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Generalized Sobol sensitivity indices for dependent

variables: numerical methods

Gaelle Chastaing† Fabrice Gamboa‡ Clémentine Prieur†

Abstract

The hierarchically orthogonal functional decomposition of any measurable

function η of a random vector X = (X1, · · · , Xp) consists in decomposing η(X)

into a sum of increasing dimension functions depending only on a subvector

of X. Even when X1, · · · , Xp are assumed to be dependent, this decompo-

sition is unique if components are hierarchically orthogonal. That is, two of

the components are orthogonal whenever all the variables involved in one of

the summands are a subset of the variables involved in the other. Setting

Y = η(X), this decomposition leads to the definition of generalized sensitivity

indices able to quantify the uncertainty of Y with respect to the dependent

inputs X [9]. In this paper, a numerical method is developed to identify the

component functions of the decomposition using the hierarchical orthogonality

property. Further, the asymptotic properties of the components estimation is

studied, as well as the numerical estimation of generalized sensitivity indices

though a toy model. In addition, a model coming from real world illustrates

the interest of the method.
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1. INTRODUCTION

In a nonlinear regression model, input parameters can be subject to many sources

of uncertainty. The objective of global sensitivity analysis is to identify and to rank

the input variables that drive the uncertainty of the model output. The most pop-

ular methods are the variance-based ones [25]. Among them, the Sobol indices are

widely used [26]. This last method stands on the assumption that the incomes are

independent. Under this assumption, Hoeffding [13] shows that the model output

can be uniquely decomposed into a sum of increasing dimension functions, where

the integrals of every summand over any of its own variables must be zero. A conse-

quence of these conditions is that all summands of the decomposition are mutually

orthogonal. Using this decomposition, Sobol shows that the global variance can also

be decomposed as a sum of partial variances. Thus, the so-called Sobol sensitivity

index for a group of inputs is the ratio between the partial variance associated to

these inputs and the global variance [26]. However, in models with dependent inputs,

the use of Sobol indices may lead to a wrong interpretation because the sensitivity

induced by the dependence between two factors is implicitly included in their Sobol

indices. To handle this problem, a naive solution can consist in computing Sobol sen-

sitivity indices for independent groups of dependent variables. First introduced by

Sobol [26], this idea is exploited in practice by Jacques et al. [16]. Nevertheless, this

technique implies to work with models having several independent groups of inputs.

Furthermore, it does not allow to quantify the individual contribution of each input.

A different way to deal with this issue has been initiated by Borgonovo et al. [2, 3].

These authors define a new measure based on the joint distribution of (Y,X). The

new sensitivity indicator of an input Xi measures the shift between the output dis-

tribution and the same distribution conditionally to Xi. This moment free index has

many properties and has been applied to some real applications [5, 4]. However, the

dependence issue remains unsolved as we do not know how the conditional distri-

bution is distorted by the dependence, and so how it impacts the sensitivity index.

Another idea is to use the Gram-Schmidt orthogonalization procedure. In an early
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work, Bedford [1] suggests to orthogonalize the conditional expectations and then

to use the usual variance decomposition on this new orthogonal collection. He then

uses the Monte Carlo simulation to compute the indices. In the same spirit, Mara

et al. [21] use the same Gram-Schmidt tool to decorrelate the inputs, but perform

polynomial regressions to approximate the model. In both papers, the decorrelation

method depends on the ordering of the variables, making the procedure computa-

tionally expensive and difficult to interpret.

Following the construction of Sobol indices previously exposed, Xu et al. [31] propose

to decompose the partial variance of an input into a correlated and an uncorrelated

contribution in the context of linear models. This last work has been later extended

by Li et al. with the concept of HDMR [19, 20]. In [19], the authors suggest to

reconstruct the model function via classical basis (polynomials, splines,...), then to

deduce the decomposition of the response variance as a sum of partial variances

and covariances. Instead of classical basis, Caniou et al. [8] use a polynomial chaos

expansion to approximate the initial model as far as the copula theory to model the

dependence structure [22]. Thus, in all these papers, the authors choose a type of

model reconstruction before proceeding to the splitting of the response variance.

In a previous paper [9], we revisit the Hoeffding decomposition in a different way,

bringing a new definition in the case of dependent inputs. Inspired by the pioneering

work of Stone [27] and Hooker [14], we show, under a weak assumption on the inputs

distribution, that any model function can be decomposed into a sum of hierarchically

orthogonal component functions. This means that two of these summands are or-

thogonal whenever all variables included in one of the components are also involved

in the other. The decomposition leads to generalized Sobol sensitivity indices able

to quantify the uncertainty brought by dependent inputs on the model.

The goal of this paper is to complete the work done in [9] by providing an efficient

numerical method for the estimation of the generalized Sobol sensitivity indices. In

our previous paper [9], we have proposed a statistical procedure based on projection

operators to identify the components of the hierarchically orthogonal functional

decomposition (HOFD). The method consists in projecting the model output onto
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constrained spaces to obtain a functional linear system. The numerical resolution

of these systems relies on an iterative scheme that requires to estimate conditional

expectations at each step. On one hand, this method is well tailored for independent

pairs of dependent variables models. On the other hand, it is difficult to apply to

more general models because of its computational cost. Hooker [14] has also worked

on the estimation of the HOFD components. This author studies the component

estimation via a minimization problem under constraints using a sample grid. In

general, this procedure is also quite computational demanding. Moreover, it requires

to get a prior on the inputs distribution at each evaluation point, or, at least, to

be able to estimate them properly. In a recent article, Li et al. [18] come back on

Hooker’s work and also identify the HOFD components by a least-squares method.

They propose to approximate these components using their expansions on suitable

basis. They bypass some technical problem of degenerate design matrix by using a

continuous descent technique [17].

In this paper, we propose an alternative to directly construct a hierarchical orthogo-

nal basis. Inspired by the usual Gram-Schmidt algorithm, the procedure consists in

recursively constructing for each component a multidimensional basis that satisfies

the hierarchical orthogonal conditions. This procedure will be referred as the Hierar-

chical Orthogonal Gram-Schmidt (HOGS) procedure. Then, each component of the

decomposition can be properly estimated by a linear combination of this basis. The

coefficients are then estimated by the usual least-squares method. Thanks to the

HOGS procedure, we show that the design matrix has full rank, so the minimization

problem admits a unique and explicit solution. Further, we study the asymptotic

properties of the estimated components. Nevertheless, the practical estimation of

the one-by-one component suffers from the curse of dimensionality when using the

ordinary least-squares estimation. To handle this problem, we propose to estimate

parameters of the model using variable selection methods. Two usual algorithms are

briefly presented, and are adapted to our method. Further, the HOGS procedure

coupled with these algorithms is experimented on numerical examples.

The paper is organized as follows. In Section 2, we give and discuss the general
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results on the HOFD. We remind Conditions (C.1) and (C.2) under which the HOFD

is available. Further, we give the generalized Sobol sensitivity indices, and discuss

their interpretation. Section 3 is devoted to the HOGS procedure. We introduce the

appropriate notation, and give a detailed procedure. In Section 4, we adapt the least-

squares estimation to our problem, and we point out the curse of dimensionality.

Further, we discuss about variables selection via a penalized minimization. Section 5

brings asymptotic results on the component estimators, constructed according to the

HOGS procedure of Section 3. In Section 6, we present numerical applications. The

first example is a toy function, and its objective is to show the efficiency of the HOGS

procedure coupled with variable selection methods in the sensitivity estimation. The

last example concerns the pressure applied to a tank. In this example, we want to

detect the most influent inputs in the model with our procedure.

2. GENERALIZED SOBOL SENSITIVITY INDICES

Functional ANOVA models are specified by a sum of functions depending on an

increasing number of variables. A functional ANOVA model is said to be additive if

only main effects are included in the model. It is said to be saturated if all interaction

terms are included in the model. However, the existence and the uniqueness of

such decomposition is ensured by some identifiability constraints. When the inputs

are independent, any regular model function is exactly a saturated ANOVA model

with pairwise orthogonal components, as reminded in the introduction. It results

that the contribution of any group of variables onto the model is measured by the

Sobol index, bounded between 0 and 1. Moreover, the Sobol indices are summed

to 1 [26]. The use of such an index is not excluded in the dependence context,

but the information due to the dependence is considered several times. This could

lead to a wrong interpretation of the Sobol indices. In this section, we remind the

main results established in Chastaing et al. [9] when inputs can be non-independent.

In this case, the saturated ANOVA model is established with weaker identifiability

constraints than for the independent case. This leads to a generalization of the
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Sobol indices well suited to perform global sensitivity analysis when the inputs are

not independent.

First, we remind the general context and notation. The last part is dedicated to

the generalization of the Hoeffding-Sobol decomposition when inputs are potentially

dependent. The definition of the generalized sensitivity indices follows.

2.1. First Settings

We denote by ⊂ the strict inclusion, that is A ⊂ B ⇒ A ∩ B 6= B, whereas we use

⊆ when equality is possible.

Consider a measurable function η of a random vector X = (X1, · · · ,Xp) ∈ R
p, p ≥ 1,

and let Y be the real-valued response variable defined as

Y :
(Rp,B(Rp), PX) → (R,B(R))

X 7→ η(X)

where the joint distribution of X is denoted by PX. For a σ–finite measure ν on

(Rp,B(Rp)), we assume that PX << ν and that X admits a density pX with respect

to ν, that is pX =
dPX

dν
.

Also, we assume that η ∈ L2
R
(Rp,B(Rp), PX). As usual, we define the inner product

〈·, ·〉 and the norm ‖ · ‖ of the Hilbert space L2
R
(Rp,B(Rp), PX) as

〈h1, h2〉 =

∫

h1(x)h2(x)pXdν(x) = E(h1(X)h2(X)), h1, h2 ∈ L2
R(R

p,B(Rp), PX)

‖h‖2 = 〈h, h〉 = E(h(X)2), h ∈ L2
R(R

p,B(Rp), PX)

Here E(·) denotes the expectation. Further, V (·) = E[(· − E(·))2] denotes the vari-

ance, and Cov(·, ∗) = E[(· − E(·))(∗ − E(∗))] the covariance.

Let us denote [1 : k] := {1, 2, · · · , k}, ∀ k ∈ N
∗, and let S be the collection of all

subsets of [1 : p]. As misuse of notation, we will denote the sets {i} by i, and {ij}

by ij. For u ∈ S with u = {u1, · · · , ut}, we set the cardinality of u as |u| = t and

the random subvector Xu := (Xu1 , · · · ,Xut). Conventionally, if u = ∅, |u| = 0, and

X∅ = 1. Also, we denote by X−u the complementary vector of Xu (that is, −u

is the complementary set of u). The marginal density of Xu (respectively X−u) is
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denoted by pXu (resp. pX−u
).

Further, the mathematical structure of the functional ANOVA models is defined

through subspaces (Hu)u∈S and (H0
u)u∈S of L2

R
(Rp,B(Rp), PX). H∅ ≡ H0

∅ denotes

the space of constant functions. For u ∈ S \{∅}, Hu is the space of square-integrable

functions that depend only on Xu. The space H0
u is defined as:

H0
u =

{

hu ∈ Hu, 〈hu, hv〉 = 0,∀ v ⊂ u,∀ hv ∈ H0
v

}

= Hu ∩

(

∑

v⊂u

H0
v

)⊥

Through the article, we will see that η(X) can be written as a functional ANOVA

model in terms of low-order components. We define d := maxu |u| the order of a

functional ANOVA model. Thus, if the ANOVA model is additive, d = 1. If it is a

saturated model, the order is maximal, and d = p.

2.2. Generalized Sobol Sensitivity Indices

Let us suppose that

PX << ν

where

ν(dx) = ν1(dx1)⊗ · · · ⊗ νp(dxp)

(C.1)

Our main assumption is :

∃ 0 < M ≤ 1, ∀ u ⊆ [1 : p], pX ≥M · pXupX−u
ν-a.e. (C.2)

Under these conditions, the following result states a general decomposition of η as a

saturated functional ANOVA model, under the specific conditions of the spaces H0
u

(defined in Section 2.1),

Theorem 1. Let η be any function in L2
R
(Rp,B(Rp), PX). Then, under (C.1) and

(C.2), there exist functions η0, η1, · · · , η{1,··· ,p} ∈ H∅ × H0
1 × · · ·H0

{1,··· ,p} such that
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the following equality holds :

η(X) = η∅ +

p
∑

i=1

ηi(Xi) +
∑

1≤i<j≤p

ηij(Xi,Xj) + · · ·+ η{1,··· ,p}(X)

=
∑

u∈S

ηu(Xu) (1)

Moreover, this decomposition is unique.

To get a better understanding of Theorem 1, the reader could refer to its proof and

further explanations in [9]. Notice that, unlike the Sobol decomposition with inde-

pendent inputs, the component functions of (1) are hierarchically orthogonal, and

no more mutually orthogonal. Thus, further along the article, the obtained decom-

position (1) will be abbreviated HOFD (for Hierarchically Orthogonal Functional

Decomposition). Also, as mentioned in [9], the HOFD is said to be a generalized

decomposition because it turns out to be the usual functional ANOVA decomposi-

tion when incomes are independent.

The general decomposition of the output Y = η(X) given in Theorem 1 allows for

decomposing the global variance as a simplified sum of covariance terms. Further

below, we define the generalized sensitivity indices able to measure the contribution

of any group of inputs in the model when inputs can be dependent :

Definition 1. The sensitivity index Su of order |u| measuring the contribution of

Xu into the model is given by :

Su =
V (ηu(Xu)) +

∑

u∩v 6=u,v Cov(ηu(Xu), ηv(Xv))

V (Y )
(2)

More specifically, the first order sensitivity index Si is given by :

Si =

V (ηi(Xi)) +
∑

v 6=∅
i 6∈v

Cov(ηi(Xi), ηv(Xv))

V (Y )
(3)

These indices are called generalized Sobol sensitivity indices because if all inputs are

independent, it can be shown that Cov(ηu, ηv) = 0, ∀ u 6= v [9].

Proposition 1. Under (C.1) and (C.2), the sensitivity indices Su previously defined

sums to 1, i.e.
∑

u∈S\{∅} Su = 1.
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Interpretation of the sensitivity indices

As the covariance term Cov(ηu,
∑

u∩v 6=u,v ηv) in Su can be negative, Su is no more

bounded between 0 and 1 as in the independent case. Hence, the interpretation

of our indices here is much less obvious. However, we could interprete a sensitiv-

ity index Su given by (2) as follows. The form of a sensitivity index Su allows for

distinguishing two parts: the first part, V (ηu)/V (Y ) could be identified as the full

contribution of Xu, whereas the second part, Cov(ηu,
∑

u∩v 6=u,v ηv)/V (Y ) could be

interpreted as the contribution induced by the dependence with the other terms of

the decomposition. Thus, the covariance terms would play the role of compensation.

If Su > 0, the covariance contribution strengthens the variance term if it is positive,

whereas it weakens the full contribution if not. In the case of a negative sensitivity

index, the contribution induced by the dependence dominates in the index, that

would show a small full contribution of the variable itself with respect to the total

sum of covariances. As an illustration, we consider a model with p = 2 inputs. If

the component η1 is strongly negatively correlated with η2, the variations of η1 is

going to impact on the variations of η2. Thus, it may result a negative index. This

tells us about the importance of the dependent part here. Nevertheless, the covari-

ance contribution is the same in S1 and S2. Thus, if S1 is greater than S2, the full

contribution of S1 will be bigger than the one in S2. In this case, we are able to

rank the input parameters.

However, these results are not new, as they are developed in [9]. As a continuity of

this article, we propose here to estimate the functional ANOVA components in the

second part. In Theorem 1, we show that each component ηu belongs to a subspace

H0
u of L2(Rp,B(Rp), PX). Thus, to estimate ηu, the most natural approach is to

construct a good approximation space of H0
u. The next section aims at proposing a

procedure to construct such a space.

9



3. THE HIERARCHICAL ORTHOGONAL GRAM-SCHMIDT

PROCEDURE

In Section 2, we have seen that the generalized sensitivity indices are defined for any

type of reference measures (νi)i∈[1:p]. From now and until the end, we will assume

that νi, ∀ i ∈ [1 : p], are diffuse measures. Indeed, the non diffuse measures raise ad-

ditional issues in the results developed further that we will not address in this paper.

In a Hilbert space, it is usual to call in an orthonormal basis to express any of the

space element as a linear combination of these basis. Further below, we will define

the finite-dimensional spaces HL
u ⊂ Hu and H0,L

u ⊂ H0
u, ∀ u ∈ S, as linear spans of

some orthonormal systems that will be settled later. We take the notation Span {B}

to define the set of all finite linear combination of elements of B, also called the linear

span of B.

Consider, for any i ∈ [1 : p], a truncated orthonormal system (ψi
li
)Li

li=1 of L
2(R,B(R), PXi

),

with Li ≥ 1. Further, let us denote the vector of sizes as L = t(L1, · · · , Lp). Also, we

denote by lu = (l1u, · · · , l
i
u, · · · )i∈u the multi-index associated to the tensor-product

of (⊗i∈uψ
i
liu
). Hence, lu ∈ ×

i∈u
[1 : Li], where ×

i∈u
[1 : Li] denotes the Cartesian product

of the set [1 : Li], for i ∈ u. To define properly the truncated spaces HL
u ⊂ Hu, we

need first to assume that

∀ u ∈ S, ∀ li ∈ [1 : Li],
∫

(
∏

i∈u ψ
i
li
(xi))

2pXdν(x) < +∞ (C.3)

Remark. A sufficient condition for (C.2) is to have 0 < M1 ≤ pX ≤M2 (see Section

3 of [9]). In this particular case, it is enough to assume that
∫

(
∏

i∈[1:p] ψ
i
li
(xi))

2dν(x) <

+∞ to warrant (C.3).

Under (C.3), we define, HL
∅ = Span {1}. Also, we set, ∀ i 6= j ∈ [1 : p],

HL
i = Span

{

1, ψi
1, · · · , ψ

i
Li

}

HL
ij = Span

{

1, ψi
1, · · · , ψ

i
Li
, ψj

1, · · · , ψ
j
Lj
, ψi

1 ⊗ ψj
1, · · · , ψ

i
Li

⊗ ψj
Lj

}
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where

(

ψi
li
ij}

⊗ ψj

l
j

{ij}

)

, for l{ij} = (li{ij}, l
j

{ij}) ∈ [1 : Li] × [1 : Lj] is the tensor

product orthonormal system of HL
i ⊗ HL

j . More generally, for any u such that

|u| ≥ 1, we set

HL
u = Span

{

1, (⊗i∈vψ
i
liv
)lv=(liv)∈ ×

i∈v
[1:Li],∀ v ⊆ u, v 6= ∅

}

Notice that dim(HL
u ) = 1+

∑

v⊆u
v 6=∅

∏

i∈v Li. Now, we define the corresponding spaces

up to the hierarchical orthogonality constraints. First, H0,L
∅ = HL

∅ . For u ∈ S \{∅},

H0,L
u =

{

hu ∈ HL
u , 〈hu, hv〉 = 0, ∀ v ⊂ u, ∀ hv ∈ H0,L

v

}

From now, we denote by Lu the dimension of H0,L
u , for u ∈ S \ {∅}. By definition

of H0,L
u , we get Lu = dim(HL

u )− [
∑

v⊂u
v 6=∅

∏

i∈v Li + 1] =
∏

i∈u Li.

Suppose that we observe an independent and identically distributed sample (ys,xs)s=1,··· ,n

of size n from the distribution of (Y,X). We define the empirical inner product 〈·, ·〉n

and norm ‖ · ‖n as

〈g1, g2〉n =
1

n

n
∑

s=1

g1(x
s)g2(x

s), ‖g‖2n = 〈g, g〉n

We define the finite-dimensional linear subspaces (G0,L
u,n )u∈S as the approximating

spaces of (H0,L
u )u∈S , when the scalar product 〈·, ·〉 is replaced by the empirical one.

First, G0,L
∅,n = HL

∅ , and, for u ∈ S \ {∅},

G0,L
u,n =

{

gu ∈ HL
u , 〈gu, gv〉n = 0,∀ v ⊂ u,∀ gv ∈ G0,L

v,n

}

Now we have determined (H0,L
u )u∈S and (G0,L

u,n )u∈S , we want to build them. In

the next procedure, we propose an iterative scheme to construct them, taking into

account their specific properties of orthogonality.

HOGS Procedure

1. Initialization: For any i ∈ [1 : p], take a truncated orthonormal system

(ψi
li
)Li

li=0, Li ≥ 1, of L2(R,B(R), PXi
) such that ψi

0 = 1. Set φili = ψi
li
,

∀ li ≥ 1 and H0,L
i = Span

{

φi1, · · · , φ
i
Li

}

. As (φili)
Li

li=1 is an orthonormal

system, h(Xi) =
∑Li

li=1 β
i
li
φili(Xi) satisfies E(hi(Xi)) = 0.
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2. To build a basis (φulu)lu∈ ×
i∈u

[1:Li] of H
0,L
u , with |u| = k, we proceed recursively

on |u|. Suppose that, for any v ∈ S such that 1 ≤ |v| ≤ k − 1, we get

H0,L
v = Span

{

φvlv , lv = (liv) ∈ ×
i∈v

[1 : Li]

}

, Lv := dim(H0,L
v ) =

∏

i∈v

Li

To construct (φulu)lu∈ ×
i∈u

[1:Li], with u := {u1, · · · , uk}, we proceed as follows:

for all (lu1
u , · · · , l

uk
u ) ∈ [1 : Lu1 ]× · · · × [1 : Luk

],

(a) set

φulu(Xu) = (φu1

l
u1
u
⊗· · ·⊗φuk

l
uk
u
)(Xu)+

∑

v⊂u
v 6=∅

∑

lv∈ ×
i∈v

[1:Li]

λvlv,luφ
v
lv
(Xv)+C

u
lu

(4)

(b) compute the (1+
∑

v⊂u
v 6=∅

Lv) coefficients (C, (λvlv ,lu)lv∈ ×
i∈v

[1:Li],v⊂u) by solv-

ing











〈φulu , φ
v
lv
〉 = 0, ∀v ⊂ u, ∀ lv ∈ ×

i∈v
[1 : Li]

〈φulu , 1〉 = 0

(5)

With (4), the linear system (5) is equivalent to a sparse matrix system

of the form Au
φλ

u = Dlu, when Cu
lu

has been removed. The matrix Au
φ

is a Gramian matrix involving terms E(Φv1(Xv1
)tΦv2(Xv2

))v1,v2⊂u, with

(Φvi(Xvi
))lvi = φvilvi

(Xvi
), lvi

∈ ×
j∈vi

[1 : Lj ]), i = 1, 2. λu involves the

terms (λvlv,lu)lv∈ ×
i∈v

[1:Li],v⊂u, and Dlu involves −E(⊗k
i=1φ

ui

liu
Φvi)vi⊂u. In

Lemma 1, we show that Au
φ is a definite positive matrix, so the system

(5) admits a unique solution.

Set H0,L
u = Span

{

φulu , lu ∈ ×
i∈u

[1 : Li]

}

, with Lu := dim(H0,L
u ) =

∏k
i=1 Lui

.

The construction of (G0,L
u,n )u∈S is very similar to the (H0,L

u )u∈S one. However, as

the spaces (G0,L
u,n )u∈S depend on the observed sample, their construction requires

to assume that the sample size n is larger than the sizes Li, i ∈ [1 : p]. To build

G0,L
i,n , ∀ i ∈ [1 : p], we use the usual Gram-Schmidt procedure on (φili)

Li

li=1 to get

an orthornormal system (ϕi
li
)Li

li=1 with respect to the empirical inner product 〈·, ·〉n.

To build (G0,L
u,n )u∈S,|u|≥2, it is enough to replace 〈·, ·〉 by 〈·, ·〉n and to use the HOGS
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procedure. At the end, we denote G0,L
u,n = Span

{

ϕu
lu,n

, lu ∈ ×
i∈u

[1 : Li]

}

, ∀ u ∈

S \ {∅}.

In practice, polynomials or splines basis functions [10] will be considered. Also,

for practical reasons and motivation exposed in Section 5, we will approximate the

model output by an ANOVA model of order at most d = 3. In the next section, we

discuss the practical estimation of generalized Sobol sensitivity indices using least-

squares minimization. Further, we also discuss the curse of dimensionality, and

propose some variable selection methods to handle it.

4. ESTIMATION OF THE GENERALIZED SENSITIVITY

INDICES

4.1. Least-Squares Estimation

The effects (ηu)u∈S in the HOFD (1) satisfy

(ηu)u∈S = Arg min
(η̃u)u∈S

η̃u∈H0
u

E[(Y −
∑

u∈S

η̃u(Xu))
2] (6)

Notice that η0, the expected value of Y , has not interest for the sensitivity indices

estimation. Thus, Ỹ := Y −E(Y ) replaces Y in (6). Also, the residual term η{1,··· ,p}

is removed from (6) and it is estimated afterwards. In Section 3, we defined the

approximating spaces G0,L
u,n of H0

u, for u ∈ S \ {∅}. Thus, the minimization problem

(6) may be replaced by its empirical version,

min
(βlu

)lu,u

1

n

n
∑

s=1









ỹs −
∑

u⊂[1:p]
u 6=∅

∑

lu∈ ×
i∈u

[1:Li]

βuluϕ
u
lu,n

(xu
s)









2

(7)

where ỹs := ys − ȳ, ȳ := 1
n

∑n
s=1 y

s, and where every subspace G0,L
u,n is spanned by

basis functions (ϕu
lu,n

)lu∈ ×
i∈u

[1:Li] constructed according to the HOGS Procedure of

Section 3. The equivalent matrix form of (7) is

min
β

‖Y− Xϕβ‖
2
n (8)

13



where Ys = ys− ȳ, Xϕ =
(

ϕ1 · · · ϕu · · ·
)

∈ ×
u∈S

Mn,Lu(R), where, ×
u∈S

Mn,Lu(R)

denotes the cartesian product of real entries matrices with n rows and Lu columns.

For u ∈ S, (ϕu)s,lu = ϕu
lu,n

(xu
s), ∀ s ∈ [1 : n], ∀ lu ∈ ×

i∈u
[1 : Li]. (β)lu,u = βulu ,

∀ lu ∈ ×
i∈u

[1 : Li], ∀ u ⊂ [1 : p], u 6= ∅.

Remind that the dimension of spaces H0,L
u is denoted by Lu =

∏

i∈u Li, ∀ u ∈

S \ {∅}. Thus, the number of parameters to be estimated in (8) is equal to m :=
∑

u⊂[1:p]
u 6=∅

Lu. Let us remark that it would be numerically very expensive to consider

the estimation of all these coefficients. Even for small ANOVA order d, the number

of terms blows up with the dimensionality of the problem, and so does the number

of model evaluations when using an ordinary least-squares regression scheme. As an

illustration, take d = 3, p = 8 and Li = L = 5, ∀ i ∈ [1 : p]. In this case, m = 7740

parameters are to be estimated, which could be a difficult task in practice. To handle

this problem, many variable selection methods have been considered in the field of

statistics. The next section aims at briefly exposing the variable selection methods

via a penalized regression. We particularly focus on the ℓ0 penalty [28] and on the

Lasso regression [29].

4.2. The Variable Selection Methods

For simplicity, we denote by m the number of parameters in (8). The variable

selection methods usually deal with the penalized regression

min
β

‖Y− Xϕβ‖
2
n + λJ(β) (9)

where J(·) is positive valued for β 6= 0, and where λ ≥ 0 is a tuning parame-

ter. The most intuitive approach is to consider the ℓ0-penalty J(β) = ‖β‖0, where

‖β‖0 =
∑m

j=1 1(βj 6= 0). Indeed, the ℓ0 regularization aims at selecting nonzero

coefficients, thus at removing the useless parameters from the model. The greedy

approximation [28] offers a series of strategies to deal with the ℓ0-penalty. Neverthe-

less, the ℓ0 regularization is a non convex function, and suffers from the statistical

instability, as mentioned in [6, 29]. A convex relaxation of the optimization problem

can be viewed with the Lasso regression [29]. Indeed, the Lasso regression corre-
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sponds to the ℓ1-penalty, i.e. (9) with J(β) = ‖β‖1, and ‖β‖1 =
∑m

j=1 |βj |. The

Lasso offers a good compromise between a rough selection of nonzero elements, and

a ridge regression (J(β) =
∑m

j=1 β
2
j ) that only shrinks coefficients, but is known to

be stable [7, 12]. To offer a good panel to the reader, we will adapt our method to

the ℓ0 and to the ℓ1 regularization.

The adaptive forward-backward greedy (FoBa) algorithm proposed in Zhang [32] is

exploited here to deal with the ℓ0 penalization. From a dictionary D that can be

large and/or redundant, the FoBa algorithm is an iterative scheme that sequentially

selects and deletes the element of D that has the least impact on the fit. The aim of

the algorithm is to efficiently select a limited number of predictors. The advantage

of such approach is that it is very intuitive, and easy to implement. In our problem,

the FoBa algorithm is applied on the whole set of basis functions. It can then hap-

pen that none basis function is retained for the estimation of a HOFD component.

In this case, as we want to estimate each component of the HOFD, the coefficient

corresponding to this component is set to be zero.

Initiated by Efron et al. [11], the modified LARS algorithm is further adapted to our

problem to deal with the Lasso regression. The LARS is a general iterative tech-

nique that builds up the regression function by successive steps. The adaptation of

LARS to Lasso (the modified LARS) is inspired by the homotopy method proposed

by Osborne et al. [23]. The main advantage of the modified LARS algorithm is

that it builds up the whole regularized solution path {β̂(λ), λ ∈ R}, exploiting the

property of piecewise linearity of the solutions with respect to λ [7, 24].

In the next part, both FoBa algorithm and the modified LARS algorithm are adapted

to our problem and they are compared via numerical examples.

4.3. Summary of the Estimation Procedure

Provided an initial good choice of orthonormal systems (ψi
li
)Li

li=0,i∈[1:p], we first con-

struct the approximating spaces G0,L
u,n of H0

u for |u| ≤ d, for d < p, thanks to the

HOGS Procedure of Section 3. A HOFD component ηu is then a projection onto

G0,L
u,n , whose coefficients are defined by least-squares estimation. To bypass the curse
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of dimensionality, the FoBa algorithm or the modified LARS algorithm is used.

Once the HOFD components are estimated, we deduce the empirical estimation of

the generalized Sobol sensitivity indices given in Definition 1.

5. ASYMPTOTIC RESULTS

In this section, we then assume that a functional ANOVA of order d, with d ≪ p,

substitutes properly the initial model. Let us denote Sd the collection of all subsets

of [1 : p] of size at most d. We suppose that

η(X) ≈ ηR(X) =
∑

u∈Sd

ηRu (X), with ηRu =
∑

lu∈ ×
i∈u

[1:Li]

βu,0lu
φulu(Xu) ∈ H0,L

u

In the following, we give the convergence properties of the estimator η̂R to ηR, with

η̂R(X) :=
∑

u∈Sd

η̂Ru (Xu), with η̂Ru (Xu) =
∑

lu∈ ×
i∈u

[1:Li]

β̂uluϕ
u
lu,n

(Xu) ∈ G0,L
u,n .

where (β̂ulu)lu∈ ×
i∈u

[1:Li], u ∈ Sd are estimated by the minimization problem (8). Thus,

we are interested in the convergence results when the ANOVA order d and the order

of truncation Lu =
∏

i∈u Li (u ∈ Sd), are fixed.

Proposition 2 gives the convergence result.

Proposition 2. Assume that

Y = ηR(X) + ε, where ηR(X) =
∑

u∈Sd

∑

lu∈ ×
i∈u

[1:Li]

β
u,0
lu
φulu(Xu) ∈ H0,L

u

with E(ε) = 0, E(ε2) = σ2∗, E(ε · φulu(Xu)) = 0, ∀ lu ∈ ×
i∈u

[1 : Li], ∀ u ∈ Sd.

(β0 = (βu,0
lu

)lu,u ∈ Θ is the true parameter).

Further, let us consider the least-squares estimation η̂R of ηR using the sample

(ys,xs)s∈[1:n] and the functions (ϕlu
u)lu,u, that is

η̂R(X) =
∑

u∈Sd

η̂Ru (Xu), where η̂Ru (Xu) =
∑

lu∈ ×
i∈u

[1:Li]

β̂uluϕ
u
lu,n

(Xu) ∈ G0,L
u,n

where β̂ = Argminβ∈Θ ‖Y− Xϕβ‖
2
n
. If we assume that

(H) The distribution PX is equivalent to ⊗p
i=1PXi

,
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then
∥

∥η̂R − ηR
∥

∥

a.s.
→ 0 when n→ +∞. (10)

The sketch of proof of Proposition 2 is postponed to Appendix A. For further inter-

est, the detailed proof of Proposition 2 is postponed to Appendix B, as the annex

of this document.

Our aim here is to study how the approximating spaces G0,L
u,n , constructed with

the previous procedure, behave when n → +∞. However, we assume that the

ANOVA order d and the order of truncation Lu (u ∈ Sd) are fixed. By extending

the work of Stone [27], Huang [15] explores the convergence properties of functional

ANOVA models when d and Lu are not fixed anymore. Nevertheless, the results are

obtained for a general model space Hu, and its approximating space Gu, ∀ u ∈ S.

In [15], the author states that if the basis functions are m-smooth and bounded,

‖η̂ − η‖ converges in probability. For polynomials, Fourier transforms or splines, he

specifically shows that ‖η̂ − η‖ = Op(n
− 2m

2m+d ) (See [15] p. 257). Thus, to get a good

rate of convergence, it is in our interest to have a small order d in a model. In the

next numerical applications, we use this theoretical result to substitute the initial

model to a functional ANOVA of order at most d = 3.

6. APPLICATION

In this section, we consider two numerical applications. The first model is a toy

function studied in Li et al. [18]. It is used to study the numerical properties of the

practical method summarized in Section 4.3. The last application is the study of a

shell subject to an internal pressure. From a finite elements code, we estimate the

generalized sensitivity indices of input parameters implied into the model. The goal

is to quantify the sensitivity of each input variable in a context of dependence.
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6.1. A Test Case

Remind that the HOGS procedure is used to construct basis functions adapted to

the hierarchical orthogonality constraints. Hence, the same method improved by

the adaptive greedy algorithm will be abbreviated GHOGS method (G for Greedy).

The method improved by the modified LARS algorithm will be called LHOGS (L

for LARS).

The estimation procedure suggested in [9], and reminded in the introduction, is

compared to the G/LHOGS methods. It will be denoted POM (for Projection

Operators Method), relatively to the projection operators it uses.

Let X ∼ N(0,Σ) and the model function,

Y = g1(X1,X2) + g2(X2) + g3(X3)

with

g1(X1,X2) = [a1X1 + a0][b1X2 + b0]

g2(X2) = c2X
2
2 + c1X2 + c0

g3(X3) = d3X
3
3 + d2X

2
3 + d1X3 + d0

and

Σ =













σ21 γσ1σ2 0

γσ1σ2 σ22 0

0 0 σ23













Condition (C.2) does not allow to use the normal distribution, but rather the mixture

Gaussian one [9]. However, the Gaussian distribution allows for computing a HOFD

decomposition, as done in [18]. Moreover, if the research of solutions is restricted

to the polynomial spaces, the uniqueness of the HOFD components given in [18]

is ensured, whatever the type of distribution. Thus, the analytical form of the

generalized Sobol indices can be deduced in this case.

We take a0 = c1 = d0 = 1, a1 = b0 = c2 = d1 = d2 = 2 and b1 = c0 = d3 = 3.

The variations are fixed at σ1 = σ2 = 0.2, σ3 = 0.18 and γ = 0.6. To show

the interest of the greedy and Lasso application, we proceed to n = 200 model
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evaluations repeated 50 times. For each component, we choose a Hermite basis

of degree 10. Thus, the number of parameters m = 330 > n = 200. In view of

analytical results given in [18], it is clear that only 8 among 330 basis functions

are necessary to restitute entirely the model. Table 1 helps for comparing the POM

with the GHOGS/LHOGS procedures on the sensitivity indices estimation and their

standard deviation (indicated into brackets). Table 1 also provides the number of

nonzero estimated coefficients for the FoBa and the modified LARS algorithm. The

estimated components η̂1, η̂2 and η̂3 are represented in Figure 1.

S1 S2 S3 S12 S13 S23 S123

∑

j 1(β̂j 6= 0)

Analytical 0.4429 0.4718 0.0763 0.0091 0 0 0 -

POM
0.4402 0.4718 0.0810 -0.0014 - - - -

(0.021) (0.0401) (0.0012) (0.001) - - -

GHOGS
0.4499 0.4647 0.0754 0.0030 0 0 0.0070 5 to 7

(0.0272) (0.0328) (0.0249) (0.0032) (0) (0) (0.0024)

LHOGS
0.4534 0.4688 0.0793 0.0060 0.0013 0.0010 −0.0098 22 to 207

(0.0275) (0.0314) (0.0258) (0.0024) (0.0012) (0.0012) (0.0002)

Table 1: Sensitivity indices estimation with the POM and the G/LHOGS methods
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Figure 1: Estimation of the HOFD components by the G/LHOGS methods

The advantage of the GHOGS and of LHOGS methods is to be able to estimate all

interaction indices, whereas the POM only estimates interaction indices involved in

dependent pairs [9]. Even if many of the nonzero coefficients in LARS are close to

zero, this method tends to estimate a large number of nonzero parameters in com-

parison with the GHOGS procedure. Through this example, the greedy restitutes

properly the information with a relevant selection of coefficients.

6.2. The Tank Pressure Model

The case study concerns a shell closed by a cap and subject to an internal pressure.

Figure 2 illustrates a simulation of tank distortion. We are interested in the von

Mises stress [30] on the point y labeled in Figure 2. The von Mises stress allows

for predicting material yielding which occurs when it reaches the material yield

strength. The selected point y corresponds to the point for which the von Mises
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stress is maximal in the tank. Therefore, we want to prevent the tank from material

damage induced by plastic deformations. To offer a large panel of tanks able to

resist to the internal pressure, a manufacturer wants to know the most contributive

parameters to the von Mises criterion variability. In the model we propose, the von

Mises criterion depends on three geometrical parameters: the shell internal radius

(Rint), the shell thickness (Tshell), and the cap thickness (Tcap). It also depends on

five physical parameters concerning the Young’s modulus (Eshell and Ecap) and the

yield strength (σy,shell and σy,cap) of the shell and the cap. The last parameter is

the internal pressure (Pint) applied to the shell. The system is modelized by a 2D

finite elements code ASTER.

Figure 2: Tank distortion at point y

In table 2, we give the input distributions.
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Inputs Distribution

Rint U([1800; 2200]), γ(Rint, Tshell) = 0.85

Tshell U([360; 440]), γ(Tshell, Tcap) = 0.3

Tcap U([180; 220]), γ(Tcap, Rint) = 0.3

Ecap αN(µ,Σ) + (1− α)N(µ,Ω)

σy,cap α = 0.02, µ =













210

500













, Σ =













350 0

0 29













, Ω =













175 81

81 417













Eshell αN(µ,Σ) + (1− α)N(µ,Ω)

σy,shell α = 0.02, µ =













70

300













, Σ =













117 0

0 500













, Ω =













58 37

37 250













Pint N(80, 10)

Table 2: Description of inputs of the shell model

The geometrical parameters are uniformly distributed because of the large choice

left for the tank building. The correlation γ between the geometrical parameters

is induced by the constraints of manufacturing processes. The physical inputs are

normally distributed and their uncertainty are due to the manufacturing process and

the properties of the elementary constituents variabilities. The large variability of

Pint in the model corresponds to the different internal pressure values which could

be applied to the shell by the user.

To measure the contribution of the correlated inputs to the output variability, we es-

timate the generalized sensitivity indices by the practical method exposed in Section

4. We proceed to n = 1000 simulations over 50 runs. We use the 5-spline functions
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for the geometrical parameters and the Hermite basis functions of degree 7 for the

physical parameters. The first order indices dispersions are displayed in Figure 3 for

both Greedy and LARS algorithm.
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Figure 3: Boxplot representations of the first order sensitivity indices

We observe first that the HOGS procedure applied with the greedy and the LARS

techniques give very similar results. Once again, we do not observe a big difference

between the two variable selection methods.

The first four physical parameters are independent from the other inputs, and their

effects are null, so we can deduce that they do not have any influence in the model.

Also, even if the internal pressure plays an important role, the strongest contribution

comes from the correlated set of geometrical inputs (Rint, Tshell, Tcap). The sensitiv-

ity index related to the shell radius (Rint) is negative, so the covariance induced by

the dependence dominates in the index, showing that either there is a strong nega-

tive covariance part or the full contribution of the variable is small. In the first case,

it shows that Rint is influent through its correlation. In the second one, the input

Rint is not an influent variable in the model. The sensitivity indices of the shell
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thickness (Tshell) and the cap thickness (Tcap) reveal that these two variables have a

strong influence in the model. Thus, to scale down the variability in the model, we

should reduce the cap thickness variability first. Because of the strong correlation

between the shell radius and its thickness, one should reduce the variability of both

parameters.

APPENDIX A : CONVERGENCE RESULTS

For sake of clarity, we first recall and define some notation that will be used further.

Settings

First, as mentioned in Section 4, we assume that Y is centered. Also, we assume

that a functional ANOVA of order d, with d ≤ p, substitutes properly the initial

model. Let us denote Sd the collection of all subsets of [1 : p] of size at most d,

where the empty set has been removed. Thus, Sd = {u, ∅ ⊂ u ⊆ [1 : p] and |u| ≤ d}.

Recall that, ∀ i ∈ [1 : p], Li := L{i} is the dimension of the spaces H0,L
i and G0,L

i,n .

More generally, φ{i} := φi. Also, Lu :=
∏

i∈u Li is the dimension of the spaces H0,L
u

and G0,L
u,n .

For u ∈ Sd, lu = (liu)i∈u is a multi-index of ×
i∈u

[1 : Li], where ×
i∈u

[1 : Li] is the

Cartesian product of the sets [1 : Li], for i ∈ u.

We refer (φulu)lu∈ ×
i∈u

[1:Li] as the basis of H0,L
u and (ϕu

lu,n)lu∈ ×
i∈u

[1:Li] as the basis of

G0,L
u,n constructed according to HOGS Procedure of Section 3. Thus, these functions

all lie in L2
R
(Rp,B(Rp), PX).

〈·, ·〉 and ‖·‖ are used as the inner product and norm on L2
R
(Rp,B(Rp), PX),

〈h1, h2〉 =

∫

h1(x)h2(x)pXdν(x), ‖h‖2 = 〈h, h〉

while 〈·, ·〉n and ‖·‖
n
denote the empirical inner product and norm, that is

〈g1, g2〉n =
1

n

n
∑

s=1

g1(x
s)g2(x

s), ‖g‖2n = 〈g, g〉n

when (ys,xs)s=1,··· ,n is the n-sample of observations from the distribution of (Y,X).
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We set m :=
∑

u∈Sd Lu the number of parameters in the regression model. Denote,

for all u ∈ Sd, Φu(Xu) ∈ (L2(R,B(R), PX))Lu , with (Φu(Xu))lu = φulu(Xu), and by

β any vector of Θ ⊂ R
m, where (β)lu,u = βulu , ∀ lu ∈ ×

i∈u
[1 : Li].

Recall that, for a, b ∈ N
∗, Ma,b(R) denotes the set of all real matrices with a

rows and b columns. Set Xϕ =
(

ϕ1 · · · ϕu · · ·
)

∈ ×
u∈Sd

Mn,Lu(R), where, for

u ∈ Sd, (ϕu)s,lu = ϕu
lu,n

(xu
s), ∀ s ∈ [1 : n], ∀ lu ∈ ×

i∈u
[1 : Li]. Also, we set

Xφ =
(

C1 C2 · · ·
)

∈ ×
u∈Sd

Mn,Lu(R), where, for u ∈ Sd, (Cu)s,lu = φulu(xu
s),

∀ s ∈ [1 : n], ∀ lu ∈ ×
i∈u

[1 : Li].

Denote byAφ be them×mGramian matrix whose block entries are (E(Φu(Xu)
tΦv(Xv)))u,v∈Sd .

At last, we define the functions

Mn(β) = ‖Y− Xϕβ‖
2
n

(11)

where Ys = ys, ∀ s ∈ [1 : n]. At last, the Euclidean norm will be denoted ‖·‖
2
.

Proposition 2. Assume that

Y = ηR(X) + ε, where ηR(X) =
∑

u∈Sd

∑

lu∈ ×
i∈u

[1:Li]

β
u,0
lu
φulu(Xu) ∈ H0,L

u

with E(ε) = 0, E(ε2) = σ2∗, E(ε · φulu(Xu)) = 0, ∀ lu ∈ ×
i∈u

[1 : Li], ∀ u ∈ Sd.

(β0 = (βu,0
lu

)lu,u is the true parameter).

Further, let us consider the least-squares estimation η̂R of ηR using the sample

(ys,xs)s∈[1:n] and the functions (ϕlu
u)lu,u, that is

η̂R(X) =
∑

u∈Sd

η̂Ru (Xu), where η̂Ru (Xu) =
∑

lu∈ ×
i∈u

[1:Li]

β̂uluϕ
u
lu,n

(Xu) ∈ G0,L
u,n

where β̂ = Argminβ∈ΘMn(β). If we assume that

(H) The distribution PX is equivalent to ⊗p
i=1PXi

,

then
∥

∥η̂R − ηR
∥

∥

a.s.
→ 0, when n→ +∞. (12)

The proof of Proposition 2 is broken up into Lemmas 1-5. To prove that (12), we

introduce η̄R as the following approximation of ηR,

η̄R =
∑

u∈Sd

η̄Ru (Xu) =
∑

u∈Sd

∑

lu∈ ×
i∈u

[1:Li]

βuluϕ
u
lu,n

(Xu),
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and we write the triangular inequality,

‖η̂R − ηR‖ = ‖η̂R − η̄R + η̄R − ηR‖ ≤ ‖η̂R − η̄R‖+ ‖η̄R − ηR‖ (13)

Thus, it is enough to prove that
∥

∥η̂R − η̄R
∥

∥

a.s.
→ 0, and that

∥

∥η̄R − ηR
∥

∥

a.s.
→ 0.

Lemmas 4 and 5 deal with convergence results on ‖η̄R − ηR‖ and on ‖η̂R − η̄R‖,

respectively. Lemmas 1, 2, 3 are preliminary results to prove Lemmas 4 and 5.

Lemmas 1-5 are enunciated further below.

Preliminary results

Lemma 1. If (H) holds, then Aφ is a non singular matrix.

Lemma 2. Let u, v ∈ Sd. Assume that ‖ϕu
lu,n − φulu‖

a.s.
→ 0 and ‖ϕv

lv ,n
− φvlv‖

a.s.
→ 0

for any lu ∈ ×
i∈u

[1 : Li], lv ∈ ×
i∈v

[1 : Li]. Then, the following results hold:

(i)
∥

∥

∥
ϕu
lu,n

∥

∥

∥

a.s.
→
∥

∥φulu
∥

∥ and
∥

∥

∥
ϕu
lu,n

∥

∥

∥

n

a.s.
→
∥

∥φulu
∥

∥;

(ii) 〈φulu , ϕ
v
lv ,n

〉
a.s.
→ 〈φulu , φ

v
lv
〉 and 〈φulu , ϕ

v
lv ,n

〉n
a.s.
→ 〈φulu , φ

v
lv
〉;

(iii) 〈ϕu
lu,n, ϕ

v
lv ,n

〉
a.s.
→ 〈φulu , φ

v
lv
〉 and 〈ϕu

lu,n
, ϕv

lv ,n
〉n

a.s.
→ 〈φulu , φ

v
lv
〉.

Lemma 3. Let u ∈ Sd. For any liu ∈ [1 : Li], assume that ‖ϕi
liu,n

− φi
liu
‖

a.s.
→ 0.

Moreover, we also assume that there exists v ∈ Sd and lv ∈ ×
i∈v

[1 : Li] such that

‖ϕv
lv ,n

− φvlv‖
a.s.
→ 0. Then, we have

(i)
∥

∥

∥

∏

i∈u ϕ
i
liu,n

−
∏

i∈u φ
i
liu

∥

∥

∥

a.s.
→ 0;

(ii) 〈
∏

i∈u ϕ
i
liu,n

, ϕv
lv ,n

〉n
a.s.
→ 〈

∏

i∈u φ
i
liu
, φvlv 〉.

Main convergence results

Lemma 4. Remind that the true regression function is

ηR(X) =
∑

u∈Sd

ηRu (Xu), where ηRu (Xu) =
∑

lu∈ ×
i∈u

[1:Li]

βu,0lu
φulu(Xu) ∈ H0,L

u

Further, let η̄R be the approximation of ηR,

η̄R(X) =
∑

u∈Sd

η̄Ru (Xu), where η̄Ru (Xu) =
∑

lu∈ ×
i∈u

[1:Li]

βu,0lu
ϕu
lu,n

(Xu) ∈ G0,L
u,n ,
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Then ‖η̄Ru − ηRu ‖
a.s.
→ 0 ∀ u ∈ Sd, and ‖η̄R − ηR‖

a.s.
→ 0.

Lemma 5. Recall that β̂ = Argminβ∈ΘMn(β). If (H) holds, then

∥

∥

∥
β̂ − β0

∥

∥

∥

2

a.s.
→ 0 (14)

Moreover,
∥

∥η̂R − ηR
∥

∥

a.s.
→ 0. (15)
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