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TP or not TP, that is the question

R. Eymard, T. Gallouët, C. Guichard, R. Herbin and R. Masson ∗

April 4, 2013

Abstract

We give here a comparative study of the mathematical analysis of two (classes of) discretisation

schemes for the computation of approximate solutions to incompressible two phase flow problem

in homogeneous porous media. The first scheme is the well-known finite volume scheme with a

two-point flux approximation, classically used in industry. The second class contains the so-called

approximate gradient schemes, which include finite elements with mass lumping, mixed finite ele-

ments, mimetic finite differences. Both (classes of) schemes are nonconforming and can be expressed

using discrete function and gradient reconstructions within a variational formulation. Each class has

its specific advantages and drawbacks: monotony properties are natural with the two point finite vol-

ume scheme, but meshes are restricted due to consistency issues; on the contrary, gradient schemes

can be used on general meshes, but monotony properties are difficult to obtain.

KEYWORDS. two-phase flow in porous media, two-point flux approximation, finite volume scheme,

gradient scheme.

1 Introduction

Ideally, discretisation schemes should be both consistent and robust. By consistent we mean that if the

scheme converges, then it converges to a (weak) solution of the problem under study, and by robust, we

mean that it preserves the physical properties of the unknowns. In the past several decades, a great deal

of effort has been put into finding this ideal scheme for the simulation of fluid flow in porous media,

which would be both consistent on any mesh and robust: we refer to e.g [13, 18] and references therein

for a battery of tests and schemes for anisotropic and heteregenous problems.

Here we concentrate on the finite volume scheme with two point flux approximation, which is widely

used in industry, and which we shall call the TP scheme here for short, and on the class of gradient

schemes, which can be shown to include well-known schemes such as the conforming finite elements

with mass lumping, also known as Control Volume Finite Element, mixed finite elements, and some

MPFA schemes, as well as some recently developed schemes such as the mimetic method, the mixed and

hybrid finite volumes or the SUSHI scheme [12]. Our aim here is to analyze the mathematical properties

of these two (classes of) schemes, in order to better understand their mechanisms. To this purpose, we

choose to work on a simplified model for two-phase flow in porous media problem, which is clearly more
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difficult than a mere diffusion problem but which remains simple enough to compare the different steps

in the mathematical analysis.

Let Ω be an open bounded subset of Rd(d ≥ 0), let T ∈ R+. The saturation u : Ω×]0, T [→ R and the

pressures p1, p2 : Ω×]0, T [→ R of the two phases are solution to the following coupled system posed

on the domain Ω×]0, T [:

ut − div(k1(u)∇p1) = f1(c) s
+ − f1(u) s

−, (1)

(1− u)t − div(k2(u)∇p2) = f2(c) s
+ − f2(u) s

−, (2)

p2 − p1 = pc(u), (3)

The functions k1(u) and k2(u) respectively denote the mobilities of the wetting fluid and of the non-

wetting fluid and the function pc(u) represents the capillary pressure. The functions s+ and s− stand

respectively for an injection and a production volumetric flow rate. The composition of the injected fluid

in the wetting and non wetting components is prescribed by the imposed input saturation c, whereas that

of the produced fluid depends on the saturation u, by means of “the fractional flows” f1 and f2 of the

wetting and non-wetting phases defined by:

f1(a) =
k1(a)

k1(a) + k2(a)
,

f2(a) =
k2(a)

k1(a) + k2(a)
= 1− f1(a),

∀a ∈ [0, 1].

Following Chavent [6], in order to obtain a weak formulation (which is shown in the sequel to be the

limit of the numerical scheme), we introduce the following primitive functions p̃1 and p̃2:

p̃1(b) =

∫ b

1

k2(a)

k1(a) + k2(a)
pc

′(a)da and

p̃2(b) =

∫ b

1

k1(a)

k1(a) + k2(a)
pc

′(a)da, ∀b ∈ [0, 1]. (4)

The “global pressure” is then defined as p = p1 + p̃1(u) = p2 − p̃2(u) (indeed we have p2 − p1 =
pc(u) = p̃1(u) + p̃2(u)). Let us finally define the function ψ by:

ψ(b) = −
∫ b

0

k1(a)k2(a)

k1(a) + k2(a)
pc

′(a)da, ∀b ∈ [0, 1]. (5)

We then deduce that the saturation u and the global pressure p are solutions to the following system,

posed on the domain Ω×]0, T [:

ut + div(f1(u)v −∇ψ(u)) = f1(c) s
+ − f1(u) s

−, (6)

div(v) = s+ − s−, (7)

v = −M(u)∇p, (8)

where M(u) = k1(u) + k2(u) is the total mobility. Since our aim is to compare the main properties of

discretisation schemes, we assume homogeneous Dirichlet boundary conditions on p and ψ(u):

ψ(u) = 0 on ∂Ω×]0, T [, (9)

p = 0 on ∂Ω×]0, T [. (10)
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We complete the strong formulation of the problem with the following initial condition:

u(·, 0) = uini on Ω. (11)

Then the following conservation equation for the second phase is a consequence of (6)-(8) (which shows

that the two phases are treated symmetrically):

(1− u)t + div(f2(u)v +∇ψ(u)) = f2(c) s
+ − f2(u) s

−.

The data are assumed to satisfy the following assumptions:

• Ω is a polygonal connected subset of Rd, d = 1, 2 or 3, and T > 0 is given, (12a)

• uini ∈ L∞(Ω), and 0 ≤ uini ≤ 1 a.e in Ω, (12b)

• c ∈ L∞(Ω), and 0 ≤ c ≤ 1 a.e in Ω, (12c)

• s+, s− ∈ L2(Ω), s+ and s− ≥ 0 a.e.in Ω, (12d)

• f1 is a non-decreasingcontinuous function from R to [0, 1] s.t.

f1(x) = f1(0) = 0, for all x ∈ (−∞, 0], (12e)

f1(x) = f1(1) = 1, for all x ∈ [1,+∞), (12f)

•M is a nonnegative continuous function from R to R and

there exist real values 0 < M ≤M s.t. M ≤M(x) ≤M for all x ∈ R, (12g)

• ψ is (strictly) increasing and Lipschitz-continuous

from R to R with constant Lψ s.t. ψ(0) = 0, (12h)

|ψ(x)| ≥ A|x| −B for all x ∈ R, for some given values A,B ∈ (0,+∞). (12i)

Let us emphasize that these hypotheses correspond to industrial situations. In particular, the fact that the

function ψ is assumed to be Lipschitz continuous corresponds to the fact that the relative permeability

functions tend to zero faster than the possible singularity of the capillary pressure function.

Note that functions M , f1 and ψ are assumed to be defined on R, even though they are functions of the

saturation; indeed, we are not able to prove that the approximation of the saturation remains in [0, 1]
when using a gradient scheme (see Section 3).

Definition 1.1 (Weak solution) Under assumptions and definitions (12), the pair (u, p) is a weak solu-

tion of Problem (6)-(11) if

u ∈ L2(Ω×]0, T [),

p ∈ L2(0, T ;H1
0 (Ω)),

ψ(u) ∈ L2(0, T ;H1
0 (Ω)),
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and for every function ϕ ∈ C∞
c (Ω× [0, T [),

∫ T

0

∫

Ω

[
−uϕt − (f1(u)v −∇ψ(u)) · ∇ϕ

]
dxdt−

∫

Ω
uini ϕ(., 0)dx

=

∫ T

0

∫

Ω
(f1(c) s

+ − f1(u) s
−)ϕdxdt (13)

∫ T

0

∫

Ω

[
v · ∇ϕ+ ( s+ − s−)ϕ

]
dxdt = 0, (14)

v = −M(u)∇p a.e. in Ω×]0, T [, (15)

where we denote by C∞
c (Ω × [0, T [) the set of the restrictions of functions of C∞

c (Ω×] − ∞, T [) to

Ω× [0, T [.

The remainder of this paper is concerned with the discretisation of Problem (6)-(11). The TP method

is presented in Section 2, and the gradient scheme is described in Section 3. Some conclusions and

perspectives are drawn in Section 4.

2 Approximation by the TP finite volume scheme

2.1 The mesh and the discrete operators

The Two-Point Flux Approximation (TPFA in the literature, TP for short) is used to discretise diffusion

terms under the form −divλ∇u (a few terms under this form occur in Problem (6)-(11)) on a finite

volume mesh M satisfying the following orthogonality condition: each control volume K ∈ M is

assumed to contain a point xK such that, for each pair of neighboring control volumes K,L ∈ M, the

line (xK ,xL) is orthogonal to the common interface K|L (see Fig.1). This leads to a strong restriction

on the meshes; main examples of such meshes are rectangular parallelepipedic boxes in 3D (possibly

distorted in the case of the so-called “corner point geometry”) or Voronoı̈ boxes (in which case the

control volume relative to xK are all the points that are closer to xK than to any other center point.).

For a given K ∈ M, we denote by EK the set of all the faces of K, and we define the set of all faces

E =
⋃

K∈M

EK .

For any σ ∈ E , we define (see Fig.1) the set Dσ ⊂ Ω by:

• the union of the two cones with basis σ and respective vertices xK and xL if σ is the interface

between control volumes K and L,

• the cone with basis σ and vertex xK if σ is a boundary face and a face of the control volume K.

We denote by nK,σ the unit vector, normal to σ, oriented outward to K. For any face σ, we define dσ
as the distance between xK and xL if σ is the interface between control volumes K and L, and as the

orthogonal distance between xK and σ if σ ∈ EK is included in the boundary of the domain.
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xL

xK

L

K

σ′ ⊂ ∂Ω

σ ∈ EK ∩ EL

dσ
dσ′

nK,σ

Dσ′

Dσ

Figure 1: Two control volumes of an admissible mesh

We then denote by XD,0 = R
M, and for u ∈ XD,0, we denote by ΠDu ∈ L2(Ω) the piecewise constant

function equal to uK in K ∈ M. Then for any u ∈ XD,0 and σ ∈ EK , we let uK,σ = uL if σ is the

interface between control volumes K and L, and uK,σ = 0 if σ is a boundary face. The finite volume

method consists in first writing

−
∫

K

div(λ∇u)dx = −
∑

σ∈EK

∫

σ

λ∇u · nK,σds,

and then specifying the approximation FK,σ of the flux

−
∫
σ
λ∇u · nK,σds. The TP numerical flux FK,σ is defined by:

FK,σ = −λσ
|σ|
dσ

(uK,σ − uK), ∀σ ∈ EK , (16)

where |σ| is the area of σ in the 3D case (length in the 2D case and 1 in the 1D case), and λσ is a suitable

approximation of λ on σ.

The numerical flux is then consistent under the orthogonality assumption on the mesh (and this is actually

the reason why we need this assumption) in the sense that, for any regular function ϕ ∈ C∞(Ω),

|
∫

σ

∇ϕ · nK,σ −
|σ|
dσ

(vK,σ − vK)| ≤ |σ|Cϕh, (17)

where v ∈ XD,0 is defined by vK = ϕ(xK) for all K ∈ M, Cϕ ∈ R+ depends only on ϕ and

h = max{diam(K), K ∈ M} is the size of the mesh. This consistency property is crucial in order for

the scheme to converge to the correct solution.

Note that the important following local conservation property, characterizing the finite volume frame-

work, holds in the case where σ is the interface between the control volumes K and L:

FK,σ + FL,σ = 0.
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We may write the TP finite volume schemes with discrete gradient operators. To this purpose, for any

u ∈ XD,0, we define the piecewise constant function ∇̂Du ∈ L2(Ω)d whose constant value ∇̂σu on Dσ

is defined by:

∇̂σu = d
uK,σ − uK

dσ
nK,σ, ∀K ∈ M, ∀σ ∈ EK .

(Recall that d is the space dimension.) We also define, for any v ∈ XD,0, the piecewise constant function

∇̃Dv ∈ L2(Ω)d whose constant value ∇̃σu on Dσ is defined by:

∇̃σv · nK,σ =
vK,σ − vK

dσ
, ∀K ∈ M, ∀σ ∈ EK .

The discrete normal gradient thus defined is consistent with the normal gradient: this is in fact the same

property as the conservativity of the flux (17), obtained thanks to the orthogonality assumption on the

mesh. We complete the definition of ∇̃σv by any consistent reconstruction in the hyperplane parallel to

σ, chosen such that if ϕ ∈ C∞
c (Ω) and v ∈ XD,0 is defined by vK = ϕ(xK) for all K ∈ M, then

∇̃Dv converges in L2(Ω)d to ∇ϕ as the space step tends to 0: the whole discrete gradient ∇̃ is therefore

consistent.

If we now define by λD the piecewise constant function with value λσ onDσ, and using |Dσ| = 1
d
|σ| dσ,

we infer from (16) that

∑

K∈M

vK
∑

σ∈EK

FK,σ =

∫

Ω
λD∇̂Du · ∇̃Dvdx

=
∑

σ∈EK∩EL

λσ
|σ|
dσ

(uL − uK)(vL − vK) +
∑

σ∈EK ,σ⊂∂Ω

λσ
|σ|
dσ
uKvK , (18)

which leads to ∫

Ω
λD∇̂Du · ∇̃Dudx =

1

d

∫

Ω
λD|∇̂Du|2dx. (19)

2.2 The TP scheme for the two-phase flow problem

Let us consider the TP scheme for the discretisation of Problem (6)-(11). We consider a finite volume

discretisation D following the specification of the preceding section, and a discrete time sequence t(0) =

0 < t(1) . . . < t(N) = T ; the time step is defined as δt(n+
1
2
) = t(n+1)−t(n) for n = 0, . . . , N−1, and the

discrete initial condition u
(0)
K on cell K as the average value of uini on K. Then, for n = 0, . . . , N − 1,

we look for (u(n+1), p(n+1)) ∈ X2
D,0 such that

u
(n+1)
K − u

(n)
K

δt(n+
1
2
)

|K|+

∑

σ∈EK

|σ|
(
(V

(n+1)
K,σ )+f1(u

(n+1)
K )− (V

(n+1)
K,σ )−f1(u

(n+1)
K,σ )−

ψ(u
(n+1)
K,σ )− ψ(u

(n+1)
K )

dσ

)

= f1(cK)s+K − f1(u
(n+1)
K )s−K , (20)

∑

σ∈EK

|σ|V (n+1)
K,σ = s+K − s−K , (21)

with V
(n+1)
K,σ = −M (n+1)

σ

p
(n+1)
K,σ − p

(n+1)
K

dσ
,
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where s±K =
∫
K
s±(x)dx, cK is the average value of c in K, M

(n+1)
σ is equal to M(0) for an exterior

edge, and any averaging value between M(u
(n+1)
K ) and M(u

(n+1)
L ) in the case where σ is the interface

between control volumes K and L. Note that the above scheme is upstream weighted with respect to the

convection term in (20).

One may rewrite Scheme (20)-(21), introducing as in (18) the above defined discrete gradient operators.

This formulation of the TP scheme has a few common points with (27) corresponding to the gradient

scheme presented in Section 3.

u(0) ∈ XD,0, u
(n+1) ∈ XD,0, p

(n+1) ∈ XD,0,

δ
(n+ 1

2
)

D u = ΠD
u(n+1) − u(n)

δt(n+
1
2
)

,

∫

Ω

(
δ
(n+ 1

2
)

D uΠDw − (f1(Π
up
D u(n+1))v

(n+1)
D − ∇̂Dψ(u

(n+1))) · ∇̃Dw
)
dx

=

∫

Ω
(f1(cD) s

+ − f1(ΠDu
(n+1)) s−)ΠDw dx, (22)

−
∫

Ω
v
(n+1)
D · ∇̃Dw dx =

∫

Ω
( s+ − s−)ΠDw dx, (23)

v
(n+1)
D = −M(u(n+1))∇̂Dp

(n+1),

∀w ∈ XD,0, ∀n = 0, . . . , N − 1,

where Πup
D u(n+1) is the upstream value of u(n+1) on eachDσ, the piecewise constant function cD is equal

to cK on each control volume K, M(u(n+1)) is equal to the average value M
(n+1)
σ on each diamond cell

Dσ (see Fig.1), and with the same notations for the definition of space-time dependent functions, that is,

for any t ∈ (t(n), t(n+1)], n = 0, . . . , N − 1 and for a.e. x ∈ Ω:

ΠDu(x, 0) = ΠDu
(0)(x),

ΠDu(x, t) = ΠDu
(n+1)(x),

ΠDψ(u)(x, t) = ΠDψ(u
(n+1))(x),

Πup
D u(x, t) = Πup

D u(n+1)(x),

∇̂Dψ(u)(x, t) = ∇̂Dψ(u
(n+1))(x),

ΠDp(x, t) = ΠDp
(n+1)(x),

∇̂Dp(x, t) = ∇̂Dp
(n+1)(x).

(24)

An important difference between (22)-(23) and (27) is that there are two discrete gradients defined for

an element of XD,0. The first one is applied to the unknown fields (∇̂D), and converges only weakly; the

second one (∇̃D) is applied to the test functions and converges strongly. In the framework of the gradient

schemes presented in Section 3, only one discrete gradient is used: this has been the main difficulty in

7



going from the TP finite volume scheme to the gradient schemes: indeed, this gradient must be such that

we can get some estimates in a discrete H1 norm (as the first gradient ∇̂D) but also be consistent, as the

second gradient ∇̃D.

2.3 Convergence analysis

The convergence proof of Scheme (20)-(21) is detailed in [21] (in the case of Neumann boundary con-

ditions instead of Dirichlet ones). Let us sketch its principles; some are close to those presented in

Section 3; we stress those which are specific to the TP framework. Consider a sequence of finite volume

discretisations with space and time steps tending to 0.

1. Let us first show that any solution (u(n+1), p(n+1)) ∈ X2
D,0 is such that 0 ≤ u

(n+1)
K ≤ 1 for all

K ∈ M and n = 0, . . . , N − 1. Multiply (21) by f1(u
(n+1)
K ) and subtract to (20); let K̄ ∈ M

realizing the maximum (resp. minimum) value of the family (u
(n+1)
K )K∈M,n=0,...,N−1, assumed

to be greater than 1 (resp. negative).

Then f1(u
(n+1)

K̄
) − f1(u

(n+1)

K̄,σ
) is non negative (resp. non positive), and a contradiction follows,

thanks to hypotheses (12b), (12c). Note that this estimate is not in general possible for gradient

schemes.

2. The existence of a solution is then obtained from this estimate, thanks to a standard topological

degree argument (this is also the case for gradient schemes).

3. Following the lines of [10, chapter 4], letting w = p(n+1) in (23), we get, for the same reason as in

(19), an estimate on the norm of ∇̂Dp in L2(Ω×]0, T [)d. This leads to the existence of a function

p̄ ∈ L2(0, T ;H1
0 (Ω)) such that, up to a subsequence, ΠDp (resp. ∇̂Dp) weakly converges to p̄

(resp. ∇p̄) in L2(Ω×]0, T [) (resp. L2(Ω× ]0, T [)d). This step is quite similar to the proof of (32)

in Section 3.

4. As in [21], we let w = δt(n+
1
2
)u(n+1) in (22), and we sum on n = 0, . . . , N − 1. We then slightly

improve the proof of [21] by introducing, as in [11], the primitive ζ of
√
ψ′ and by using the

relation

(ζ(a)− ζ(b))2 ≤ (a− b)(ψ(a)− ψ(b)), ∀(a, b) ∈ R
2.

We then get an estimate on the norm of ∇̂Dζ(u) in L2(Ω ×]0, T [)d; note that this estimate is ob-

tained thanks to the positivity of the transmissivities in the approximate diffusion operator when

using the TP scheme (more on this in the discussion). It is not possible to obtain such an estimate

in this way for a general gradient scheme. This uniform L2 estimate on ∇̂Dζ(u) yields the exis-

tence of ζ̄ ∈ L2(0, T ; H1
0 (Ω)) such that (up to a subsequence) ΠDζ(u) (resp. ∇̂Dζ(u)) weakly

converges to ζ̄ (resp. ∇ζ̄) in L2(Ω×]0, T [) (resp. L2(Ω×]0, T [)d). Note that the convective term

poses no problem in the obtention of this estimate: thanks to the upstream weighting scheme, it

yields a positive term; in fact, this positive term leads to the so-called weak BV inequality, which

is needed in the case where ψ is only assumed to be non decreasing (case of degenerate diffusion

problems [11]). This step highly differs from the proof of (33) in Section 3.

5. The Alt&Luckhaus technique [2] allows to get a time translate estimate on ζ(u), and therefore

strong convergence to ζ̄. From an estimate on the norm of ∇̂Dζ(u) in L2(Ω×]0, T [)d [10], we get

an estimate on the space translates, and therefore, ΠDζ(u) converges to ζ̄ in L2(Ω ×]0, T [) (up
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to a subsequence), and ΠDu also converges to ū = ζ(−1)(ζ̄) in L2(Ω×]0, T [). This step is quite

similar to Lemma 3.2 in Section 3.

We then get that Πup
D u (resp. M(u)) converge to ū (resp. M(ū)) in L2(Ω×]0, T [), thanks to the

estimate on the norm of ∇̂Dζ(u) in L2(Ω ×]0, T [)d. This step results from the use of upstream

weighting and averaging in the TP method.

6. Defining, for any regular function ϕ ∈ C∞
c (Ω × [0, T [), the interpolation v(n) ∈ XD,0 by v

(n)
K =

ϕ(xK , t
(n)) for all K ∈ M, we consider in Scheme (22),(23) the test function δt(n+

1
2
)v(n) and

sum on n = 0, . . . , N − 1. We may then pass to the limit (thanks to the consistency of ∇̃D), and

we get that the pair (ū, p̄) is a weak solution of the problem, in the sense of Definition 1.1. This

step follows some common ideas with Lemma 3.4 in Section 3.

3 Approximation by an approximate gradient scheme

We now turn to the approximation of Problem (6)-(11) by an approximate gradient scheme. We recall

that the family of approximate gradient schemes provides a generic framework for the approximation of

various linear or nonlinear problems [7, 9].

3.1 The mesh and the discrete operators

We present here the framework of gradient discretisations for diffusion problems with homogeneous

Dirichlet boundary conditions. This framework enables us to consider schemes applying on general

meshes (neither orthogonality nor conformity conditions are needed).

Definition 3.1 (Gradient discretisation for homogeneous

Dirichlet problems)

A gradient discretisation for homogeneous Dirichlet problems D is defined by D = (XD,0,ΠD,∇D),
where:

1. the set XD,0 of discrete unknowns is a finite dimensional vector space on R,

2. the linear mapping ΠD : XD,0 → L2(Ω) is the reconstruction of the approximate function,

3. the linear mapping ∇D : XD,0 → L2(Ω)d is the discrete gradient operator.

The discrete gradient operator ∇D must be chosen such that ‖ · ‖D defined by ‖w‖D = ‖∇Dw‖L2(Ω)d is

a norm on XD,0.

The associated gradient scheme is the application of these operators to a given (diffusion) problem. Our

aim is to prove the convergence of an approximate gradient scheme for Problem (6)-(11) if the under-

lying gradient discretisation is coercive, consistent, limit-conforming, compact and piecewise constant,

according to the following definitions, in which D denotes a gradient discretisation for homogeneous

Dirichlet problems in the sense of Definition 3.1.

Definition 3.2 (Coercivity) Let

CD = max
w∈XD,0\{0}

‖ΠDw‖L2(Ω)

‖w‖D
. (25)
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A sequence (Dm)m∈N of gradient discretisations for homogeneous Dirichlet problems is said to be co-

ercive if there exists CP ∈ R+ such that CDm
≤ CP for all m ∈ N.

Definition 3.3 (Consistency) Let SD : H1
0 (Ω) → [0,+∞) be defined by ϕ ∈ H1

0 (Ω) 7→ SD(ϕ) with

SD(ϕ) = min
w∈XD,0

(‖ΠDw − ϕ‖L2(Ω)

+ ‖∇Dw −∇ϕ‖L2(Ω)d).

A sequence (Dm)m∈N of gradient discretisations for homogeneous Dirichlet problems is said to be con-

sistent if

∀ϕ ∈ H1
0 (Ω), lim

m→∞
SDm

(ϕ) = 0.

Definition 3.4 (Limit-conformity) . Let

Hdiv(Ω) = {ϕ ∈ L2(Ω)d, divϕ ∈ L2(Ω)},

and let WD: Hdiv(Ω) → [0,+∞) be defined by U 7→WD(U), with

WD(U) = max
w∈XD,0\{0}

1

‖w‖D

∣∣∣
∫

Ω

(
∇Dw(x) ·U(x) + ΠDw(x)divU(x)

)
dx

∣∣∣.

A sequence (Dm)m∈N of gradient discretisations for homogeneous Dirichlet problems is said to be limit-

conforming if

∀U ∈ Hdiv(Ω), lim
m→∞

WDm
(U) = 0. (26)

Definition 3.5 (Compactness) A sequence (Dm)m∈N of gradient discretisations for homogeneous Dirich-

let problems is said to be compact if, for all sequence um ∈ XDm,0 such that ‖um‖Dm
is bounded, the

sequence (ΠDmum)m∈N is relatively compact in L2(Ω).

Definition 3.6 (Piecewise constant function reconstruction) Let D be a gradient discretisation in the

sense of Definition 3.1, and I be the finite set of the degrees of freedom, such that XD,0 = R
I . We say

that ΠD is a piecewise constant function reconstruction if there exists a family of open subsets of Ω,

denoted by (Ωi)i∈I , such that
⋃
i∈I Ωi = Ω, Ωi ∩ Ωj = ∅ for all i 6= j, and ΠDu =

∑
i∈I uiχΩi

for all

u = (ui)i∈I ∈ XD,0, where χΩi
is the characteristic function of Ωi.

Remark 3.1 Note that ‖ΠD · ‖L2(Ω) is not requested to be a norm on XD,0. Indeed, in several schemes,

some degrees of freedom are involved in the reconstruction of the gradient of the function, but not in that

of the function itself. Hence it can occur that some of the Ωi are empty.

Definition 3.7 (Space-time discretisation)

We say that (D, δt) is a space-time gradient discretisation of Ω×]0, T [ if

• D = (XD,0,ΠD,∇D) is an approximate gradient discretisation of Ω in the sense of Definition 3.1,

• we have t(0) = 0 < t(1) . . . < t(N) = T , and we denote the discrete time step by δt(n+
1
2
) =

t(n+1)−t(n) for n = 0, . . . , N−1, and we let δt =
(
δt(n+

1
2
)
)
n=0,...,N−1

and |δt| = maxn=0,...,N−1 δt
(n+ 1

2
).
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3.2 Definition of the scheme

Let (D, δt) be a space-time discretisation of Ω×]0, T [ in the sense of Definition 3.7 such that ΠD is a

piecewise constant function reconstruction in the sense of Definition 3.6. We define the following scheme

for the discretisation of Problem (6)-(11) in the sense of Definition 1.1. For a given interpolation u(0) of

uini, we seek (u(n+1), p(n+1)), n = 0, . . . , N − 1, such that, for any w ∈ XD,0 and n = 0, . . . , N − 1,

we have:
u(0) ∈ XD,0, u

(n+1) ∈ XD,0, p
(n+1) ∈ XD,0,

δ
(n+ 1

2
)

D u = ΠD
u(n+1) − u(n)

δt(n+
1
2
)

,

∫

Ω

(
δ
(n+ 1

2
)

D uΠDw − (f1(ΠDu
(n+1))v

(n+1)
D −∇Dψ(u

(n+1))) · ∇Dw
)
dx

=

∫

Ω
(f1(c) s

+ − f1(ΠDu
(n+1)) s−)ΠDw dx,

−
∫

Ω
v
(n+1)
D · ∇Dw dx =

∫

Ω
( s+ − s−)ΠDw dx

v
(n+1)
D = −M(ΠDu

(n+1))∇Dp
(n+1).

(27)

As in the case of the TP scheme, we use the notations ΠD, ∇D and vD for the definition of space-

time dependent functions (see (24)). It is worth noticing that, in Scheme (27), the convection term is

approximated by f1(ΠDu
(n+1))v

(n+1)
D and no upstream weighting. The following convergence proof

can be extended to upstream weighting discretizations provided that a scheme dependent construction of

the discrete Darcy fluxes is given (see [3] for the SUSHI scheme, and [5] for the Vertex Approximate

Gradient scheme). We prove below the convergence of the scheme, but contrary to the TP scheme, no

L∞ bound on ΠDu
(n+1) is known.

We finally introduce the function

Ψ(s) =

∫ s

0
ψ(x)dx, ∀s ∈ R, (28)

which is used several times in the convergence proof. We then have from the Assumption (12h),

Ψ(s) =

∫ s

0
(ψ(x)− ψ(0))dx ≤ Lψ

∫ s

0
xdx = Lψ

s2

2
, (29)

and, from Assumption (12i),

Ψ(s) ≥
∫ s

0
ψ(x)

ψ′(x)

Lψ
dx ≥ ψ(s)2

2Lψ
≥ A2s2 − 2B2

4Lψ
. (30)

Lemma 3.1 (discrete L2 estimates) Under Hypotheses (12), let (D, δt) be a space-time gradient dis-

cretisation of Ω×]0, T [ which is coercive in the sense of Definition 3.2 and such that ΠD is a piecewise

constant function reconstruction in the sense of Definition 3.6. Then there exists C1 > 0, only depending

on Lψ, M , M , A, B, CP > CD, Cini > ‖uini − ΠDu
(0)‖L2(Ω), ‖s+‖L2(Ω), ‖s−‖L2(Ω), such that, for

any solution (u, p) to this scheme,

‖ΠDu‖L2(Ω×]0,T [) ≤ C1, (31)
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‖vD‖L2(Ω×]0,T [)d ≤ C1, (32)

‖∇Dψ(u)‖L2(Ω×]0,T [)d ≤ C1. (33)

As a consequence, there exists at least one solution (u, p) to the scheme.

PROOF. For a given time iteration n > 0, we let w = p(n+1) in the second equation of (27) which leads

to ∫

Ω
M(ΠDu

(n+1))|∇Dp
(n+1)|2 dx =

∫

Ω
( s+ − s−)ΠDp

(n+1) dx.

Using hypothesis (12g)-(12d) and the Cauchy-Schwarz inequality, we have

M‖∇Dp
(n+1)‖2L2(Ω) 6 (‖s−‖L2(Ω) + ‖s+‖L2(Ω))‖ΠDp

(n+1)‖L2(Ω).

Using (25) we have

‖∇Dp
(n+1)‖L2(Ω) 6 Cp(‖s−‖L2(Ω) + ‖s+‖L2(Ω))

1

M
.

Finally using the definition of v
(n+1)
D and (12g) we have

‖v(n+1)
D ‖L2(Ω)d 6 Cp(‖s−‖L2(Ω) + ‖s+‖L2(Ω))

M

M
,

which proves (32).

We then let w = ψ(u(n+1)) in the first equation of (27), which leads to

∫

Ω
δ
(n+ 1

2
)

D uΠD(ψ(u
(n+1))dx+ ‖∇Dψ(u

(n+1))‖2L2(Ω)

=

∫

Ω
(f1(c) s

+ − f1(ΠDu
(n+1)) s−)ΠDψ(u

(n+1)) dx+

∫

Ω
f1(ΠDu

(n+1))v
(n+1)
D · ∇Dψ(u

(n+1))dx.

Using twice the fact that r1r2 6
1

4
r21+r

2
2 which holds for any real numbers r1, r2 together with (25)-(12f)

and the Cauchy-Schwarz inequality, we have

∫

Ω
δ
(n+ 1

2
)

D uΠDψ(u
(n+1))dx+

1

2
‖∇Dψ(u

(n+1))‖2L2(Ω)

6

(
Cp(‖s−‖L2(Ω) + ‖s+‖L2(Ω)) + ‖v‖L2(Ω)d

)
.

Using the function Ψ defined by (28) and the equality
∫ r2

r1

ψ(x)dx = Ψ(r2)−Ψ(r1) = ψ(r2)(r2 − r1)−
∫ r2

r1

ψ′(x)(x− r1)dx

︸ ︷︷ ︸
>0

,

we obtain

∫

Ω

ΠD(Ψ(u(n+1))−Ψ(u(n)))

δt(n+
1
2
)

dx+
1

2
‖∇Dψ(u

(n+1))‖2L2(Ω)

6

(
Cp(‖s−‖L2(Ω) + ‖s+‖L2(Ω)) + ‖v‖L2(Ω)d

)

︸ ︷︷ ︸
=C2≥0

.
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We multiply by δt(n+
1
2
) and sum on 0, . . . , N − 1, which gives

‖ΠDΨ(u(N))‖L1(Ω) +
1

2
‖∇Dψ(u)‖2L2(Ω×]0,T [)d ≤ C2 T + ‖ΠDΨ(u(0))‖L1(Ω),

which in turn yields, thanks to (29) and (30),

1

2Lψ
‖ΠDψ(u

(N))‖2L2(Ω) +
1

2
‖∇Dψ(u)‖2L2(Ω×]0,T [)d ≤ C2 T +

Lψ

2
‖ΠDu

(0)‖2L2(Ω).

This proves (33). Finally by using (25) and the hypothesis (12i) we obtain (31).

As in the case of the TP scheme, from these estimates, we get existence of a solution by a topological

degree argument (see also [14]). �

Lemma 3.2 (Estimate on the time translates) Under Hypotheses (12), let (D, δt) be a space-time

gradient discretisation of Ω×]0, T [ which is coercive in the sense of Definition 3.2 and such that ΠD is a

piecewise constant function reconstruction in the sense of Definition 3.6. Then there exists C2 > 0, only

depending on Lψ, M , M , A, B, CP > CD, Cini > ‖uini − ΠDu
(0)‖L2(Ω), ‖s+‖L2(Ω), ‖s−‖L2(Ω), such

that, for any solution (u, p) to this scheme,

‖ΠDψ(u)(·, ·+ τ)−ΠDψ(u)(·, ·)‖2L2(Ω×(0,T−τ)) ≤ C2(τ + |δt|), ∀τ ∈]0, T [. (34)

For the proof of this lemma we refer to [9, Lemma 2.3] where the term ∇Dζ(u
m) in the proof of the

mentioned paper is here replaced by ∇Dψ(u
m)− f1(ΠDu

m)vmD (this holds thanks to (12f)-(32)-(33)).

Lemma 3.3 (Compactness of approximate solution) Let Hypotheses (12) be fulfilled. Let (Dm, δtm)m∈N

be a sequence of space-time gradient discretisations, such that the associated sequence of approximate

gradient approximations is limit–conforming (Definition 3.4) and compact (Definition 3.5, it is then co-

ercive in the sense of Definition 3.2), and such that, for all m ∈ N, ΠDm is a piecewise constant function

reconstruction in the sense of Definition 3.6 and |δtm| → 0 as m → ∞. For any m ∈ N, let um

be a solution to Scheme (27), such that ‖uini −ΠDmu
(0)
m ‖L2(Ω) → 0 as m → ∞. Then there exists

ū ∈ L2(Ω×]0, T [) and p̄ ∈ L2(0, T ;H1
0 (Ω)) such that, as m→ ∞,

1. ψ(ΠDmum) converges to ψ(ū) ∈ L2(0, T ;H1
0 (Ω)) in L2(Ω× ]0, T [), (and therefore ΠDmum

converges in L2(Ω×]0, T [) to ū),

2. ∇Dmψ(um) converges to ∇ψ(ū) weakly in

L2(Ω× ]0, T [)d,

3. ΠDmpm converges to p̄ ∈ L2(0, T ;H1
0 (Ω)) weakly in L2(Ω×]0, T [),

4. ∇Dmpm converges to ∇p̄ weakly in L2(Ω×]0, T [)d.

PROOF. We list here the main ideas of the proof for each item.

1. We use Lemma 3.2 on the time translates, the compactness of (Dm)m∈N and the discrete Aubin-

Simon Theorem as in [9]. The strong convergence of ΠDmum results from the fact that ψ is strictly

increasing,

2. Based on the previous point, the estimate (33) and the limit–conformity of (Dm)m∈N.
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3. and 4. result from the estimate (32), the Hypothesis (12g), the coercivity and the limit-conformity

of (Dm)m∈N.

�

Lemma 3.4 (Convergence of approximate solution) Under the same hypotheses as that of Lemma

3.3, and moreover assuming the consistency of (Dm)m∈N in the sense of Definition 3.3, then the pair

(ū,p̄) (whose existence is given by Lemma 3.3) is a weak solution of the Problem (6)-(11) in the sense of

Definition 1.1.

PROOF. Let m ∈ N, and let us denote D = Dm (belonging to the above subsequence) and drop some

indices m for the simplicity of the notation. Let g ∈ C∞
c ([0, T )) and ϕ ∈ C∞

c (Ω) , and let w ∈ XD,0 be

such that

w = argmin
z∈XD,0

SD(ϕ).

We first take as test function in the second equation of (27) the function δt(n+
1
2
)g(t(n))w. Thanks to the

strong convergence of ΠDmum to ū, to the weak convergence of ∇Dmpm to ∇p̄ and to the consistency

of (Dm)m∈N, we get that (14),(15) hold (we use the fact that the set

T = {
q∑

i=1

gi(t)ϕi(x) : q ∈ N, gi ∈ C∞
c [0, T ), ϕi ∈ C∞

c (Ω)} (35)

is dense in C∞
c (Ω × [0, T ))). We then take as test function in the first equation of (27) the function

δt(n+
1
2
)g(t(n))w, and we sum the resulting equation on n = 0, . . . , N − 1. We get,

T
(m)
1 + T

(m)
2 + T

(m)
3 = T

(m)
4 , (36)

with

T
(m)
1 =

N−1∑

n=0

δt(n+
1
2
)g(t(n))

∫

Ω
δ
(n+ 1

2
)

D u(x)ΠDw(x)dx,

T
(m)
2 =

N−1∑

n=0

g(t(n))

∫

Ω
f1(ΠDu

(n+1)(x))M(ΠDu
(n+1)(x))∇Dp

(n+1)(x) · ∇Dw(x)dx,

T
(m)
3 =

N−1∑

n=0

g(t(n))

∫

Ω
∇Dψ(u

(n+1))(x) · ∇Dw(x)dx,

and

T
(m)
4 =

N−1∑

n=0

g(t(n))

∫ t(n+1)

t(n)

∫

Ω
(f1(c(x))s

+(x)− f1(ΠDu
(n+1)(x))s−(x))ΠDw(x)dxdt.

Writing

T
(m)
1 = −

∫ T

0
g′(t)

∫

Ω
ΠDu(x, t)ΠDw(x)dxdt − g(0)

∫

Ω
ΠDu

(0)(x)ΠDw(x)dx,
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we get, using Lemma 3.3 and the consistency of the discretisation, that

lim
m→∞

T
(m)
1 = −

∫ T

0
g′(t)

∫

Ω
ū(x, t)ϕ(x)dxdt − g(0)

∫

Ω
uini(x)ϕ(x)dx.

We also immediately get, using the convergence of ΠDmum to ū in L2(Ω×]0, T [), that

lim
m→∞

T
(m)
3 =

∫ T

0
g(t)

∫

Ω
∇ψ(ū(x, t)) · ∇ϕ(x)dxdt.

and

lim
m→∞

T
(m)
4 =

∫ T

0
g(t)

∫

Ω
(f1(c(x))s

+(x)− f1(ū(x, t))s
−(x))ϕ(x)dxdt.

Similarly, we also have

lim
m→∞

T
(m)
2 =

∫ T

0
g(t)

∫

Ω
f1(ū(x, t))M(ū(x, t))∇p̄(x, t) · ∇ϕ(x)dxdt.

Hence we get that (13) holds. Thanks again to the density inC∞
c (Ω×[0, T )) of the set T defined by (35),

we conclude the proof that (ū,p̄) is a weak solution of the Problem (6)-(11) in the sense of Definition 1.1.

�

4 Discussion

The TP finite volume scheme and the approximate gradient scheme are two alternative ways of discretis-

ing a two phase flow problem in porous media. One of the main properties of the TP finite volume

scheme is that the resulting discrete diffusion operator is of the form

∑

L∈M

τKL(uK − uL), (37)

where the transmissivities τKL are positive and such that τKL = τLK . Thanks to this form, the monotony

and natural L∞ bounds may be shown to hold. In the case of the two phase flow problem, this entails

that the approximate saturation remains bounded by 0 and 1. Moreover, it allows to get some stability

estimates by multiplying the conservation equation by a function of the unknown which differs from the

unknown involved in the second order term (for instance in Section 2, we multiplied (20) by uK while

the unknown in the second order term is ψ(u)). This latter technique has been used in the study of several

problems, as for instance for:

• the convergence of the discretisation of a nonlinear convection/degenerate diffusion equations [11],

• the convergence of the discretisation of a linear diffusion problem with singular right hand sides

or initial data [8],

• the approximation of two-phase flow in porous media, with dissolution or heterogeneous capillary

curves [4, 15, 16]
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Note also that it is easy to implement an upstream weighting scheme for a convection term together

with the TP scheme, which ensures more stability. The main drawback is that the admissible meshes

in this case are restricted, especially in the 3D case, since we require the orthogonality condition for

the TP scheme to be consistent. This has led to the development of Multi-Point Flux Approximation

schemes [1], whose main drawback is the lack of robustness on too distorted meshes.

On the other hand, the generic framework of the gradient schemes includes a large number of recent

methods which remain robust on general meshes, in the sense that it provides convergent approxima-

tions using common properties which are satisfied by these methods. The convergence proof which is

done here is therefore valid for any scheme of this family (finite element, mixed finite element, mimetic

method...). The main drawback of this analysis is the fact that the bounds [0, 1] on the discrete solution

cannot be imposed in this general setting; moreover, in order to obtain an estimate, in general one can

only use as test function the one which appear in the second order terms, using the fact that
∫
Ω |∇D · |2

is a norm.

Ongoing research is active to obtain schemes that preserve the maximum principle. However it seems dif-

ficult to obtain a discrete diffusion term of the form (37) with positive transmissivities from a consistent

gradient on a general mesh; even though it is possible in certain cases, for instance for piecewise linear

finite element on triangular Delaunay meshes [17]. Nonlinear schemes have also been proposed [19,20];

however, the question of convergence of gradient schemes for the problems cited in the above list remains

open on general grids.
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