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Abstract—Diagnosability analysis of functions offers now a
serious complement to knowledge-based methods ofagnosis,
such as FMEA (Failure Mode and Effects Analysis) ahfault tree

analysis. State of the art of diagnosability analys focus on what
we call "functional diagnosability", where the hardware

architecture of the system and its constraints arenot directly

considered.

This paper contributes to the analysis of the fundbns-

architecture interaction impact on the diagnosabiliy of an

embedded system, especially automotive systems. Taygproach

we developed can be integrated into the design cgcllt has two
important phases; first, the diagnosability analyss of discrete
event systems, then the verification of a propertget that we have
defined and called the “diagnosability functional-achitectural

properties”. Properties verification is done in twostages: check
the description of the architecture, described in ADL, and

check the functions-architecture interaction, modedd in

SystemC-Simulink. The validation process is appliedn a real

automotive experimental embedded platform based orseveral
Electronic Control Units.

Finally, we have developed through this paper a n&¥

methodology for the analysis of diagnosability thattakes into

account the constraints of the hardware architectue of the
system.

l. INTRODUCTION

system designer must ensure that the system is diagnosable,
i.e. must ensure that the errors that may appear are
identifiable. Diagnosability is considered as a regué@et to

be verified during the design, as important as the priegert
related to dependability (safety, reliability, etc.)pvide a
more reliable system, with predictable maintenance costs.
Methods of diagnosability analysis focus on what can be
called "functional diagnosability", where the hardware
architecture was not directly considered [3]. In fact, the
classical diagnosability is a property defined on the ath
representing a system. It specifies that whenever a rfizajt
occur, it exists a finite set of observations that allowgous
decide whether this fault did happen or not HMéwever, the
need to analyze the diagnosability of hardware-software
architecture has been discussed mainly by transportation
industry. Indeed, the automotive industry reported the problem
of on-board diagnosis implementation because of the large
distribution of functions (on computing units), the large
interaction of functions with sensors and actuatorsogin
communication bus) and real time constraints. Model-based
diagnosis is the answer to this problem and led to the need of
diagnosability analysis.

Hence, we are interested in a specific point: Do hardware
architecture and even the couple software-hardware

N complex automated systems failures are increasinglyrchitecture influence system diagnosability?

difficult to predict, understand and repair. The need for

In this paper, we present a method of functional-

methods and tools for the supervision of these systems hagchitectural diagnosability analysis. We discuss ourhaotbt

initiated many research projects. Thus, the implentientaf

that makes confrontation between the architecture deseripti

these systems was naturally modular to control the contiplexiand the classical model of diagnosability (functional model

and risk, hoping that the errors do not affect all partthef
modules. However, this modularity,

We define a property set that takes into consideration the

or distribution of architecture distribution and the time constraint, to analyze

functions, has contributed to increase the vulnerabilithisf t functional-architectural diagnosability.

type of system.

Research works on dependability helped to develop Il FUNCTIONAL DIAGNOSABILITY

verification techniques to control hazards. Most of these The diagnosability research area is recent. Several
techniques of diagnosis are knowledge-based (rules-basegmmunities have developed different approaches for model-
systems, fault dictionary, etc.)[1]. At the same tinother based diagnosis. Indeed, for the diagnosability analysis of
research works undertaken to improve the reliability ofehesembedded electronic architectures, the most commonly used
systems by reviewing the design methodologies. Diagnosigpproaches are using “discrete-event based” models, not
methods have evolved to model-based approaches [2] that dgghsidering directly the hardware architecture board at the
better with distribution. To improve the fault toleranee i system description.

embedded systems and their ability to self-diagnose, ¢ fi

In order to perform a functional diagnosability analysis, a
of "diagnosability” analysis has emerged. Nowadays, thg.p, b g y Y

avioral model of the system is needed. As indicated hefore



multiple models can be envisioned: continuous-state-based,

event-based, or hybrid. When dealing with the diagnosabilit)(/ariables definition:
of discrete event systems, the most widely acceptedsisal
method is the “Diagnoser” approach due to M. Sampath et
[4]. The input model is a finite deterministic state machineB
modeling the system behaviors (Figure 1).

: All computing units (or component) containing one or
ore functions to analyze

: All components sources of state variables
C : All components that are computing units

ValVe oen VALVE, CLOSE VALVE Pump D_principal : The computing unit (or component) diagnoser
@ SToP_PUME (Case of centralized and decentralized diagnosis)
7 v, START_PUMP . . .
‘@_@’ D : All computing units (or components) diagnosers
/STUCK_CLOSED OPEN_VALVE STOP_PUMP F : All functions

OPEN_VALVE _ -~ START_PUMP

F_Diag: All diagnosis functions

M : All messages sent through the communication bus
START_PUMP O: The computing unit (or component) containing the
observer process

V: The set of state variables issued from sensors or other
components of the system

.. CLOSE_VALVE

CLOSE_VALVE u‘\‘\STU CK_OPEN /

OPEN_VALVE, CLOSE_VALVE

Legend: Osme after a normal eve Controller

OState after a fault Types def|n|t|0n .
void : Undefined return type, not null

ey Faults
— 5  Control actions

Figure 1. Behavioral components models of PVC (Puvave, Functions definition: .
Controller) sub-system of HVAC (Heating, Ventilatisgr Conditioning) F_Data: (x,y)—{0,1})\ (x,y) € C? returns 1 if x and y are
system [4] connected by a data connection, otherwise returns 0
The analysis is performed by augmenting that model witlsjze F: x—y\ x € F_Diag, Y€ R returns the size of x
non-normal or fault states and checking if the augmeated  Size Mem: x—y\ x € C, y€ R returns the memory size of x

transformed model is diagnosable. AT : x—Y\ x € F_Diag, y€ R function that returns the desired
frequency for performing the function x
lll.  FUNCTIONAL-ARCHITECTURAL DIAGNOSABILITY WCET : (x,y)—2\ x € F_Diag, Y€ C, z€ R returns the
PROPERTIESDEFINITION maximum execution time that x can make on y platforrig it

the WCET (Worst-Case Execution Time) of x on y[9]. We
assume the existence of this function.
onn_Il/O : (x,y)—z\ xe C, y€ B, z€{0,1} returns 1 if x and
hre connected
Implemented: (x,y)—»z\xe F, ye C, ze {0,1} returns 1 if x
8s implemented on y
ource : Xx—Y\ Xxé M, ye C returns the name (or the address)
f the computing unit sender of the message x.
Destination : x—y\ x¢ M, ye C returns thename (or
address) of the computing unit receiver of the messag
ontent : x—y\ X€ M, ye « void » returns the content of the

A. Architecture in diagnosability

While the system model being functionally diagnosabl
and the existence of a diagnoser are necessary conditions
the final embedded system to be diagnosable by itself,dre
not sufficient. The interaction between the functions, th
diagnoser and their mapping to the underlying architecture h
to be considered. It is thus necessary to define checkab
properties that the architecture has to demonstrate veipiece
to the functions and the diagnoser in order to be diagnosable

To verify the functional-architectural diagnosabilitye
propose a set of properties to check used as a complement

o . - : essage M.
the methoql of yer|f|cat|on of dlagnosabll'lty'of discreterv Xalue: XY\ XE V, yE «void » returns the value of the
systems cited in [4]. We focus on distributed embeddevariablev

architectures based on computing units connected with one grigin . XY\ XE {E, V}, y€ B retums the component source

more communication Networks. of the event or the state variable
These properties are necessary for the different diagnosi

structures (i.e. centralized, decentralized and distripad
involve the notion of time for certain scenarios. The §tep
in the properties verification, is determining the diagnosi
structure (centralized, decentralized or distributed) tatifle
all the necessary properties. Thus, an architecture lisdcal

diagnosable if and only if all the properties concerning its Centralized : properties 1.1, 2, 3, 4, 5 and 6
structure are verified.

Properties must be checked in the following order:

'Rule 1: For every diagnosis structure, we have a properties
set to verify :

- Decentralized : properties 1.2, 3, 4, 5 and 6

B. Properties defintion o )
- Distributed : properties 1.3, 2, 3, 4, 5and 6

In order to define properties, we first define the systen
using a set of variables and functions representing theetfiffer Property 1. Connectivity to diagnoser : Checking this
components and characteristics. property ensures that every hardware component executing a




function to diagnose is connected to the diagnoseProperty 3. Reachability : In our approach, we see that the
component. That connection depends on the structure of tldecision of the observability of an event, in the model (the
diagnoser: finite automaton) representing the system, do not stop at the
* In a centralized structure, each hardware componernly information issued from the sensors, because the whole
executing a diagnosed function must have at least or@chitecture hardware and software, in interaction with the
data connection to the diagnoser component. sensors, can have an important role in observing system

« In a decentralized structure, each secondary diagnossyents'
component must have at least one data connection to
the primary diagnoser component.

e In a distributed structure, each hardware compone

executing a diagnosed function must also be
diagnoser component.

» Property 1.1 : For any component (computing unit)
containing a function to diagnose, we must have at least [ :|

Thus an “observer” process (Figure 2), part of the
diagnoser must be implemented and must achieve (receive)
The values of all state variables representing the rivdtion

%rom sensors or other system compondRigure 3.

Computing Unit

one “data” connection with the component (computing

unit) diagnoser (1) .
Observer
Va € A’ Processes

(F_Data (a, D_principal)) Vv (a==D_principal) -
— Connectivity_Diagnoser (a) =1 Figure 2. Observer process

1
b The “observer” process must receive the values of state
> Property 1.2 : For any component (Computing unit) of variables of all components of the system to analyzeate st
auxiliary diagnosis, we must have at least one “datgvariable is called reachable when the hardware component

connection with the principal diagnose (2). including the origin of this variable is physically céable by
the hardware component on which the observer is located (5).

vdeD,
((Conn_I/0 (d, D_principal) ==1) e
— Connectivity_Diagnoser (d) =1
2 OPEN_YALVE, NP, NF

» Property 1.3 : For any component (computing unit) ”

containing a function to diagnose, it must be itself a 0

component diagnose(3). Figure 3. Event example

OPEN_VALVE: variable representing the event

Va€A vdeD, NP, NF: state variables representing the infornmagsued from th

(a==d) sensor

— Connectivity_Diagnoser (a) =1
®) VweV,0e(C, VmEM,
S . (Conn_I/0O (Origin (v), 0) v F_Data (Origin (v), 0)) *
Property 2. Executability : This property ensures that every (Source (m) =Origin (v)) A (Destination (m) =0) A (Content
diagnosis function can indeed be executed on the computing,) = vajue (v))
units it has been mapped to. It is twofold: - Reachability (v) =1
e The diagnoser memory footprint must not be higher 5)
than the memory available on the computing unit

« The WCET of the diagnoser must not be higher than jteroperty 4. Accessibility : An observer has to be notified of all
minimum desired execution period. the events occurring within the diagnosed components. This

. . roperty is similar to the reachability, but pertains tonéve
If any of Fhe tWO. su_b-propemes abovg reaches the limits c{-})ariables instead of state variables. An event is saitbe
ghe compl;tlng_umt, (;t has t?o beh entcljre‘Ily devoted 10 the;cegsible when the hardware component implementing the
lagnoser function and cannot be shared (4). observer can physically access the originating compowent f
that event (6).

vd € D, Vf € F_Diag,

((Implemented (f,d)==1) * (Size_Mem (d)= Size_F (f)) * (AT Ve €E,Vce(C VmENM,
(f) >= WCET (f,d))) (Conn_I/0 (Origin (e), 0) v F_Data (Origin (e), 0)) * (Source (m)
— Executability (f, d) =1 =0rigin (e)) " (Destination (m) =0) * (Content (m) =Value (e))

(4) - Accessibility (e) =1
(6)



Property 5. Temporal availability : This property is verified including the interaction of the functions with the hardware
when the available time on the computing unit intendedhi®r  architecture.

diagnosis function is sufficient for the execution of a Tne architecture description model discussed above has to
diagnoser (or a secondary diagnoser in a decentralizggh augmented to also include the behaviour of the functions
structure). To verify th|§ property, all the time sllc@ nsed  and the use they make of the hardware resources amitbey
by the nominal operation of the system are considered anfapped onto the hardware architecture. The resulting model
their total length compared to the diagnoser needs [3]. should be suitable for either formal analysis or satiah-
based analysis. The latter approach is often preferredpbs

Property 6. Observability : All event variables from the gre readily available that can be used to generate atiomnil
automaton (Figure 3) have to be observable for the wholgaces useful for further analysis.

event to be itself observable. Observability is thus a comgpo
property, deriving from the previous ones. It is verified if:
¢ the temporal availability of the system is sufficieat t
implement a diagnoser,

One idea is to describe the functional behaviour using the
same language or modelling framework used to describe the
architecture. The advantage of this idea is that it leads
complete, homogenous functional-architectural model of the

* its state variables are reachable, system to be analysed. In the case of VHDL for instaadet
« its events are accessible [5]. of simulators are available that can be used to provide
X : - execution traces for analysis. However, the functionadieh
Rule 2. Every property of functional-architectufal is rarely expressed from the start in such languages. For

diagnosability is verified through system representation o
modeling. Properties {1.1, 1.2, 1.3, 2, 3, and 4} |ar
verifiable at the architecture description level, whthe
properties {5 and 6} are verifiable at the level of fuos-
architecture interaction:

*Verification of the architecture description: no time,d®
from the architecture description (or documentation).
*Verification of the functions-architecture interactidakes
into account the progress of the state of the hardyar
software system through time.

Instance, MATLAB/Simulink is widely used in the industry
&or such a task. In order to again reduce the need for model
translation and adaptation, a heterogeneous approach is
preferred.

As AADL is not really suitable for such a goal, becadse i
cannot describe processes behavior, other languages can be
considered. If we keep MATLAB/Simulink functional models
é[l mind, a SystemC model can be used for co-simulation and
trace generation as described for instance by J.F 8¢l
by making calls to the MATLAB environment from the
IV. ARCHITECTURE MODEL FOR DIAGNOSABILITY SystemC model. While translating an AADL model to
. - . SystemC can be done by hand, there is ongoing work dswar
A. Architecture description and associated tools automatic translation tools, such as AADS [11].

Most of the architectural properties the diagnosability
depends on are of a static nature. They are only affegtéteb V.  ARCHITECTURAL-FUNCTIONAL DIAGNOSABILITY
structure of the hardware architecture and the location of the VERIFICATION
diagnoser within that architecture. Therefore, the modeld use ) o .
to evaluate these properties must be able to capture tAe Automata and architecture description matching
physical organisation of the architecture, including its The first step is to parse the AADL model to extraud a
computing units, communication buses and devices such #@entify all the architectural features necessarthanalysis,
sensors and also their interaction, through descriptiorataf d such as the embedded computing units, devices such as
and event flows. Several description languages can be used f@nsors, communication links, data flows and inputs/outputs
this purpose. connections representing state and event variables.

In this paper the focus is essentially on AADL  Using thatinformation, each state and event variabledfoun

(Architecture Analysis & Description Language) [6], libe in the functional model (automata) can be matched to the

methodology could be applied from models expressed usirfgPrresponding data flow in the AADL model, including its
VHDL (Very high speed integrated circuit Hardware OMgin, its destinations, the physical links supportihg data

Description Language) [7] or EAST-ADL for instance, athb ~ ©F message transmission, etc.

V)

of them support hardware architecture description. B. Properties verification
The case for AADL comes from the fact that it istigef a 1) Property verification at the architecture description
growing attention both in the avionics and automotive fieldggyg|
and that it is specifically tailored for hardware aretitire The architecture properties are evaluated using that
description, ignoring its proposed behaviour annex. matching mentioned previously. For example, in order to
B. Functions-architecture interaction modelling and check the accessibility property for a given eventalid, we
associated tools have to check that a data flow exists for that variakde,iti is

actually output by some component, that the data flow dgtual
reaches the observer, i.e. there exists a connectiomdetts
msource and the observer or its source and the observer are
rhapped to the same computing unit. The global accesgibilit

While architecture description is enough to cater Far t
first four properties (1 to 4), the temporal availability pmope
can only be evaluated by considering the whole syste



property is evaluated by repeating that pro: for each evel
variable, one at a time. Checking for otheoperties follown
similar processes.

2) Property verification at the fugtions-architecture
interaction level
We proceed to the alysis of properties thedepend on th
architecture and on the evolution of the syn state in time
To do this we had a choice between deping our own
analysis engine analysis or rely on existinggines. We hav
chosen to use simulation engines cotilgha with the
formalism of models expression of the st practiced i
industry (such as Matlab / Simulink, etc.).2 therefore us
different simulation engines to "unroll" theystem behavic
according to his model and according dimulation inputs
representing critical scenarios. To devetefevant scenaris

for simulation cycles, we are inspired lgome of the

techniqgues MC / DCModified Condition/Decsion Coverag)
for the selection of inputs values, and fioe events sequen
[14]. MC/DC is a testing process that me a source coc
coverage criterion; it is used by the O@8B standar(13].
Therefore, we focused our efforts on theerpretation o
simulation results of a model. Indeed, wtwe simulate
model, we can produce a Idide that records all change:
precisely dated values of the signals.

The main point of that approach isiat it can be
completely automated, making its integratiato a tool chair
possible. While hand checking is still pose, it would be
very time-consuming and errprone. Tool, such as oL
prototype COSITA (CCBimulation Trace Aalysis [8], are
still a work in progress, but are essenifiaiagnosability is tc
be considered as a useable metric in architectur
exploration process. We developed the tsuite COSITA
where iterated ceimulations traces are anzed to evaluat
the interaction of functions with the architece, accordin to
selected critical scenarios. We compareesults of c-
simulation trace analysis with results that wtained throug!
a physical emulation automotive platform.

VI. CASESTUDY

Figure 4. SDK (Smart Distance Keeping) function

We have tested our approach on thmart Distanc
Keeping (SDK) functiongiven by a truck maufacture, as a
part of a national projectSDK” is equivalentto the Adaptive
Cruise Control (ACC) function, expt that the
distance/velocity regulation is ke only on « fixed distanci
of 50m (compliant to European regulations heavy trucks
[12]. Thus, using embedded radar, theK suk-system
maintains a safe headway time, i.e. the intgnicle distanc
is varying as a function of the velocity andmaintained at
minimum legal distance of 50 m (Figure Zhe final purpos:
of this case study, in the projeds, to makea real time o-
boarddiagnosis of this function based on syn mode

We have first verified the “functical” diagnosability of th
SDK, through the approach of M.ampattr(using automata).
Hence, we model the SDK funon using a set of finit
automata. A partitioning of thdiagnosability analysiof the
system must be made to identi@l the components to be
analyzed. Other components imteraction may be part of
another diagnosability analysisuch as engir function, or
braking function diagnosability arysis, etc....SDK includes
the following components: radarpmputing unit, the vehicle
velocity value and engin&xpected Faults” events are:

¢« Radar failure » F1 leads:o the state Failure 1»

* «Velocity_measure failure: F2 leads to the state

« Failure 2» (Figure 5).

Engine function

VvarVvar

Regulation_Deciso '@_@’ Vi Ve
Reglation_Decisio

F1 F

Detectiol

Regulation_Decisi,

Engine_contrc
SDK
computing

Radar
Measure

Succeeding_vehicle_veloci
- = i\\

e ™

__Measure _Velocit , -
G=r) ) vetccion sent wwer [ (Gon] o) veasure_vetoan
Send_Vva

O State after a failure

,,,,,,,,, > Failures
—> Control action

Send_Vvi

Legend Osra«e after mormal ever

Figure 5 Behavior model of OK componen
Vvar : Succeeding vehicle velocity
Vva : Preceding vehicle velocity

The result of the analysis is piive: SDK is functionally
diagnosable. After that we described the electron
architecture of SDK (Figure)&vith AADL languagt.

Velocity
'r f th Ir
%ﬁﬁg&!
[ 1 [

ECU1 ECUZ
SDK computing unit computing un

Other computing
units

l Vehicle Velocity | | Control signal | Control signal I

Figure 6 Different electronic cmponents of SD

Other computint

We described also messages ange between computil
units in pseudo code:

e The two messages contaig state variables valu

Message_1 :

Source : ECUL
Destination : ECUL
Content : Val ue(RV)
Message_2 :

Source : ECUL
Destination : ECUL
Content : Value (W)



e And four messages to notify the following

events « detection », «VWVarVVar », .

« Regulation_Decision » and « Engine_Control »:

Message_3 : ° 500 000 o me 3000 3500
Source : ECU1

Destination : ECUL

tem is observable with the mean frequency per period =0

Figure 7. Temporal availability analysis result

Content : Value (Detection) Thus, with the proposed features for architecture, propeigy
Message 4 : not satisfied.
%Utﬂce t ECUL foul Property 6 verification:
stination : : : .
Content : Value (Wa A War) To satisfy this property, we _have to: o
Message 5 : * Check that there is a temporal availability at the
Source : ECW2 system level to implement a diagnoser,
Destination : ECUl o ; ;
Content : Value (Regul ation_Deci si on) pheck the observer accessibility to vanaples carrying
Message 6 : information from the sensors, depending on the
Source : ECW2 functional diagnosability model,
2‘35“”5}“0“; ECUL cont ol « and check the Reachability of computing units
ontent:  Val ue(Engi ne_Control) participating in the concerned event.
A. Property verification results for SDK The last two points of the property 6 are satisfied, and the

By parsing the AADL architecture description, we verified €mporal availability is not satisfied. Thus, propertgaiinot
that the description of the architecture meets the piepet; D€ satisfied. _ . .
2, 3 and 4 of functional-architectural diagnosability. In theSince both properties 5 and 6 are not satisfied, theifuradt

following, we check properties 5 and 6, they require a deep@rchitectural diagnosabil_ity i_s not _satisfied._ We noat _
analysis. although the SDK function is functionally diagnosable, his

Property 5 verification: proposed software-hardware architecture prevents it from
This property is «TRUE" when the available time is sigfic being d_lagnosed. In othef words, |f we neglect_the a_lrchrtectu

for a diagnoser (or sub-function of diagnoser, in ¢hee of ~Constraints at the diagnosability —analysis time, the
decentralized diagnosis). implementation of a diagnoser in the next step may have

The proposed diagnoser for SDK function is indeed a gener8f°b|ems that contradict the positive result of diagnosgbilit

diagnoser for the entire vehicle. The objective is sues that ) .
SDK function will always be diagnosable even when it isOUr @pproach proposes in this case to make changes to the
implemented on the same computing unit that the diagnoser. architecture description and the model of hardware-software

architecture in order to make it diagnosable and not prevent it
After a co-simulation of one minute of system operation,TOM being diagnosed. This amounts to the fact that the
COSITA tool displays an interface that allows openimg ¢ diagnosability analysis is done at the system designastdp
simulation trace file(s) in order to verify temporabdability ~ the necessary changes to improve the system must be done on
for a diagnoser on “ECU1” (SDK_computing_unit). Given M0dels.

that: B. Return on design

e The desired frequency of diagnosis is once every, I . .
4200ns = 4200/25= 168 clock cycles, After property verification, we should find a solution at the

design level of hardware-software architecture in order to

e The duration of the diagnosis process is estimated %ratisfy "Temporal availability". We propose in this caseo
160 cycles = 160*25ns= 4000ns different solutions:

* And the access time to the computing unit forread or  ,  The first one is to use a computing unit more
write is estimated at 10 ns. , powerful instead of ECU1 (SDK_computing_unit)

COSITA opens trace files, allow entering information about provided for the implementation of SDK and the
the diagnoser process and the implemented function(s) onto diagnoser.
the component that we want to analyze. Then, COSITA The second solution is to add a computing unit
conducts an analysis of the temporal availability bé t having the same frequency of ECU1
selected component regarding the desired and entered (SDK_computing_unit) and ECU?2
parameters, based on co-simulation trace files analysis. (Engiﬁe computiﬁg unit) in order to implement onto
With the parameters we have, the module OBSAN concluded it the dia_gnoser. B
that the analyzed component (ECU1) is not available t®elow, we test the two proposed solutions by estimatieg
execute a diagnosis process with the desired criteria. Th&st of each case.
result is negative for the duration of the execution, becthes
function analyzed is periodic and the intended diagnosis 1) First proposal for modifying the architecture
process is periodic also. Hence, if the result is negativef Taking a more powerful computing unit of 80MHz for
period it is also for all others throughout the simulationexample (taken off the shelf), the duration of the clophle is

(Figure 7). —_s=125.10s=125ns.
80x10




As the “SDK ()" method is executable in 16 clock cycléssi (40MHz) in order to implement onto it only the diagnose
then executable on this computing unit in 16*12.5 = 200ng(Figure 8).

Similarly, the diagnoser is executable on 160 clock cylés, The 40MHz computing unit has a clock cycle ef—s =
i i i * - 40%106
then executable on this new computing unit on 160*12.5

9 —
2000ns. 25.10° s = 25 ns.

We presume that the desired frequency of diagnosis is the
same as in the previous configuration of architecture, once 00 (engine

every 4200ns.
Hence, for the first solution to test the description and the

SystemC model of the architecture remains the same except

the clock of ECU1 which must pass to 80MHz:
sc_clock clock( "clock" ,12.5,SC_NS);

At checking properties of the architecture, the results irema
the same for the property 1.1, property 3 and property 4;
because the description of the architecture has chandbed at
level of attribute "microprocessor" of SDK_computing_tuni

rarery -

. . . . Figure 8. Configuration of the hardware-softwarendecture with an
system i npl enent ati on SDK_computing_unit.imp additional computing unit

subconponent s

Proc : processor MPC563.Motorola {Clock_Period Messages destinations change following the new deseriptio
=>12.5ns;}; of the architecture :
end SDK_computi ng_unit. i np; + The two messages containing state variables values,
Message_1 :

LSource . ECU1

Thus, property 2 was re-checked by parsing AAD Destination - EO

architecture description. Content : Val ue( RV)
Property 2 verification result: Message_2 :
vd € D, vf e F_Diag, Source : ECUL

Destination : ECU3
Content : Value (W)

At checking f . hi . . ool « And four messages to notify the following
t checking functions-architecture interaction, westmulate events « detection », «VWVarvvar »,

this conﬂgurguon_ of hardware-software ar_chnecture whtd t « Regulation_Decision » and « Engine_Control »:
same SDK Simulink model and the same inputs values as thgssage 3 :
previous configuration, which reproduces the same result isource : ECUL
the execution of the SDK function. gSt' nati 0{1/ | ECU?E)e .
Property 5 verification result: Contert : Yalue (Detection)
- - . . Lo ge_4 :
The access time to this computing unit for read/write iSsource = ECUL
estimated at 10 ns. The desired frequency of diagnodig is tDestination : ECU3

same as in the previous configuration of architecture, on%;“s:g; . Val ue (Wa * War)
. 4200 -
every 4200 ns, equivalent t9— = 336 clock cycles. The source : EQW

; ; ; Destination : ECU3
duration of the diagnoser process is the same 160 cygples e Content : Value (Regul ation_Deci si on)

Executability (f,d)=1

to 12.5*160 = 2000ns. Message 6
With the new entered parameters, Temporal availabilitypource : ECU2
analysis of the 80MHz computing unit becomes true. Destination : ECU3

Property 6 verification result: Content : Val ue( Engi ne_Control)

The property "Temporal availability is satisfied, the gy
Observability "is then also satisfied, because his rothe
sub-points "Reachability" and "Accessibility"
satisfied.

At checking properties of the architecture -of functienal
are alread architectural diagnosability- we verify that the system
ydescription meets the required properties of the architecture.

With the proposed changes, the architecture becomééa”ables values are:

diagnosable from a functional-architectural point of view. A= {ECUL ECU2}

B = {ECU1}
o ) C={ECU1, ECU2}
2) Second proposal for modifying the architecture D_principal= ECU3
The .second proposgl solution is to a computing unit to the : All computing units (or components) diagnosers
architecture, having the same power Of E = {Detection, (Vva*Vvar), Regulation_Decision,

« SDK_computing_unit» and « Engine_computing_unit »Engine_Control}
F : All functions
F_Diag= {ECU3}



M= {Message_1, Message_2, Message_3, Message_4, Message_5, diagnosis function; our attention is focused on diagnosable

Message_6} hardware-software architecture. Thus, the first solutisn i
0 : The computing unit (or component) containing the observer more reasonable.

process

V={Rv,Vv} VIl.  CONCLUSIONS ANDPERSPECTIVES

Rule 1 verification : According to the literature, taking into account the
Since the diagnosis framework used is centralized, we te characteristics of the hardware architecture -of@msiclered

check properties 1.1, 2, 3, 4, 5, 6 and 7. After parsing AADI2S “constraints” of implementation- for the analysis of
description, properties 1.1, 2, 3and 4 are satisfied. Then, fliagnosability is very ongmal. The method We'developed to
verify properties 5 and 6, we have first integrated in th&ompare the model of architecture (expressed in AADL) with
SystemC model of the architecture the model of the nedhe classmgl functional model of dlagnosablllty is unhsqa
computing unit (and its link through the CAN bus to ECU1 Properties of the architecture and functions-architectur
ECU2). interaction have been defined to analyze the functional-
Since our objective is not interested in achieving a diagnos architectural diagnosability. During construction of our
we have incorporated a simplified diagnostic process in th@PProach, these properties were considered as indicators for
model, which reads all values sent by SDK_computing_unithe Verification of the diagnosability of an embeddedesys
and Engine_computing_unit. We  co-simulate thisHowgver, these _properties .have gradually become
configuration of hardware-software architecture wita game ~ réquirements  for iterative design of hardware-software
Simulink model of SDK function and the same input values agrchitecture, —including —registering and verification  of
the previous configuration. We get the same result in thei@gnosability as the major step.

execution of the SDK function on ECU1 and ECU2. ) )

Property 5 verification: As future \{vorks, we aim at automating the _AADI__ code
The access timeo this computing for readwirite is estimated ~ Parsing following functional-architectural properties. Wi a

to be10ns The desiredfrequencyof diagnosiss the same as also at resuming the development of our prototype COSITA to
. . . . ) . refine and finalize the automatic generation of scenarios. We
in the previous configuratiorof architecture one time per

4200 must also build more bridges to existing tools, both thosd us
4200ns which is equivalent tg— =168 clock cycles. The for capturing requirements and for the verificationeshporal

duration of the diagnoser process is the same 160 aygigd  constraints.
to 25*160= 4000 ns. With the new parameters entered, the
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In the case of the system we have analyzed, we did n@oumaL 1994

need a faster execution of the SDK function or of the



