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Abstract 

This paper presents a comparison of Degree Of Freedom (DOF) based math models, viz., 

Tolerance-Maps, Deviation Domain and TTRS, that have shown most potential for retrofitting 

the nuances of the ASME/ISO tolerance standards. Tolerances specify allowable uncertainty in 

dimensions and geometry of manufactured products. Due to these characteristics and 

application of tolerances, it is necessary to create a math model of tolerances in order to build a 

computer application to assist a designer in performing full 3-D tolerance analysis.   

Many of the current efforts in modeling tolerances are lacking, as they either do not completely 

model all the aspects of the ASME/ISO tolerance standards or are lacking the requisite full 3-D 

tolerance analysis. Some tolerance math models were developed to suit CAD applications used 

by the designers while others were developed to retrofit the ASME/ISO tolerance standard. 

Three math models developed to retrofit the ASME/ISO standard, Tolerance-Maps, Deviation 

Domain and TTRS are the main focus of this paper. Basic concepts of these math models are 

summarized in this paper, followed by their advantages and future issues. Although these three 

math models represent all aspects of the ASME/ISO tolerance standard, they are still lacking in 

one or two minor aspects.  

1. INTRODUCTION

1.1 Background and Importance of Tolerances 

Manufacturing invariably leads to uncertainty in dimensions and geometry of manufactured 

products. Usually, products with higher precision (dimensional and geometric) cost more than 

the products with lower precision. A designer specifies the dimensions and geometry of the 

manufactured product, while satisfying functional and other constraints for the product. 

Therefore, the designer must also specify the amount of uncertainty in dimensions and 

geometry of the manufactured product. The amount of uncertainty in dimensions and geometry 

of the manufactured product is specified through tolerances.  

The modern method of specifying tolerances is through geometric dimensioning and tolerancing 

(GD&T), as indicated in the ASME Y14.5 and ISO 1101 standards [1,2]. According to the 

Standards [1,2], the variations of a feature are bounded within tolerance zones that permit 
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locational, orientational, form, profile, runout and symmetry variations of the feature in 3- 

dimensions. Figure 1 shows different classes of tolerances and associated symbols.  

Figure 1: Different classes of tolerances in the standards [1]. 

In the present era tolerances affect the cost of production, inspection procedure, assemblability, 

performance, sensitivity, selection of process, process related tools and fixtures. The selection 

of type and value of tolerances for a part or an assembly is an important issue for any 

manufacturing firm as it affects decision-making processes at all the echelons of a production 

cycle. Therefore, a designer should discern the need and the effect of tolerances that he/she 

selects. 

Usually, a designer can arrive at initial/preliminary set of tolerances by utilizing (a) design history 

from similar products and (b) trial and error. The initial value of tolerances can be optimized for 

cost and function of the product using one of two approaches: (a) tolerance analysis or (b) 

tolerance synthesis [3]. With analysis, the designer estimates values for individual tolerances on 

a target feature for each dimension in a ‘stackup’, and then uses an analysis tool, often 

automated on a computer, to determine the contribution from each of these tolerances to the 

accumulation of variations at one or more functional target features of the entire stackup. (Note 

that a ‘stackup’ is a dependent relationship among dimensions that may all reside on one part, 

or be distributed over several parts in an assembly.) With synthesis, often called tolerance 

allocation, the desired control (e.g. a range of clearance to ensure proper lubrication or control 

of noise) at the target feature is chosen, and often ratios among tolerances are also chosen, to 

Symmetry 
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minimize cost of manufacture. Then, the tolerances are generated from the math model to meet 

these choices. Tolerance analysis and allocation can be done using a worst-case method or a 

statistical method. With the worst-case approach, the tolerances chosen will ensure 100% 

acceptability of the assemblies; with the statistical method, the tolerances chosen will ensure 

acceptability of a certain large percentage of assemblies. The statistical method allows a 

tradeoff between bigger variations at all the parts, and a correspondingly lowered cost of their 

manufacture, and a small number of assemblies for which the variations at the target feature(s) 

are not within acceptable limits. 

1.2 Need for Math Model of Tolerances 

Current tools for assisting designers in assigning satisfactory set of tolerances (tolerance 

analysis) are neither comprehensive nor accurate. The designer either uses manual/automated 

tolerance charts or simulation based commercial tolerance analysis tools. Tolerance charting is 

consistent with ASME/ISO standards [1,2], but limited to 1-D worst case analysis only. 

Simulation based commercial tolerance packages typically perform both worst case and 

statistical analysis, but are based on point-to-point constraint solving and therefore incompatible 

with the tolerance standards that specify variation within tolerance zones. Comprehensive 3D 

analysis of stack-ups involving all types of dimensional and geometric variations is only possible 

if a mathematical model of such variations exist.  

The current international standards are created by collecting knowledge from years of 

engineering practice and are therefore case-based for each individual feature type and 

tolerance type. Emerging methods are attempting to address the challenge to build a math 

model of geometric variations that is consistent with already existing tolerance standards and 

capable of supporting comprehensive 3D analysis of stack-up conditions. 

Many different methods for math models of the standard for tolerance analysis have been 

approached in the literature, which will be discussed in brief in section 2.2. For a detailed and 

comprehensive review of tolerance analysis methods please refer to other review articles [3-8]. 

Three spatial math models for tolerance analysis have seen the most development, and have 

been pursued consistently, by the researchers, in the last decade. The only focus of this paper 

is these three spatial math models for tolerance analysis, viz., Tolerance-Map, Deviation 

Domain and TTRS (Technologically and Topologically Related Surfaces) model. The next 

section presents basics of tolerance analysis and various research efforts related to tolerance 
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analysis. Section 3, provides an overview of three math models for tolerance analysis, while 

section 4 compares the three math models.  

 

2. TOLERANCE ANALYSIS 

2.1 Basics of Tolerance Analysis 

The objective of tolerance analysis is to check the extent and nature of the variation of an 

analyzed dimension or geometric feature of interest for a given GD&T scheme. The variation of 

the analyzed dimension arises from the accumulation of dimensional and/or geometric 

variations in the tolerance chain. The analysis include: (1) the contributors, i.e., the dimensions 

or features that cause variations in the analyzed dimension, (2) the sensitivities with respect to 

each contributor, (3) the percent contribution to variation from each contributor, and (4) worst 

case variations, statistical distribution, and acceptance rates.  

 

Figure 2. A simple 1-dimensional example showing tolerance analysis with only 

dimensional tolerances. 

 

For example, consider the assembly of three parts shown in Figure 2. Dimensions d1, d2 and d3 

are known dimensions with associated dimensional tolerances (±t1/2, ±t2/2 and ±t3/2). 

Dimension df is the dimension of interest for the assembly. It is quite evident that  

df = d1-(d2+d3)       (1) 

Correspondingly, the worst cast variation of dimension df can be identified by the tolerance tw 

tw = t1+t2+t3       (2) 

The contributors are dimensions d1, d2 and d3. All the three dimensions have equal sensitivities 

(1) and equal contribution (0.33). The worst case variation is df+tw/2 and df-tw/2. For statistical 
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tolerance analysis, root sum of squares method from statistics is utilized leading to equation (3) 

under the following assumptions: 

1. di parameters are independent random variables

2. the index capability Cp = ti/(6 SDi) has the same value for all ti and ts. SDi are the

standard deviations of di and df.

2

3

2

2

2

1

2
tttt

s
++=

(3) 

The above scheme is only suitable for such simple linear chains with only dimensional 

tolerances. Addition of geometric tolerances, with their nuances, and non-linear chains 

complicates the tolerance analysis procedure. Although, some simple linearization or rule based 

methods have been developed to tackle tolerance analysis, but these methods fall short in 

achieving full 3-D tolerance analysis with geometric tolerances. 

2.2 Various Research efforts in Tolerance Analysis 

Various research efforts in tolerance analysis can be classified into two major categories. 

Tolerance representations retrofitted for CAD and retrofitted to model variations, as specified by 

the standards. Furthermore, the classification of research efforts for developing a math model of 

standard as given by Davidson et. al [9], can be reclassified into the two categories of research 

efforts in tolerance analysis. Parametric models, offset zone models and variational surfaces 

based models are representations retrofitted for CAD, while kinematic models and Degrees of 

Freedom based models are representations retrofitted for variations as specified by the 

standards. Other recent reviews in tolerance analysis have been conducted for Jacobean and 

torsor models [10], and matrix and vector models [11]. A brief description of these research 

efforts is presented below. 

2.2.1 Tolerance models retrofitted for CAD: Initial efforts, during 1980’s, utilized parametric CAD 

to develop models for tolerance analysis. These models can be called parametric models for 

tolerance analysis. Parametric CAD utilizes a set of explicit dimensions and constraints to 

represent nominal shape and size. These explicit dimensions and constraints can be used to 

obtain a set of equations relating the dimension of interest to individual chain of dimensions. 

Tolerances are incorporated by allowing +/- variations in the dimensions [12,13].  
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As is evident, this method is similar to the 1-dimensional tolerance analysis discussed in section 

2.1. Limitations of attributed to parametric methods include inability (a) to incorporate to all 

geometric tolerances in the standard and their interactions and (b) to conduct full 3D tolerance 

analysis. 

About the same time, researchers attempted to model the concept of tolerance zone for 

tolerance analysis, by creating zones for the toleranced features in a CAD model. The main idea 

was to model tolerance zone as Boolean subtraction of maximal and minimal object volumes 

that are obtained by offsetting the object by amounts equal to the tolerances on either side [14-

16]. These models are called offset zone models for tolerance analysis. The construction of 

such a composite tolerance zone from boundary surfaces of the part (a) does not allow one to 

model each type of geometric variation separately and (b) to study their interactions as specified 

in the standard [1]. Various issues related to these models are also discussed in [17]. 

Extending the same idea of offset zone for simulating the variations of features in CAD models, 

variational surfaces based models for tolerance analysis were developed in early 1990’s. Each 

surface is varied independently by changing the values of model variables from which surface 

coefficients are calculated [18,19]; positions of the vertices and edges are computed from the 

surface variations. When using this concept in CAD tools, it leads to some topological problems, 

such as (a) maintenance of tangency and (b) incidence conditions. This model too, is 

incompatible with the ASME Standard [1]. A modified version of this method, which uses 

abstracted geometry instead of the CAD model itself is utilized in various simulation based 

tolerance analysis tools (VSA). 

2.2.2 Tolerance models retrofitted to represent variations as specified in the Standard: A 

different approach was adopted by Chase et al. [20] that incorporated kinematics to model 

assembly and tolerances for tolerance analysis. Such models can be classified as kinematics 

based model for tolerance analysis. Initially, Rivest et al. [21] utilized transformation matrices to 

analyze tolerance stack-up in mechanisms. Based on the idea, Chase et al. [5,20,22,23] 

developed a kinematic approach to tolerance analysis. In this approach, three types of 

variations (dimensional, kinematic, and geometric) are modeled in the vector loop. In a vector 

loop, dimensions are represented by vectors, in which the magnitude of the dimension is the 

length (Li) of the vector. Kinematic variations are small adjustments between joints (mating 

relations), which occur at the assembly time in response to the dimensional and geometric 

variations. Geometric tolerances are considered by adding micro degrees of freedoms (DOFs) 
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to particular ones of the joints. Not all interactions of geometric tolerances have been 

incorporated in the model.  

Extending the idea behind kinematic models, Degrees of freedom allowed by each tolerance 

type to each feature was being utilized by several researchers. Such models can be classified 

as Degree of Freedom based models for tolerance analysis. Kramer [24] used symbolic 

reasoning to demonstrate the determination of degrees of freedom of parts in an assembly and 

to determine assembly feasibility based on nominal dimensions. The three math models 

(Tolerance-Maps, Deviation Domain and TTRS) discussed in section 3, use the concept of DOF 

to model geometric tolerances and then utilize kinematics or transformations to assist in 

tolerance analysis. 

3. MATH MODELS FOR TOLERANCE ANALYSIS

Although there are many different math models for tolerance analysis (see section 2.2), this 

paper discusses Tolerance-Maps, Deviation Domain, and TTRS briefly. All these models use 

substituted surfaces having no form errors and variations are represented by real variables. For 

details of each method, refer to the cited references in each section below. 

3.1 Tolerance-Maps 

A Tolerance-Map® (T-Map®) is a hypothetical Euclidean point-space, the size and shape of 

which reflects all variational possibilities for a target feature. It is the range of points resulting 

from a one-to-one mapping from all the variational possibilities of a feature, within its tolerance-

zone, to the Euclidean point-space. These variations are determined by the various tolerances 

that are specified on the feature. 

3.1.1 Areal Coordinates: The T-Map® for any combination of tolerances on a feature is 

constructed from a basis-simplex in a space of dimension n, the value of n corresponding to the 

freedom of movement of the feature within the tolerance-zone; it is described with areal 

coordinates.  A classical description of this subject, a form of affine geometry, is in Coxeter [25].  

To construct an n-dimensional space and its simplex, n + 1 basis points are needed.  Therefore, 

for three-dimensional variations of a feature, the corresponding T-Map is constructed from four 

basis points that define its basis-tetrahedron. We choose to position the four basis-points σ 1, σ2, 

σ 3 and σ 4 as shown in Figure 3. At the four basis-points we place four masses λ1, λ2, λ3, and λ4

that may be positive or negative. So long as λ1 + λ2 + λ3 + λ4 ≠ 0, the position of σ , the centroid of

these masses, is uniquely determined by the linear combination
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and we can make σ assume any position in the space of σ 1..σ 4 by varying λ1, λ2, λ3, and λ4.  

For example, for λ1..λ4 all positive, σ identifies any point inside tetrahedron σ 1σ 2σ 3σ 4.  

 

o

 

Figure 3. The basis tetrahedron with its basis points. 

The four masses λ1…λ4 are the barycentric coordinates of σ, yet we note that the position of σ 

depends only on three independent ratios of these magnitudes.  Consequently, the four λi's can 

be normalized by setting  

λ 1 + λ 2 + λ 3 + λ 4 = 1;        (5) 

then they are areal coordinates and  

44332211
σλσλσλσλσ +++=  .       (6) 

The shape of the basis-tetrahedron was chosen to simplify interpretation of T-Maps, particularly 

to decouple rotational and translational displacements in the tolerance-zone [9]. 

3.1.2 Tolerance-Map for a face with size tolerance: Figure 4  shows the end of a rectangular 

bar of cross-sectional dimensions dx
 x dy ( dx < dy ). The length of the part shown is ℓwith an 

exaggerated tolerance t. According to the ASME Standard Y14.5 [1], all points of the end-face 

must lie between the limiting planes σ 1 and σ 2, and within the rectangular limit of the face. The 

region (ABCDEFGH) defined by the limiting planes and the rectangular limit of the face is the 

tolerance-zone for the planar face. The same tolerance zone can be obtained with profile 

tolerance, t, specified for the planar face with respect to the opposite end (not shown in the 

Figure 4) of the bar. 
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(a)    (b)     (c)    

Figure 4. (a) Rectangular part with size tolerance and (b) rectangular part with profile 

tolerance on rectangular surface. (c) The tolerance zone on size (specification of (a)) or 

profile (specification of (b)) for a rectangular bar and a coordinate frame centered within 

it. 

 

 

  2t  

xy ddt  

t  

 

Figure 5. The T-Map for the tolerance zone shown in Figure 4(c). 

In order to build the T-Map, it is assumed that the variations of the toleranced face in Figure 4 

are rotations about x and y and translations along z. The shape or form of the face is assumed 

to be perfectly planar. A coordinate frame is located in the tolerance zone with its origin O at the 

geometrical center of the tolerance zone as shown in Figure 4(c). This coordinate frame has its 

axes parallel to the edges of the part. Presuming the face at first to be of perfect form, i.e. a 

rectangular segment of a plane, the possible placement of this face is against any one of a 

three-dimensional set of planes. The planes σ 1 and σ 2 are located at maximum distance from 

the origin of the coordinate frame in the tolerance zone. The planes σ 3 and σ 7 are rotated by 

the greatest allowable amount about the x-axis in the tolerance zone. Since dx < dy, the 

permitted angular variation about the y-axis can be greater than that about the x-axis.  The 

planes labeled σ 4 and σ 8 are rotated about the y-axis by the same amount as the planes σ 3 

and σ 7 are about the x-axis. The planes σ4' and σ 8' are rotated the maximum amount about the 

y-axis in the tolerance zone. Each of these planes in the tolerance zone is then mapped to a 

specific point in the T-Map, as shown in Figure 5. Therefore, the construction of a T-Map 
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ensures that each point inside it represents a single valid configuration of the perfect-form 

feature within its tolerance-zone. 

The T-Map for a planar face faithfully represents the 3-D variations permitted by the tolerance-

zone: translation perpendicular to the plane and rotations about the x- and y- axes (Figure 4(c)). 

Measures along the s-axis of the T-Map represent parallel variations of the plane negatively 

along the z-axis in the tolerance zone, while the p'- and q'- axes represent the orientational 

variations of the plane about the y- and x- axes, respectively.  

If the toleranced face in Figure 4 is not assumed to be perfectly planar, then the shape or form 

variations of the face are modeled as subsets of T-Map as shown in Figure 6. The T-Map for 

size tolerance t on the length of the bar remains the same as in Figure 5, but now there are two 

internal sub-sets, each of the same shape as in Figure 5 but of different sizes.  The form 

variation is zero (perfect form, no warp) for the large shaded T-Map at the far left in Figure 6. As 

we move from left to right, the subset for size tolerance (lower shape) shrinks while the subset 

for form tolerance (upper shape) enlarges. This tradeoff represented through these subsets 

basically models Rule#1 from the ASME Y14.5 standard [1].	
  Further details about the T-Map 

model for different types of tolerances and features can be found in [9,26-31].  

	
  

Figure 6 The tradeoff between the array of sub-sets for form and their companion 

locations within the T-Map of Figure 5. 

 

3.1.3 Tolerance Analysis: Worst case tolerance analysis for assemblies with open chain and 

not consisting of any clearances, can be performed using the following steps 

1. Identify the chain of dimensions and tolerances from the datum to the target of the 

assembly 

2. Create  T-Maps for all the toleranced features in the chain 
3. Using transformation matrices, conform each T-Map to represent the variations at the 

target feature of the assembly 

4. Combine the T-Maps using Minkowski Sum to identify the accumulated T-Map for the 
target feature 

5. Create a T-Map for the functional requirement of the assembly. This T-Map is called 

functional T-Map. 

6. Fit the accumulation T-Map within the functional T-Map. 
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a. To verify if the assigned tolerances meet the functional requirement, the 

accumulation T-Map should be completely inside the functional T-Map. 
b. To identify the stack up equations, scale the functional T-Map homogeneously 

until at least one of the boundary points of the accumulation T-Map comes in 

contact to the boundary of the functional T-Map. Utilizing the geometry of the 

functional and accumulation T-Map, create the stack up equations. 
c. To optimize the assigned tolerances, change the types and values of tolerances 

on each feature such that the accumulation T-Map can fill as much space as 

possible while remaining confined within the functional T-Map and satisfying 
other design criteria. 

 

3.2 Deviation Domain 

3.2.1 Small Displacement Torsors: Each tolerance zone, allows a small amount of variations 

of the feature within the tolerance zone. These small amounts of variations are represented as 

small displacement torsor (SDT). A torsor basically represents three translations and three 

rotations of a feature with respect to a co-ordinate system. For example a SDT for a planar 

surface (Figure 4(c)) would be represented as 

{ }
0

,,,,,

===

=

zyx

zyxzyxplanar

rtt

rrrtttSDT
       (7) 

The first three elements of equation (4) represent the translations about x, y and z axis in the 

tolerance zone (Figure 4(c)) while the last three elements represent rotations about x, y and z 

axis in the tolerance zone. Because of the nature of the feature (planar surface), and the 

tolerance zone, translations along the x and y axis and the rotations about z axis are considered 

invariant. 

3.2.2 Deviation and Clearance Domain: In order to represent the variations of a feature within 

its tolerance zone, a deviation space is created using the non-invariant components of the SDT. 

For the example considered in the previous section (3.1.1), a deviation domain is created using 

tz, rx and ry parameters of the SDT. Since, the deviation domain is created for the three 

parameters of SDT; the domain is 3-dimensional. Furthermore, observing the tolerance zone, 

toleranced feature and the parameters of the SDT, inequalities representing the bounds of the 

tolerance zone are created. These inequalities are then used to create a bounded deviation 

domain. Figure 7 shows the deviation domain for the planar surface shown in Figure 4.  
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Figure 7: Deviation Domain for the planar surface in Figure 4(c). 

As is evident from equation (7), there are six parameters in a torsor. Therefore, the 

dimensionality of a deviation domain can be six. The clearance in a joint between two parts can 

also be modeled by SDT called clearance torsor. A coordinate frame is attached to the two parts 

forming a joint with clearance. The clearance is represented as a SDT of variations of one frame 

with respect to another. The possible variations in clearance, when represented in the deviation 

space (using SDT), is called a clearance domain. 

Form or shape variations are modeled using vibration modes of the toleranced feature. These 

vibration modes are then used to modify the deviation domain in order to represent form 

variations. For further details about the deviation domains models please refer to [32-38]. 

3.2.3 Tolerance Analysis: Worst case tolerance analysis for assemblies 

a. with open chain and not consisting of any clearances, can be performed using the

following steps

1. Identify the chain of dimensions and tolerances from the datum to the target of

the assembly

2. Create  deviation domains for all the tolerance features in the chain
3. Combine the deviation domains using Minkowski Sum to identify the

accumulated deviations for the target feature

4. Create a deviation domain for the functional requirement of the assembly. This

deviation domain is called functional domain.
5. Align the torsor parameters of the accumulated and functional domain to obtain

the stack up equation for the assembly

b. with closed chain and consisting of clearances, can be performed using the following

steps

   rx 

   tz 

   rz 
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1. Identify the chain of dimensions and tolerances from the datum to the target of 

the assembly 
2. Create  deviation domains for all the tolerance features in the chain 

3. Combine the deviation domains using Minkowski Sum to identify the 

accumulated deviations for the target feature 

4. Create a minimal clearance domain (accumulated) for each joint of the chain. 
5. The assembly is possible when the accumulated deviation domain remains within 

the accumulated clearance domain. 

 
3.3 Technologically and Topologically Related Surfaces (TTRS) 

The TTRS method utilizes several different concepts from constraints and rigid body motions to 

model tolerances. In classical kinematics, the constraints between the features of a point, a line, 

and a plane form six lower pairs of classical kinematics [39]. Hunt [40] drew attention to their 

use in both partial and sufficient constraint of a rigid body. Later, Desrochers and Clément [41] 

independently formulated the idea as six technologically and topologically related surfaces 

[TTRS] for use in applications of dimensioning and tolerancing. The surfaces as derived from 

kinematic joints are spherical, planar, cylindrical, helical, rotational and prismatic. Some authors 

add another surface called “any surface” to create seven TTRS.  

3.3.1 MGDE/MGRS: Desrochers [42] and Clément et. al., [43] have integrated TTRS to model 

the variations in a tolerance-zone with the use of the constraints between a point, line and 

plane, called “minimum geometric datum elements” (MGDE) or “minimum geometric reference 

surface” (MGRS). 

Table 1: 13 different constraints for the MGDE/MGRS (adopted from [43]) 

 Point Line Plane 

Point C1: coincidence 

C2: distance 

C4: coincidence 

C5: distance 

C3: distance 

Line C4: coincidence 

C5: distance 

C11: coincidence 

C12:parallel/distance 

C13: angle and distance 

C8: perpendicularity 

C9: parallel/distance 

C10: angle 

Plane C3: distance C8: perpendicularity 
C9: parallel/distance 

C10: angle 

C6: parallel/distance 
C7: angle 

 

3.3.2 Modeling tolerances: In the TTRS model, various researchers have used tensors or 

torsors	
  or screws combined with some internal parameters to represent tolerances. Since, the 

torsor has been discussed in section 3.2.1; this section presents the screw parameters used to 

model tolerances. 
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General motion of a rigid body is defined by a screw motion about screw axis. The screw 

motion, also called a twist, is represented by three angular velocities ω and three linear 

velocities v. A general representation of screw is given below  

( )
zyxzyx vvvT ,,;,, ωωω=      (8)

In the manner similar to torsors, the screw parameters are then used to represent small 

displacement screws within the tolerance zone for modeling variations of each MGDE. For 

further details please refer to [44]. 

3.3.3 Tolerance Analysis: Worst case tolerance analysis for assemblies with open and parallel 

stack ups can be performed using the following steps, 

1. Create TTRS graph for the assembly with MGDE/MGRS surfaces identified
2. Create Geometric tolerance TTRS graph, including the TTRS datum and toleranced

TTRS (tolerance element and tolerance zone)

3. The toleranced TTRS will lead to the modeling of tolerances based on tensors, torsors or
screws and several internal parameters.

4. Combine the tensors/torsors/screws parameter limits of all the toleranced TTRS along

the stack path/paths in the assembly.
5. Using the target features tolerance TTRS, identify the limiting parameter direction.

6. The sum of all the parameters in the combined tensors/torsors/screws along the limiting

parameter direction will lead to worst case tolerance for the target feature.

4. Comparison of the three math models

In order to compare the three math models discussed in section 3, the most important criteria is 

modeling GD&T in a manner that completely includes every aspect or nuance of the standard 

for tolerances. These aspects include representing (a) all tolerance types in relation to the valid 

feature type, (b) all valid and possible interactions and (c), datum precedence and order of 

datum are identified in the specified feature control frame. Other aspects include the procedure 

for worst case and statistical case tolerance analysis. Table 2 shows the comparison of the 

three math models based on these criteria. 

Table 2: Comparison of Math models for tolerance modeling and analysis 

TTRS T-Maps Deviation Space 

Modeling GD&T Intrinsic parameters 

and Small 

Homogenized multi-

dimensional 

Domains in the space 
of the torsors (6 

dimensions maxi) 
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Displacement Torsors parameter space 

using areal 

coordinates 

Tolerance types Modeled individual 

tolerance zone types 

related to each 

feature type and not 

tolerance types 

Except profile all 

modeled including 

pattern tolerances 

Except profile all 

modeled including 

pattern tolerances 
 

Interactions Not modeled Rule#1, MMC, LMC, 

RFS, bonus, shift and 

interaction of 

orientation, form and 

location also modeled 

Interaction of 
orientation, form and 

location, MMC, LMC 

and projected 

tolerance zone is also 
modeled.  

Datum precedence Successfully modeled Successfully modeled Successfully modeled 

Worst-Case Analysis Parameter 

inequalities along 

particular SDT 

parameter axis 

directions for analysis 

Conformation of maps 

to target, Minkowski 

sum, fitting with 

functional T-Map,  

Serial and parallel 

mechanism analysis 

Statistical-Analysis RSS method along 

the SDT parameter 

axis selected in worst-

case 

Convolution of 

probabilistic T-Maps 

and then intersection 

with a surface 

(representing 

dimension of interest) 

to generate frequency 

distribution for 

dimension of interest. 

Statistical clearance-
domains for parallel 

assemblies 

References [41,42,45-47] [9,26-31,48-51] [32-38] 

  

Although TTRS and Deviation Domains both use torsors to model geometric tolerances, TTRS 

also utilizes intrinsic parameters. Tolerance-Map does not utilize torsors and uses areal 

coordinates to create the hypothetical space and then overlays homogenized coordinates from 

the allowable DOF of a feature within the tolerance zone. A very important difference between 
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the Tolerance-Maps and Deviation Domains is that T-Maps have all the axes (in the 

hypothetical Euclidean space) of the same units (length units) while Deviation Domains can 

have axes of different units (angle and length units). Such homogenization of the axes, allows 

the T-Map model to compare two different specifications on the same feature in terms of the 

volume of the T-Map [28]. The larger the volumes of the T-Map, the greater number of 

variations are allowed by the specification. 

In the TTRS model, interactions of tolerances as prescribed in ASME and ISO standard has not 

been represented, while in the T-Map and Deviation Domain model, profile tolerances have not 

been modeled. Datum precedence has been successfully characterized in all three models. 

Worst-case tolerance analysis in the TTRS and Deviation domain model has been 

demonstrated for series and parallel stack ups, while T-Map model has been demonstrated for 

series stack ups with limited application for parallel stack ups. Statistical analysis in the TTRS 

model is conducted using RSS of the stack dimensions. In the deviation domain model, 

statistical clearance domains are identified, which are then used to conduct statistical tolerance 

analysis. In the T-Maps model, each T-Map in the stack up is converted into a probabilistic T-

Map. These T-Maps are then convolved together to obtain a convoluted accumulation T-Map. A 

surface for the dimension of interest is identified and intersected with the convoluted 

accumulation T-Map to obtain frequency distribution of the dimension of interest. The frequency 

distribution for the dimension of interest is used to provide results for statistical tolerance 

analysis. Furthermore, TTRS and deviation domain models have shown the ability to represent 

rigid as well as elastic or flexible parts/components, whereas in the T-Maps model, all parts are 

assumed to be rigid. T-Maps model has shown the capability to representing floating assembly 

constraints in tolerance analysis [52], while deviation domain model has shown the capability to 

represent non-rigid parts/components.  

5. Discussion and Future Issues 

Each of the models discussed in this paper, represents an advantage over the other in at least 

one aspect or another. These three models are similar, having quite the same assumptions, 

even if they use different mathematical formalism. Although, none of the models are complete, 

as yet, in representing all geometrical tolerances specified in the standard, the models assist a 

designer in bringing forth nuances from the standard as applicable to tolerance analysis.  
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Recent publications in tolerances have concentrated on methods for simulating manufacturing 

variations for specified tolerances [53], tolerance synthesis methods [54-56] and flexible or 

elastic components [57]. Therefore, the issues that need to be addressed in these models are 

(a) representing profile and symmetry tolerances, (b) multiple stack up chains (in T-Maps 

model), (c) Elastic or flexible components (in T-Maps model), (d) represent tolerance 

interactions completely (TTRS and Deviation Domains), (e) floating mating conditions, and (f) 

candidate Datum or derived datum sets. Floating mating conditions represent assembly of two 

parts when the parts are not rigidly fixed to one another, but can float (move) while satisfying 

assembly constraints. Candidate datum or derived datum is defined in the ASME Y14.5 

standard [1] as “the set of all candidate datums that can be established from a datum feature”. 

The candidate datum or derived datums are needed as the datums themselves are not of 

perfect form/shape. Therefore, the real datums are replaced by simulated perfect datums in 

order to conduct tolerance analysis. These issues have not been addressed by the three spatial 

models discussed in this paper. Of the three models discussed in this paper, deviation domain 

model has the potential to address this issue by utilizing the modes of vibrations of a surface to 

represent the form variations. 

A larger issue is integration of tolerances in design, manufacturing and inspection (tolerance 

evaluation). Although, some efforts [42,56] have been made in these three models for 

integrating design, manufacturing and inspection from tolerancing perspective, but a holistic 

approach needs to be developed that can incorporate the nuances of tolerancing from design, 

manufacturing and inspection in a homogeneous manner. 
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