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Abstract We propose a nonlinear multiscale decomposition

of signals defined on the vertex set of a general weighted

graph. This decomposition is inspired by the hierarchical

multiscale (BV,L2) decomposition of Tadmor, Nezzar, and

Vese (Multiscale Model. Simul. 2(4):554–579, 2004). We

find the decomposition by iterative regularization using a

graph variant of the classical total variation regularization

(Rudin et al, Physica D 60(1–4):259–268, 1992). Using

tools from convex analysis, and in particular Moreau’s iden-

tity, we carry out the mathematical study of the proposed

method, proving the convergence of the representation and

providing an energy decomposition result. The choice of

the sequence of scales is also addressed. Our study shows

that the initial scale can be related to a discrete version of

Meyer’s norm (Meyer, Oscillating Patterns in Image Pro-

cessing and Nonlinear Evolution Equations, 2001) which

we introduce in the present paper. We propose to use the re-

cent primal-dual algorithm of Chambolle and Pock (J. Math.

Imaging Vis. 40:120–145, 2011) in order to compute both

the minimizer of the graph total variation and the corre-

sponding dual norm. By applying the graph model to digital

images, we investigate the use of nonlocal methods to the

multiscale decomposition task. Since the only assumption

needed to apply our method is that the input data is living on

a graph, we are also able to tackle the task of adaptive multi-

M. Hidane (�) · O. Lézoray · A. Elmoataz

ENSICAEN, CNRS, GREYC Image Team, Université de Caen

Basse-Normandie, 6 Boulevard Maréchal Juin,

14050 Caen Cedex, France

e-mail: moncef.hidane@unicaen.fr

O. Lézoray

e-mail: olivier.lezoray@unicaen.fr

A. Elmoataz

e-mail: abderrahim.elmoataz-billah@unicaen.fr

scale decomposition of irregularly sampled data sets within

the same framework. We provide in particular examples of

3-D irregular meshes and point clouds decompositions.

Keywords Signal decomposition · Multiscale

representations · Nonlocal total variation · Weighted

graphs · Hierarchical models

1 Introduction

Our main concern in this paper is to introduce a multiscale

representation for data sets defined on the vertex set of a

general undirected graph. Before entering into technical de-

tails, we introduce the motivation and background for our

work.

1.1 Multiscale Representations in Image Analysis

The importance of multiscale representations in the field of

image analysis stems from the fact that, generally, natural

images contain features of different scales. Beside edges

which are important for image understanding, these features

range from homogeneous regions to oscillatory patterns of

texture and noise. As a consequence, a mathematical tool for

providing adaptive representations of different image fea-

tures is a major step towards higher level vision tasks.

A unified framework for the multiscale representation of

digital images is the scale-space paradigm (see [42] and ref-

erences therein). A scale-space representation of an image

f : Ω ⊂ R
2 → R embeds f in a family {Ttf : Ω → R,

t ≥ 0}. As parameter t increases, images Ttf get smoother,

starting from T0f = f . Such scale-scale representations are

obtained by imposing a set of axioms on the operators Ti [1].
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Recently, inverse scale-space representations have been

introduced in [32, 37]. These representations embed an orig-

inal image f : Ω ⊂ R
2 → R in a family {Ttf : Ω → R,

t ≥ 0} such that T0f = 0 and limt→∞ Ttf = f . In compar-

ison with the standard scale-space theory, the order is re-

versed: the representation starts with a constant image and

then moves toward the original data. However, the differ-

ence between the two approaches is not limited to the or-

der in which the original data is recovered. A deeper differ-

ence comes from the formulation of the problem. While the

scale-space paradigm is formulated directly in the language

of partial differential equations, the inverse scale-space idea

comes from a variational point of view.

A related but different representation was proposed in

[39, 40] based on total variation (TV) regularization [36].

This time, the representation embeds f : Ω ⊂ R
2 → R in

a sequence {Tnf : Ω → R, n ≥ 0} such that T0f = 0 and

limn→∞ Tnf = f . In this setting, one minimizes the Rudin-

Osher-Fatemi (ROF) functional

E(u;f ) = λ

∫

Ω

|∇u| + 1

2
‖f − u‖2, (1)

where f : Ω ⊂ R
2 → R is a noisy image,

∫

Ω
|∇u| denotes

the TV seminorm, and the minimization is carried over the

space of functions of bounded variations [12]. As pointed

out by Meyer in [28], image denoising leads to image de-

composition: the original image f is decomposed into a part

u that extracts edges and a part v = f − u that contains tex-

ture and/or noise. It yields to the one scale decomposition

f = u + v. (2)

The scalar λ in (1) is then viewed as a parameter dictat-

ing the separation of scales. In [39], Tadmor, Nezzar, and

Vese extend the one scale decomposition (2) to a multiscale

hierarchical representation by iteratively decomposing the

successive residuals. This idea is the starting point of our

present work.

1.2 Graph Representation of Discrete Data

We are interested in this paper in data sets having an under-

lying graph structure. Such a graph structure can be naturally

present in the data under consideration (e.g., with square lat-

tices), or it can be explicitly constructed (e.g., with proxim-

ity graphs). In both cases, the resulting graph encodes pair-

wise similarities between data instances. Those similarities

are in turn used to generate more global descriptions of the

underlying data. The pair represented by the data and the

associated graph is called a graph-signal.

Adopting a graph-signal model for digital images leads

to the so-called nonlocal methods (see [7, 20, 23] and refer-

ences therein).

We also use in this paper the graph-signal model to han-

dle data defined on irregularly shaped domains as well as

scattered data points. For such data sets, the adaption of clas-

sical multiscale methods such as those based on wavelets is

not straightforward. We show that as soon as a graph struc-

ture can be associated with the data, an efficient multiscale

representation can be obtained. In particular, we apply our

method to generate multiscale representations of 3-D trian-

gular meshes and point clouds.

The model for the rest of the paper is a weighted graph

G = (V ,E,w) consisting of a vertex set V = {1, . . . n}, an

edge set E ⊆ V × V and a nonnegative symmetric weight

function w : E → R
+: w(i, j) = w(j, i) for all (i, j) ∈ E.

The quantity w(i, j) represents a similarity or proximity

measure between the two vertices i and j . This measure is

usually computed as a decreasing transformation of a prior

distance measure. The graph structure can be encoded by its

(weighted) adjacency matrix W ∈ R
n×n defined by

Wi,j =
{

w(i, j) if (i, j) ∈ E,

0 otherwise.
(3)

In the sequel, the symbol Wi,. is used to denote the ith row,

while W.,j denotes the j th column of a matrix W . The trans-

pose of a vector x is denoted by x⊺.

1.3 Contributions

In this work, we provide a general tool to generate adaptive

multiscale representations of data defined on the vertex set

of a general weighted graph. The local similarities encoded

by the graph structure are turned into a multiscale descrip-

tion by adopting a variational point of view. More precisely,

we formulate a graph version of the classical TV regular-

ization and use it to extract successive layers1 in the spirit

of [39]. The mathematical study of the proposed represen-

tation is carried out. In particular, the convergence towards

the input data is proved, and an energy decomposition result

is stated.

The issue concerning the choice of the first scale param-

eter is fully addressed. Our study shows that this quantity is

related to a discrete version of Meyer’s norm [28], that we

extend to weighted graphs. We show that the recent primal-

dual algorithm of Chambolle and Pock can be used in order

to compute this norm.

We finally give advice regarding the choice of the graph

structure and the weighting function and apply our approach

to generate multiscale representations of digital images, 3-D

triangular meshes and point clouds.

1.4 Outline

The paper is organized as follows. In Sect. 2, we recall facts

from convex analysis needed for the mathematical study of

1A very preliminary version of this work was published in [24].
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the proposed method. Section 3 formulates the graph variant

of TV regularization. Different perspectives concerning this

approach are outlined and the minimization of the functional

is discussed. The multilayered representation is presented

in Sect. 4, where the principle is given, the mathematical

study carried out, and the link between the computation of

the first scale and a discrete weighted version of Meyer’s

norm is drawn. Section 5 addresses the computation of the

latter norm using the recent primal-dual algorithm of [13].

We provide numerical experiments in Sect. 6 and conclude

in Sect. 7.

2 Notations and Facts from Convex Analysis

We recall in this section some results that will help us carry

out the mathematical study of our method. In particular,

we review some concepts from convex analysis including

the notion of a proximity operator introduced in [30] and

popularized in signal processing since [18]. A detailed ac-

count about proximity operators can be found in [18]. For

the use of proximity operators in splitting methods we re-

fer the reader to [17] and references therein. Further details

about convex analysis in the finite-dimensional setting can

be found e.g. in [5, 25].

Let H be a finite-dimensional vector space equipped with

a scalar product 〈., .〉. The associated norm is denoted by

‖.‖ =
√

〈., .〉. A function f : H →] − ∞,+∞] is said to be

proper if its domain, dom(f ) := {x ∈ H : f (x) < +∞}, is

nonempty. The function f is said to be convex if its epi-

graph, epi(f ) := {(x, a) ∈ H × R : f (x) ≤ a}, is convex

in H × R, and lower semicontinuous if epi(f ) is closed in

H ×R. The set of all proper convex and lower semicontinu-

ous functions from H to ] − ∞,+∞] is denoted by Γ0(H).

Let C denote a nonempty closed convex subset of H . The

indicator function of C, ιC , is defined for all x ∈ H by

ιC(x) =
{

0 if x ∈ C,

+∞ otherwise.
(4)

Notice that ιC ∈ Γ0(H).

For f ∈ Γ0(H) and z ∈ H , Moreau showed in [30] that

the function x ∈ H �→ 1
2
‖x − z‖2 + f (x) achieves its in-

fimum at a unique point called proximity operator of f at

point z and denoted by proxf z:

proxf z = argmin
x∈H

1

2
‖x − z‖2 + f (x). (5)

If f = ιC , then one recovers the definition of the convex

projection operator denoted by proj:

proxιC
z = proj

C

z. (6)

The notion of proximity operator thus generalizes the con-

cept of projection onto nonempty closed convex sets. It leads

to Moreau’s identity (14) which in turn generalizes the rep-

resentation of a Hilbert space as the direct sum of a closed

subspace and its orthogonal complement [31].

The conjugate of f ∈ Γ0(H) is the function f ∗ ∈ Γ0(H)

defined for all y ∈ H by

f ∗(y) = sup
x∈H

{

〈x, y〉 − f (x)
}

. (7)

The conjugate of ιC is the support function of C, denoted

by σC :

ι∗C(y) = sup
x∈C

〈x, y〉 = σC(y). (8)

The conjugate of a norm ‖.‖ is the indicator of its dual norm

‖.‖∗ unit ball:2

‖.‖∗(y) = ι{‖.‖∗≤1}(y), (9)

where the dual norm ‖.‖∗ is defined for all x ∈ H by ‖x‖∗ =
sup‖y‖≤1〈x, y〉. The following holds for all f ∈ Γ0(H):

f ∗∗ = f, (10)

f (x) + f ∗(y) ≥ 〈x, y〉, for all x, y ∈ H. (11)

The subdifferential of f at point x, ∂f (x), is the set of points

y such that equality holds in (11):

∂f (x) =
{

y ∈ H : f (x) + f ∗(y) = 〈x, y〉
}

. (12)

We have
⎧

⎪

⎨

⎪

⎩

infx∈H f (x) = −f ∗(0),

and

infx∈H f (x) = f (x0) ⇐⇒ 0 ∈ ∂f (x0).

(13)

Moreau’s identity, introduced in [30] and generalized in

[18], states that for all f ∈ Γ0(H) and all z ∈ H the fol-

lowing equality holds

z = proxλf z + λproxf ∗/λ(z/λ), for all λ > 0. (14)

Equation (14) leads to a whole family of decomposition

schemes parametrized by the function set Γ0(H) and the pa-

rameter λ.

3 Total Variation Based Regularization on Graphs

3.1 Norms and Operators

Let N ≥ 1 be an integer. We denote by X the set R
N and by

Y the set R
N×N . Elements of X represents signals defined

on the vertex set of a general graph. Both X and Y are en-

dowed with the usual inner products: 〈u,v〉X =
∑N

i=1 uivi

2Star as a superscript denotes the convex conjugate function while star

as a subscript denotes the dual norm.
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for u,v ∈ X and 〈p,q〉Y =
∑N

i,j=1 pi,jqi,j for p,q ∈ Y .

The associated norms are denoted by ‖.‖X and ‖.‖Y . For

simplicity of notation, we will sometimes drop the sub-

scripts X and Y when there is no possible ambiguity. We

also consider on Y the ‖.‖1,2 norm and its dual norm ‖.‖∞,2

defined for all p ∈ Y by:

‖p‖1,2 =
N

∑

i=1

∥

∥p
⊺

i,.

∥

∥

X
=

N
∑

i=1

(

N
∑

j=1

p2
i,j

)1/2

, (15)

‖p‖∞,2 = max
1≤i≤N

∥

∥p
⊺

i,.

∥

∥

X
= max

1≤i≤N

(

N
∑

j=1

p2
i,j

)1/2

. (16)

Consider a symmetric matrix W ∈ Y with nonnegative en-

tries representing the weighted adjacency matrix of a given

graph, as explained in Sect. 1.2. We associate with the ma-

trix W the first order weighted difference operator ∇w :
X → Y defined for all u ∈ X and i, j ∈ {1, . . . ,N} by

(∇wu)i,j = √
wi,j (uj − ui). (17)

The quantity ‖(∇wu)i,.‖X then represents a measure of the

local variation of the signal u at the node i.

The operator ∇w has been introduced in [6, 20, 23].

A closely related operator has been considered in the con-

text of machine learning in [44].

The adjoint of ∇w , denoted by ∇∗
w , is the unique operator

from Y to X verifying the following identity

(

∀(u,p) ∈ X × Y
)

〈∇wu,p〉Y =
〈

u,∇∗
wp

〉

X
. (18)

Its expression is given by:

(

∇∗
wp

)

i
=

N
∑

j=1

√
wi,j (pj,i − pi,j ). (19)

The divergence operator divw : Y → X is defined as divw =
−∇∗

w , namely

(divwp)i =
N

∑

j=1

√
wi,j (pi,j − pj,i). (20)

The composition of the two latter operators leads to the un-

normalized graph Laplacian Δw : X → X defined as Δw =
− 1

2
divw ◦ ∇w . Its expression is given by:

(Δwu)i =
N

∑

j=1

wi,j (ui − uj ). (21)

The properties of the unnormalized graph Laplacian have

been studied in different contexts. We recall here one spe-

cific property that will be useful for the development of our

study. For the proof, we refer the interested reader to [29]

where an overview of the properties of the unnormalized

graph Laplacian can also be found.

Proposition 1 Let Δw be the Laplacian operator associ-

ated with a given weighted graph. The smallest eigenvalue

of Δw is λ1 = 0. Furthermore, the multiplicity of 0 as an

eigenvalue is equal to the number of connected components

of the graph.

3.2 Gw Norm

In [28], Y. Meyer addressed some limitations of the ROF

model [36]. He then proposed a modified model where the

L2 norm quantifying the dissimilarity between the input and

the sought functions is replaced by the G norm. The latter

norm is defined on the G space that models signals with

large oscillations. The precise definitions and justification

for such a choice are given in [28]. An intuitive interpreta-

tion of the G norm can be gained when considering its rela-

tion to ROF model. In our finite-dimensional setting, this re-

lation will be further given in Proposition 3. Equipped with

the divergence operator in (20), we now introduce the cor-

responding concepts in our finite-dimensional setting over

graphs.

The space Gw is defined as follows

Gw = {u ∈ X : ∃p ∈ Y, u = divwp}. (22)

The Gw norm is then given by

(∀u ∈ Gw) ‖u‖Gw = inf
{

‖p‖∞,2 : p ∈ Y, divwp = u
}

.

(23)

For μ > 0, G
μ
w denotes the closed ball

Gμ
w =

{

u ∈ Gw : ‖u‖Gw ≤ μ
}

. (24)

We note that a discrete version of Meyer’s space and norm

were already introduced in [3] based on the discretization

of the continuous differential operators involved in the ROF

model. An analogue of Proposition 3 was given there. Our

version has several advantages. It allows to take account of

nonlocal interactions when modeling digital images. It also

makes it possible to consider the G norm of irregularly sam-

pled signals, provided a graph structure can be associated

with the spatial locations of the samples.

The next result identifies the space Gw with the set of

zero-mean graph-signals. It is the analogous of Proposi-

tion 2.2 in [3].

Proposition 2 Consider a weighted graph with adjacency

matrix W . If the graph is connected, then

Gw = X0 :=
{

u ∈ X :
N

∑

i=1

ui = 0

}

. (25)

Proof From Eq. (20) we see that Gw ⊆ X0. The range of

the operator Δw is included in X0. If the graph is con-

nected, then using the result of Proposition 1, we see that
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the dimension of the null space of Δw is equal to 1. Hence,

the dimension of its range is equal to N − 1, which is ex-

actly the dimension of the space X0, so that both spaces

are equal. Hence, for all u ∈ X0, there exists v ∈ X such

that u = Δwv. Defining v′ = − 1
2
∇wv, we have u = divwv′,

which concludes the proof. �

All the graphs considered in the sequel are assumed con-

nected, unless otherwise stated.

3.3 Total Variation over Graphs

The isotropic total variation associated with the adjacency

matrix W and the difference operator ∇w is given for all

u ∈ X by

Jw(u) := ‖∇wu‖1,2 =
N

∑

i=1

(

N
∑

j=1

wi,j (uj − ui)
2

)1/2

. (26)

The functional in (26) can be regarded as a measure of

“smoothness” of data living on general graphs. It is the sum

of the local variations around all the nodes of the graph.

The choice of the ℓ1 norm is motivated by the analogy to

the classical total variation over Euclidean domains and its

well known ability to preserve sharp discontinuities. Alter-

natively, this choice can be seen as a regularizing prior pro-

moting the sparsity of the local variations vector.

Notice that Jw defines a seminorm over X. Using

Eqs. (20)–(23) and the fact that the norms ‖.‖1,2 and ‖.‖∞,2

are dual, we see that the TV seminorm is the support func-

tion of the Gw unit norm ball:

Jw(u) = sup
{

〈u,v〉X : v ∈ G1
w

}

= σG1
w
(u). (27)

The result in (27) it is a general fact, namely, each closed

sublinear function is the support function of a closed convex

set ([25], Chap. C, Theorem 3.1.1).

3.4 Total Variation Based Regularization on Graphs

We now consider the classical ROF model in the context we

presented above. Given an initial observation f ∈ X living

on a graph and a scale parameter λ > 0, the graph version

of the ROF model consists in solving the following convex

optimization problem:

minimize
u∈X

E(u;f,λ), (28)

where

E(u;f,λ) = λJw(u) + 1

2
‖u − f ‖2

X. (29)

Functional E corresponds to the particular case of p = 1 in

the family of functionals introduced in [20]. It has been stud-

ied in [23] and has found numerous applications in image

and mesh processing [20], data filtering [26], image zoom-

ing [22]. In [2, 35], the authors proposed to adapt the penal-

ization to the topology of the underlying function. The same

approach has been taken in [43] for motion deblurring.

The model (28)–(29) can be seen under different per-

spectives. In the subsequent sections, we give three different

point of view justifying the introduction of (28)–(29).

3.4.1 Bayesian Interpretation

The Bayesian derivation of (28)–(29) can be obtained when

considering the standard denoising problem. Let us assume

that a true graph-signal u ∈ X is degraded by an additive

centered Gaussian white noise n of standard deviation σ ,

yielding the following model: u = u+n. Adopting the MAP

estimate, we see that the functional (29) is obtained when

considering the following prior density probability function:

(∀u ∈ X) p(u) ∝ e−‖∇wu‖1,2 . (30)

3.4.2 An Iterative Neighborhood Filter

Previous approaches to solve problem (28)–(29) dealt with

the non-differentiability of the functional E in (29) by

smoothing the penalty term Jw . In our context, this strategy

amounts to replacing Jw defined in Eq. (26) by the smoothed

penalty J ǫ
w defined for all u ∈ X by

J ǫ
w(u) :=

N
∑

i=1

(

N
∑

j=1

wi,j (uj − ui)
2 + ǫ2

)1/2

, (31)

for a small fixed ǫ (e.g. ǫ = 10−4). Now, the modified en-

ergy Eǫ(u;f,λ) = λJ ǫ
w(u)+ 1

2
‖u−f ‖2

X is smooth and still

strictly convex. Differentiating and applying a fixed point it-

eration to the resulting system of nonlinear equations (see

[20] for further details, and in particular for the conver-

gence of the proposed scheme) leads to the following iter-

ative scheme
⎧

⎪

⎨

⎪

⎩

u(0) = f,

u
(n+1)
i = fi+λ

∑N
j=1 γ

(n)
i,j u

(n)
j

1+λ
∑N

j=1 γ
(n)
i,j

,
(32)

where

γ
(n)
i,j = Wi,j

(

1
√

‖(∇wu(n))
⊺

i,.‖2
X + ǫ2

+ 1
√

‖(∇wu(n))
⊺

j,.‖2
X + ǫ2

)

. (33)

Notice that the coefficients γ
(n)
i,j depend on the current iter-

ate u(n). The convergence of algorithm (32) is very slow in

practice. However, the presented scheme allows to interpret

the TV-regularized solution as a nonlinear data-dependent
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iterative filter [15]. At each iteration, the raw data f at a

given node i is averaged with the current iterate values at the

neighboring nodes to get the updated value. The coefficients

of the filter depend on the parameter λ and the amplitude

of the current (smoothed) local variations. When the latter

local variation is dominant, the raw data is preserved, thus

explaining the well known discontinuity preserving property

of TV regularization. Notice however that the local variation

should be compared with the size of the parameter λ. The

latter remark gives an interpretation of the parameter λ as a

scale parameter.

3.4.3 u + v Decomposition

Following [28], the ROF model can be casted into the more

general setting of u + v models where an original signal is

decomposed into a geometric component u and oscillating

(and maybe noisy) part v. u + v models include the ones

proposed in [3, 4, 33, 41].

Using the tools recalled in Sect. 2, we see that solving the

graph ROF model (28)–(29) amounts to computing the prox-

imity operator of λJw . Applying Moreau’s identity leads to

the following decomposition

f = proxλJw
(f ) + λproxJ ∗

w/λ(f/λ). (34)

Applying equations (27), (8) and (10) we see that J ∗
w/λ is

equal to ιG1
w

. Finally, using Eq. (6), we get the important

characterization

f = proxλJw
(f ) + proj

Gλ
w

(f ). (35)

Equation (35) allows to precise the behavior of (28)–(29) as

a decomposition model. Namely, the regularized solution is

obtained by subtracting the projection of f onto the space

Gw from f . The relative importance of the projection re-

garding the parameter λ is precisely quantified by its Gw

norm.

3.5 Minimization

We now consider the issues concerning the minimization

of (28)–(29). As already stated in Sect. 3.4.2, the conver-

gence of the fixed-point algorithm (32) is too slow in prac-

tice. A further and probably more serious drawback con-

cerning (32) is the introduction of the smoothing parameter

ǫ which modifies the formulation of the problem. For these

reasons, we do not consider algorithm (32) for the numerical

simulation, but we keep in mind the interpretation given in

Sect. 3.4.2.

Algorithms that solve the exact TV problem can be di-

vided into two categories. The first category solves the dual

problem associated with (28)–(29). The forerunner algo-

rithms in this category are the fixed-point and projected

gradient algorithms proposed by Chambolle in [9, 10]. In

fact, the projected gradient of [10] corresponds to a forward-

backward algorithm on the dual problem [17].

The second category consists in the so-called primal-dual

algorithms, the first of which was proposed by Chan, Golub,

and Mulet [16]. We refer the reader to [14] for a review of

numerical methods in total variation restoration.

Recently, Chambolle and Pock [13] proposed a very flex-

ible primal-dual algorithm that exhibits very good numeri-

cal performance. We detail the adaption of the fixed-point

algorithm of [9] and the primal-dual algorithm of [13] to

our setting and perform a performance comparison on digi-

tal images.

3.5.1 Chambolle’s Fixed Point Algorithm

The dual formulation of problem (28)–(29) corresponding

to the decomposition (35) is the following:

minimize
p∈Y

‖f − λdivwp‖2
X,

subject to ‖p‖∞,2 ≤ 1.
(36)

The projection algorithm proposed in [9] to solve (36) yields

in our setting the following iterative scheme:

⎧

⎨

⎩

p0 = 0,

pn+1
i,j = pn

i,j +τ(∇w(divwpn−f/λ))i,j

1+τ‖(∇w(divwpn−f/λ))
⊺

i,.‖X
.

(37)

The iterations in (37) converge under the following restric-

tion on the time step τ :

0 < τ ≤ 1

‖divw‖2
, (38)

where ‖divw‖ is the norm of the divergence operator in-

duced by the norms ‖.‖X and ‖.‖Y :

‖divw‖ = sup
{

‖divwp‖X : p ∈ Y,‖p‖Y ≤ 1
}

.

The following inequality was proved in [23]

∀p ∈ Y, ‖divwp‖2
X ≤ 4m‖p‖2

Y , (39)

where m := maxdi1≤i≤n, and di =
∑n

j=1 wi,j is the de-

gree of vertex i. Consequently, if 0 < τ ≤ 1
4m

, the con-

vergence of the sequence (pn)n≥0 is guaranteed. Finally,

the unique solution û of problem (28)–(29), is given by

û = f − λdivwp∞, where p∞ is the limit of (pn)n≥0 de-

fined in (37).

3.5.2 Chambolle-Pock Primal-Dual Algorithm

The convex optimization problem addressed in [13] is the

following:

minimize
x∈X

F(Kx) + G(x). (40)
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Fig. 1 Test images used for the

comparison between algorithms

(37) and (42)

In (40), X and Y denote two general finite-dimensional vec-

tor spaces, F ∈ Γ0(Y ), G ∈ Γ0(X) and K : X → Y a linear

operator. The saddle-point problem associated with (40) is

min
x∈X

max
y∈Y

〈Kx,y〉 + G(x) − F ∗(y), (41)

where F ∗ is the conjugate of F . The authors propose the

following iterative resolution:

⎧

⎪

⎨

⎪

⎩

yn+1 = proxσF ∗(yn + σKxn),

xn+1 = proxτG(xn − τK∗yn+1),

xn+1 = xn+1 + θ(xn+1 − xn),

(42)

where K∗ denotes the adjoint operator of K . The conver-

gence of algorithm (42) is guaranteed if θ = 1 and 0 <

τσL2 < 1 where L = ‖K‖ = max‖x‖≤1 ‖Kx‖ denotes the

induced norm of K . We refer the reader to [13] for detailed

study of the speed of convergence of (42). Notice that the

authors of [13] also proposed an accelerated version of (42).

A second remark concerning (42) is that by taking the dual

problem of (40), one can replace the iterations in (42) by the

equivalent iterations:

⎧

⎪

⎨

⎪

⎩

xn+1 = proxτG(xn − τK∗yn),

yn+1 = proxσF ∗(yn + σKxn+1),

yn+1 = yn+1 + θ(yn+1 − yn),

(43)

We now apply algorithm (42) to problem (28)–(29). The sets

X and Y are the ones defined in Sect. 3.1. The identification

of the operators is the following: K ≡ ∇w , F ≡ ‖.‖1,2, G ≡
1

2λ
‖. − f ‖2

X . For y ∈ Y we have

proxσF ∗(y)
(9)= proxσ ιB∞,2(1)

(y)
(6)= proj

B∞,2(1)

(y) =: ỹ, (44)

where ỹi,j = yi,j

max(1,‖y⊺

i,.‖X)
and B∞,2(τ ) is the ‖.‖∞,2 ball of

radius τ . The computation of the second proximity operator

in (42) is straightforward because the involved function is

quadratic. The expression is given by

proxτG(x) = λx + τf

τ + λ
. (45)

3.5.3 Performance Comparison on Digital Images

In this section, we compare the performance of the al-

gorithms presented in the two latter sections. We restrict

our setting to digital images where each pixel represents

a vertex, and consider the square lattice graph with bi-

nary weights. In order to perform the comparison, we have

chosen different values for the parameter λ, namely, λ =
5,10,100,250. As each iteration of the two algorithms has

the same algorithmic complexity, we have decided to let

both algorithms run for a fixed common number of iterations

M . We have taken M = 500. The original images on which

we have performed the experiment are shown in Fig. 1. Fig-

ures 2 and 3 show the images obtained when applying both

algorithms with different values of λ. Figures 4 and 5 show

the corresponding energy profiles in logarithmic scale.

While the fixed-point algorithm (37) performs well for

reasonable values of λ, it suffers from very slow conver-

gence when λ is too important. The situation where λ

is set to a high value is rarely encountered for denois-

ing/deblurring applications in image processing. However,

in the multiscale representation we seek in this paper, the

initial value for λ will be very high in order to extract a first

geometrical layer from the input data.

4 Multilayered Representation of Graph-Signals

Throughout this section, W denotes a weighted adjacency

matrix encoding a weighted graph G and f ∈ X is a real-

valued graph-signal on G. The multilayered representation

we propose is based on iterative regularization as explained

in the following section.

4.1 Principle

Applying the minimization (28)–(29) to f with a fixed λ > 0

yields the one scale decomposition f = u + v as explained

in Sect. 3.4.3. This one scale decomposition can be turned

into a multiscale representation by iteratively applying the
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Fig. 2 Results of applying

algorithms (37) and (42) with

different values of λ to the

standard Barbara image

minimization process to the successive residuals as initially

proposed in [39, 40].

Let (λn)n≥0 denote a sequence of decreasing positive

scales. We consider the following iterative regularization:

⎧

⎪

⎨

⎪

⎩

v−1 = f,

ui = argminu∈X E(u;vi−1;λi), i ≥ 0,

vi = vi−1 − ui, i ≥ 0,

(46)

where each residual vi is further decomposed using

(28)–(29). Algorithm (46) yields the following decompo-

sition:

(∀n ≥ 0) f =
n

∑

i=0

ui + vn. (47)

Starting with an initial parameter λ0, a first decomposition

of f is obtained by applying (28)–(29) with λ = λ0, yield-

ing f = u0 + v0. The layer u0 should be interpreted as a
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Fig. 3 Results of applying

algorithms (37) and (42) with

different values of λ to the

standard Jetplane image

first sketch of the graph-signal f , while the residual v0 is

to be understood as a detail coefficient. Modifying the scale

parameter from λ0 to λ1 and applying (28)–(29) to v0 with

λ = λ1 yields the subsequent decomposition v0 = u1 + v1.

Now the term u1 can be interpreted as a second layer ex-

tracted from f by means of v0. Iterating the same process

n times leads to identity (47). The ui ’s thus represent differ-

ent layers of f captured at different scales. These layers are

parametrized by three variables: the graph topology through

the adjacency matrix W , the energy function E , and the se-

quence λ0, . . . , λn involved in the successive minimizations.

It is clear that in order to extract the successive layers in a

coherent manner, the sequence of scales (λi)i≥0 should be

decreasing. In terms of image decomposition, this assump-

tion has the following simple interpretation: as the process

(46) evolves, the successive minimizers extract more texture

from the original image [39]. The asymptotic behavior of

(47) is studied in the following section.
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Fig. 4 Energy profiles in log-scale obtained when applying algorithms (37) and (42) with different values of λ to the standard Barbara image

4.2 Mathematical Study

It turns out that the characterization (35) is a powerful tool

to study the convergence of our representation. We have the

following result.

Proposition 3 Consider a positive sequence (λn)n≥0. Let

f ∈ X and (ui)i≥0 obtained by applying algorithm (46). We

have
∥

∥

∥

∥

∥

f −
n

∑

i=0

ui

∥

∥

∥

∥

∥

Gw

= λn. (48)

If the sequence (λn)n≥0 is decreasing, then the series
∑

i=0 ui converges to f

∞
∑

i=0

ui = f. (49)

Proof The first equation follows immediately from the char-

acterization (35). Indeed, we have f −
∑n

i=0 ui = vn =
proj

G
λn
w

(vn−1).

If the sequence (λn)n≥0 is decreasing, then we get con-

vergence for the Gw norm:

lim
n→∞

∥

∥

∥

∥

f −
n

∑

i=0

ui

∥

∥

∥

∥

∥

Gw

= 0, (50)

and hence, since we are in a finite-dimensional setting, we

readily get the convergence for any other norm. In particular,

we have

lim
n→∞

∥

∥

∥

∥

∥

f −
n

∑

i=0

ui

∥

∥

∥

∥

∥

X

= 0. (51)

�

Remark 1 Equation (48) relates the rate of convergence of

the decomposition (47) to that of the sequence of scales

(λn)n≥0.

We also have the following energy decomposition state-

ment.
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Fig. 5 Energy profiles in log-scale obtained when applying algorithms (37) and (42) with different values of λ to the standard Jetplane image

Proposition 4 Consider a positive and decreasing sequence

(λn)n≥0. Let f ∈ X and (ui)i≥0 obtained by applying

algorithm (46). Then the series whose general term is

2λiJw(ui) + ‖ui‖2
X converges to the energy of f :

∞
∑

i=0

(

2λiJw(ui) + ‖ui‖2
X

)

= ‖f ‖2
X. (52)

In order to prove Proposition 2 we need the following

lemma.

Lemma 1 Let f ∈ X, λ > 0. Let u denote the minimizer of

problem (28)–(29) and v = f − u the residual. We have

〈u,v〉X = λJw(u). (53)

Proof Equation (35) shows that v = projGλ
w
(f ). Applying

the characterization of a projection onto a closed convex set,

we see that v is the unique vector in Gλ
w satisfying

∀w ∈ Gλ
w, 〈w − v,f − v〉X ≤ 0. (54)

Hence, we have for all w ∈ Gλ
w

〈w − v,u〉X ≤ 0, (55)

so that

〈u,v〉X = sup
w∈Gλ

w

〈u,w〉X = λ sup
w∈G1

w

〈u,w〉X,

= λσG1
w
(u),

(27)= λJw(u). (56)

�

We now give the proof of Proposition 2.

Proof For all i ≥ −1, the decomposition vi = ui+1 + vi+1

leads the identity

‖vi‖2
X = ‖vi+1‖2

X + ‖ui+1‖2
X + 2〈ui+1, vi+1〉X. (57)

Using Eq. (53), we have

〈ui+1, vi+1〉X = λi+1Jw(ui+1),
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so that

‖vi‖2
X − ‖vi+1‖2

X = ‖ui+1‖2
X + 2λi+1Jw(ui+1). (58)

Summing for i from −1 (with v−1 = f ) to n − 1 leads to

‖f ‖2
X − ‖vn‖2

X =
n

∑

i=0

(

2λiJw(ui) + ‖ui‖2
X

)

. (59)

We achieve the result by taking the limit when n → ∞ and

using Proposition 3. �

4.3 Choosing the Sequence of Scales

In the rest of the paper, we consider a dyadic progression of

scales: λi+1 = λi

2
, with λ0 given. We are now reduced to the

choice of the first scale λ0 which is an important issue since

it determines the performance of the decomposition (47).

In particular, if λ0 is chosen too small, then many levels of

the hierarchy will be needed in order to recover the original

data. For large graphs whose number of nodes and/or edges

is important, the cost associated with such a decomposition

can be prohibitive. In contrast, if λ0 is too important, the fi-

nal decomposition might miss some of the scales present in

the graph-signal f . The parameter λ0 is thus related to the

greatest value λ that yields a nontrivial decomposition.3 This

choice can be made clear after the following proposition.

Proposition 5 Let f ∈ X and λ > 0. Let f denote the vector

whose components are all equal to the mean of f : f i =
1
N

∑N
j=1 fj , and uλ the solution of (28)–(29). Then

‖f − f ‖Gw ≥ λ‖f − uλ‖Gw = λ,

‖f − f ‖Gw ≤ λuλ = f . (60)

Proposition 5 is the analogue of Theorem 3 in [28]. In

our setting, this result is an immediate consequence of (35).

It provides an interpretation of the Gw norm, namely that the

open interval ]0,‖f −f ‖Gw [ is the scale range which yields

a nontrivial decomposition for the ROF model. Adopting

a dyadic progression of scales λi+1 = λi/2, and consider-

ing the result in Proposition 5 we can deduce the following

bounds for λ0

1

2
‖f − f ‖Gw ≤ λ0 < ‖f − f ‖Gw . (61)

We decide to chose the middle point estimate: λ0 =
‖f −f ‖Gw

4
. We are now led to the computation of ‖f −f ‖Gw .

The details are given in the next sections.

3By a trivial decomposition we mean the decomposition f = u + v

where u = f is the vector whose all components are equal to the mean

of f .

4.4 Multilayered Representation with the Presence of

Noise

We consider here the case where the original data f is

corrupted by additive noise. Let us fix the initial scale pa-

rameter λ0 according to (61), and denote (ui)i≥0 the suc-

cessive layers extracted by dyadic progression as explained

above. According to Proposition 3, the series
∑

i=0 ui con-

verges to the noisy data f . Due to the fact that the repre-

sentation evolves in inverse scale order (coarse scales are

recovered first), we see that in order to avoid integrating

noise to the reconstruction, the expansion
∑∞

i=0 ui should

be truncated at an adequate stopping time τ . If the corrupt-

ing noise is additive white Gaussian with known variance

σ 2, then one can use the discrepancy principle proposed

in [32], which amounts to stopping at the first time τ sat-

isfying ‖f −
∑τ

i=0 ui‖2
X ≤ Nσ 2.

5 Computing the Gw Norm

In [4], the authors proposed to compute the G norm of a

digital image by dichotomy, exploiting the result of Propo-

sition 5. However, they report that it does not yield a precise

approximation. A very close approach has also been taken

in [38].

We propose in this section to use the recent primal-dual

algorithm of [13] in order to compute the Gw norm. In the

sequel, the sets X and Y are the ones defined in Sect. 3.1. Let

u ∈ Gw . Computing the Gw norm of u amounts to solving

the following convex problem (23):

minimize
p∈Y

‖p‖∞,2,

subject to divw(p) = u. (62)

Problem (62) can be rewritten in the form

minimize
p∈Y

‖p‖∞,2 + ι{u} ◦ divw(p). (63)

Applying algorithm (43) with F ≡ ι{u}, K ≡ divw , G =
‖.‖∞,2, and θ = 1 yields the following iteration:

⎧

⎪

⎨

⎪

⎩

pn+1 = proxτ‖.‖∞,2
(pn + τ∇wvn),

vn+1 = proxσ 〈.,u〉X (vn + σdivwpn+1),

vn+1 = 2vn+1 − vn.

(64)

Note that the dual problem associated to (62) is the follow-

ing

minimize
v∈X

〈u,v〉X,

subject to Jw(v) ≤ 1,
(65)

which involves a constraint on the total variation of the op-

timization variable v.
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5.1 Computing Proximity Operators

The computation of the second proximity operator in (64)

is straightforward because of the linearity of the involved

function. The expression is given by

∀x ∈ X, proxσ 〈.,u〉X (x) = x − σu. (66)

In order to compute the first proximity operator in (64), we

apply Moreau’s identity (14), use the fact that the conjugate

of a norm is the support function of its dual norm unit ball

(8), and that ‖.‖∞,2 is the dual norm of ‖.‖1,2. Hence, we

have

proxτ‖.‖∞,2
(y)

(14)= y − τprox‖.‖∗
∞,2/τ

(y/τ)

(9)= y − τproxιB1,2(1)
(y/τ)

(6)= y − proj
B1,2(τ )

(y), (67)

where B1,2(τ ) denotes the ‖.‖1,2 closed ball of radius τ .

5.2 Computing the Projection onto an ‖.‖1,2 ball

We have just seen that computing the first proximity opera-

tor in (64) is related to the computation of the projection of

a matrix y ∈ Y onto a ‖.‖1,2 ball. We propose in this sec-

tion to extend the projection algorithm proposed in [8, 19],

which computes the ℓ2 projection of a vector in the Eu-

clidean space R
n onto an ℓ1 ball. In order to do so, we need

to introduce the soft-thresholding operator acting on matri-

ces y ∈ Y . A similar extension to vector fields has recently

been proposed in [21] and is used as an intermediate step in

order to compute the projection of a vector onto a TV ball

of pre-specified radius.

The soft-thresholding operator of level μ ≥ 0 on Y , Sμ :
Y → Y , is defined by

(Sμy)i,j =
{

0 if ‖y⊺

i,.‖X ≤ μ,

(1 − μ

‖y⊺

i,.‖X
)yi,j if ‖y⊺

i,.‖X > μ.
(68)

Thus we have

‖Sμy‖1,2 =
N

∑

i=1

∥

∥(Sμy)
⊺

i,.

∥

∥

X
=

N
∑

i=1

(

N
∑

j=1

(Sμy)2
i,j

)1/2

=
N

∑

i=1

‖y⊺

i,.‖X≥μ

(

1 − μ

‖y⊺

i,.‖X

)

∥

∥y
⊺

i,.

∥

∥

X

=
N

∑

i=1

‖y⊺

i,.‖X≥μ

(∥

∥y
⊺

i,.

∥

∥

X
− μ

)

. (69)

The following proposition relates the soft-thresholding op-

erator defined in (68) to the computation of the projection

onto an ‖.‖1,2 ball.

Proposition 6 Let y ∈ Y , R > 0. If ‖y‖1,2 ≤ R, then

projB1,2(R)(y) = y. Otherwise, there exists a unique μ > 0

such that projB1,2(R)(y) = Sμy.

Proof The first assumption follows from the definition of

the projection operator. Suppose that ‖y‖1,2 > R. First ob-

serve that in view of Eq. (69), the mapping μ �→ ‖Sμy‖1,2

from [0,∞[ to R is piecewise linear, continuous and nonin-

creasing with ‖S0y‖1,2 = ‖y‖1,2 and ‖Sμy‖1,2 = 0 for all

μ ≥ maxi=1,...,N ‖y⊺

i,.‖X . Thus there exists a unique μ > 0

such that ‖Sμy‖1,2 = R. To show that Sμy = projB1,2(R)(y)

it suffices to observe that Sμy is the unique solution (see

[11] for the vectorial case) of the problem

minimize
z∈Y

‖z − y‖2
Y + μ‖z‖1,2. (70)

Hence

∀z ∈ B1,2(R),‖Sμy − y‖2
Y ≤ ‖z − y‖2

Y + μ
(

‖z‖1,2 − R
)

,

(71)

so that

∀z ∈ B1,2(R),‖Sμy − y‖2
Y ≤ ‖z − y‖2

Y , (72)

which concludes the proof. �

Coming back to Eq. (69), we see that the slope of the

piecewise linear mapping μ �→ ‖Sμy‖1,2 changes at the

points ‖y⊺

i,.‖X , i = 1, . . . ,N . This leads to the following

steps to compute the projection summarized in Algorithm 1.

Algorithm 2 summarizes the computation of the Gw norm.

Finally, Algorithm 3 summarizes the proposed multilayered

representation we propose.

Algorithm 1 Projection onto ‖.‖1,2 ball of radius R

1: INPUT: y ∈ Y , 0 < R ≤ ‖y‖1,2.

2: OUTPUT: projB1,2(R)(y).

3: Compute: ‖y⊺

i,.‖X for i = 1 . . . n.

4: Sort ‖y⊺

i,.‖X in descending order to obtain an ≤ an−1 ≤
· · · ≤ a1.

5: Compute bi := ‖Sai
y‖ =

∑i
j=1(aj −ai) for i = 1 . . . n.

6: Find k such that bk ≤ R < bk+1.

7: μ ← ak + bk−R
k

.

8: projB1,2(R)(y) ← Sμy.
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Fig. 6 Sum of the successive layers extracted from the standard image Barbara. Results are obtained by considering a 4-connectivity unweighted

graph. The bottom right image represents the last residual

Algorithm 2 Computing the Gw norm of y ∈ Gw

1: INPUT: y ∈ Gw .

2: OUTPUT: ‖y‖Gw .

3: set p0 = 0, v0 = v0 = 0

4: while (not converged) do

5: pn+1 = pn + τ∇wvn − projB1,2(τ )(p
n + τ∇wvn),

6: vn+1 = vn + σ(divwpn+1 − u),

7: vn+1 = 2vn+1 − vn.

8: end while

9: ‖y‖Gw = divwp∞.

6 Experiments

We present in this section results obtained by applying the

proposed multilayered representation to three types of digi-

Algorithm 3 Multilayered representation of graph-signals

1: INPUT: f ∈ X, N ≥ 0.

2: OUTPUT: (ui)0≤i≤N .

3: v−1 ← f

4: Compute λ0 = ‖f − f ‖Gw using Algorithm 2.

5: for i = −1 → N − 1 do

6: Decompose vi into ui+1 and vi+1 using model (28)–

(29) using λi+1.

7: λi+2 ← 1
2
λi+1.

8: end for

tal data, namely digital images, 3-D triangular meshes, and

point clouds. In order to obtain the representations, appro-

priate similarity graphs are associated with each data type.

While the construction of similarity graphs is a task by it-
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Fig. 7 Sum of the successive layers extracted from the standard image Barbara. Results are obtained by considering a 10-nearest neighbors

unweighted graph. The bottom right image represents the last residual

self, we try to give specific advices concerning each par-

ticular data type. The next subsection explains the general

setting.

6.1 General Setting

Let F denote the input data we want to decompose. We con-

sider F to be in the space R
n×m, where n is the number of

instances, and m the number of components. When m > 1,

the data is multivalued: to each vertex i is associated a vec-

tor of observations F
⊺

i,. ∈ R
m. In the latter case, the decom-

position is performed component-wise, the scale parameters

(λi)i≥0 being common to all the components.

For all the experiments, the first scale parameter λ0 in

(46) is computed automatically, except for meshes with

color attributes of Sect. 6.3.1 where it has been set manu-

ally. When the input data F is in R
n×1, the value of λ0 is

set to ‖F − F‖Gw/4 as explained in Sect. 4.3. This is for

example the case for grayscale images. When F is multi-

valued, λ0 is set to the maximum of the Gw norms of the

components: λ0 = max1≤i≤m ‖F⊺

i,. −F
⊺

i,.‖Gw/4. In all cases,

Gw norms are computed using Algorithm 2.

Finally, each decomposition is performed using Algo-

rithm 1 of Chambolle and Pock [13] for which the actual

derivation in our case was given in Sect. 3.5.2.

6.2 Images

With each digital image we associate a weighted graph

whose set of vertices is the set of pixels of the given image.

Different strategies can be adopted in order to construct the

weighted adjacency matrix. The first natural choice consists

in adopting a 4-connectivity lattice graph, where each vertex



J Math Imaging Vis

Fig. 8 Layers extracted form Barbara image. Top row is obtained using a 4-connectivity unweighted graph. Second row is obtained using a

10-nearest neighbors unweighted graph

is connected to its 4 neighbors and weights are set to 1. Fig-

ures 6 and 9 show the sums of the successive layers obtained

when using the latter graph construction on the two standard

images Barbara and Jetplane of Fig. 1. One can see clearly

the reconstruction being performed as the successive layers

are extracted and summed up, in accordance with Proposi-

tion 1. First levels exhibit a very rough description of the

original images. A first geometrical description is obtained

at the fifth level (
∑4

i=0 ui ) for the image Barbara, and at the

sixth level (
∑5

i=0 ui ) for the Jetplane image. First rows of

Figs. 8 and 11 show the successive layers extracted. Therein,

we can see how texture is iteratively resolved as the process

evolves. The second to last layers are enhanced by adding a

factor of 120 for better visualization.

Though the lattice graph construction is natural for digi-

tal images, other graph constructions can be considered. The

general class of similarity graphs is often used to model

digital images. In this setting, a given distance measure is

first computed, then transformed into a similarity measure

upon which the weighted graph adjacency matrix is com-

puted [20, 27]. Since the introduction of the NL-Means al-

gorithm [7], patch-based metrics have been popular in image

processing. In this setting, the distance between two pixels

u and v does not depend solely on the values at u and v

but rather on the values taken inside square windows cen-

tered at each pixel, called patches. The distance between u

and v, d(u, v), is then computed as a weighted Euclidean

distance between the vectors collecting the values of each

patch. In this work, we consider 5 × 5 square patches, and

the distance between two vertices is set to the Euclidean dis-

tance between the vectors collecting the values inside each

patch. Based on the latter distance, the most used graph con-

struction consists in fixing a search window Su around each

pixel u (typically a 21 × 21 square window), connecting u

to all v ∈ Su − {u}, and weighting the edges (u, v) using a

Gaussian kernel: wu,v = e
−d(u,v)2

2h2 . While the latter approach

proved its efficiency for the denoising task [7], where the

parameter h is related to the noise level, its adaption to the

decomposition task is not straightforward. We instead pro-

pose to form a nearest-neighbors graph. In this setting we

fix a search window (a 21 × 21 square window in the ex-

periments) and connect its center to its N nearest-neighbors

inside the search window. The value of N is set to 10 in

the experiments. The latter construction leads to a directed

graph (the matrix W is not symmetric). We cast it into an

undirected graph simply by ignoring the orientation of the

edges, so that we are led to a graph where each vertex is

connected to at least N neighbors. Once the neighbors are

found, the associated edges are given a unit weight. Further-

more, the nearest-neighbors graph is coupled with the stan-

dard 4-connectivity lattice graph to ensure that the resulting

graph is connected. Notice that the initial scale λ0 changes

with respect to the graph topology.

Figures 7 and 10 show the sums of the successive lay-

ers obtained when using the latter graph construction on the

two standard images Barbara and Jetplane. Again one can
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Fig. 9 Sum of the successive layers extracted from the standard image Jetplane. The results are obtained by considering a 4-connectivity un-

weighted graph. The bottom right image represents the last residual

see the reconstruction being performed as the successive

layers are extracted and summed up. However, in contrast

with the lattice graph results, we see that the first levels ex-

hibit a more geometric description of the input images so

that the geometric part of both images are reconstructed ear-

lier. To quantify this observation, we show in Fig. 12 the

mean square errors (MSE) between the original images and

the sums of the successive layers. For the partly textured

image Barbara, the nonlocal graph construction clearly out-

performs the lattice graph construction. Finally, second rows

of Figs. 8 and 11 show the successive layers extracted when

using a nearest-neighbors graph.

6.3 Nonuniformly Sampled Data

We show in this section that the proposed approach can be

used to generate multiscale descriptions of nonuniformly

sampled data. We illustrate this capability on two types of

data, namely, 3-D triangular meshes and point clouds.

6.3.1 3-D Triangular Meshes

A triangular mesh consists of a set of vertices along with a

triangle-vertex incidence graph. Each vertex is described by

a set of geometrical attributes and optionally by a set of pho-

tometric attributes. The geometric attributes are the coordi-

nates of each vertex and optionally the normals, while the

photometric attributes can be colors or texture coordinates

per vertex. For a given mesh, each of the aforementioned

attributes leads to a specific signal on the triangle-vertex in-

cidence graph of the mesh, thus leading to a specific graph-

signal. We concentrate in this subsection on two specific in-

stances of such graph-signals, namely meshes with coordi-

nates attributes, and meshes with vertex colors attributes.
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Fig. 10 Sum of the successive layers extracted from the standard image Jetplane. The results are obtained by considering a 10-nearest neighbors

unweighted graph. The bottom right image represents the last residual

Let us begin with multiscale descriptions of meshes with

coordinates attributes. Here, the aim is to enhance the de-

scription of a geometric model by describing its surface

at different smoothness levels [34]. This is different from

multiresolution representations where the goal is to de-

scribe the original model with varying sampling resolu-

tion.

Figure 13 shows the sum of the successive layers ex-

tracted from the top left original head 3-D model. The result

is obtained by applying our multilayered representation to

the coordinates signal. Since the latter signal is multivalued,

the successive regularizations are performed component-

wise. Graph edges have been assigned weights using the in-

verse distance between their endpoints:

wu,v = 1/
(

d(u, v) + ǫ
)

,

where d(u, v) is the Euclidean distance between u and v,

and ǫ = 10−4.

Once again, the representation starts with a very rough

description of the input data, and the geometrical details

are recovered as the successive layers are extracted. At the

twelfth level (
∑11

i=0), the original model is completely re-

covered. Notice however how the volume of the model cor-

responding to u0 has been shrunk in comparison to that of

the original model. This suggests that the volume preserva-

tion property, if desired, should be built into the regularizing

functional by means of a constraint.

We now move on to multiscale descriptions of meshes

with vertex colors attributes. In this setting, each vertex has,

in addition to its three spatial coordinates, three color at-

tributes corresponding to RGB values. The top model of
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Fig. 11 Layers extracted form Jetplane image. Top row is obtained using a 4-connectivity unweighted graph. Second row is obtained using a

10-nearest neighbors unweighted graph

Fig. 12 Mean square error (MSE) between the sum of the layers and

the original image for two graph constructions. Left figure: Barbara im-

age, 4-connectivity unweighted graph in solid line, 10-nearest neigh-

bors unweighted graph in dashed line. Right figure: Jetplane image,

4-connectivity unweighted graph in solid line, 10-nearest neighbors

unweighted graph in dashed line

Fig. 14 shows an example of such a mesh.4 The graph we

consider is the triangle-vertex incidence graph given by the

mesh, and the signal is composed of the color attributes

of each vertex. Our multilayered representation manipulates

the color attributes without changing the coordinates of the

4The model is taken from the sample dataset of the Cyberware Head &

Face Color 3D Scanner available at: http://www.cyberware.com/.

vertices. It leads to a multilayered representation of the col-

ors of the model, similar to the ones presented above for dig-

ital images, the difference being that the support of the sig-

nal is now nonuniform. In addition, the processing is done

component-wise. Note that the last residual v9 still contains

some texture and that the sum of the six first layers,
∑5

i=0 ui ,

can be interpreted as the structure part of a structure-texture

decomposition of the original model. In particular,
∑5

i=0 ui

can be used to segment the 3-D model into different mean-

http://www.cyberware.com/
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Fig. 13 Sum of the successive layers extracted from the top left 3-D triangular mesh. The graph structure is given by the input mesh. The edges

are weighted as the inverse of the Euclidean distance. The signal is the coordinates of each vertex

ingful components, based on the homogeneity of the color

signal. This segmentation can be transferred back to the

original model since there is a one to one correspondence

between the models.

We now give an example of decomposition in the pres-

ence of noise. The top model of Fig. 15 is obtained by adding

Gaussian white noise of standard deviation σ = 20 to the

color attributes of the model of Fig. 14. The noise is added

to each of the three RGB components. This example is given

to support the remark made in Sect. 4.4. We see that as the

multilayered algorithm evolves, it extracts more details from

the successive residuals. The key observation here is that,

moving from level 8 (
∑7

i=0) to level 9 (
∑8

i=0), we see that

part of the noise has been added back to the reconstruction.

Thus, the stopping time in this example should be τ = 7. The

bottom right image shows indeed that at level 8, the residual

is composed mainly of noise, and no further decomposition

should be performed.

6.3.2 Point Clouds

Finally, we consider the decomposition of a noisy toroidal

helix in Fig. 16. Each point in 3-D space is mapped to

a vertex. A nearest-neighbors graph is constructed based

on the Euclidean distance between two points. For N =
10, the resulting graph is connected. Finally, the edges are
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Fig. 14 Sum of the successive layers extracted from the top 3-D triangular mesh. The graph structure is given by the input mesh. The edges are

unweighted. The signal is the RGB color values associated with each vertex. The bottom right model represents the tenth residual
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Fig. 15 Sum of the successive layers extracted from the top noisy 3-D

triangular mesh. The graph structure is given by the input mesh. The

edges are unweighted. The signal is the RGB color values associated

with each vertex. The bottom right model represents the eighth residual

and is composed mainly of noise
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Fig. 16 Sum of the successive layers extracted from the top left noisy toroidal helix. The results are obtained by considering a 10-nearest neighbors

graph. The edges are weighted as the inverse of the Euclidean distance. The bottom right plot represents the last residual

weighted as for meshes, taking the inverse of the Euclidean

distance. The sums of the successive layers are displayed

in Fig. 16 where a unique color has been associated with

each vertex of the graph. The bottom right plot shows the

tenth residual (v9) which is almost reduced to a single

point.

7 Conclusion

We have presented a method that allows to generate adaptive

multiscale descriptions of general digital data sets that can

be supported by a weighted graph structure. The proposed

method works by extracting successive layers from the in-

put data in a nonlinear way. Those layers are obtained by

successive minimizations of a graph variant of the classical

TV regularization approach. The behavior of the method has

been studied and quantified. Issues regarding the choice of

the scale parameters have been formulated as a convex op-

timization problem and solved using the recent primal-dual

algorithm of [13]. The latter formulation draws connections

with previous works concerning the G norm introduced in

[28]. We have shown how the proposed method can be ap-

plied to generate multiscale representations of digital im-

ages. In this setting, we have shown how the incorporation

of nonlocal interactions can improve the multiscale descrip-

tion. We have also shown how the proposed method can be

applied to nonuniformly sampled data and gave examples

for 3-D triangular meshes and point clouds multiscale rep-

resentation.
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