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Introduction

In this article, we draw the first results for a multifractal analysis for functions defined on the Heisenberg group H. Multifractal analysis is now a widespread issue in analysis. Its objective is to provide a description of the variety of local behaviors of a given function or a given measure. The local behaviors are measured thanks to the pointwise Hölder exponent and one aims at describing the distribution of the iso-Hölder sets i.e. the sets of points x ∈ H with same pointwise exponent. What makes the Heisenberg group interesting for our dimensional considerations is that its Hausdorff dimension is dim H (H) = 4 while it is defined using only three topological coordinates. This is due to the special form of the metric in the "vertical" direction. This induces surprising properties from the geometric measure theoretic standpoint which are currently being investigated; for instance, Besicovitch's covering theorem and Marstrand's projection theorem are not true, see [START_REF] Balogh | The effect of projections on dimension in the Heisenberg group[END_REF][START_REF] Balogh | Projection and slicing theorems in Heisenberg groups[END_REF][START_REF] Sawyer | Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces[END_REF][START_REF] Korányi | Foundations for the theory of quasiconformal mappings on the Heisenberg group[END_REF][START_REF] Rigot | Counter example to the Besicovitch covering property for some Carnot groups equipped with their Carnot-Carathéodory metric[END_REF]. In this paper, we pursue this investigation by studying the multifractal properties of functions defined on H. We find an a priori upper bound for the Hausdorff dimensions of iso-Hölder sets for all functions in a given Hölder and Besov space and we prove that these bounds are optimal, since they are reached for generic functions (in the sense of Baire's categories) in these function spaces. To do so, we develop methods based on wavelets on H [START_REF] Lemarié | Base d'ondelettes sur les groupes de Lie stratifiés[END_REF].

Let us start by some basic facts on H. The first Heisenberg group H consists [22, p. 530] of the set R 3 equipped with a non-commutative group law (p, q, r) * (p , q , r ) = (p + p , q + q , r + r + 2(qp -pq )) which is also denoted by the absence of multiplicative symbol when the context is clear. The inverse of x = (p, q, r) is x -1 = (-p, -q, -r). The Haar measure is dx = dp ∧ dq ∧ dr and is also denoted by . It is a homogeneous group [22, p. 618] whose dilations are defined by: λ • (p, q, r) = (λp, λq, λ 2 r).
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A left-invariant distance δ(x, y) = x -1 * y H is given by the homogeneous pseudo-norm: [START_REF] Balogh | The effect of projections on dimension in the Heisenberg group[END_REF] x H = (p 2 + q 2 ) 2 + r 2 1/4 .

The Lie Algebra h is the vector-space of left invariant vector fields on H. It is nilpotent of step 2 (see [22, p. 544]) i.e. h = n 1 ⊕ n 2 , where n 1 is spanned by 

which satisfy λ • [U, V ] = [λ • U, λ • V ].
The positive self-adjoint hypoelliptic Laplace operator on H is (see [START_REF] Folland | Subelliptic estimates and function spaces on nilpotent Lie groups[END_REF]):

(3)

L = -(X 2 + Y 2 ).
Sobolev spaces of regularity index s ≥ 0 can be defined by functional calculus:

(4)

H s (H) = {u ∈ L 2 (H) : L s/2 u ∈ L 2 (H)}.
Throughout the article, Q = 4 denotes the homogeneous dimension of H. In order to state the results quickly, we postpone the classical definitions and notations (horizontal paths, Carnot balls, polynomials, Hausdorff dimension, Besov and Hölder spaces) to §2.

Let us define the pointwise Hölder regularity of a function. Definition 1. Let f : H → R be a function belonging to L ∞ loc (H). For s > 0 and x 0 ∈ H, f is said to belong to C s (x 0 ) if there exist constants C > 0, δ > 0 and a polynomial P with homogeneous degree deg H (P ) < s such that [START_REF] Bonfiglioli | Taylor formula for homogeneous groups and applications[END_REF] ∀x ∈ H, x < δ =⇒ |f (x 0 x) -P (x)| ≤ C x s H . One says that f ∈ C s log (x 0 ) if, instead of (5), the following holds: [START_REF] Bony | Espaces fonctionnels associés au calcul de Weyl-Hörmander[END_REF] |f (x 0 x) -P (x)| ≤ C x s H • |log x H | Observe that this definition is left-invariant: f ∈ C s (x 0 ) if and only if f y ∈ C s (y -1 x 0 ) with f y : x → f (yx).

The following quantities are crucial in multifractal analysis. Definition 2. Let f : H → R be a function belonging to L ∞ loc (H). The pointwise regularity exponent of f at x 0 is [START_REF] Cancelier | Calcul de Weyl et opérateurs sous-elliptiques[END_REF] h f (x 0 ) = sup{s > 0 : f ∈ C s (x 0 )} with the convention that h f (x 0 ) = 0 if f ∈ C s (x 0 ) for any s > 0.

The multifractal spectrum of f is the mapping

d f : [0, ∞] → {-∞} ∪ [0, Q] d f (h) = dim H (E f (h)) where E f (h) = {x ∈ H : h f (x) = h},
where dim H stands for the Hausdorff dimension on H. By convention, dim H ∅ = -∞. The multifractal spectrum of f describes the geometrical distribution of the singularities of f over H. The Hausdorff dimension is the right notion to use here, since (at least intuitively, but also for generic functions) the iso-Hölder sets E f (h) are dense over the support of f and the Minkowski dimension does not distinguish dense sets.

Wavelets are a key tool in our analysis. The construction of wavelets on stratified Lie groups has been achieved in [START_REF] Lemarié | Base d'ondelettes sur les groupes de Lie stratifiés[END_REF]. A convenient observation is that Z = Z 3 is a sub-group of H. For j ∈ Z and k = (k p , k q , k r ) ∈ Z, one defines:

x j,k = 2 -j • k = (2 -j k p , 2 -j k q , 2 -2j k r ).
Note that x -1 j,k = x j,-k . The dyadic cubes are defined in the following way:

C 0 = {(p, q, r) ∈ H : 0 ≤ p, q, r < 1} and C j,k = x j,k * (2 -j • C 0 ).
The left-multiplication by x j,k maps affine planes of R 3 on affine planes, thus the shape of C j,k is a regular parallelogram with vertices on 2 -j • Z. But one shall observe that two different cubes C j,k and C j,k are not in general euclidian translates of each other. A neighborhood Λ j,k of C j,k is given by

(8) Λ j,k = k ∈ Ξ C j,k * k ,
where Ξ is the set of 35 multi-integers k = (k p , k q , k r ) given by (see Figure 1):

k p k q k r 0 0 -1, 0, 1 1 0 -3, -2, -1, 0, 1 1 1 -1, 0, 1 k p k q k r 0 1 -1, 0, 1, 2, 3 -1 1 1, 2, 3 -1 0 -1, 0, 1, 2, 3 k p k q k r -1 -1 -1, 0, 1 0 -1 -3, -2, -1, 0, 1 1 -1 -3, -2, -1. Given x ∈ H and j ∈ Z, there exists a unique k ∈ K such that x ∈ C j,k . For this choice of k, it is convenient to write (9) C j (x) = C j,k and Λ j (x) = Λ j,k .
The diameter of C j,k is 13 1/4 × 2 -j < 2 1-j (because the diameter of C 0 is 13 1/4 ). In particular, if δ(x, y) < 2 -j , then x, y belong simultaneously to at least one Λ j,k .

Let us recall now the construction of wavelets on H by Lemarié [START_REF] Lemarié | Base d'ondelettes sur les groupes de Lie stratifiés[END_REF]. For any integer M > Q/2, there exist 2 Q -1 = 15 functions (ϑ ε ) 1≤ε≤15 in H 4M (H) such that:

• There exist C 0 , r 0 > 0 such that for any multi-index α of length |α| < 4M -Q: 

(10) ∀x ∈ H, |∇ α H ϑ ε (x)| ≤ C 0 exp (-x H /r 0 ) . • Each function Ψ ε = L M ϑ ε has 2M
H Ψ ε (x)P (x)dx = 0. Moreover, |Ψ ε (x)| ≤ C 0 exp (-x H /r 0 ) and Ψ ε ∈ H σ (H) for σ < 2M -Q.
• The family of functions (2 jQ/2 Ψ ε j,k ) j∈Z,k∈Z,1≤ε≤15 , where

Ψ ε j,k (x) = Ψ ε 2 j • (x -1 j,k * x) ,
forms a Hilbert basis of L 2 (H), i.e.:

(11) f

L 2 = ε,j,k d ε j,k (f )Ψ ε j,k with d ε j,k (f ) = 2 jQ H f (x)Ψ ε j,k (x)dx.
The real numbers d ε j,k (f ) are called the wavelet coefficients of f . Note that we use an L ∞ normalization for the wavelet in [START_REF] Folland | Subelliptic estimates and function spaces on nilpotent Lie groups[END_REF] and that our choice implies that the family (2 -jQ/2 d ε j,k (f )) belongs to 2 and thus tends to 0 when j → ±∞ and k H → ∞. We can now state our main theorems. For non-integer regularity, Hölder classes can be totally described with wavelets coefficients, as in the Euclidian case.

Theorem 1. For s ∈ R + \N and [s] < 2M , a function f belongs to C s (H) if and only if there exists a constant C > 0 such that

(12) ∀(ε, j, k) ∈ {1, . . . , 2 Q -1} × Z × Z, |d ε j,k (f )| ≤ C2 -js
. Theorem 1 is essentially proved in [START_REF] Führ | Homogeneous Besov spaces on stratified Lie groups and their wavelet characterization[END_REF][START_REF] Geller | Besov spaces and frames on compact manifolds[END_REF], we give another proof here.

Up to a logarithmic factor, the pointwise regularity class C s (x 0 ) can also be described with wavelets coefficients. Theorem 2. Given f ∈ L 2 (H), the following properties hold.

• If f ∈ C s (x 0 ), then there is R > 0 such that for any indices ε, j, k:

(13) δ(x j,k , x 0 ) < R =⇒ |d ε j,k (f )| ≤ C2 -js 1 + 2 j δ(x j,k , x 0 ) s .
• Conversely, if f satisfies (13) and belongs to C σ (H) for an arbitrary small σ > 0, then f belongs to C s log (x 0 ). Remark 1. The important information contained in [START_REF] Führ | Homogeneous Besov spaces on stratified Lie groups and their wavelet characterization[END_REF] does not just lie in the coefficients closest (at each dyadic scale) to x 0 : Remark 2. In the Euclidian case, wavelet leaders [START_REF] Jaffard | Wavelet leaders in multifractal analysis[END_REF] are more stable numerically. The wavelet leaders of a function f ∈ L 2 (H) is the sequence [START_REF] Danielli | Non-doubling Ahlfors measures, perimeter measures and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces[END_REF]. One checks easily that another statement equivalent to (13) is:

|d ε j,k (f )| ≤ C2 -js if δ(x j,k , x 0 ) 2 -j Cδ(x j,k , x 0 ) s if 2 -j δ(x j,k , x 0 ) < R.
D j (f, x) = sup |d ε j ,k (f )| : j ≥ j and C j ,k ⊂ Λ j (x) with Λ j (x) defined by
f ∈ C s (x 0 ) =⇒ ∀ j ≥ 0, D j (f, x 0 ) ≤ C2 -js .
It is also obvious from the last two theorems that f ∈ C s (H) implies h f (x) ≥ s for every x ∈ H. The optimality of this result is asserted by the following theorem. Recall that a property P is generic in a complete metric space E when it holds on a residual set i.e. a set with a complement of first Baire category. A set is of first Baire category if it is the union of countably many nowhere dense sets. As it is often the case, it is enough to build a residual set which is a countable intersection of dense open sets in E. Theorem 3. There exists a dense open set (hence a generic set) R of functions in C s (H) such that for every f ∈ R and every x ∈ H, h f (x) = s.

In particular, generic functions in C s (H) are monofractal i.e. E f (h) = ∅ if h = s.

One can also obtain a priori upper bounds for the multifractal spectrum of functions belonging to Besov and Sobolev spaces on H (see Section 2.6 for precise definitions).

Theorem 4. For s > Q/p, every f ∈ B s p,q (H) satisfies:

(14) d f (h) ≤ min (Q , p (h -s + Q/p)) .
This theorem has many remarkable consequences. For instance, it illustrates the optimality of the Sobolev inclusion B s p,q (H) → C s-Q/p (H) : the sets of points with the least possible pointwise Hölder exponent s -Q/p has Hausdorff dimension at most 0. Similarly, as a consequence of the proof, the set of points whose pointwise Hölder exponent is at least s and has full Haar measure in H. The main difference with C s (H) is that functions in B s p,q (H) may really be multifractal, meaning that many iso-Hölder sets E f (h) are non-empty with a non-trivial Hausdorff dimension. This is the case for generic functions in B s p,q (H).

Theorem 5. For s > Q/p, there is a residual set R ⊂ B s p,q (H) such that for all f ∈ R,

(15) ∀h ∈ [s -Q/p, s], d f (h) = p (h -s + Q/p) ,
and E f (h) = ∅ for all other exponents.

In particular, for generic functions f ∈ B s p,q (H), Haar-almost every point has a pointwise Hölder exponent equal to s. This paper is organized as follows. Section 2 contains the definitions and previous results that we use in the sequel. In Sections 3 and 4 respectively, we deal with global and pointwise Hölder regularity (Theorems 1 and 2). In particular, the monofractality of generic functions (Theorem 3) in C s (H) is proved in Section 4.3. The multifractal properties of functions in a Besov space are then investigated in Sections 5 and 6. Finally, we explain how to extend our results to general stratified nilpotent groups in Section 7.

Let us finish with a question. It would be very interesting to be able to represent the functions on H, or at least the traces of such functions on affine subspaces of R 3 . Indeed, the natural anisotropy induced by the metric on H should create some anisotropic pictures, and it is actually a challenge in image processing to create natural and simple models for anisotropic textures. Of course the starting point would be to understand how to draw a wavelet (a Lemarié wavelet, or another one!) on H. We believe that this is a very promising research direction.

Definitions and recalls

2.1. Balls on H. As the shape of balls is rather counter-intuitive on H, a few geometric statements will be useful in the following. The volume of the gauge balls

B(x, r) = {y ∈ H : δ(x, y) < r} is denoted by (B(x, ρ)) and is equal to π 2 2 ρ Q with Q = 4.
In particular, the Haar measure has the doubling property: l(B(x, 2r)) ≤ Cl(B(x, r)) for some universal constant C.

For any x, x ∈ H and r, r > 0, one has x * (r • B(x, r)) = B(x * (r • x), rr ) and B(x, r) = x * (r • B(0, 1)).

The triangular inequality holds in general with a constant depending on the metric. Proposition 6 (Folland,Stein,prop.1.6). There exists a constant γ 1 > 0 such that [START_REF] Jaffard | Wavelet leaders in multifractal analysis[END_REF] ∀x, y ∈ H,

xy H ≤ γ 1 ( x H + y H ) .
In particular, the diameter of a gauge ball B(x, r) does not exceed 2γ 1 r. One will use this property later in the following form:

Corollary 7. There exists C > 0 such that for any η > 0 and x ∈ B(0, η/C), one has

B(0, η/C) ⊂ B(x, η).

Polynomial functions.

A polynomial function P on H is a polynomial function of the coordinates (p, q, r) ; its homogeneous degree is defined by

deg H P = deg P (t, t, t 2 )
where the right-hand side is computed in R[t]. Given x = (p, q, r) and α ∈ {1, 2, 3} m , one defines x α = x(α 1 ) . . . x(α m ) with x(1) = p, x(2) = q and x(3) = r. A polynomial function H of homogeneous degree at most N is thus a function of the form:

P (x) = |α|≤N c α x α with c α ∈ R and |α| = ω(α i ) with ω(1) = ω(2) = 1 and ω(3) = 2.
2.3. The operator ∇ H . Let us denote by ∇ H = (X, Y ) the basis (equation ( 2)) of horizontal derivatives. Given a multi-index α ∈ {1, 2, 3} m one will denote by ( 17)

∇ α H f = V α 1 . . . V αm f where V 1 = X, V 2 = Y and V 3 = Z. As Z = -1 4 [X, Y ],
one may reduce ∇ α H f to a linear combination of erms that contain exactly |α| powers of X and Y . One says that ∇ α H f is a horizontal derivative of f of order |α|.

2.4.

Horizontal paths and Taylor formula. Two points x, y ∈ H can always be joined by a sub-unitary horizontal path, i.e. a piecewise Lipschitz arc γ : [0, L] → H such that for almost every t, the tangent vector can be decomposed as

γ (t) = α(t)X(γ(t)) + β(t)Y (γ(t)) with α 2 (t)+β 2 (t) ≤ 1. The so-called Carnot-length d C (x, y) = inf γ L 0 α 2 (t) + β 2 (t)dt 1/2
is uniformly equivalent to δ(x, y). Integrating along such an arc provides the first order Taylor formula:

f (y) = f (x) + L 0 ∇ H f (γ(t))γ (t)dt.
In turn, this identity provides a Lipschitz estimate. Proposition 8 ([12], Theorem 1.41). There exists C > 0 and γ 2 > 0 such that for all f ∈ C 1 (H) and x, y ∈ H,

|f (y) -f (x)| ≤ Cδ(x, y) sup z ≤γ 2 δ(x,y) |∇ H f (xz)|.
The left-invariant Taylor expansion of a function is given by the next definition.

Definition 3 ([12]

). The right Taylor polynomial of homogeneous degree k of a smooth function f at x 0 ∈ H is the unique polynomial P x 0 of homogeneous degree ≤ k such that

∀α ∈ m∈N {1, 2, 3} m , |α| ≤ k =⇒ ∇ α H f (x 0 ) = ∇ α H P x 0 (0).
To proceed with the subsequent calculations we will need to write down the Taylor expansion explicitly. It must be done carefully for various reasons. The most obvious one is that XY f = Y Xf but pq = qp. The second "problem" induced by the anisotropy of the Heisenberg structure is that the traditional match between the index of the derivative and the index of the polynomial will break down. For example, at the 2 nd order near the origin, f (p, q, 0) will be computed using only the first 2 powers of p and q but, contrary to the euclidian setting, it will involve vertical derivatives at the origin, through Zf (0).

With this in mind, a good way to write the Taylor polynomial of order N down is:

(18) P x 0 (y) = k=0,...,N |α|=k y α |β|=|α| c α,β ∇ β H f (x 0 ) = |α|=|β|≤N c α,β ∇ β H f (x 0 )y α .
Beyond order 2, even though the polynomial P x 0 remains unique, the coefficients c α,β in ( 18) are not and thus a choice has to be done once for all before starting a computation. For example, one possible writing of the polynomial of order 3 at the origin is:

P 0 (p, q, r) = f (0) + pXf (0) + qY f (0) + 1 2 p 2 X 2 f (0) + 2pqXY f (0) + q 2 Y 2 f (0) + (2pq + r) • Zf (0) + 1 3! p 3 X 3 f (0) + 3p 2 qX 2 Y f (0) + 3pq 2 XY 2 f (0) + q 3 Y 3 f (0) + (2pq + r) • (pXZf (0) + qY Zf (0)) .
The actual choice between the possible expressions is irrelevant. Two points are key:

• For each term in the Taylor expansion [START_REF] Lemarié | Base d'ondelettes sur les groupes de Lie stratifiés[END_REF], the homogeneous degree |α| of each monomial y α matches the order |β| of the derivative ∇ β H f (x 0 ) associated to it. • Since monomials are commutative and Z = -1 4 [X, Y ] one can assume from now on that the formula is reduced to indices β ∈ m∈N {1, 2} m . Further results and explicit Taylor formulas on homogenous groups can be found in [START_REF] Bonfiglioli | Taylor formula for homogeneous groups and applications[END_REF].

As expected, the right Taylor polynomial approximates f (x 0 y) for y small enough.

Theorem 9 (Folland, Stein, corr. 1.44). If f ∈ C k+1 (H), then the following estimate holds for some universal constant C k :

|f (x 0 y) -P x 0 (y)| ≤ C k y k+1 H sup |α|=k+1 sup z ≤γ k+1 2 |∇ α H f (x 0 z)| 2.5.
Hausdorff dimension on H. The diameter of a set E ⊂ H will be denoted by

|E| = sup{δ(x, y) : x, y ∈ E}.
Let us recall the definition of the Hausdorff measures and dimension. Let s > 0 and η > 0 be two positive real numbers. For any set E ⊂ H, one defines

(19) H s η (E) = inf R B∈R |B| s ∈ [0, +∞],
where the infimum is taken over all possible coverings R of E by gauge balls of radii less than η. Recall that a covering of E is a family R = {B i } i∈I of balls satisfying

E ⊂ i∈I B i .
The mapping η → H s η (E) is decreasing with η, hence one can define

H s (E) = lim η→0 + H s η (E) ∈ [0, +∞].
From this definition, it is standard to see that s → H s (E) is a decreasing function that jumps from infinity to zero at a unique real number called the Hausdorff dimension of E:

dim H E = inf{s : H s (E) = 0} = sup{s : H s (E) = +∞}.
2.6. Hölder, Sobolev and Besov regularity.

Definition 4. For s = k + σ with k ∈ N and σ ∈]0, 1[, C s (H)
is the set of functions such that for any multi-index of length |α| ≤ k, the function ∇ α H f is continuous and:

sup |α|=k |∇ α H f (x) -∇ α H f (y)| δ(x, y) σ < ∞.
Hence, Hölder classes are defined as in the Euclidian case (see [START_REF] Cancelier | Calcul de Weyl et opérateurs sous-elliptiques[END_REF][START_REF] Chemin | Sobolev embeddings in Weyl-Hörmander calculus. Geometrical optics and related topics[END_REF]). Two equivalent Banach norms on C s (H), denoted by f C s (H) , are given by sup

|α|=[s] |∇ α H f (x) -∇ α H f (y)| δ(x, y) s-[s]
and sup ε,j,k

2 js |d ε j,k (f )| .
Sobolev spaces, that we introduced before in ( 4), can also be described using the horizontal derivatives [START_REF] Korányi | Foundations for the theory of quasiconformal mappings on the Heisenberg group[END_REF] (see [START_REF] Mustapha | Construction of Sobolev spaces of fractional order with sub-Riemannian vector fields[END_REF] and references therein).

Proposition 10. For k ∈ N, a function f belongs to H k (H) if and only if for any multi-index α of length |α| ≤ k, ∇ α H f ∈ L 2 (H). For s = k + σ with k ∈ N and σ ∈]0, 1[, one has f ∈ H s (H) if and only if f ∈ H k (H) and for |α| = k (with Q = 4, the homogeneous dimension of H): (20) H×H |∇ α H f (x) -∇ α H f (y)| 2 δ(x, y) Q+2σ dxdy < ∞.
One has the continuous inclusion

H s (H) ⊂ C s-Q/2 (H), which holds if s > Q/2 and s -Q/2 ∈ N. Namely, for any multi-index α such that s = Q/2 + |α| + σ and σ ∈]0, 1[: |∇ α H f (x) -∇ α H f (y)| ≤ C s f H s (H) δ(x, y) s-Q/2 . As in the euclidian case, this inclusion fails if s -Q/2 ∈ N, because one can then find f ∈ H s (H) and |α| = s -Q/2 such that ∇ α H f is not a continuous function (note that Q = 4 is
even). However, the corresponding inclusion in BMO holds (see [START_REF] Chemin | Sobolev embeddings in Weyl-Hörmander calculus. Geometrical optics and related topics[END_REF]).

On R n , Besov spaces can be defined in various ways and the equivalence between all those definitions is part of the folklore. For nilpotent Lie groups, the situation is less straightforward and all the equivalences should be checked carefully. For multifractal analysis, the most convenient definition of Besov spaces is: Definition 5. The Besov space B s p,q (H) of [START_REF] Saka | Besov spaces and Sobolev spaces on a nilpotent Lie group[END_REF] consists of functions f on H such that:

(21) a j = 2 j(s-Q/p) d ε j,k (f ) p (k) ∈ q (j).
Other definition of Besov spaces involve Littlewood-Paley theory, but all definitions coincide [START_REF] Stein | Topics in harmonic analysis related to the Littlewood-Paley theory[END_REF][START_REF] Führ | Homogeneous Besov spaces on stratified Lie groups and their wavelet characterization[END_REF]. In particular, B s 2,2 (H) = H s (H). Depending on the applications, other definitions have proved useful. Trace theory [START_REF] Danielli | Non-doubling Ahlfors measures, perimeter measures and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces[END_REF][START_REF] Vigneron | The trace problem for Sobolev spaces over the Heisenberg group[END_REF] is better understood with the geometric norm [START_REF] Rigot | Counter example to the Besicovitch covering property for some Carnot groups equipped with their Carnot-Carathéodory metric[END_REF], real interpolation norms with operator theory [START_REF] Berhanu | The trace problem for vector fields satisfying Hörmander's condition[END_REF][START_REF] Saka | Besov spaces and Sobolev spaces on a nilpotent Lie group[END_REF], while complex interpolation norms relate to microlocal analysis and Weyl calculus on H [START_REF] Bony | Espaces fonctionnels associés au calcul de Weyl-Hörmander[END_REF][START_REF] Cancelier | Calcul de Weyl et opérateurs sous-elliptiques[END_REF][START_REF] Mustapha | Construction of Sobolev spaces of fractional order with sub-Riemannian vector fields[END_REF]. 

d ε j,k = H f (x j,k (2 -j • y))Ψ ε (y)dy.
When [s] = 0, one infers from the vanishing moment of Ψ ε (i.e. H Ψ ε (x)dx = 0) that:

|d ε j,k | = H (f (x j,k (2 -j • y)) -f (x j,k ))Ψ ε (y)dy ≤ H |f (x j,k (2 -j • y)) -f (x j,k )||Ψ ε (y)|dy ≤ 2 -js f C s (H) H y s H |Ψ ε (y)|dy = C2 -js . When [s] ≥ 1, one uses Ψ ε = L M ϑ ε and proceeds with [s] integrations by part against the function g j,k (y) = f (x j,k (2 -j • y)).
Observe that the homogeneity of the horizontal derivatives yields that for every α,

(22) ∇ α H g j,k (y) = 2 -j|α| × [∇ α H f ]((x j,k * (2 -j • y)). When [s] = 2m is even (m ≥ 1), one writes d ε j,k = H (L m g j,k )(x) ϑ ε (x)dx, with ϑ ε = L M -m ϑ ε . The term L m g j,k = (-X 2 -Y 2 ) m (g j,k
) can be developed, and one gets

L m g j,k = |α|=[s] l α ∇ α H (g j,k ),
for some coefficients l α independent of the problem. Recalling [START_REF] Ebert | Diffusive wavelets on groups and homogeneous spaces[END_REF], ϑ ε is a well-localized function. One can use the vanishing moments of ϑ ε (and thus of ϑ ε ) to get

d ε j,k = |α|=[s] l α H (∇ α H g j,k (y) -∇ α H g j,k (0)) ϑ ε (y)dy, = 2 -j[s] |α|=[s] l α H ∇ α H f ((x j,k * (2 -j • y)) -∇ α H f (x j,k ) ϑ ε (y)dy,
The assumption f ∈ C s (H) implies ∇ α H f ∈ C σ (H), thus ultimately providing:

|d ε j,k | ≤ 2 -j([s]+σ) f C s (H) |α|=[s] |l α | H y σ H | ϑ ε (y)|dy = C2 -js .
When [s] = 2m -1 is odd (m ≥ 1), one has:

d ε j,k = H (XL m-1 g j,k )(X ϑ ε ) + H (Y L m-1 g j,k )(Y ϑ ε ).
Again, X ϑ ε and Y ϑ ε are well-localized functions, with at least one vanishing moment. Using the same arguments as above, 

d ε j,k = |α|=[s] l α H (∇ α H g j,k (y) -∇ α H g j,k (0)) Ψ ε,α (y)dy with Ψ ε,α = X ϑ ε or Y ϑ ε (
∇ α H f (x) = ε,j,k 2 j|α| d ε j,k (f ) • (∇ α H Ψ ε ) 2 j • (x -1 j,k x) .
Let us estimate the [s] th derivatives. As before s = [s] + σ and for |α| = [s], one gets:

|∇ α H f (x) -∇ α H f (y)| ≤ ε,j,k 2 -jσ (∇ α H Ψ ε ) 2 j • (x -1 j,k x) -(∇ α H Ψ ε ) 2 j • (x -1 j,k y) . Let j 0 ∈ Z such that 2 -j 0 -1 ≤ δ(x, y) < 2 -j 0 . There exists k = (k 1 , k 2 , k 3 ) ∈ Z such that
x and y both belong to the dyadic neighborhood of x j 0 , k , namely x, y ∈ Λ j 0 , k , where Λ j 0 , k has been defined by [START_REF] Chemin | Sobolev embeddings in Weyl-Hörmander calculus. Geometrical optics and related topics[END_REF] and the remarks that follow.

For j ≤ j 0 , one uses that ∇ α H Ψ ε is Lipschitz:

(∇ α H Ψ ε ) 2 j • (x -1 j,k x) -(∇ α H Ψ ε ) 2 j • (x -1 j,k y) ≤ C2 j δ(x, y) × ξ j,k
, where ξ j,k satisfies the following estimate (Proposition 8)

ξ j,k = sup z H ≤γ 2 2 j-j 0 |∇ H ∇ α H Ψ ε ((2 j • (x -1 j,k x j 0 , k )) * z)| ≤ sup z ∈k -1 * (2 j-j 0 •B( k,γ 2 )) C 0 exp -z H /r 0 ≤ C 0 exp -δ(k, 2 j-j 0 • k)/r 0 .
For j > j 0 , one uses simply the boundedness of

∇ α H Ψ ε : (∇ α H Ψ ε ) 2 j • (x -1 j,k x) -(∇ α H Ψ ε ) 2 j • (x -1 j,k y) ≤ C 0 exp -δ(k, 2 j • x)/r 0 + exp -δ(k, 2 j • y)/r 0 .
Each right-hand side is obviously summable in the variable k ∈ K because there exists a constant C such that

∀z ∈ H, k∈Z exp (-δ(k, z)/r 0 ) ≤ C.
Combining the previous estimates and the fact that the ε variable belongs to a finite set {1, . . . , 2 Q -1}, one gets the following upper bound for

|∇ α H f (x) -∇ α H f (y)|: j≤j 0 2 j(1-σ) δ(x, y) + j>j 0 2 -jσ ≤ C(2 j 0 (1-σ) δ(x, y) + 2 -j 0 σ ) ≤ C δ(x, y) σ i.e. f ∈ C s (H).
4. Pointwise Hölder regularity 4.1. Upper bound for the wavelets coefficients. Assume first that f ∈ C s (x 0 ). Let P be the unique polynomial of degree deg H (P ) < s such that (5) holds on a small neighborhood of the origin B(0, η). Using the vanishing moments of Ψ ε , one has

d ε j,k (f ) = 2 jQ H (f (x 0 x) -P (x))Ψ ε j,k (x 0 x)dx thus |d ε j,k (f )| ≤ C2 jQ B(0,η) x s H Ψ ε j,k (x 0 x) dx + 2 jQ H\B(x 0 ,η) |f (x)| Ψ ε j,k (x) dx + 2 jQ H\B(x 0 ,η) |P (x -1 0 x)| Ψ ε j,k (x) dx.
We denote the three integrals above by respectively I 1 , I 2 and I 3 . In the following, we assume (as in the statement of Theorem 2) that ( 23)

δ(x j,k , x 0 ) < R
for some constant R ≤ 1 that we will adjust on the way. The change of variables y = 2 j •(x -1 j,k x 0 x), Hölder's inequality ab s H ≤ C s ( a s H + b s H ) and the exponential decay [START_REF] Ebert | Diffusive wavelets on groups and homogeneous spaces[END_REF] of the mother wavelet yield:

I 1 ≤ C B(2 j (x -1 j,k x 0 ),2 j η) x -1 0 x j,k (2 -j • x) s H |Ψ ε (x)| dx ≤ C H C s δ(x 0 , x j,k ) s + 2 -j • x s H × C 0 exp (-x H /r 0 ) dx ≤ C δ(x 0 , x j,k ) s + 2 -js
for some other constant C, independent of x 0 , j and k.

For the second integral, one uses the Cauchy-Schwarz inequality:

I 2 ≤ H\B(x 0 ,η) |f (x)| × 2 jQ Ψ ε j,k (x) dx ≤ f L 2 (H) H\B(x 0 ,η) 2 2jQ Ψ ε j,k (x) 2 dx 1/2
.

The weight of the tail of the wavelet depends on how δ(x j,k , x 0 ) compares to η. Let us assume that R = η/C in [START_REF] Stein | Topics in harmonic analysis related to the Littlewood-Paley theory[END_REF] with the constant C given by Corollary 7, thus

B(0, 2 j η/C) ⊂ B(2 j • (x -1 j,k x 0 ), 2 j η).
Then the usual change of variable y = 2 j • (x -1 j,k x) reads H\B(x 0 ,η)

2 2jQ Ψ ε j,k (x) 2 dx = 2 jQ H\B(2 j •(x -1 j,k x 0 ),2 j η) |Ψ ε (y)| 2 dy ≤ 2 jQ {y∈H : y H ≥2 j η/C} C y 2 j η Q+2s |Ψ ε (y)| 2 dy ≤ C2 -2js .
The last inequality uses the decay property (10) of Ψ ε . Finally, one gets I 2 ≤ C2 -js . For I 3 , the idea is similar except that one has to compensate for P ∈ L 2 (H) by adding an extra weight. For example, one choses an integer N > s such that (1 + x H ) -N P (x) is bounded. Then, as previously, one has:

I 3 ≤ 2 jQ (1 + • H ) -N P L ∞ (H) × H\B(x 0 ,η) (1 + x -1 0 x H ) N Ψ ε j,k (x) dx ≤ C y H ≥2 j η/C 1 + x -1 0 x j,k + 2 -j y H N |Ψ ε (y)| dy One sees that when y H ≥ 2 j η/C, 1 ≤ 2 -j y H C/η. Moreover, one has x -1 0 x j,k H ≤ R = η/C ≤ 2 -j y H .
Hence, the estimates boil down to:

I 3 ≤ C y H ≥2 j η/C 2 -j y H N |Ψ ε (y)| dy ≤ C2 -jN H y N H exp - y H r 0 dy
Finally, one gets

I 3 ≤ C2 -jN ≤ C2 -js .
Putting together the estimates for I 1 , I 2 and I 3 , one gets:

|d ε j,k (f )| ≤ C 2 -js + δ(x j,k , x 0 ) s
when δ(x j,k , x 0 ) < η/C = R which is equivalent to [START_REF] Führ | Homogeneous Besov spaces on stratified Lie groups and their wavelet characterization[END_REF]. This concludes the proof of the first half of Theorem 2.

4.2.

Pointwise Hölder estimate derived from wavelets coefficients. Let us move to the second part of Theorem 2 and prove the converse property. One assumes that f ∈ C σ (H) for some σ > 0 and that (13) holds for all triplets (ε, j, k) such that δ(x j,k , x 0 ) ≤ R for some R > 0. Let us fix x such that δ(x, x 0 ) ≤ R and let j 0 and j 1 be the unique integers such that

(24) 2 -j 0 -1 ≤ δ(x, x 0 ) < 2 -j 0 and j 1 = s σ • j 0 .
We aim at proving (6) for x close enough to x 0 i.e. for j 0 large enough. The wavelet decomposition of f is f = j∈Z f j (x), where for every j ∈ Z,

f j (x) = ε∈{1,...,15} k∈Z d ε j,k (f )Ψ ε j,k (x).
For subsequent use, let us notice immediately that the low frequency term

f (x) = 0 j=-∞ f j (x)
is as regular as the wavelet itself. In particular at least C [s]+2 (H).

Assumption ( 13) reads ( 25)

|d ε j,k (f )| ≤ C(2 -js + x -1 j,k x 0 s H ) ≤ C(2 -js + x -1 j,k x s H + x -1 x 0 s H ).
For every n ∈ {0, . . . , [s] + 1} and any multi-index α with |α| = n, one has:

(26) ∇ α H f j (x) = ε k∈Z d ε j,k (f ) • (∇ α H Ψ ε j,k )(x). As Ψ ε j,k (x) = Ψ ε (2 j • (x -1 j,k x)
) and using [START_REF] Ebert | Diffusive wavelets on groups and homogeneous spaces[END_REF], a computation similar to [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals[END_REF] gives:

(27) |∇ α H Ψ ε j,k (x)| ≤ C2 j|α| exp -2 j • (x -1 j,k x) H /r 0 ≤ C2 j|α| (1 + 2 j • (x -1 j,k x) H ) Q+1+s •
Next, let us notice that for a constant that does not depends on j ∈ Z or x ∈ H, 27), ( 25) and (28) provides, in a neighborhood of x 0 : (29)

(28) ∀γ > 0, ∃C > 0, k∈Z x -1 j,k x γ H (1 + 2 j • (x -1 j,k x) H ) Q+1+γ ≤ C2 -jγ . Combining (
|∇ α H f j (x)| ≤ C2 j|α| k∈Z (2 -js + x -1 j,k x s H + x -1 x 0 s H ) (1 + 2 j • (x -1 j,k x) H ) Q+1+s ≤ C2 j|α| 2 -js + x -1 x 0 s H .
In particular |∇ α f j (x 0 )| ≤ C2 j(|α|-s) and the series (used subsequently) ∞ j=0 ∇ α H f j (x 0 ) converges absolutely for every α such that |α| ≤ [s].

Let us now introduce the (right)-Taylor polynomial P j of f j at x 0 . According to [START_REF] Lemarié | Base d'ondelettes sur les groupes de Lie stratifiés[END_REF], it can be written (30)

P j (y) = |α|=|β|≤[s] c α,β ∇ β H f j (x 0 )y α .
The coefficients c α,β are chosen once and for all for the rest of this computation. Let also P (y) stand for the (right)-Taylor polynomial of the low frequency part f at x 0 .

The polynomial P that we are going to use to prove ( 6) is defined by:

P (y) = P (y) + ∞ j=0 P j (y).
The previous estimates ensure that P is indeed well defined and of degree at most [s].

One gets the following decomposition:

(31) |f (x) -P (x -1 0 x)| ≤ |f (x) -P (x -1 0 x)| + j 0 j=0 f j (x) -P j (x -1 0 x) + R 1 (x) + R 2 (x)
with two remainders:

R 1 (x) = ∞ j=j 0 |f j (x)| and R 2 (x) = ∞ j=j 0 P j (x -1 0 x) .
The low frequency is instantaneously dealt with by Theorem 9:

(32) |f (x) -P (x -1 0 x)| ≤ C x -1 0 x [s]+1 H .
Let us now focus on the three other terms. One uses the Taylor development of the wavelet at x 0 and the unicity of the Taylor expansion to recover the polynomial P j . Let us thus write:

Ψ ε j,k (x) = |α|=|β|≤[s] c α,β ∇ β H Ψ ε j,k (x 0 )(x -1 0 x) α + R ε j,k (x).
Theorem 9 ensures that, for some constant r 1 > 0 and x in the neighborhood of x 0 :

(33) |R ε j,k (x)| ≤ C x -1 0 x [s]+1 H sup |α|=[s]+1, z ≤r 1 ∇ α H Ψ ε j,k (x 0 z) .
Substitution in the definition of f j reads:

f j (x) = ε,k d ε j,k (f )   |α|=|β|≤[s] c α,β ∇ β H Ψ ε j,k (x 0 )(x -1 0 x) α + R ε j,k (x)   .
In the first double sum, by combining ( 26) and (30), one recognizes P j (x -1 0 x) and thus

f j (x) -P j (x -1 0 x) = ε,k d ε j,k (f )R ε j,k (x).
Combining ( 25), (33) and the definition (24) of j 0 gives:

f j (x) -P j (x -1 0 x) ≤ ε,k |d ε j,k (f )||R ε j,k (x)| ≤ C2 -j 0 ([s]+1) ε,k (2 -js + 2 -j 0 s + x -1 j,k x s H ) sup |α|=[s]+1 z ≤r 1 ∇ α H Ψ ε j,k (x 0 z) .
To deal with the summation in k, one uses ( 27) and ( 28): for all ε = 1, ..., -s) . The summation in ε plays no role. Putting it all together, one gets:

2 Q -1, k sup z ≤r 1 ∇ α H Ψ ε j,k (x 0 z) ≤ C k 2 j|α| (1 + 2 j • (x -1 j,k x 0 ) H ) Q+1+s ≤ C2 j|α| and similarly k x -1 j,k x s H sup z ≤r 1 ∇ α H Ψ ε j,k (x 0 z) ≤ C k 2 j|α| x -1 j,k x 0 s H (1 + 2 j • (x -1 j,k x 0 ) H ) Q+1+s ≤ C2 j(|α|
f j (x) -P j (x -1 0 x) ≤ C2 -(j 0 -j)([s]+1) 2 -js + 2 -j 0 s .
Finally, the sum over j ∈ {0, . . . , j 0 } boils down to:

j 0 j=0 f j (x) -P j (x -1 0 x) ≤ C2 -j 0 ([s]+1) j 0 j=0 2 j([s]+1-s) + 2 -j 0 ([s]+1+s) j 0 j=0 2 j([s]+1) ≤ C2 -j 0 s ≤ C x -1 0 x s H . (34) 
The term R 1 contains the high-frequency components of the Littlewood-Paley decomposition of f and is responsible for the logarithmic correction in [START_REF] Bony | Espaces fonctionnels associés au calcul de Weyl-Hörmander[END_REF]. By ( 24) and (29),

∀ j ≥ j 0 , |f j (x)| ≤ C(2 -js + x -1 x 0 s H ) ≤ C(2 -js + 2 -j 0 s ) ≤ C x -1 x 0 s H .
Let us split this remainder depending on whether j 0 ≤ j < j 1 or j ≥ j 1

R 1 (x) ≤ j 1 j=j 0 |f j (x)| + ∞ j=j 1 |f j (x)|.
Our choice (24) for j 1 and j 0 gives [START_REF] Ebert | Diffusive wavelets on groups and homogeneous spaces[END_REF], one deduces that

j 1 ∼ sj 0 /σ ∼ s/σ • | log x -1 x 0 s H |. Hence j 1 j=j 0 |f j (x)| ≤ j 1 • C x -1 x 0 s H ≤ C x -1 x 0 s H • | log x -1 x 0 s H |. (35) When j ≥ j 1 , one uses f ∈ C σ (H) instead and Theorem 1 which gives |d ε j,k (f )| ≤ C2 -jσ . Combined with
|f j (x)| ≤ ε k∈Z C2 -jσ e -δ(x j,k ,x)/r 0 ≤ C2 -jσ .
Using [START_REF] Saka | Besov spaces and Sobolev spaces on a nilpotent Lie group[END_REF] one last time yields to the expected conclusion:

(36) ∞ j=j 1 |f j (x)| ≤ C ∞ j=j 1 2 -jσ ≤ C2 -j 1 σ ≤ C x -1 0 x s H .
Let us move to R 2 which contains the Taylor expansions of the high-frequency components of the Littlewood-Paley decomposition of f . Intuitively, it is small because of the natural spectral separation between polynomials and highly-oscillatory functions.

Using [START_REF] Saka | Besov spaces and Sobolev spaces on a nilpotent Lie group[END_REF] and (29), each term of the sum boils down to:

P j (x -1 0 x) ≤ |α|=|β|≤[s] |c α,β ||∇ β H f j (x 0 )| (x -1 0 x) α H ≤ C [s] n=0 2 j(n-s)-j 0 n
and thus

∞ j=j 0 P j (x -1 0 x) ≤ C [s] n=0 2 -j 0 n   j≥j 0 2 -j(s-n)   ≤ C2 -j 0 s ≤ C x -1 0 x s H . (37) 
Substituting (32), (34), (35), (36) and (37) back in the original question (31) proves that (6) holds in a neighborhood of x 0 and concludes the proof of Theorem 2. [START_REF] Jaffard | On the Frisch-Parisi conjecture[END_REF] and can be adapted quickly to ours.

Generic monofractactality of functions in C s (H). The proof of Theorem 3 is classical in the Euclidian context

Let us recall that for any f ∈ C s (H), Theorem 1 gives a constant C > 0 such that

(38) f = ε,j,k d ε j,k (f )Ψ ε j,k with |d ε j,k (f )| ≤ C2 -js
and f C s = inf{C > 0 : (38) is satisfied for all ε, j, k} is a Banach norm on C s (H).

For each integer N , let us define:

(39)

E N = f ∈ C s (H) : ∀ (ε, j, k), 2 js+N d ε j,k (f ) ∈ Z * F N = g ∈ C s (H) : ∃f ∈ E N , f -g C s (H) < 2 -N -2 .
Lemma 11. For every N ≥ 1, all functions in F N are monofractal of exponent s:

∀g ∈ F N , ∀x ∈ H, h g (x) = s.
Proof . This simply follows from the fact that, given f ∈ E N , all the wavelet coefficients of f satisfy 2 -N -js ≤ |d ε j,k (f )| ≤ f C s 2 -js . Thus for any function g ∈ F N and its associated f ∈ E N :

2 -N -js -2 -N -2-js ≤ |d ε j,k (g)| ≤ f C s 2 -js + 2 -N -2-js i.e. 2 -N -1-js ≤ |d ε j,k (g)| ≤ f C s + 2 -N -2 2 -js .
In particular, g ∈ C s (x) for any x ∈ H and there is no x 0 ∈ H and s > s such that g ∈ C s (x 0 ). Indeed, (13) with s > s is not compatible when j tends to infinity with the left hand-side of the above inequality. Proof . The preceding lemma ensures that R is composed of monofractal functions. According to (39), F N is an open set and thus, so is R. Let us check the density. Given f ∈ C s (H) and η > 0, let us choose N ∈ N so that 2 -N < η. Let us define the "non-zero integer part" function

E * (x) = 1 if 0 ≤ x < 2, [x] else.
Obviously E * : R → Z * and |x -E * (x)| ≤ 1. Let us finally define a function g ∈ F N by its wavelets coefficients:

d ε j,k (g) = 2 -js-N E * 2 js+N d ε j,k (f ) . By construction, 2 js d ε j,k (f ) -d ε j,k (g) = 2 -N |2 js+N d ε j,k (f ) -E * 2 js+N d ε j,k (f ) | ≤ 2 -N < η thus f -g C s < η.
This proves the density of R in C s (H).

Upper bound for the multifractal spectrum in a Besov space

The classical Sobolev embedding B s p,q (H) → C s-Q/p (H) can be retrieved easily using wavelets. Indeed, the definition (21) reads

2 j(s-Q/p) d ε j,k (f ) p (k) ∈ q (j)
and implies the existence of a constant C 0 > 0 such that for every triplet (ε, j, k):

(40) |d ε j,k (f )| ≤ C 0 2 -j(s-Q/p
) . Thus [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF] holds and Theorem 1 ensures that f ∈ C s-Q/p (H). In particular, ( 13) is satisfied around any point x 0 ∈ H. and thus by Theorem 2, one has

∀x ∈ H, h f (x) ≥ s -Q/p.
It is worth mentioning that the index q of the Besov space B s p,q (H) does not play any role in the Sobolev embedding and neither does it in the multifractal analysis of f . Let us now establish Theorem 4, i.e. that for any h ≥ s -Q/p, the iso-Hölder set of regularity h is of Hausdorff dimension

d f (h) ≤ min (Q , p (h -s + Q/p)) .
The inequality is obvious as soon as h ≥ s, since the upper bound reduces to Q which is the Hausdorff dimension of H itself. Thus one can now assume that

(41) s -Q/p ≤ h < s.
and in particular, that 1 ≤ p < +∞.

By Theorem 2, heuristically, the wavelet coefficients that might give rise to an exponent h f (x 0 ) ≤ h for some x 0 ∈ H satisfy |d ε j,k | ≥ 2 -jh . Hence we focus on

N f (j, h) = k ∈ Z : ∃ ε ∈ {1, 2, ..., 2 Q -1}, |d ε j,k (f )| ≥ C 0 2 -jh .
For a technical reason, the constant C 0 is the one from the Sobolev embedding (40).

Lemma 13. There exists C > 0 such that for every j ≥ 1, for every h ∈ (s -Q/p, s],

#N f (j, h ) ≤ C2 jp(h -s+Q/p) .
Proof . Obviously from (21), B s p,q (H) ⊂ B s p,∞ (H) and thus there is a constant C > 0 such that for any j ∈ Z, one has k∈Z 2 j(ps-Q) |d ε j,k (f )| p ≤ C. Hence,

C2 -j(ps-Q) ≥ ε k∈Z |d ε j,k (f )| p ≥ k∈N f (j,h ) ε d ε j,k (f ) p ≥ C p 0 × (#N f (j, h )) × 2 -jph ,
which yields the result. Observe that it also holds when h ≥ s, but it is useless.

Lemma 14. The set E ≤ f (h) = {x ∈ H : h f (x) ≤ h}.
has the following property:

(42) dim H E ≤ f (h) ≤ p (h -s + Q/p) .
Estimate (42) is stronger than ( 14) since

E f (h) ⊂ E ≤ f (h) = h ≤h E f (h ). In particu- lar, dim H E f (h) ≤ dim H E ≤ f (h)
and Theorem 4 follows immediately. Proof . The definition [START_REF] Cancelier | Calcul de Weyl et opérateurs sous-elliptiques[END_REF] of h f as a supremum implies that

E ≤ f (h) = x ∈ H : ∀ h > h, f ∈ C h (x)
. Joint with Theorem 2, this observation provides:

(43) E ≤ f (h) = x ∈ H : ∀ h > h, sup ε,j,k 2 -j + δ(x, x j,k ) -h |d ε j,k (f )| = +∞ .
Note that as soon as f ∈ L 2 (H), one has |d ε j,k | ≤ C2 jQ/2 and thus the only real constraint contained in (43) concerns the regime j → +∞ and h ∈ [h, αh] for an arbitrary α > 1.

We fix α > 1, and let T be a large integer. As said above, the only interesting wavelet coefficients are those satisfying |d ε j,k | ≥ C 0 2 -jh (it is not enough to consider only those greater than C 0 2 -jh ). One splits [s -Q/p, αh] into intervals of length

η = (αh -s + Q/p) /T, namely the intervals I m = [h m-1 , h m ] for m ∈ {1, ..., T } and h m = s -Q/p + mη. One choses T large enough so that h 0 -η = s -Q/p -η > 0.
The next idea is that if x ∈ H is far from the dyadic set (x j,k ) j∈Z,k∈K and simultaneously the wavelet coefficient |d ε j,k | is too small, then it cannot contribute to (43). More precisely, if simultaneously

(44) |d ε j,k (f )| ≤ C 0 2 -jhα or ∃ m ∈ {0, . . . , n 1 -1}, |d ε j,k (f )| ≤ C 0 2 -jhm δ(x, x j,k ) ≥ 2 -j(hm-η)/αh
with the same constant C 0 > 0 as in the Sobolev embedding (40), then

2 -j + δ(x, x j,k ) -h |d ε j,k (f )| ≤ C 0 2 -j(αh-h )
in the first case, C 0 2 j(hm-η)(h /αh) 2 -jhm in the others.

In the range of 1 < h /h ≤ α and for large j, one infers in both cases that:

2 -j + δ(x, x j,k ) -h |d ε j,k (f )| ≤ C 0 .
Therefore, if (44) holds for any family (ε n , j n , k n ) with j n → +∞, then x / ∈ E ≤ f (h). By contraposition, for any x ∈ E ≤ f (h), there exists a family (ε n , j n , k n ) with j n → +∞ contradicting (44). By the Sobolev embedding (40), each wavelet coefficient is bounded above by C 0 2 -jh 0 . Hence, for each n, there exists necessarily m ∈ {1, . . . , T } such that

C 0 2 -jnhm < |d εn jn,kn (f )| ≤ C 0 2 -jnh m-1 and x ∈ B(x jn,kn , 2 -jn(h m-1 -η)/αh
). The previous statement can be expressed more easily in term of lim-sup sets:

(45) E ≤ f (h) ⊂ T m=1 S m,η , with S m,η = J≥1 j≥J, k∈N f (j,hm)
B(x j,k , 2 -j(hm-2η)/αh ).

Let us now establish an upper bound for the Hausdorff dimension of each set S m,η . Given ξ > 0, one chooses an integer J ξ so large that 2γ 1 × 2 -J ξ (s-Q/p-η)/αh ≤ ξ (with the constant γ 1 from ( 16)). A covering of S m,η by balls of diameter less than ξ is thus provided by: S m,η ⊂ j≥J ξ , k∈N f (j,hm)

B(x j,k , 2 -j(hm-2η)/αh ).

For any d ≥ 0, the H d ξ -premeasure of S m,η can then be estimated easily:

H d ξ (S m,η ) ≤ j≥J ξ k∈N f (j,hm)
C2 -j(hm-2η)/αh d .

Using Lemma 13 to estimate #N f (j, h m ) ≤ C2 jp(hm-s+Q/p) gives:

H d ξ (S m,η ) ≤ C j≥J ξ 2 j[p(hm-s+Q/p)-d(hm-2η)/αh] .
This series converges when

(46) d > αph h m -2η (h m -s + Q/p)
and in that case

H d ξ (S m,η ) ≤ C2 -J ξ [d(hm-2η)/αh-p(hm-s+Q/p)]
. As ξ tends to zero, the d-Hausdorff measure of S m,η is 0, which in turn implies that dim H (S m,η ) ≤ d. Finally, optimizing for any d that satisfies (46

) provides dim H (S m,η ) ≤ αph h m -2η (h m -s + Q/p) = αph 1 - s -Q/p -2η h m -2η .
Looking back at (45) one deduces that

dim H E ≤ f (h) ≤ max m=1,...,T αph 1 - s -Q/p -2η h m -2η ≤ αph 1 - s -Q/p -2η αh -2η . The limit η → 0 provides dim H E ≤ f (h) ≤ αph 1 - s -Q/p αh = p (αh -s + Q/p) .
Finally, letting α → 1 gives (42) and Theorem 4.

6. Almost all functions in B s p,q (H) are multifractal To prove Theorem 5, one will explicitly construct a G δ set of functions in B s p,q (H) that satisfies [START_REF] Jaffard | On the Frisch-Parisi conjecture[END_REF]. The proof is adapted from the one of [START_REF] Jaffard | On the Frisch-Parisi conjecture[END_REF], modifications are due to the metric on H. We first construct a subset R 0 of B s p,q (H) whose restriction to [0, 1] 3 is generic in B s p,q ([0, 1] 3 ) and satisfies [START_REF] Jaffard | On the Frisch-Parisi conjecture[END_REF]. Next, we define:

∀k ∈ K, R k = {f (k -1 x) : f ∈ R 0 }. Finally, the intersection R = k∈K R k is generic in B s p,q ( 
H) because it is a countable intersection of G δ sets and thus still a G δ set. By construction, it will still satisfy [START_REF] Jaffard | On the Frisch-Parisi conjecture[END_REF]. The actual proof of Theorem 5 is contained in §6.3. To build up for it, one needs to recall a few classical definitions and results on dyadic approximation in §6.1. One then constructs a single function that satisfies (15) in §6.2, which is the starting point for growing the set R 0 in §6.3.

6.1.

Dyadic approximation in H. For any j ∈ N, one considers the subset of indices

L 0 (j) = k ∈ K : x j,k = 2 -j • k ∈ [0, 1) 3
For later use, let us observe immediately that (47) #(L 0 (j)) = 2 Qj . Definition 6. A dyadic point x J,K is called irreducible if K = (K p , K q , K r ) and at least one of the three fractions 2 -J K p , 2 -J K q or 2 -2J K r is irreducible. A point x J,K is called the irreducible version of x j,k if x J,K is irreducible and x j,k = x J,K .

One can check immediately that for a given a couple (j, k) the corresponding irreducible couple (J, K) is unique. Note that one may have (j, k) = (J, K) but that one always has J ≤ j. Conversely, given an irreducible x J,K and j ≥ J, there exists a unique k ∈ K such that x j,k = x J,K , namely k = 2 j-J • K.

Given an integer J ∈ N, the number of irreducible elements x J,K ∈ [0, 1) 3 is: 1) .

(48) # {K ∈ L 0 (J) : x J,K irreducible} = (2 Q -1) × 2 Q(J-
Indeed, K = (K 1 , K 2 , K 3 ) provides a non irreducible x J,K ∈ [0, 1) 3 if and only if 0 ≤ K 1 , K 2 < 2 J , 0 ≤ K 3 < 2 2J
and

K 1 ≡ 0 [mod 2] and K 2 ≡ 0 [mod 2] and K 3 ≡ 0 [mod 4]. The complementary set in L 0 (J) is thus of cardinal 2 J-1 × 2 J-1 × 2 2J-2 = 2 Q(J-1)
and (48) follows from (47). Recall that B(x, r) = {y ∈ H : x -1 y H < r} denotes the open gauge ball of radius r. For fixed j ∈ Z, the dyadic elements {x j,k : k ∈ Z} are well-distributed in H, in the sense that the open balls {B(x j,k , 2 -j ) : k ∈ Z} do not intersect too much. One can check easily the following lemma (see Figure 4). Lemma 15. For a given j ∈ N and k ∈ Z, the only parameters k ∈ K such that B(x j,kk , 2 -j ) ∩ B(x j,k , 2 -j ) = ∅ are the 43 cubes defined by k = (k 1 , k 2 , k 3 ), with

k 1 = k 2 = 0 |k 3 | ≤ 1 or 1 ≤ k 1 2 + k 2 2 ≤ 2 |k 3 | ≤ 2. . Proof .
By scale invariance of the pseudo-norm • H , it is sufficient to investigate j = 0 and k = (0, 0, 0). Then a counting argument applies.

Observe that if r 2 0 = √ 3 2 < 1, then the cylinder Γ 0 = (p, q, r) ∈ H : p 2 + q 2 < r 2 0 is included in k 3 ∈Z B((0, 0, k 3 ), 1). Since for any k = (k 1 , k 2 , k 3 ) ∈ K, the left translation of Γ 0 is another vertical cylinder, one can choose a constant C > 0 such that for each j ∈ N, the family of balls {B(x j,k , C2 -j ) : k ∈ Z} covers the whole space H and that for any strictly increasing sequence (j m ) m≥1 ∈ N N * :

(49) [0, 1] 3 = lim sup m→+∞ k∈L 0 (jm) B(x jm,k , C2 -jm ).
Since each point x ∈ [0, 1] 3 belongs to an infinite number of balls B(x jm,k , C2 -jm ), one can wonder of the exact proximity of x to the dyadic elements of H. Definition 7. Let J = (j m ) m≥1 be a strictly increasing sequence of integers. For ξ > 0, an element x ∈ H is said to be ξ-approximable with respect to J when the inequality

(50) δ(x, x jm,k ) ≤ C2 -jmξ
holds true for an infinite number of couples (m, k) and the same constant C that appears in (49). For a given ξ > 0, one defines also:

S ξ (J ) = {x ∈ [0, 1) 3 :
x is ξ-approximable with respect to J }.

The dyadic approximation rate of x with respect to J is the real number:

ξ x (J ) = sup{ξ > 0 :
x is ξ-approximable with respect to J }.

Finally, the iso-approximable set of rate ξ is:

S ξ (J ) = {x ∈ [0, 1) 3 : ξ x (J ) = ξ}.
When J = N one simply writes S ξ , S ξ and ξ x and in that case it is sufficient to restrict oneself in (50) to irreducible dyadic elements x j,k . Let us observe that, because of (49):

∀x ∈ H, ξ x (J ) ≥ 1.
The size of the sets S ξ (J ) and S ξ (J ) in terms of Hausdorff dimension and measures can be described thanks to the so-called mass transference principle by V. Beresnevich, D. Dickinson and S. Velani [START_REF] Beresnevich | Measure theoretic laws for lim sup sets[END_REF].

Proposition 16. For every ξ ≥ 1, one has:

(51) dim H S ξ (J ) = dim H S ξ (J ) = Q/ξ.
Proof . It is quite easy to obtain that for every ξ ≥ 1,

(52) dim H S ξ (J ) ≤ Q/ξ and dim H S ξ (J ) ≤ Q/ξ
Indeed, by definition, one has:

S ξ (J ) ⊂ n≥1 j≥n, k∈L 0 (j) B(x j,k , 2 -jξ ).
For d > Q/ξ and an arbitrary η > 0, one choses n large enough such that 2 -nξ < η. The previous inclusion provides a covering of S ξ (J ) by balls of radius smaller than η, thus:

H d η (S ξ (J )) ≤ C j≥n 2 jQ (2 -jξ ) d ≤ Cη Q/ξ-d -→ η→∞ 0,
which proves the first half. The second half follows by noticing that, as S ξ (J ) is a decreasing family (for inclusion) when ξ increases:

S ξ (J ) ⊂ ξ <ξ S ξ (J ).
The converse inequality to (52) is very difficult, but is contained in [START_REF] Beresnevich | Measure theoretic laws for lim sup sets[END_REF]. Their main theorem (stated as Theorem 17 below) holds at a great level of generality. It holds in particular on the Heisenberg group since H endowed with the metric (1) and the Haar measure = dp dq dr satisfies the following conditions :

• is translation-invariant,

• has a scaling behavior i.e. there exists a constant C > 1 such that:

∀x ∈ H, ∀r > 0, C -1 r Q ≤ (B(x, r)) ≤ Cr Q
and in particular is doubling i.e.:

∀x ∈ H, ∀r > 0, (B(x, 2r)) ≤ C (B(x, r)).

• The dyadic set {x j,k : j ∈ J , k ∈ K} is discrete. Joint with the covering property (49), the main result of [START_REF] Beresnevich | Measure theoretic laws for lim sup sets[END_REF], called mass transference principle, implies the following: Theorem 17 ([3], Theorem 2, p. 15). For every ξ ≥ 1, one has

(53) H Q/ξ (S ξ (J )) = +∞ and H Q/ξ ( S ξ (J )) = +∞.
The statement (53) implies that both the Hausdorff dimension of S ξ (J ) and of S ξ (J ) are greater or equal to Q/ξ. Combined with (52), this proves (51).

6.2.

Example of a function with the maximal possible spectrum. Recall that for x j,k ∈ [0, 1) 3 , we denote by x J,K its irreducible version.

Proposition 18. Let β = 1/p + 2/q and F be the function whose wavelet coefficients are

(54) F ε j,k := d ε j,k (F ) =    2 -j(s-Q/p)-JQ/p j β if x j,k ∈ [0, 1) 3 0 otherwise.
The function F belongs to B s p,q (H) and it satisfies [START_REF] Jaffard | On the Frisch-Parisi conjecture[END_REF].

Observe that, by construction, F is essentially supported in C 0 = [0, 1] 3 . Outside C 0 , F is as smooth as the mother wavelet and decays rapidly at infinity.

Proof . Let us fix a generation j ≥ 1 and consider the sequence a j = 2 j(s-Q/p) F ε j,k p (k) . For a given integer j, one has

2 -j(ps-Q) a p j = k∈L 0 (j) 1≤ε<2 Q |F ε j,k | p = (2 Q -1) k∈L 0 (j) |F 1 j,k | p ≤ (2 Q -1) j J=0 2 -j(ps-Q)-QJ j pβ #{K : x J,K ∈ L 0 (J) is irreducible}.
Consequently, using (48):

a j ≤ (2 Q -1) 1/p j β 1 + (2 Q -1) j J=1 2 Q(J-1) 2 -QJ 1/p ≤ (2 Q -1) 2/p j β (1 + j2 -Q ) 1/p .
Finally, the choice (54) for β provides a j ≤ (2 Q -1) 2/p /j 2/q , thus the sequence (a j ) j≥1 belongs to q and F ∈ B s p,q (H). In order to compute the multifractal spectrum of F one uses the following lemma.

Lemma 19. For each x ∈ [0, 1] 3 , h F (x) = s - Q p + Q pξ x .
Here ξ x = ξ x (N) is the approximation rate of x by all the dyadic elements. Assume for a while that Lemma 19 holds true ; let us explain how to conclude from there. Since ξ x ∈ [1, +∞] for each x one first observes that h F (x) belongs necessarily to the interval

[s -Q/p, s]. If h ∈ (s -Q/p, s], one can observe further that E F (h) = {x ∈ [0, 1] 3 : h f (x) = h} = x ∈ [0, 1] 3 : ξ x = Q ph -ps + Q .
Applying (51), one deduces that

d F (h) = dim H E F (h) = dim H S Q ph-ps+Q = Q Q ph-ps+Q = ph -ps + Q
which is the expected result. If h = s -Q/p, the dimension cannot exceed 0 by the general upper bound given by Theorem 4. The dimension is exactly 0 because one can find x ∈ H such that ξ x = ∞. Such points x are analogues of Liouville numbers in H.

Proof of Lemma 19. Consider x ∈ [0, 1) 3 with 1 ≤ ξ x < +∞. By definition, for every ε > 0, one has the following properties:

(i) There exists J x > 0 such that for every j ≥ J x , for every k, δ(x, x j,k ) ≥ 2 -j(ξx+ε) .

(ii) There exists a strictly increasing sequence of integers (j n ) n≥1 and a sequence (k n ) n≥1 ∈ Z N such that 2 -jn • k n is irreducible and δ(x, x jn,kn ) ≤ 2 -jn(ξx-ε) .

When ξ x = 1 one may take ε = 0 in the last inequality.

To get the lower bound for the Hölder exponent, consider dyadic elements x j,k such that their associated irreducible element x J,K satisfy J ≥ J x . By item (i), one necessarily has δ(x, x j,k ) = δ(x, x J,K ) ≥ 2 -J(ξx+ε) . By using that 2 -j and δ(x, x j,k ) are bounded by above by their sum 2 -j + δ(x, x j,k ), we get that

F ε j,k = 1 j β 2 -j(s-Q/p)-JQ/p ≤ (2 -j + δ(x, x j,k )) s-Q/p (δ(x, x j,k ) 1 ξx+ε ) Q/p ≤ (2 -j + δ(x, x j,k )) s-Q/p+ Q p(ξx+ε) .
This is equivalent to (13), hence h F (x) ≥ s -Q p + Q p(ξx+ε) . Letting ε tend to zero yields the lower bound in Lemma 19.

Let us bound by above the Hölder exponent of F at x, by using item (ii). Assume that 1 < ξ x < +∞ and fix ε > 0 such that ξ x -ε > 1. For any integer n ≥ 1, let j n = [j n (ξ x -ε)]. Consider the unique dyadic element x jn, kn such that x jn, kn = x jn,kn . Using that 2 -jn • k n is irreducible, one sees that

F ε jn, kn = 1 ( j n ) β 2 -jn(s-Q/p)-jnQ/p ≥ 1 (ξ x -ε) β j β n 2 -jn(ξx-ε) s-Q p + Q p(ξx-ε) .
Hence, since log(j n (ξ x -ε)) is negligible with respect to j n when n → +∞, one has Definition 8. The space B s p,q ([0, 1) 3 ) is the closed subspace of B s p,q (H) defined by k / ∈ L 0 (j) =⇒ d ε j,k (f ) = 0. It is equipped with norm f B s p,q (H) = f ∞ + (a j ) j≥1 l q , where a j is given by (21). Since B s p,q ([0, 1) 3 ) is separable, let (f n ) n≥1 be a countable dense sequence in B s p,q ([0, 1) 3 ). Let us consider the sequence (g n ) n≥1 built as follows.

F ε jn, kn ≥ 2 -jn(ξx-ε)(s-Q p + Q p(ξx-ε) +ε) ≥ d(x, x jn,kn ) s-Q p + Q p(ξx-ε) +ε = d(x, x jn, kn ) s-Q p + Q p(ξx-ε) +ε . This proves that h F (x) ≤ s -Q p + Q p(ξx-ε) + ε,
Definition 9. For every n ≥ 1, the wavelet coefficients of g n up to the generation j = n -1 are those of f n ; for j ≥ n, the wavelet coefficients of generation j of g n are those of the function F .

Since f n -g n B s p,q (H) tends to zero when n → +∞, (g n ) n≥1 is also dense in B s p,q ([0, 1) 3 ).

Definition 10. Let r n = n -β 2 -nQ/p /2 with β given by (54). One defines the set R R

= N ≥1 n≥N B(g n , r n )
where B(g, r) = {f ∈ B s p,q ([0, 1) 3 ) : f -g B s p,q (H) < r}.

The set R is an intersection of dense open set, hence a residual set in B s p,q ([0, 1) 3 ). The choice for the radius r n is small enough to ensure that any function f in B(g n , r n ) has its wavelet coefficients at generation n close to those of g n (and thus to those of F ).

Lemma 20. If f ∈ B(g n , r n ), then |d ε n,k (f ) -d ε n,k (g n )| ≥ |d ε n,k (g n )|/2• Proof . By definition, one has d ε n,k (g n ) = F ε n,k , ∀ k.
Hence, by definition of the Besov norm and the inclusion q ⊂ ∞ :

k 2 pn(s-Q/p) |d ε n,k (f ) -F ε n,k | p 1/p < r n .
In particular, for any ε and k,

|d ε n,k (f ) -F ε n,k | ≤ r n 2 -n(s-Q/p) ≤= 2 -ns n -β /2. The inequality J ≤ j in (54) reads |F ε j,k | ≥ 2 -js /j β • Combining both inequalities ensures the result. Lemma 21. If f ∈ R, then its multifractal spectrum d f satisfies (15).
Proof . Given a function f ∈ R, there exists a strictly increasing sequence (n m ) m≥1 of integers such that f ∈ B(g nm , r nm ). Lemma 20 provides a precise estimate of the wavelet coefficients of f , namely for any m ≥ 1:

1 2 F ε nm,k ≤ |d ε nm,k (f )| ≤ 3 2 F ε nm,k .
The same proof as the one developed for Lemma 19 ensures that for any x ∈ [0, 1] 3 :

s -Q/p ≤ h f (x) ≤ s -Q/p + Q/(pξ x (J )) ≤ s,
where ξ x (J ) is the approximation rate by the family J = (n m ) m≥1 . Given h ∈ [s-Q/p, s] and the unique ξ such that h = s-Q/p+Q/(pξ), one introduces the set (see Definition 7 and Lemma 14):

E = S ξ (J ) \ +∞ i=1 E ≤ f (h -1/i) .
By (42) one knows that dim H E ≤ f (h ) ≤ p(h -s -Q/p) for any h < h. In particular, for every i ≥ 1, one has:

dim H E ≤ f (h -1/i) ≤ p (h -1/i -s -Q/p) < p (h -s -Q/p) = Q/ξ• But according to (53), one has H Q/ξ (S ξ (J )) = +∞, thus H Q/ξ (E) = +∞ and dim H E ≥ Q/ξ•
Next, one observes that E ⊂ E f (h), since every x ∈ S ξ (J ) satisfies h f (x) ≤ h and, by definition, E does not contains those elements x which have a local exponent strictly smaller than h. One can thus finally infer that:

dim H E f (h) ≥ dim H E ≥ Q/ξ = p (h -s -Q/p) .
The converse inequality is provided by Theorem 4 because f ∈ B s p,q ([0, 1) 3 ). Consequently, the identity ( 15) is satisfied.

To conclude the proof of Theorem 5, let us go back to the initial remarks of §6. The subset R 0 of B s p,q (H) whose (wavelet) restriction to [0, 1] 3 satisfies (15) and is generic in

B s p,q ([0, 1] 3 ) is simply R 0 = π -1 ( R)
where π : B s p,q (H) → B s p,q ([0, 1) 3 ) is the projection defined in wavelet coefficients by

d ε j,k (π(f )) = d j,k (f ) • 1 1 L 0 (j) (k), 1 1 A (x) being equal to 1 if x ∈ A, 0 otherwise.

Generalization to stratified nilpotent groups

A Carnot group G is a connected, simply connected and nilpotent Lie group whose Lie algebra g admits a stratification, i.e. Given a basis (X i ) i=1,...,d of g adapted to the stratification, each index i ∈ {1, . . . , d} can be associated to a unique σ i = j ∈ {1, . . . , N } such that X i ∈ n j .

Similarly to [START_REF] Korányi | Foundations for the theory of quasiconformal mappings on the Heisenberg group[END_REF], the horizontal derivatives are the derivatives of the first layer:

∇ G f = (X 1 f, . . . , X q 1 f ).

The stratification hypothesis ensures that each derivative X i f can be expressed as at most σ i -1 commutators of horizontal derivatives. A Carnot group is naturally endowed with a family of algebra homomorphisms called dilations {D λ } λ>0 that are defined by: ∀i ∈ {1, . . . , d}, D λ (X i ) = λ σ i X i .

The exponential map exp : g → G is a global analytic diffeomorphism and one can identify G and g equipped with the (non commutative if N ≥ 2) law:

X * Y = exp -1 (exp(X) • exp(Y )).
Finally, one can identify g to R d through the basis (X i ) i=1,...,d . The gauge distance is then defined by δ(x, y) = x -1 * y G , where

x G = d i=1 |x i | 2σ/σ i 1/2σ
and σ = lcm{σ 1 , . . . , σ d }. The distance is left-invariant and homogeneous of degree 1 with respect to the dilations. The Haar measure coincides with the Lebesgue measure on R d and the volume of the ball B(x, r) is r Q Vol B(0, 1). Hausdorff measures can be defined in a similar fashion as in H. As it was the case for H, the group G is defined on R d but its Hausdorff dimension is Q > d. We refer to [START_REF] Rigot | Isodiametric inequality in Carnot groups[END_REF] for further references.

One can wonder whether the results of multifractal analysis obtained in the present paper still hold in any Carnot group. Though caution is always necessary, we claim that the answer is positive because each of the main tools that we used is already available in the literature for at least Carnot groups and sometimes even more general structures.

Here is a list of references:

• Wavelets have been constructed by Lemarié [18] on any Carnot group. When the integer lattice K = Z d identifies to a subgroup of (g, * ), the same properties as those we used hold with just an obvious adaptation of notations. In that case, wavelets of generation j are indeed the push-forward of a finite family (Ψ ε ) 1≤ε<2 Q of mother wavelets through the dilation D 2 j and group translations. When Z d is not a subgroup, wavelets can still be constructed but the exact scaling property to a finite family of mother wavelets might be lost. However, the wavelets will be of the form

Ψ ε j,k (x) = Ψ ε,j,k 2 j • (x -1 j,k x)
with Ψ ε,j,k = L M ϑ ε,j,k and functions ϑ ε,j,k that satisfy [START_REF] Ebert | Diffusive wavelets on groups and homogeneous spaces[END_REF] with uniform constants with respect to ε ∈ {1, . . . , 2 Q -1}, j ∈ Z and k ∈ K. Throughout the proofs, the estimates on the tail of the wavelets will therefore be unchanged.

• Taylor polynomial and estimates of the error term in a Taylor expansion (Theorem 9) hold on stratified groups (see [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF]). For general homogeneous groups, a weaker estimate is given in [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF] and explicit Taylor formulas with various remainder terms can also be found in [START_REF] Bonfiglioli | Taylor formula for homogeneous groups and applications[END_REF]. For example, in the same spirit as (18) around x 0 = 0, a derivative (X 1 , . . . , X d ) α f (0) will be associated to homogeneous polynomial of weight |α| = σ i α i . As expected, it will not just be (x 1 , . . . , x d ) α but the α th power of some fixed polynomials that are the exponential coordinates of x (see [START_REF] Bonfiglioli | Taylor formula for homogeneous groups and applications[END_REF]Lemma 4]).

• Throughout the generalization, one will substitute the new value of the homogeneous dimension Q. The numerical value of the constants related to the numeration of neighboring cubes or balls will also have to be modified.

• For the diophantine approximation, one should note that the K = Z d will not always be a subgroup of g. However, this does not affect the analysis of the dyadic set j≥0 D 2 -j (K). For example, the results of V. Beresnevich, D. Dickinson and S. Velani [START_REF] Beresnevich | Measure theoretic laws for lim sup sets[END_REF] used in the proof of the Hausdorff dimension of iso-approximable sets (51) hold actually on metric spaces endowed with a translation invariant homogeneous measure and (in our case) a discrete dyadic set.

Taking those remarks in consideration, one can assert that Theorems 1 to 5 remain valid on any Carnot group.

Further generalization (e.g. to the realm of homogeneous groups) are not as straightforward. For example, even though the metric structure of homogeneous groups is still defined in a similar fashion to the gauge distance on Carnot groups, the notion of horizontal derivatives cease to exist which changes deeply the nature of the Taylor formula and its remainder [START_REF] Bonfiglioli | Taylor formula for homogeneous groups and applications[END_REF] and thus the subsequent analysis. The construction and analysis of wavelets in such a general setting is also an active area of mathematics. We refer to [START_REF] Führ | Homogeneous Besov spaces on stratified Lie groups and their wavelet characterization[END_REF] and the references therein for a general review of continuous and discrete wavelets on Carnot groups and their relations with homogeneous Besov spaces.
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 31 Global Hölder regularity with wavelets coefficients: Theorem 1 Upper bound for the wavelets coefficients. Assume that f ∈ C s (H). Let s = [s] + σ with [s] ∈ N and 0 < σ < 1. The change of variables y = 2 j • (x -1 j,k x) reads:
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 12 The set R = N ≥1 F N is a dense open set in C s (H) containing only monofractal functions with exponent s.
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 63 for every ε > 0. Letting ε tend to zero yields the upper bound in Lemma 19. The cases ξ x = 1 and ξ x = +∞ are dealt with similarly. The residual set in B s p,q (H). Let us define the wavelet version of local spaces.

1 ,

 1 n k ] = n k+1 with n N = {0} but n N +1 = {0}. Let us denote the dimensions q k = dim n k ,

  vanishing moments, i.e. for every polynomial function P of homogeneous degree deg H P < 2M , then

  depending on whether the first slot in α codes for X or Y ) and some other coefficients l α . The rest of the proof is the same, giving finally |d ε j,k | ≤ C2 -js . 3.2. Hölder estimate derived from wavelets coefficients. Let us now focus on the converse assertion in Theorem 1 and assume that (12) holds. The normal convergence of the series (11) up to the [s]

th derivatives ensures that, for any multi-index α such that |α| ≤ [s] the function ∇ α H f is continuous and that the following identity holds:

The reader might also be interested in the following works concerning wavelets on compact Lie groups [START_REF] Stein | Topics in harmonic analysis related to the Littlewood-Paley theory[END_REF], on general Lie groups [START_REF] Triebel | Function spaces on Lie groups, the Riemannian approach[END_REF], on homogeneous spaces [START_REF] Ebert | Diffusive wavelets on groups and homogeneous spaces[END_REF] and even riemannian manifolds [START_REF] Geller | Besov spaces and frames on compact manifolds[END_REF].