (10)

from Lemma 3.12 of [7] and its proof. The idea is that (a1, Lχ)p2 is close to 4π in modulus when p is large

enough compared to D, whereas the remaining term is close to 0. From (10), we only need to estimate

(am, Lχ)N for m = 1, N = p2 (case (1)), m = 1, N = p (case (2)) and m = N = p (case (3)) with p ≥ 7
prime not dividing D (the reader should mind throughout the estimates).

For an estimate of (am, Lχ)N , we will use Petersson's trace formula ([22], Proposition 14.5) in a

restricted version of Akbary ([29], Theorem 3). For this, we de�ne for every integersm,n, c the Kloosterman

sum

S(m,n; c) :=
∑

v∈(Z/cZ)∗
e2iπ(mv+nv)/c

where for every v ∈ (Z/cZ)∗, v is the inverse of v.

Next proposition is a reformulation of Akbary's trace formula in weight 2 case.
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Proposition 5.2. Let m,n,N be three positive integers and ε = ±1. We have

1

2π
√
mn

(am, an)
+
N = δmn−2π

∑
c>0
N |c

c−1S(m,n; c)J1

(
4π
√
mn

c

)

− 2πε√
N

∑
d>0

(d,N)=1

d−1S(n,mNφ(d)−1; d)J1

(
4π
√
mn

d
√
N

)
,

where δ is the Kronecker symbol, J1 is the Bessel function of the �rst kind of order 1, (d,N) is the greatest
common divisor of d and N and φ is the Euler totient function.

Notice that summing Akbary's formula for ε = 1 and −1 gives Petersson's trace formula. As a

normalized eigenform f ∈ S2(Γ0(N)) contributes for zero in (am, Lχ) if f|wN = χ(−N)f by (9),

(am, Lχ)N = (am, Lχ)
ε
N with ε = −χ(−N) = χ(N). For every f ∈ S2(Γ0(N))ε, we have from (8)

Lχ(f) = 4π

∫ +∞

1/(D
√
N)

(f ⊗ χ)(iu)du = 2
+∞∑
n=1

an(f)χ(n)

n
e
− 2πn
D
√
N (11)

For convenience, we use throughout this section the notation

x =
2π

D
√
N
.

From (11), we get (am, Lχ)N = 2
∑+∞
n=1

χ(n)
n e−nx(am, an)

ε
N hence by Akbary's formula

(am, Lχ)N = 4πχ(m)e−mx − 8π2
√
m

(
A(m,χ,N) +

ε√
N
B(m,χ,N)

)
(12)

with

A(m,χ,N) :=
+∞∑
n=1

χ(n)√
n
e−nx

∑
c>0
N |c

c−1S(m,n; c)J1

(
4π
√
mn

c

)

B(m,χ,N) :=
+∞∑
n=1

χ(n)√
n
e−nx

∑
d>0

(d,N)=1

d−1S(n,mNφ(d)−1; d)J1

(
4π
√
mn

d
√
N

)

This is where our approach starts to di�er from [8] : this exact formula allows better results in general. It

can be readily checked with help of the Weil bounds (Proposition 5.3) and the classical bounds for Bessel

functions that these double sums converge absolutely, so we can switch the terms. We obtain

A(m,χ,N) =
∑
c>0
N |c

SA(c)
c

with SA(c) =
+∞∑
n=1

χ(n)√
n
S(m,n; c)J1

(
4π
√
mn

c

)
e−nx. (13)

B(m,χ,N) =
∑
d>0

(d,N)=1

SB(d)
d

with SB(d) =
+∞∑
n=1

χ(n)√
n
S(n,mNφ(d)−1; d)J1

(
4π
√
mn

d
√
N

)
e−nx. (14)

These sums are the ones we are going to bound in two di�erent ways, for every N |c and every d prime

to N . Let us recall the Weil bounds on Kloosterman sums.
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Proposition 5.3. For every positive integers m,n, c, we have

|S(m,n; c)| ≤ (m,n, c)1/2τ(c)
√
c

with τ(c) the number of positive divisors of c. Furthermore, if for an odd prime p, we have c = pαc′ with
(p, c′) = 1 and α ≥ 1,

|S(m,n; c)| ≤ 2τ(c′)(m,n, c)1/2
√
c

and the latter bound is replaced by τ(c′)(m,n, c)1/2
√
c′ when p divides m but not n (or the reverse) and

τ(c/p)(m,n, c)1/2
√
c when p divides m and n.

Proof. By multiplicativity of Kloosterman sums, this only needs to be checked for c = pα. If p|nm, this

boils down to Ramanujan sums ([22], (3.2) and (3.3)). If α ≥ 2, there is an elementary proof ([22], Corollary

11.12), and if α = 1 and (p,mn) = 1, this is a famous result of Weil ([22], Theorem 11.11).

Remark 5.3.1. What we gain from the second bound is 2τ(c′) instead of τ(c), which will be an advantage

for the case (1) (m = 1, N = p2) and the third and fourth bounds will be of use in case (3) (m = N = p)

for the next proposition.

Proposition 5.4. For every N |c and every d prime to N ,

|SA(c)| ≤
2D
√
Nτ(c/N)√
c

, |SB(d)| ≤
D
√
mτ(d)√
d

in cases (1), (2) and (3). These bounds will be called �Weil-induced bounds�.

Proof. For every x ∈ R, we have |J1(x)| ≤ x/2. By triangular inequality, this gives

|SA(c)| ≤
2π
√
m

c

+∞∑
n=1

|S(m,n; c)|e−nx, |SB(d)| ≤
2π
√
m

d
√
N

+∞∑
n=1

|S(n,mNφ(d)−1; d)|e−nx.

In cases (1) and (2), m = 1 so |S(m,n; c)| ≤ 2τ(c/N)
√
c and |S(n,mNφ(d)−1; d)| ≤ τ(d)

√
d by Weil

bounds, as (d,N) = 1. But

+∞∑
n=1

e−nx =
1

ex − 1
≤ 1

x
=
D
√
N

2π

so we get the upper bounds for SA and SB . In case (3), SB gives the upper bound by the same process

as (m, d) = 1. For SA, we use the third and fourth bounds of previous proposition and get

SA(c) ≤
2π
√
p

c

∑
(n,p)=1

τ

(
c

p

)√
c

p
e−nx +

2π
√
p

c

+∞∑
n=1

τ

(
c

p

)
√
pc e−pnx

≤ 2πτ(c/p)

(ex − 1)
√
c
+

2πpτ(c/p)

(epx − 1)
√
c
≤

2D
√
pτ(c/p)
√
c

with the same estimates.

We will now obtain other bounds for |SA| and |SB | which will happen to be really sharper for �small�

c and d. They rely on an Abel transform on the sums de�nining SA and SB . For this, we use the following
lemma which are analogues of Gauss sums and Polya-Vinogradov inequality for the twisting terms of (13)

and (14).
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Lemma 5.5. Let c 6= D and m be three �xed positive integers and F the least common multiple of c and

D. Let χ be a quadratic Dirichlet character of conductor D. Then for every integer α,∣∣∣∣∣
F−1∑
n=0

χ(n)S(m,n; c)e2iπnα/F

∣∣∣∣∣ ≤ c√D
and the sum is zero when (α, F/(c,D)) 6= 1. With the same notations, we have

sup
K,K′∈N

∣∣∣∣∣∣
K′∑
n=K

χ(n)S(m,n; c)

∣∣∣∣∣∣ ≤ 4c
√
D

π2
(log(Dc) + 1.5).

Remark 5.5.1. For c = 1 (no Kloosterman sum), this is one of the versions of Polya-Vinogradov inequality

for Dirichlet characters (weaker than [27]). For D = 1 (no Dirichlet character), this is an analogous

inequality for Kloosterman sums that we could not �nd in the literature but should exist in sharper

versions.

Proof. We de�ne c′ = c/(c,D) and D′ = D/(c,D). By de�nition of Kloosterman sums,

F−1∑
n=0

χ(n)S(m,n; c)e2iπnα/F =
∑

v∈(Z/cZ)∗
e2iπmv/c

F−1∑
n=0

χ(n)e2iπn(v/c+α/F ) (15)

=
∑

v∈(Z/cZ)∗
e2iπmv/c

(
D−1∑
n′=0

χ(n′)θn
′

)c′−1∑
`=0

θ`D

 (16)

with θ = exp(2iπ(v/c+ α/F )), because χ only depends on n mod D. As θD is a c′-th root of unity, the

right term of this equality is nonzero if and only if θD = 1, that is if and only if

F |(D′v + α)D ⇐⇒ c′|D′v + α⇐⇒ v = −(D′)−1α mod c′.

Let Iα be the set of the invertible v ∈ (Z/cZ)∗ congruent to (D′)−1α mod c′. Notice �rst that if (α, c′) 6=
1, Iα = ∅, hence the whole sum is zero. If (α, c′) = 1, Iα 6= ∅ and we have

F−1∑
n=0

χ(n)S(m, kn; c)e2iπnα/F = c′
∑
v∈Iα

e2iπmv/c
D−1∑
n′=0

χ(n′)θn
′
.

The inner sum is a Gauss sum on χ as θ is a D-th root of unit. More precisely, if we de�ne G(χ) =∑D−1
n=0 χ(n)e

2inπ/D, by the usual properties of Gauss sums, |G(χ)| =
√
D and

F−1∑
n=0

χ(n)S(m,n; c)e2iπnα/F = c′
∑
v∈Iα

e2iπmv/cχ

(
D′v + α

c′

)
G(χ).

Now, if (D′, α) 6= 1, χ((D′v + α)/c′) = 0 for all v ∈ Iα so the sum is zero. In the general case, the

cardinality of Iα is at most (c,D), so∣∣∣∣∣
F−1∑
n=0

χ(n)S(m,n; c)e2iπnα/F

∣∣∣∣∣ ≤ c′(c,D)
√
D = c

√
D.

We now prove the second inequality, using Polya-Vinogradov approach. Take K,K′ any integers. By

discrete Fourier transform, as χ(n)S(m,n; c) is F -periodic in n, we have

K′∑
n=K

χ(n)S(m,n, c) =
1

F
·
F−1∑
γ=0

F−1∑
β=0

χ(β)S(m,β; c)e2iπγβ/F
K′∑
n=K

e−2iπγn/F

 .
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The interest of the previous step of the lemma is now clear : we have a geometric sum on n that is easy

to bound on the right. Notice that the sum on β at γ = 0 is zero from the previous results because

(0, c′D′) 6= 1. We obtain∣∣∣∣∣∣
K′∑
n=K

χ(n)S(m,n, c)

∣∣∣∣∣∣ ≤ 1

F
·
F−1∑
γ=1

c
√
D

∣∣∣∣∣1− e−2iπγ(K′−K+1)/F

1− e−2iπγ/F

∣∣∣∣∣ ≤ c
√
D

F
·
F−1∑
γ=1

| sin(πγ(K′ −K + 1)/F )|
sin(πγ/F )

.

Hence, it only remains to prove that for every integers F ≥ 1 and K,

SK,F :=
F−1∑
γ=1

| sin(πγK/F )|
sin(πγ/F )

≤ 4F

π2
· (log(F ) + 1.5) (17)

From Lemma 2 and proof of Lemma 3 of [27], we know that for every n ∈ N and every x ∈ R,
n∑
j=1

cos(jx)

j
> − log(2)− 2

n
, (18)

AK,F :=
F−1∑
γ=1

1

sin(πγ/F )
≤ 2F

π
(log(F ) + 0.13) . (19)

Using the Fourier series expansion of | sin θ|, we have

SK,F =
2

π

F−1∑
γ=1

1

sin(πγ/F )
− 4

π

+∞∑
m=1

1

4m2 − 1

(
F−1∑
γ=1

cos(2πmKγ/F )

sin(πγ/F )

)

SK,F =
2

π
AK,F −

4

π

+∞∑
m=1

Bm,K,F
4m2 − 1

. (20)

The bound for AK,F is given by (19), to there is only Bm,K,F left to study. Suppose F is odd. For every

x ∈ [0, π/2], sin(x) = x− εxx3/6 ≥ 0 with εx ∈ [0, 1], so we have∣∣∣∣ 1

sin(x)
− 1

x

∣∣∣∣ ≤ x

6− x2 .

From this, we get

Bm,K,F = 2

(F−1)/2∑
γ=1

cos(2πmKγ/F )

sin(πγ/F )

≥ 2

(F−1)/2∑
γ=1

cos(2πmKγ/F )

πγ/F
− 2

(F−1)/2∑
γ=1

πγ/F

6− (πγ/F )2

≥ −2F

π
(log(2) + 4/(F − 1))− 2F

π

∫ π/2

0

udu

6− u2

≥ −2F

π
(0.96 + 4/(F − 1)).

Here, we use (18) for the �rst sum and a careful sum-integral comparison for the second. Finally, as∑+∞
m=1 1/(4m

2 − 1) = 1/2, we obtain from (19) and (20) the inequality

SK,F ≤
4F

π2
(log(F ) + 1.09 + 4/(F − 1)),

which gives the result when F ≥ 11, and we complete the proof by computation for F ≤ 10. The proof

works the same way for F even, except we have to take aside the term γ = F/2.
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These bounds on partial sums will give us new bounds on |SA| and |SB | that we write in the next

proposition.

Proposition 5.6. For every integers N |c and (d,N) = 1 di�erent from D, we have

|SA(c)| ≤ 6
√
Dm(log(Dc) + 1.5) |SB(d)| ≤

6
√
Dm(log(Dd) + 1.5)√

N
.

Proof. For every integer n ≥ 0, de�ne

An :=
n∑
k=1

χ(k)S(m, k; c), Bn :=
n∑
k=1

χ(k)S(k,mNφ(d)−1; d).

so that

SA(c) =
+∞∑
n=1

(An −An−1)
4π
√
mfA(n)

c
, SB(d) =

+∞∑
n=1

(Bn −Bn−1)
4π
√
mfB(n)

d
√
N

with

fA(y) =
cJ1

(
4π
√
my
c

)
4π
√
my

e−yx, fB(y) =
d
√
NJ1

(
4π
√
my

d
√
N

)
4π
√
my

e−yx.

Therefore, with the Abel transform, we have

|SA(c)| ≤
4π
√
m

c
·
+∞∑
n=1

|An| · |fA(n)− fA(n+ 1)| |SB(d)| ≤
4π
√
m

d
√
N
·
+∞∑
n=1

|Bn| · |fB(n)− fB(n+ 1)|

|SA(c)| ≤
16
√
Dm

π
Totvar(fA)(log(Dc) + 1.5) |SB(d)| ≤

16
√
Dm

π
√
N

Totvar(fB)(log(Dd) + 1.5)

from Proposition 5.5, with Totvar(fA) and Totvar(fB) the total variations of fA and fB on [0,+∞[. It
is clear from their expression that these two total variations are both bounded by the total variation of

J1(x)/x on [0,+∞[, which is equal to ∫ +∞

0

∣∣∣∣J2(x)x

∣∣∣∣ dx ≤ 1.1

Rounding up 16/π · 1.1 to 6, we obtain the desired bounds.

For the next estimates, we recall some standard bounds in the following lemma.

Lemma 5.7. For every integer λ ≥ 1, we have

λ∑
n=1

1

n
≤ log(λ) + 1,

λ∑
n=1

log(n)

n
≤ log(λ)2 + 1

2
,

∑
n≥λ

τ(n)

n3/2
≤ 2 log(λ) + 8√

λ
.

with τ(n) the number of positive divisors of n.

Proof. The �rst two bounds are given by sum-integral comparison. For the third one, we have

∑
n≥λ

τ(n)

n3/2
=

+∞∑
k,`=1

1k`≥λ
(k`)3/2

=

dλ/2e−1∑
k=1

+∞∑
`=dλ/ke

1

(k`)3/2
+

λ−1∑
k=dλ/2e

+∞∑
`=2

1

(k`)3/2
+

+∞∑
k=λ+1

+∞∑
`=1

1

(m`)3/2

and from this cutting-up, we get the wanted bound after a careful computation (leaving small λ aside,

but we can check the bound for them afterwards).
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Remark 5.7.1. The bound given here is the sharpest with integral coe�cients : for λ = 1, the sum is about

6.8, which is an explanation for the fact that we need to be very careful throughout the computation to

obtain the coe�cient 8 above.

We can �nally make the estimates for A(m,χ,N) and B(m,χ,N).

Proposition 5.8. With the same notations as before, we have

|A(m,χ,N)| ≤ min

(
14D

N
,

√
Dm

N

(
9 log2(D) + 6 log(D) log(N)

))
|B(m,χ,N)| ≤ min

(
7D
√
m,

√
Dm√
N

(
9 log2(D) + 12 log(D) log(N) + 6 log2(N)

)
+
τ(D)

√
m√

D

)
Now, we �nish the proof of Proposition 5.1.

Proof. Let λ ≥ 1 be a parameter. To bound SA(Nc), we will choose the "Abel-transform bound" for c < λ

and the Weil-induced bound for c > λ. This gives us

|A(m,χ,N)| =

∣∣∣∣∣∑
c>0

SA(Nc)
Nc

∣∣∣∣∣ ≤ 6
√
Dm

bλc∑
c=1

log(DNc) + 1.5

Nc

+ 2D
√
N

 ∑
c>dλe

τ(c)

(Nc)3/2


≤ 6
√
Dm

N

(
(log(DN) + 1.5)(1 + log(λ)) +

log(λ)2 + 1

2

)
+

2D

N

(
2 log(λ) + 8√

λ

)
Notice �rst that if we choose λ < 1, this reduces to using only the Weil bound an therefore we get

|A(m,χ,N)| ≤ 2D

N

+∞∑
c=1

τ(c)

c3/2
≤ 14D

N

We choose λ = D/e7/2 and develop log(λ) in the expression above. We obtain the bound

|A(m,χ,N)| ≤
√
Dm

N
(9 log(D)2 + 6 log(D) log(N)).

Actually, these are the dominant terms of the expression for chosen λ, and it is not hard to check that

the remainder is negative. If D < e4, the bound also holds. Notice it improves the Weil bound only when

D is large enough (D > 1000 is a good order of magnitude). We obtain the Weil bound similarly for

B(m,χ,N) and for λ > D, we have

|B(m,χ,N)| ≤ 6
√
Dm√
N

(
(log(D) + 1.5)(1 + log(λ)) +

log(λ)2 + 1

2

)
+D
√
m · 2 log(λ) + 8√

λ
+
τ(D)

√
m√

D
.

The last term in the sum comes from the fact we only have a Weil bound for d = D. Similarly, calculating

the Weil-only bound and then choosing λ = DN/e4, we obtain the desired result.

Adding these bounds together, we have the following proposition.

Proposition 5.9. Let K be the imaginary quadratic �eld of discriminant −D and Dirichlet character χ.

For every prime number p > 50D1/4 log(D) not dividing D, (a1, Lχ)
+,new
p2 6= 0.

Proof. Thanks to formulas (10) and (12), we have

|(a1,Lχ)
+,new

p2
|

4π ≥ (e−2π/(Dp) − p
p2−1

− 1
p2−1

) −2π
(
|A(1, χ, p2|+ p|A(1,χ,p)|

p2−1
+ |A(p,χ,p)|

p2−1

)
−2π

(
|B(1,χ,p2|

p +
√
p|B(1,χ,p)|
p2−1

+ |B(p,χ,p)|
p2−1

)
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The �rst term is larger than 19/20 because D ≥ 3 and p ≥ 50 · 31/4 log(3) ≥ 72. Now, putting together

the Abel-transform bounds from Proposition 5.8, we obtain

|(a1, Lχ)+,newp2 |
4π

≥ 19

20
−
√
D

p2

(
294 log2(D) + 416 log(D) log(p) + 227 log2(p)

)
− 2πτ(D)√

D

(
1

p
+

1

p− 1

)
and after computation, we �nd that for D ≥ 15, p ≥ 50D1/4 log(D), (a1, Lχ)

+,new
p2 6= 0. For D < 15,

we have to recover this results with some more computation : when D = 7, 8 or 11, this is possible by

using Weil bounds for all six terms except for |B(1, χ, p2)|. When D = 3 or 4, we can obtain it back from

computations we can �nd in [1]. More precisely, we mention this article provides sharp estimates for small

discriminants (p ≥ 61 for D = 4 and p ≥ 97 for D = 8 in Lemma 14), hence we suggest using it in these

cases rather than our own bound.

An equivalent of Akbary's trace formula for (am, an)
wM
N withM any divisor ofN such that (M,N/M) =

1 (Akbary deals withM = N) could allow us to give estimates of (a1, L)
wp,p−new
dp2 with prime p and d > 1

by the same methods, and thus prove that the jacobian of X0(d)×Xnonsplit(p) (described in [19]) has a

rank zero quotient when p is large enough . This would extend a result of [6] (where the case g(X0(d)) = 0
is considered) to some more cases.
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