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Abstract

This paper introduces a new filtering technique that aims to improve the quality of measured surface data by removing 
measurement artefacts, such as spikes and batwings, that impact the data analysis. The methods currently available for 
measuring surfaces allow a large number of heights on a surface to be measured with high lateral and vertical resolution. 
However, measured data often contain outliers, which take the form of sharp peaks on the surface (Dirac type) and are 
particularly common in optical measuring methods. By nature, these peaks cannot belong to a ‘real’ surface; thus, an outlier 
filtering step is necessary and should be the initial preparation step for the measured data prior to any further analysis. The 
measurement artefacts can strongly influence the topographic characterization parameters and adversely influence quality 
control efforts as well as functional analyses for discrimination and correlation of the surfaces. The proposed method makes 
the filtering of such outliers easier and more effective with criteria linked to the standard deviation (Peirce method) and 
associated with a modal form-filtering method that is independent of the presence of these peaks. The filter is then applied to 
the surface at different scales; thus, the method is scale sensitive and improves the filter efficiency. This new method is 
applied to surface data that were measured by optical means from different surfaces. The surfaces were measured with a 3D-

measuring laser microscope and laser scanning confocal microscopy. The results of testing these examples will determine 
the extent to which this method can improve the quality of measured data and thus influence the results of further analyses.

Keywords: outlier identification, surface analysis, surface topography, surface measurement

quality, modal form filtering

1. Introduction

Surface metrology uses high-precision measurement machines

that can acquire a set of statistical data on a surface. The

data interpretation provides insight into the different levels of

default orders, including the form, waviness, roughness and

micro-roughness of the measured surface. This interpretation

also helps to determine indicators corresponding to the surface

characteristics or to perform more advanced analyses on these

data, such as discriminating between the surfaces (area-scale

analysis).

In this context, the work presented in this paper is intended

to improve the quality of the acquired data by identifying and, if

necessary, excluding outliers from the surface measurements.

These data are characterized by a distribution of points that

does not verify the normality assumption, by multivariate and

ordered data, and by the very nature of a surface. Furthermore,

the current measurement methods often lead to obtaining
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surfaces that are increasingly substantial, with a high number

of observations and with potentially many outliers. Finally,

many surface analyses and indicators calculated from such data

are not robust with respect to the presence of outliers on these

surfaces. The outliers are aberrant height samples that are often

present in the form of sharp peaks on the measured surfaces

(Dirac type). These outliers negatively affect the visualization

of the surface in 3D representation (flattening or contracting

the scale in false color display); in particular, they influence

the analyses and post-treatment results that are applied to

these data. Therefore, additional analyses are performed based

on the measurement data, and these aberrant points must be

considered. The new outlier filter proposed here enables the

quick identification (and exclusion, if necessary) of outliers in

measured surface datasets.

There are numerous methods for treating aberrant points

in a dataset, but their direct applications are unsatisfactory

for surfaces for the following reasons: the measured heights

samples are arranged on two axes (x, y), and the height samples

z(x, y) are nonindependent and not normally distributed in

the general case. The objective of this paper is to propose

a new method for the detection of outliers, dedicated to

surface metrology, i.e. the measurement and analysis of surface

topographies. However, the principles and methods presented

can be transposed to all field measurement data.

2. Principle, definition and methods to identify
outliers

2.1. Historical and principle

Peirce (1852) was the first to establish a formal exclusionary

rule, i.e. an objective criterion to identify outliers of a dataset.

His work, based on calculations of probabilities from a normal

distribution model have inspired most of current methods,

including those of Chauvenet (1868), Wright (1884), and more

recently Grubbs (1969), Stefansky (1972). The key concepts

of this reference method, and how it can be implemented

with the current means of computation are presented in

section 2.3. However, the limitations of this approach in terms

of computation time and for large data samples make its

application to surface metrology issues difficult.

The proposed approach for surface measurements uses

the method of Grubbs (also called Grubbs’ test). Grubbs’

test allows for a criterion related to the level of risk in

identifying outliers with respect to points modelled by a

normal distribution. The method then compares the absolute

values of the reduced deviations to a limit value that is

calculated from the critical values of Student’s t distribution

(Student 1908, Hotelling 1931). However, this test is effective

only if the assumption of normality is verified, which is not

the case of raw data measured on surfaces. Moreover, it

does not consider that the measured heights are arranged in

space. To better address the specific problem of outliers on

measured surfaces, we propose to provide partial answers to

the following fundamental questions in the study of outliers

put forth by Barnett (1978):

(1) What are the possible causes of outliers in statistical

data?

(2) In what way do outliers influence data analysis?

(3) What probabilistic model might be employed to explain

the presence of outliers?

To which we respond:

(1) There are many potential causes for the presence of

outliers on surface measurements; these causes are

primarily related to the means of measurement (i.e. sensor

or optical measurement) or the presence of alterations in

the measured sample (i.e. dust, marks or dirt). This point

will not be developed in this study. Instead, this study

focuses on issues (2) and (3).

(2) Before attempting to deal with aberrant points, the

influence of these points on analyses from a measured

surface must be emphasized. For example, many

parameters of the standards ISO-8785 (1998) and ISO-

25178-3 (2008) for surface parameters are not robust

with respect to outliers, i.e. their values are sensitive

to the outliers (see figures 10(e) and ( f )). This feature

can also be true of many more advanced analyses using

surface measurements. One can cite the example of area-

scale analysis (ASME-B46.1 2009, Brown et al 1994) of

different measured surfaces to discriminate between them

(Jordan and Brown 2006, Scott et al 2005), or to find

correlations with behaviour (Brown and Siegmann 2001,

Berglund et al 2010) or processing (Cantor and Brown

2009), since this analysis can normally best be performed

after filtering the surface outliers, if they exist, although

this is not always the case (Brown and Brown 2010, Vessot

et al 2012).

(3) The distribution assumptions used to detect the presence

of supposed outliers is crucial; in the case of

surface metrology, the assumption that the dataset

is approximately normally distributed (normality

assumption) does not hold in general; thus, the methods

of outlier detection based on a criterion related to the

standard deviation would not be optimal. Instead, a

transformation is preferred to satisfy this hypothesis. We

propose filtering by the modal method (see section 3.3.2)

and then identifying the outliers using Grubbs’ test.

Finally, we demonstrate in this work the importance of

taking into account the scale of analysis in surface metrology.

The proposed method for outliers identification uses the fact

that for measured surfaces, an outlier is defined in relation

to its immediate environment, i.e. it differs greatly from its

neighbours, but not necessarily from all of the observations

(measured heights). Thus, we vary the size and position of

the neighbourhood, i.e. analysis window, recursively when

identifying outliers. The results show that the scale of the

analysis is fundamental to the study of surfaces.

2.2. Definition

The literature offers many definitions of outliers. Grubbs

(1950) and Grubbs and Beck (1972) proposed a definition that

is often used to define an outlier, considering that an outlying

observation, or outlier, is one that appears to deviate markedly

from other members of the sample in which it occurs. The
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standard ISO-16269-4 (2010) on the detection and treatment

of aberrant values defines an outlier as being a member of a

small subset of observations that appears to be inconsistent

with the remainder of a given sample.

In the specific case of surfaces, if we use these definitions,

outliers must constitute a small subset of all of the studied

surface’s points. Furthermore, we propose to complete the

definition of an outlier in the particular case of surfaces,

emphasizing that, unlike a dataset in the usual sense, measured

height data on a surface are not independent because they

are ordered or linked by their respective positions on two

axes (x, y). Therefore, an outlier on a surface is defined

in comparison with its environment on the surface and not

necessarily in relation to all of the surface’s measured heights.

2.3. Identification and rejection of outliers : existing methods

In their book, Barnett and Lewis (1994) reviewed different

methods for treating observations surprisingly far away from

the main group of a dataset. They distinguish four methods for

treating these observations:

– Accommodation: Protect further analysis against outliers.

– Incorporation: Replace the initial model by another model

in relation to which observations appear discordant.

– Identification: Test if a point is formally aberrant or not.

– Rejection: Eliminate outliers from the surface measure-

ment.

Labelling, or flagging potential outliers for further analysis,

can also be added to these strategies (Iglewicz and Hoaglin

1993); this method may be appropriate when outliers are

related to information useful about the surface. Outliers can

sometimes indicate information that is scientifically useful

for the analysed sample and do not necessarily represent a

degradation of the data. For example, for a surface measured

by optical means (without contact), outliers may be related to

the heterogeneity of reflectivity. The strategy chosen in this

work is to identify and reject (if appropriate) outliers detected

in the data. There are numerous methods for identifying and

eliminating outliers that are commonly used in academia

and industry. The objective of this study is to remove the

outliers while avoiding any changes to the other measured

heights. The intent is to improve subsequent analyses. The

removal of outliers should improve the ability to discriminate

surfaces suspected of having different topographies and to

correlate surfaces with measures of topographically related

processing and performance phenomena. Skilful removal of

outliers should also improve the use of surface metrology in

quality control.

The standard ISO-16269-4 (2010) proposes a strategy

for processing general data and details how to detect and

process outliers in the general case. Before applying a rule

for identifying outliers, this method calls for transforming the

data to verify the assumption of normality. If the data are not

normally distributed, then it is imperative that the data analysis

procedures are robust with respect to outliers.

As for surface metrology, the typical methods cannot

be directly applied for at least three reasons. First, the

measurements do not follow a normal distribution (see

section 3.2), second, the data are linked to each other by their

relative positioning on the axes (x, y); and third, there is a large

number of observations (measured heights). It is interesting to

examine the various methods and exclusion tests proposed in

the literature to better understand the problem of outliers in

‘general’ data and observe whether these methods can provide

answers in the context of data arising from measured surfaces.

In 1805, the French mathematician Legendre (1805)

attempted to determine the orbit of comets from three

observations of latitude and longitude. Faced with anomalous

observations, he already proposed to exclude data that were

‘too large to be admissible’; the exclusion criteria remained

subjective.

In 1852, Peirce (1852) formalized the problem of

identifying outliers, by establishing an exclusionary rule based

on the use of a Gaussian distribution model, and a probability

calculation from this model. In the field of outliers, these are

seminal works. We describe in this section how to implement

this exclusion criterion. The exclusionary rule of Peirce is

based on the following principle:

‘ The proposed observations should be rejected when

the probability of the system of errors obtained by

retaining them is less than

the probability of the system of errors obtained by their

rejection multiplied by

the probability of making so many, and no more, abnormal

observations’

Gould (1855), in his correspondence with Professor

A D Bache in 1855, takes up the work of Peirce to facilitate the

implementation of the rule. In particular, he defines logarithmic

calculation tables and special functions, allowing, with the

means available in the late 19th century, to proceed with

the identification of outliers by using the criterion of Peirce.

We propose to examine the equations written by Gould and

to show how they are used in practice, that is, how the

equations establish the critical deviation xpeirce, from which

an observation is identified as being an outlier.

Firstly, the critical deviation xpeirce is a function of N, the

whole number of observations, k, the number of outliers to be

detected and m, the number of unknown quantities contained

in the observations. Equation (1), defined by Gould, gives a

first definition of R(x):

R(x) = e
1
2
(x2−1) · ψ(x) with : ψ(x) =

2
√

2π
·
∫ ∞

x

e− 1
2

t2

dt

(1)

ψ(x) is the probability that a standard normal distributed

variable (μ = 0, σ = 1) does not lie between −x and +x.

Thus, this function corresponds to the probability of having an

abnormal observation in a dataset, as stated in Peirce criterion.

Combining equations (2a) and (2b), given by Gould, yields a

new equation (3), defining R as a function of x:

λ2 =
N − m − kx2

N − m − k
(2a)

λN−k · Rk = QN (2b)

R(x) = QN/k ·
(

N − m − kx2

N − m − k

)

−(N−k)

2k

. (3)
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tFigure 1. Rendering in 3D perspective of a measurement of Surf-1.

Then, it is possible to solve the system constituted by

equations (1) and (3), and to determine the critical value

of x (i.e. the critical deviation xpeirce), defined as a function

of N (whole number of observations), k (number of outliers

to be rejected) and m (number of unknown quantities). The

criterion (4) is applied initially for k = 1, then the number

of potential outliers is gradually increased until no aberrant

points are identified according to the criterion of Peirce. Ross

(2003) described the manner in which this principle can be

implemented

|xi − xm|max = xpeirce × σ (4a)

|xi − xm| > xpeirce × σ ⇔ xi identified as an outlier (4b)

with

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

|xi − xm|max Maximum allowable deviation

xPeirce Peirce critical value

σ : Standard deviation of the dataset

xi : Tested observation

xm : Mean of the dataset.

For the issue of outlier detection, the method of Peirce

is a fundamental initial contribution: it defines the general

principles of outlier identification and provides a formal and

effective criterion. For a significant number of observations,

the calculation of the critical deviation xpeirce (approximation

by Newton’s method), recursively, makes this method difficult

to apply to more consistent data samples, and thus not suitable

to deal with outliers on surface measurements. A few years

later, Chauvenet (1868) proposed a new formalization for

outlier identification. It is close to that proposed by Peirce but

less general. The Chauvenet criterion is easier to implement

and is still used. More recently, Grubbs’ test (Grubbs 1969,

Stefansky 1972), also referred to as the maximum normed

residual test, proposed a general and effective method to

identify outliers in the general case (unordered data), with

the assumption of normality. In the same manner as Peirce,

Grubbs’ test processes one outlier at a time until no outliers are

detected. Similarly, its generalized form (Tietjen and Moore

1972) allows the method to be applied in the case of a known

number of outliers. Finally, Rosner (1983) and Paul and Fung

(1991) proposed a method called the generalized extreme

studentized deviate test (ESD test), which was adapted to the

case of an unknown number of outliers in the data.

The existing methods for addressing outliers in a dataset

are generally univariate and only apply in the case of normally

distributed data, making their direct application difficult

and inefficient in the case of measured surfaces, especially

when the surfaces have a large number of measured heights.

However, we show how one of the most effective methods

for a general set of data (Grubbs’ test) can be applied to

identify outliers on a measured surface, under the condition of

previously assumed normality and considering the notion of a

local outlier. In this work, we take the specific properties of

the measured surfaces (nonnormal distribution, multivariate

and nonindependent data) into account to identify outliers

effectively in these types of data, using the general principles

defined in the standard ISO-16269-4 (2010).

3. Dealing with outliers: a new approach for surface
measurement data

3.1. Material and means of measurement

To illustrate the proposed method, we rely on two surface

measurements.

Surf-1 is a measured surface of a glass plane with flatness

calibrated at λ/5, i.e. a fifth of the wavelength of light

used or a flatness deviation of about 0.1 μm on the

surface. With the topography of this surface known at

a high resolution (prior measurement of the glass plane

by interferometry), the objective of these measurements

is to determine their capability to potentially identify

systematic surface defects (form-waviness) generated by

surface measuring machines ( Favrelière et al 2011). This

identification makes it possible to apply a correction

to the measurements made and thus improve their

accuracy.

The measurement was performed with a wide-field

confocal microscope (Altisurf 520), equipped with a

confocal chromatic optical probe with a field depth of

300 μm and a Z-axial resolution of 0.06 μm. The

measuring region is 1001 × 1001 (≈108) measured

heights, and the sampling intervals on the X- and Y-axes

are 0.2 mm. After a quick visual assessment (see figure 1),

some outliers appear that could be due to dust on the

glass during the measurement. A 3D representation of the

measurement and a close-up view of a region with outliers

are shown in figure 1.

Surf-2 is a portion of the edge of a ski. The study of

this surface was performed with the aim of improving the

modelling of the ski–snow contact link on the roughness

4
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tFigure 2. Rendering in 3D perspective of a measurement of Surf-2.

(a) (b)

(c) (d)

Figure 3. Normality test. (a) Surf-1: histogram and fitted normal. (b) Surf-1: Q–Q plot (Henry diagram). (c) Surf-2: histogram and fitted
normal. (d) Surf-2: Q–Q plot (Henry diagram).

scale. The measurements were made with a 3D measuring

laser microscope (Olympus Lext OLS4000), equipped

with a 100× objective. This surface presents slopes and

reflectivity changes that make it difficult to measure. This

difficulty partly explains the presence of many outliers in

the obtained data. The measuring region is 1024 × 1024

measured heights, and the sampling intervals along the

X- and Y-axes are 0.125 μm. A 3D representation of the

measurement and a close-up view of a region with outliers

are shown in figure 2.
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3.2. Height distributions

According to Estler (1999), the result of a measurement

is a probability distribution that provides an unambiguous

encoding of one’s state of knowledge about the measured

quantity. Metrology is thus defined as a statistical

interpretation of the data obtained from the measurement. To

reach this interpretation, it is thus useful to determine the nature

of our data prior to any other analysis and to determine whether

the measured heights verify the assumption of normality (see

section 2.3).

Figures 3(a) and (c) show the height distributions

from the two surfaces and a representation of the normal

distribution nearest to that of the measured heights. In addition,

figures 3(b) and (d) provide the Q–Q plot (Henry diagram),

to more accurately assess the normality of the data (Wilk and

Gnanadesikan 1968). For these two surfaces, the measured

heights are far from a normal distribution. Furthermore, the

fitted normal distributions are centred at zero because these

measurements had been adjusted by the least squares method

prior to analysis. At this stage, we cannot apply a criterion

for identifying outliers related to the standard deviation.

As a first step, we propose (section 3.3.2) the application

of a transformation to these data to approximate a normal

distribution.

3.3. Proposed method: filtering outliers on the surface

measurement data

3.3.1. Compliance with the normality assumption. Following

the finding of nonnormality made in the previous section

(section 3.2), we describe a method for transforming the

distributions of points close to that of the model used (normal

distribution) for surface measurements.

The study of flat surfaces, i.e. those with surface defects of

the order of waves and defects that arise solely from roughness

or microroughness, shows that the data distributions obtained

are almost normal. Thus, as a first step, we propose the

application of a form filter to the measured surfaces. The

outliers are then identified from the residuals, i.e. filtered

heights; thus, we can easily exclude outliers identified on the

original surface if necessary. The proposed method for filtering

the form on the surfaces is detailed in section 3.3.2.

3.3.2. Form filtering using the modal method. This method

is based on discrete modal decomposition (DMD), which

is a mathematical tool for evaluating a discrete spectral

representation of a surface measured by heights, such as

the discrete Fourier transform or discrete wavelet transform

applied to surface measurements. We have initiated this

decomposition to describe the geometry of mechanical parts

(Favrelière 2009). In particular, the decomposition describes

the measured surface with a family of discrete functions, called

modes or modal deformations. We can express the measured

surface, represented by the vector measV , by the following linear

combination:

measV =
Nq
∑

i=1

λi · Qi + ǫ(Nq), (5)

where λi defines the modal amplitude of the mode Qi, Nq

represents the number of modes chosen and ǫ the residue. The

modes Qi are obtained by the resolution of a classical vibratory

mechanical problem of the type

M · q̈ + K · q = 0 with

⎧

⎨

⎩

M : generalized mass matrix

K : generalized stiffness matrix

q : displacement vector.

(6)

In special cases, this problem can be solved analytically

(Leissa 1969), and in the general case, the problem can be

solved numerically by the finite element method (Zienkiewicz

et al 2002). In general, the resolution is numerical, which

implies that the modal decomposition is discrete. With an

approach similar to the Fourier transform, but applicable to

all types of geometric elements, DMD is used to configure

the measurement of surfaces in a space of discrete functions

unique to each type of surface. These discrete functions (i.e. the

set of modes Qi) have many properties and form a geometric

vector space.

The modal base Q naturally arranges the modes Qi

by increasing geometric complexity (arranged from long

wavelength to short wavelength) because it uses the natural

order of increasing frequencies. Due to this property, DMD

can be used as a filtering method by reconstructing the

measured surface in the space of modes Qi. The reconstruction

operation consists of realizing the linear combination of modal

amplitudes λi and the associated modes Qi. As an example,

figure 4 shows modal filtering for a measured surface that

allows the surface’s various components to be extracted.

Figure 5 shows the surfaces obtained at different stages

of filtering and the modal amplitude spectra associated with

this filtering for both study samples. The visualization of the

modal spectra (figures 6(a) and (b)) shows that selecting the

number of filtration modes Nq equal to 50 is sufficient for

filtering all of the high-amplitude modal contributions on

the analysed surfaces. We note that the modal contributions

decrease rapidly; this feature, which is detailed in the work

of Formosa et al (2005), Le Goı̈c et al (2011) and Grandjean

et al (2012), is intrinsic to the modal method and allows a

surface with a small number of parameters to be accurately

approximated without any a priori knowledge of the surface.

This feature allows us to effectively filter the components of

the form on the surfaces measured, using the modal method in

a generic manner (i.e. without adapting the filter parameters for

each surface). Figures 5(b) and (e) show a 3D representation

of the filtered components during the form filtering for Surf-1

and Surf-2. These surfaces represent the contributions of the

first 50 modes of the modal decomposition.

Figures 7(a) and (c) show the histograms of the measured

data after form filtering and a normal distribution fit to

these data. We found that the distributions are quasi-normal.

Figures 7(b) and (d) provide the Q–Q plot diagrams (Henry

diagram) of the data, to more accurately assess the normality

of the data (figures 3(b) and (d)). Given the large number of

measured heights present in close proximity to this line and

the distributions after the form filtering, the analysed data are

almost normal at this stage and allow us to consider the use of

a criterion for identifying outliers associated with a standard

deviation.
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Figure 4. Modal filtering—principle and application.

(a) (b) (c)

(d) (e) (f)

Figure 5. Modal form filtering: (a) Surf-1: measured surface (measV ), (b) Surf-1: form (formV ), (c) Surf-1: residual (formV − measV ), (d)
Surf-2: measured surface (measV ), (e) Surf-2 : form (formV ), ( f ) Surf-2: residual (formV − measV ).

7



Acc
ep

te
d 

M
an

us
cr

ip
t

(a) Surf-1 (b) Surf-2

Figure 6. Modal spectrum of amplitudes.

(a) (b)

(c) (d)

Figure 7. Normality test after modal form filtering. (a) Surf-1: histogram and fitted normal. (b) Surf-1: Q–Q plot (Henry diagram).
(c) Surf-2: histogram and fitted normal. (d) Surf-2: Q–Q plot (Henry diagram).
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(a) Surf-1
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(b) Surf-2

Figure 8. Evolution of the percentage of modified points at each analysis window size.

(a)

(b)

Figure 9. Series of profiles extracted from Surf-1: (a) original surface, (b) after outlier filtering.

3.3.3. Identify outliers using a scale-sensitive standard

deviation criterion. (a) Standard deviation criterion.

Because the transformation performed in the previous stage

allows us to arrange the data close to a normal distribution, we

can consider the identification of outliers using a criterion

based on the standard deviation. As discussed in section

2.3, there are many criteria that, based on the probability

calculations, are more or less complex; the criterion of Peirce

is a good example of these criteria. With the current methods of

measurement, the number of observations (measured heights)

is often large (>106), which sometimes makes it difficult

to apply criteria based on recursive operations to measured

surfaces; however, other criteria are more suitable for smaller

batches of data. We chose to use a criterion based on Grubbs’

test because it is known for its speed and efficiency in the case

of general data; however, we applied it to take specificities of

the measured surfaces into account. The test is applied on an

analysis window of variable size that slides (to cover the entire

surface) and is recursive over the surface (see section 3.3.3.b).

We show that this method allows outliers on a surface to be

effectively and quickly identified, while minimizing the risk

of misidentification of outliers.

The Grubbs (1969) test is a statistical test based on the

ratio of the standard deviation to the distribution of the data.

This test assumes a normal or near normal distribution and

calculates a numeric value Gi (called the sample criterion,

see equation (7a)) for each observation (measured point).

This value is compared to a value Glim, calculated from the

critical values of Student’s t distribution (see equation (7b)),

to determine whether the observation in question must be

identified as an outlier. Glim is a limited value, which can be

exceeded by the sample criterion with a probability called the

significance level, or as α risk (given the fact that we model the

data distribution with a normal distribution). This risk can also

be observed as the risk of erroneously rejecting an improbable

observation. Rather than setting an arbitrary standard deviation

9
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ISO 25178

Height Parameters

Sq 0.321 µm Root mean square height

Sa 0.241 µm Arithmetic mean height

Functional Parameters (Volume)

Vmp 0.0187 µm /µm Peak material volume

Vvv 0.0412 µm /µm Pit void volume

Feature Parameters

Spd 0.00226 1/µm Density of peaks

Spc 64.8 1/µm Arithmetic mean peak curvature

Sda 117 µm Mean dale area

Sha 179 µm Mean hill area

Sdv 8.40 µm Mean dale volume

Shv 16.5 µm Mean hill volume

ASME B46.1

3D Parameters

St 21.0 µm Maximum height

Sp 10.5 µm Maximum peak height

Sv 10.4 µm Maximum pit height

Sq 0.321 µm Root mean square height

Sa 0.241 µm Arithmetic mean height

Ssk -0.255 Skewness

Sku 14.6 Kurtosis

(e)

ISO 25178

Height Parameters

Sq 0.316 µm Root mean square height

Sa 0.240 µm Arithmetic mean height

Functional Parameters (Volume)

Vmp 0.0193 µm /µm Peak material volume

Vvv 0.0391 µm /µm Pit void volume

Feature Parameters

Spd 0.107 1/µm Density of peaks

Spc 18.7 1/µm Arithmetic mean peak curvature

Sda 11.8 µm Mean dale area

Sha 8.86 µm Mean hill area

Sdv 0.250 µm Mean dale volume

Shv 0.216 µm Mean hill volume

ASME B46.1

3D Parameters

St 4.16 µm Maximum height

Sp 2.15 µm Maximum peak height

Sv 2.01 µm Maximum pit height

Sq 0.316 µm Root mean square height

Sa 0.240 µm Arithmetic mean height

Ssk 0.0761 Skewness

Sku 4.25 Kurtosis

(f )

Figure 10. Outlier filtering on Surf-2: (a) original surface, (b) after outlier filtering, (c) original surface—roughness, (d) after outlier
filtering—roughness, (e) after outlier filtering—surface parameters, ( f ) original surface—surface parameters.

threshold to identify outliers, Grubbs’ method allows a risk

level to be used as the basis for setting the threshold of

identification

Gi =
Max(|Xi − X |)

σ
(7a)

Glim =
(N − 1)

√
N

√

√

√

√

t2
(α/N,N−2)

N − 2 + t2
(α/N,N−2)

(7b)

where

– Gi is the sample criterion

– Glim is the Grubbs’ test critical value, defined for a risk α

– t(α/N,N−2) is the Student’s critical value t for a sample of

size N at N − 2 degrees of freedom.

For each observation, we verify whether Gi is greater than

Glim. If Gi is greater than Glim, Xi is considered an outlier;

the point is removed from the sample, and the procedure

is repeated until no additional outliers are identified on the

surface or the portion of the surface analysed.

Given the type of data and potential outliers arising from

the surface measurements, a low level of risk should be chosen

for identifying outliers. We chose a α risk value α = 0.001,

which corresponds to a confidence level of 99.9%. The user

can also set this parameter; in the case of particular surfaces

or requirements, the user can select the appropriate value.

(b) Scale-sensitive method for data measurements. As

stated in section 2.2, an outlier on a surface is defined primarily

according to its close neighbours and not necessarily in relation

to all of the surface’s measured points. The notion of a close

neighbour is actually a type of scale-based analysis. We

propose performing the identification of outliers, according

to the aforementioned criterion, over an analysis region of

variable size to account for this specificity of the measured

surfaces. The criterion (see section 3.3.3(a)) is first applied on

a global scale (analysis window covering the entire surface);

the size of the analysis window is then gradually reduced, and

the window moves over the entire surface (sliding window).

At each window size, a new identification is performed on

the subsurface that is rectified by the least squares method (to

recentre distributions), and the identified outliers are replaced

10
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Figure 11. Flow chart—detection and treatment of outliers in the surface measurement data.

by nonmeasured points. Figure 8 shows the evolution of the

number of outliers removed (as a percentage of the total

points identified) as a function of the size of the analysis

window for samples Surf-1 and Surf-2. These results confirm

the importance of varying the scale of analysis for detecting

outliers for this type of data.

The parameters for reducing and displacing the sliding

window were chosen using the filtering time, with a constant

filter efficiency as the selection criterion. A reduction factor

of 5% (calculated with respect to the previous window size)

was applied to each of the iterations, providing a nonlinear

evolution of the sliding window size (more rapid decreases

at ‘global’ levels and more progressive decreases at local

levels, i.e. smaller window sizes). The plots of the number

of points identified as outliers (figures 8(a) and (b)) show

that this method for reducing the scaling factor allows a good

distribution of heights to be identified at different scales of

analysis. The second factor related to the sliding and variable-

size window is its collection rate; for the same reasons

mentioned previously, we chose a factor proportional to the

scale of the study, setting the displacement of the window for

each of the iterations to 50% of its dimension on the X- and

Y-axes.

It is also necessary to always have a sufficiently

representative region of the analysis window study area.

Therefore, we have experimentally fixed a minimum size of

the analysis window at 100 height samples. In addition, to

avoid lengthy computation times in the case of surfaces with

large sizes, the window value is set at 1/50 of the initial surface

size. Furthermore, because the heights identified as outliers are

transformed during the execution of the filter to nonmeasured

points, the percentage of valid heights at each iteration should

be great enough to establish a reasonable mean and standard

deviation. This percentage was set at 95%.

Finally, in some cases, outliers may significantly change

the value of the standard deviation, calculated for the

considered analysis window. Thus, the criterion derived from

Grubbs’ test (see section 3.3.3) is applied iteratively on each

subsurface until no outliers are identified. This step ensures that

the standard deviations calculated before and after filtering do

not differ.

Figure 9 shows a representation of a series of 120

east–west profiles taken on the surface Surf-1 before and

after filtering. Figure 10 shows the results obtained by

filtering outliers on the surface Surf-2. The various stages of

implementing the filtering outliers are detailed in figure 11. The
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total percentage of modified points on the samples is very low:

0.005 89% for the Surf-1 and 0.085 16% for Surf-2. However,

the figures show that the outliers were filtered effectively

by the proposed method. Furthermore, the removed heights

have the characteristics of outliers on a surface, i.e. often

isolated (peak shape) and clearly remote from the shape of

the local neighbouring surface.

3.3.4. Proposed method for surface data measurements:

summary. We sought to provide an appropriate response to

the particular case of measured surfaces (multivariate data,

many observations, nonnormal distributions and taking the

scale into account in the identification of outliers) for the steps

defined by the standard. Figure 11 summarizes the proposed

method, incorporating the strategy from standard ISO-16269-4

(2010).

The filter uses form filtering by the DMD method to bring

the distribution close to a normal distribution. Outliers are

identified using a criterion based on Grubbs’ test, the Glim

value of which varies, depending on the number of heights

considered, applied to a variable analysis scale, which makes

it particularly effective for this type of data. Finally, a user

interface was developed to facilitate the use of the filter.

This interface allows the results and indicators (distributions,

Henry diagram, evolution of the percentage of modified points,

total percentage of modified points, 3D representations of

the surfaces at different stages of filtering) to be visualized

at different stages of the process and allows us to save the

resulting surfaces in the desired format, after identifying

and excluding outliers. Outliers are replaced by nonmeasured

points in the filtered surfaces. Subsequently, the nonmeasured

points can be replaced or interpolated.

4. Conclusion

This study presents and demonstrates a method for the

identification of outliers in measured surface data. The method

is applied to two surface measurements, on which we have

detailed the use of graphical and statistical indicators of the

value and effectiveness of steps for this new method.

(1) The method transforms data to approximate the normally

distributed model used to assess whether an observation

is an outlier. This step is performed by form filtering,

using the modal method, which has the advantage of being

relatively insensitive to outliers.

(2) Outliers are identified using Grubbs’ test, which allows

the risk taken when identifying outliers in the data to

be controlled. The application of this criterion is only

supposed to be effective when considering a local outlier

on a measured surface.

(3) The identification is performed at different scales on the

measured surface, using an analysis window of varying

size that moves recursively over the entire measured

surface.

(4) Finally, this method fits into the overall framework of

the methodology for detecting outliers, as presented in

standard ISO-16269-4 (2010).
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