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Abstract—Diagnosability analysis of functions offers now a 
serious complement to knowledge-based methods of diagnosis, 
such as FMEA (Failure Mode and Effects Analysis) and fault tree 
analysis. State of the art of diagnosability analysis focus on what 
we call "functional diagnosability", where the hardware 
architecture of the system and its constraints are not directly 
considered. 
This paper contributes to the analysis of the functions-
architecture interaction impact on the diagnosability of an 
embedded system, especially automotive systems. The approach 
we developed can be integrated into the design cycle. It has two 
important phases; first, the diagnosability analysis of discrete 
event systems, then the verification of a property set that we have 
defined and called the “diagnosability functional-architectural 
properties”. Properties verification is done in two stages: check 
the description of the architecture, described in AADL, and 
check the functions-architecture interaction, modeled in 
SystemC-Simulink. The validation process is applied on a real 
automotive experimental embedded platform based on several 
Electronic Control Units. 
Finally, we have developed through this paper a novel 
methodology for the analysis of diagnosability that takes into 
account the constraints of the hardware architecture of the 
system. 

I.  INTRODUCTION  

N complex automated systems failures are increasingly 
difficult to predict, understand and repair. The need for 
methods and tools for the supervision of these systems has 

initiated many research projects. Thus, the implementation of 
these systems was naturally modular to control the complexity 
and risk, hoping that the errors do not affect all parts of the 
modules. However, this modularity, or distribution of 
functions, has contributed to increase the vulnerability of this 
type of system. 

Research works on dependability helped to develop 
verification techniques to control hazards. Most of these 
techniques of diagnosis are knowledge-based (rules-based 
systems, fault dictionary, etc.)[1]. At the same time, other 
research works undertaken to improve the reliability of these 
systems by reviewing the design methodologies. Diagnosis 
methods have evolved to model-based approaches [2] that deal 
better with distribution. To improve the fault tolerance in 
embedded systems and their ability to self-diagnose, the field 
of "diagnosability" analysis has emerged. Nowadays, the 

system designer must ensure that the system is diagnosable, 
i.e. must ensure that the errors that may appear are 
identifiable. Diagnosability is considered as a requirement to 
be verified during the design, as important as the properties 
related to dependability (safety, reliability, etc.) to provide a 
more reliable system, with predictable maintenance costs. 
Methods of diagnosability analysis focus on what can be 
called "functional diagnosability", where the hardware 
architecture was not directly considered [3]. In fact, the 
classical diagnosability is a property defined on the paths 
representing a system. It specifies that whenever a fault may 
occur, it exists a finite set of observations that allows us to 
decide whether this fault did happen or not [4]. However, the 
need to analyze the diagnosability of hardware-software 
architecture has been discussed mainly by transportation 
industry. Indeed, the automotive industry reported the problem 
of on-board diagnosis implementation because of the large 
distribution of functions (on computing units), the large 
interaction of functions with sensors and actuators (through 
communication bus) and real time constraints. Model-based 
diagnosis is the answer to this problem and led to the need of 
diagnosability analysis. 
Hence, we are interested in a specific point: Do hardware 
architecture and even the couple software-hardware 
architecture influence system diagnosability? 

In this paper, we present a method of functional-
architectural diagnosability analysis. We discuss our method 
that makes confrontation between the architecture description 
and the classical model of diagnosability (functional model). 
We define a property set that takes into consideration the 
architecture distribution and the time constraint, to analyze the 
functional-architectural diagnosability. 

II. FUNCTIONAL DIAGNOSABILITY  

The diagnosability research area is recent. Several 
communities have developed different approaches for model-
based diagnosis. Indeed, for the diagnosability analysis of 
embedded electronic architectures, the most commonly used 
approaches are using “discrete-event based” models, not 
considering directly the hardware architecture board at the 
system description. 

 In order to perform a functional diagnosability analysis, a 
behavioral model of the system is needed. As indicated before, 
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multiple models can be envisioned: continuous-state-based, 
event-based, or hybrid. When dealing with the diagnosability 
of discrete event systems, the most widely accepted analysis 
method is the “Diagnoser” approach due to M. Sampath et al 
[4]. The input model is a finite deterministic state machine 
modeling the system behaviors (Figure 1). 

 
Figure 1. Behavioral components models of PVC (Pump, Valve, 

Controller) sub-system of HVAC (Heating, Ventilating, Air Conditioning) 
system [4] 

The analysis is performed by augmenting that model with 
non-normal or fault states and checking if the augmented and 
transformed model is diagnosable. 

III.  FUNCTIONAL-ARCHITECTURAL DIAGNOSABILITY 

PROPERTIES DEFINITION  

A. Architecture in diagnosability 

While the system model being functionally diagnosable 
and the existence of a diagnoser are necessary conditions for 
the final embedded system to be diagnosable by itself, they are 
not sufficient. The interaction between the functions, the 
diagnoser and their mapping to the underlying architecture has 
to be considered. It is thus necessary to define checkable 
properties that the architecture has to demonstrate with respect 
to the functions and the diagnoser in order to be diagnosable. 

To verify the functional-architectural diagnosability, we 
propose a set of properties to check used as a complement to 
the method of verification of diagnosability of discrete event 
systems cited in [4]. We focus on distributed embedded 
architectures based on computing units connected with one or 
more communication networks. 

These properties are necessary for the different diagnosis 
structures (i.e. centralized, decentralized and distributed) and 
involve the notion of time for certain scenarios. The first step 
in the properties verification, is determining the diagnosis 
structure (centralized, decentralized or distributed) to identify 
all the necessary properties. Thus, an architecture is called 
diagnosable if and only if all the properties concerning its 
structure are verified.  

B. Properties defintion 

In order to define properties, we first define the system 
using a set of variables and functions representing the different 
components and characteristics. 

 
 

Variables definition: 
A : All computing units (or component) containing one or 
more functions to analyze 
B : All components sources of state variables  
C : All components that are computing units  
D_principal : The computing unit (or component) diagnoser 
(Case of centralized and decentralized diagnosis) 
D : All computing units (or components) diagnosers 
F : All functions  
F_Diag : All diagnosis functions 
M :  All messages sent through the communication bus 
O : The computing unit (or component) containing the 
observer process 
V :  The set of state variables issued from sensors or other 
components of the system 
 
Types definition : 
void : Undefined return type, not null 
 
Functions definition: 
F_Data : (x,y)�{0,1}\ (x,y) � C² returns 1 if x and y are 
connected by a data connection, otherwise returns 0 
Size_F : x�y\ x � F_Diag, y � � returns the size of x 
Size_Mem : x�y\ x � C, y � � returns the memory size of x 
�T : x�y\ x � F_Diag, y � � function that returns the desired 
frequency for performing the function x 
WCET : (x,y)�z\ x � F_Diag, y � C, z � � returns the 
maximum execution time that x can make on y platform, it is 
the WCET (Worst-Case Execution Time) of x on y[9]. We 
assume the existence of this function. 
Conn_I/O : (x,y)�z\ x� C, y � B, z �{0,1} returns 1 if x and 
y are connected 
Implemented : (x,y)�z\x� F, y � C, z � {0,1} returns 1 if x 
is implemented on y 
Source : x�y\ x� M, y� C returns the name (or the address) 
of the computing unit sender of the message x. 
Destination : x�y\ x� M, y� C  returns the name (or 
address) of the computing unit receiver of the message x 
Content : x�y\ x� M, y� « void » returns the content of the 
message M. 
Value : x�y\ x� V, y� « void » returns the value of the 
variable V. 
Origin : x�y\ x� {E, V}, y� B returns the component source 
of the event or the state variable 
 
Properties must be checked in the following order: 
 
Rule 1 : For every diagnosis structure, we have a properties 
set to verify : 

- Centralized : properties 1.1, 2, 3, 4, 5 and 6  

- Decentralized : properties 1.2, 3, 4, 5 and 6  

- Distributed : properties 1.3, 2, 3, 4, 5 and 6 

Property 1. Connectivity to diagnoser : Checking this 
property ensures that every hardware component executing a 
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function to diagnose  is connected to the diagnoser 
component. That connection depends on the structure of the 
diagnoser: 

•  In a centralized structure, each hardware component 
executing a diagnosed function must have at least one 
data connection to the diagnoser component. 

•  In a decentralized structure, each secondary diagnoser 
component must have at least one data connection to 
the primary diagnoser component. 

•  In a distributed structure, each hardware component 
executing a diagnosed function must also be a 
diagnoser component. 

� Property 1.1  : For any component (computing unit) 
containing a function to diagnose, we must have at least 
one “data” connection with the component (computing 
unit) diagnoser (1) . 
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� Property 1.2 : For any component (Computing unit) of 

auxiliary diagnosis, we must have at least one “data” 
connection with the principal diagnose (2). 
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� Property 1.3 : For any component (computing unit) 
containing a function to diagnose, it must be itself a 
component diagnose(3). 
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Property 2. Executability : This property ensures that every 
diagnosis function can indeed be executed on the computing 
units it has been mapped to. It is twofold: 

•  The diagnoser memory footprint must not be higher 
than the memory available on the computing unit 

•  The WCET of the diagnoser must not be higher than its 
minimum desired execution period. 

If any of the two sub-properties above reaches the limits of 
the computing unit, it has to be entirely devoted to the 
diagnoser function and cannot be shared (4). 
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Property 3. Reachability :  In our approach, we see that the 
decision of the observability of an event, in the model (the 
finite automaton) representing the system, do not stop at the 
only information issued from the sensors, because the whole 
architecture hardware and software, in interaction with the 
sensors, can have an important role in observing system 
events. 
 

 
Thus an “observer” process (Figure 2), part of the 

diagnoser must be implemented and must achieve (receive) 
the values of all state variables representing the information 
from sensors or other system components (Figure 3).  

 
Figure 2. Observer process 

 
The “observer” process must receive the values of state 

variables of all components of the system to analyze. A state 
variable is called reachable when the hardware component 
including the origin of this variable is physically reachable by 
the hardware component on which the observer is located (5). 
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Property 4. Accessibility : An observer has to be notified of all 
the events occurring within the diagnosed components. This 
property is similar to the reachability, but pertains to event 
variables instead of state variables. An event is said to be 
accessible when the hardware component implementing the 
observer can physically access the originating component for 
that event (6). 
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NP, NF: state variables representing the information issued from the 
sensor 
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Property 5. Temporal availability : This property is verified 
when the available time on the computing unit intended for the 
diagnosis function is sufficient for the execution of a 
diagnoser (or a secondary diagnoser in a decentralized 
structure). To verify this property, all the time slices not used 
by the nominal operation of the system are considered and 
their total length compared to the diagnoser needs [5]. 
 
Property 6. Observability : All event variables from the 
automaton (Figure 3) have to be observable for the whole 
event to be itself observable. Observability is thus a compound 
property, deriving from the previous ones. It is verified if: 

•  the temporal availability of the system is sufficient to 
implement a diagnoser, 

•  its state variables are reachable, 

•  its events are accessible [5]. 

Rule 2:   Every property of functional-architectural 
diagnosability is verified through system representation or 
modeling. Properties {1.1, 1.2, 1.3, 2, 3, and 4} are 
verifiable at the architecture description level, while the 
properties {5 and 6} are verifiable at the level of functions-
architecture interaction: 
•Verification of the architecture description: no time, made 
from the architecture description (or documentation). 
•Verification of the functions-architecture interaction: takes 
into account the progress of the state of the hardware-
software system through time. 

IV.  ARCHITECTURE MODEL FOR DIAGNOSABILITY 

A. Architecture description and associated tools 

Most of the architectural properties the diagnosability 
depends on are of a static nature. They are only affected by the 
structure of the hardware architecture and the location of the 
diagnoser within that architecture. Therefore, the models used 
to evaluate these properties must be able to capture the 
physical organisation of the architecture, including its 
computing units, communication buses and devices such as 
sensors and also their interaction, through description of data 
and event flows. Several description languages can be used for 
this purpose.  

In this paper the focus is essentially on AADL 
(Architecture Analysis & Description Language) [6], but the 
methodology could be applied from models expressed using 
VHDL (Very high speed integrated circuit Hardware 
Description Language) [7] or EAST-ADL for instance, as both 
of them support hardware architecture description. 

The case for AADL comes from the fact that it is getting a 
growing attention both in the avionics and automotive fields 
and that it is specifically tailored for hardware architecture 
description, ignoring its proposed behaviour annex. 

B. Functions-architecture interaction modelling and 
associated tools 

While architecture description is enough to cater for the 
first four properties (1 to 4), the temporal availability property 
can only be evaluated by considering the whole system, 

including the interaction of the functions with the hardware 
architecture. 

The architecture description model discussed above has to 
be augmented to also include the behaviour of the functions 
and the use they make of the hardware resources as they are 
mapped onto the hardware architecture. The resulting model 
should be suitable for either formal analysis or simulation-
based analysis. The latter approach is often preferred, as tools 
are readily available that can be used to generate simulation 
traces useful for further analysis. 

One idea is to describe the functional behaviour using the 
same language or modelling framework used to describe the 
architecture. The advantage of this idea is that it leads to a 
complete, homogenous functional-architectural model of the 
system to be analysed. In the case of VHDL for instance, a lot 
of simulators are available that can be used to provide 
execution traces for analysis. However, the functional model 
is rarely expressed from the start in such languages. For 
instance, MATLAB/Simulink is widely used in the industry 
for such a task. In order to again reduce the need for model 
translation and adaptation, a heterogeneous approach is 
preferred.  

As AADL is not really suitable for such a goal, because it 
cannot describe processes behavior, other languages can be 
considered. If we keep MATLAB/Simulink functional models 
in mind, a SystemC model can be used for co-simulation and 
trace generation as described for instance by J.F Boland [10] 
by making calls to the MATLAB environment from the 
SystemC model. While translating an AADL model to 
SystemC can be done by hand, there is ongoing work towards 
automatic translation tools, such as AADS [11]. 

V. ARCHITECTURAL-FUNCTIONAL DIAGNOSABILITY 

VERIFICATION 

A. Automata and architecture description matching 

The first step is to parse the AADL model to extract and 
identify all the architectural features necessary to the analysis, 
such as the embedded computing units, devices such as 
sensors, communication links, data flows and inputs/outputs 
connections representing state and event variables. 

Using that information, each state and event variable found 
in the functional model (automata) can be matched to the 
corresponding data flow in the AADL model, including its 
origin, its destinations, the physical links supporting the data 
or message transmission, etc. 

B. Properties verification 

1) Property verification at the architecture description 
level 

The architecture properties are evaluated using that 
matching mentioned previously. For example, in order to 
check the accessibility property for a given event variable, we 
have to check that a data flow exists for that variable, i.e. it is 
actually output by some component, that the data flow actually 
reaches the observer, i.e. there exists a connection between its 
source and the observer or its source and the observer are 
mapped to the same computing unit. The global accessibility 



property is evaluated by repeating that process 
variable, one at a time. Checking for other prop
similar processes.  

2) Property verification at the function
interaction level  
We proceed to the analysis of properties that d
architecture and on the evolution of the system
To do this we had a choice between develop
analysis engine analysis or rely on existing eng
chosen to use simulation engines compati
formalism of models expression of the most
industry (such as Matlab / Simulink, etc.). We
different simulation engines to "unroll" the sys
according to his model and according to sim
representing critical scenarios. To develop rele
for simulation cycles, we are inspired by 
techniques MC / DC (Modified Condition/Decis
for the selection of inputs values, and for the ev
[14]. MC/DC is a testing process that meets a
coverage criterion; it is used by the DO-178B 
Therefore, we focused our efforts on the int
simulation results of a model. Indeed, when w
model, we can produce a log file that records
precisely dated values of the signals. 

 
The main point of that approach is tha

completely automated, making its integration int
possible. While hand checking is still possible
very time-consuming and error-prone. Tools,
prototype COSITA (CO-Simulation Trace Ana
still a work in progress, but are essential if diagn
be considered as a useable metric in an 
exploration process. We developed the tool s
where iterated co-simulations traces are analyze
the interaction of functions with the architecture
selected critical scenarios. We compared re
simulation trace analysis with results that we obt
a physical emulation automotive platform. 

VI.  CASE STUDY  

Figure 4.  SDK (Smart Distance Keeping) function 
We have tested our approach on the Sm

Keeping (SDK) function, given by a truck manuf
part of a national project. “SDK” is equivalent to 
Cruise Control (ACC) function, excep
distance/velocity regulation is based only on a 
of 50 m (compliant to European regulations for 
[12]. Thus, using embedded radar, the SDK
maintains a safe headway time, i.e. the inter-ve
is varying as a function of the velocity and is m
minimum legal distance of 50 m (Figure 4). The
of this case study, in the project, is to make a
board-diagnosis of this function based on system
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•  And four messages to notify the following 
events « detection », « VVa^VVar », 
« Regulation_Decision » and  « Engine_Control »: 

Message_3 : 
Source : ECU1 
Destination : ECU1 
Content : Value (Detection) 
Message_4 : 
Source : ECU1 
Destination : ECU1 
Content : Value (VVa ^ VVar) 
Message_5 : 
Source : ECU2  
Destination : ECU1 
Content : Value (Regulation_Decision) 
Message_6 : 
Source : ECU2 
Destination : ECU1 
Content : Value(Engine_Control) 

A. Property verification results for SDK 

By parsing the AADL architecture description, we verified 
that the description of the architecture meets the properties 1, 
2, 3 and 4 of functional-architectural diagnosability. In the 
following, we check properties 5 and 6, they require a deeper 
analysis. 
Property 5 verification:  
This property is «TRUE" when the available time is sufficient 
for a diagnoser (or sub-function of diagnoser, in the case of 
decentralized diagnosis). 
The proposed diagnoser for SDK function is indeed a general 
diagnoser for the entire vehicle. The objective is to ensure that 
SDK function will always be diagnosable even when it is 
implemented on the same computing unit that the diagnoser. 
 
After a co-simulation of one minute of system operation, 
COSITA tool displays an interface that allows opening co-
simulation trace file(s) in order to verify temporal availability 
for a diagnoser on “ECU1” (SDK_computing_unit). Given 
that: 

•  The desired frequency of diagnosis is once every 
4200ns = 4200/25= 168 clock cycles, 

•  The duration of the diagnosis process is estimated at 
160 cycles = 160*25ns= 4000ns  

•  And the access time to the computing unit for read or 
write is estimated at 10 ns.  

COSITA opens trace files, allow entering information about 
the diagnoser process and the implemented function(s) onto 
the component that we want to analyze. Then, COSITA 
conducts an analysis of the temporal availability of the 
selected component regarding the desired and entered 
parameters, based on co-simulation trace files analysis. 

With the parameters we have, the module OBSAN concluded 
that the analyzed component (ECU1) is not available to 
execute a diagnosis process with the desired criteria. The 
result is negative for the duration of the execution, because the 
function analyzed is periodic and the intended diagnosis 
process is periodic also. Hence, if the result is negative for a 
period it is also for all others throughout the simulation 
(Figure 7). 

 
Figure 7. Temporal availability analysis result 

Thus, with the proposed features for architecture, property 5 is 
not satisfied. 
Property 6 verification:  
To satisfy this property, we have to: 

•  Check that there is a temporal availability at the 
system level to implement a diagnoser,  

•  check the observer accessibility to variables carrying 
information from the sensors, depending on the 
functional diagnosability model, 

•  and check the Reachability of computing units 
participating in the concerned event.  

The last two points of the property 6 are satisfied, and the 
temporal availability is not satisfied. Thus, property 6 cannot 
be satisfied. 
Since both properties 5 and 6 are not satisfied, the functional-
architectural diagnosability is not satisfied. We note that 
although the SDK function is functionally diagnosable, his 
proposed software-hardware architecture prevents it from 
being diagnosed. In other words, if we neglect the architecture 
constraints at the diagnosability analysis time, the 
implementation of a diagnoser in the next step may have 
problems that contradict the positive result of diagnosability. 
 
Our approach proposes in this case to make changes to the 
architecture description and the model of hardware-software 
architecture in order to make it diagnosable and not prevent it 
from being diagnosed. This amounts to the fact that the 
diagnosability analysis is done at the system design step and 
the necessary changes to improve the system must be done on 
models. 

B. Return on design 

After property verification, we should find a solution at the 
design level of hardware-software architecture in order to 
satisfy "Temporal availability". We propose in this case, two 
different solutions: 

•  The first one is to use a computing unit more 
powerful instead of ECU1 (SDK_computing_unit) 
provided for the implementation of SDK and the 
diagnoser. 

•  The second solution is to add a computing unit 
having the same frequency of ECU1 
(SDK_computing_unit) and ECU2 
(Engine_computing_unit) in order to implement onto 
it the diagnoser. 

Below, we test the two proposed solutions by estimating the 
cost of each case. 
 

1) First proposal for modifying the architecture 
Taking a more powerful computing unit of 80MHz for 
example (taken off the shelf), the duration of the clock cycle is 

5

678579
s = 12.5.10-9 s = 12.5 ns. 



As the “SDK ()” method is executable in 16 clock cycles, it is 
then executable on this computing unit in 16*12.5 = 200ns. 
Similarly, the diagnoser is executable on 160 clock cycles, it is 
then executable on this new computing unit on 160*12.5 = 
2000ns. 
We presume that the desired frequency of diagnosis is the 
same as in the previous configuration of architecture, once 
every 4200ns. 
Hence, for the first solution to test the description and the 
SystemC model of the architecture remains the same except 
the clock of ECU1 which must pass to 80MHz: 

sc_clock clock( "clock" ,12.5,SC_NS); 

At checking properties of the architecture, the results remain 
the same for the property 1.1, property 3 and property 4; 
because the description of the architecture has changed at the 
level of attribute "microprocessor" of SDK_computing_unit: 
  
system implementation SDK_computing_unit.imp 
  subcomponents 
    ……; 
    Proc : processor MPC563.Motorola {Clock_Period 
=> 12.5 ns ;}; 
    …..; 
end SDK_computing_unit.imp; 

 
Thus, property 2 was re-checked by parsing AADL 
architecture description. 
Property 2 verification result:  
�����B� �#���F_Diag,  
Executability (f,d)=1 
 
At checking functions-architecture interaction, we co-simulate 
this configuration of hardware-software architecture with the 
same SDK Simulink model and the same inputs values as the 
previous configuration, which reproduces the same result in 
the execution of the SDK function. 

Property 5 verification result:   
The access time to this computing unit for read/write is 
estimated at 10 ns. The desired frequency of diagnosis is the 
same as in the previous configuration of architecture, once 

every 4200 ns, equivalent to 
:;77

5;<=
 = 336 clock cycles. The 

duration of the diagnoser process is the same 160 cycles equal 
to 12.5*160 = 2000ns. 
With the new entered parameters, Temporal availability 
analysis of the 80MHz computing unit becomes true. 
Property 6 verification result:  
The property "Temporal availability is satisfied, the property" 
Observability "is then also satisfied, because his other two 
sub-points "Reachability" and "Accessibility" are already 
satisfied. 
 
With the proposed changes, the architecture becomes 
diagnosable from a functional-architectural point of view. 
 

2) Second proposal for modifying the architecture 
The second proposal solution is to a computing unit to the 
architecture, having the same power of 
« SDK_computing_unit» and « Engine_computing_unit » 

(40MHz) in order to implement onto it only the diagnose 
(Figure 8). 

The 40MHz computing unit has a clock cycle of  
5
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 s = 

25.10-9 s = 25 ns. 

 
Figure 8. Configuration of the hardware-software architecture with an 

additional computing unit 

 
Messages destinations change following the new description 
of the architecture : 

•  The two messages containing state variables values, 
Message_1 : 
Source : ECU1 
Destination : ECU3 
Content : Value(RV) 
Message_2 : 
Source : ECU1 
Destination : ECU3 
Content : Value (VV) 

•  And four messages to notify the following 
events « detection », « VVa^VVar », 
« Regulation_Decision » and  « Engine_Control »: 

Message_3 : 
Source : ECU1 
Destination : ECU3 
Content : Value (Detection) 
Message_4 : 
Source : ECU1 
Destination : ECU3 
Content : Value (VVa ^ VVar) 
Message_5 : 
Source : ECU2  
Destination : ECU3 
Content : Value (Regulation_Decision) 
Message_6 : 
Source : ECU2 
Destination : ECU3 
Content : Value(Engine_Control) 

 
At checking properties of the architecture -of functional-
architectural diagnosability- we verify that the system 
description meets the required properties of the architecture. 
 
Variables values are: 
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Rule 1 verification :  
Since the diagnosis framework used is centralized, we have to 
check properties 1.1, 2, 3, 4, 5, 6 and 7. After parsing AADL 
description, properties 1.1, 2, 3and 4 are satisfied. Then, to 
verify properties 5 and 6, we have first integrated in the 
SystemC model of the architecture the model of the new 
computing unit (and its link through the CAN bus to ECU1 
ECU2). 
Since our objective is not interested in achieving a diagnoser, 
we have incorporated a simplified diagnostic process in the 
model, which reads all values sent by SDK_computing_unit 
and Engine_computing_unit. We co-simulate this 
configuration of hardware-software architecture with the same 
Simulink model of SDK function and the same input values as 
the previous configuration. We get the same result in the 
execution of the SDK function on ECU1 and ECU2. 
Property 5 verification:  
The access time to this computing for read / write is estimated 
to be 10ns. The desired frequency of diagnosis is the same as 
in the previous configuration of architecture, one time per 

4200ns which is equivalent to 
:;77

;=
 =168 clock cycles. The 

duration of the diagnoser process is the same 160 cycles equal 
to 25*160= 4000 ns. With the new parameters entered, the 
analysis of the temporal availability of the 40MHz additional 
computing unit becomes favorable. 
Property 6 verification:  
The property "Temporal availability" is satisfied, the property 
"Observability" is then also satisfied, because his other two 
points needed "Reachability" and "Accessibility" are already 
satisfied. With the proposed changes, the architecture becomes 
diagnosticable in the functional-architectural point of view. 

C. Comparison of two solutions 

The two solutions we have proposed lead to two different 
configurations of diagnosable architecture. The major 
difference between the two solutions is the cost; a difference 
estimated to be approximately 1800 Euros (there are hidden 
costs of engineering and technical validation) offers greater 
speed of execution (Table 1).   

 
Table 1. Summary of advantages and disadvantages of both solutions 

 
 
 
 
 
 

 
 
 

In the case of the system we have analyzed, we did not 
need a faster execution of the SDK function or of the 

diagnosis function; our attention is focused on diagnosable 
hardware-software architecture. Thus, the first solution is 
more reasonable. 

VII.  CONCLUSIONS AND PERSPECTIVES 

According to the literature, taking into account the 
characteristics of the hardware architecture -often considered 
as "constraints" of implementation- for the analysis of 
diagnosability is very original. The method we developed to 
compare the model of architecture (expressed in AADL) with 
the classical functional model of diagnosability is unusual. 

Properties of the architecture and functions-architecture 
interaction have been defined to analyze the functional-
architectural diagnosability. During construction of our 
approach, these properties were considered as indicators for 
the verification of the diagnosability of an embedded system. 
However, these properties have gradually become 
requirements for iterative design of hardware-software 
architecture, including registering and verification of 
diagnosability as the major step.  

 
As future works, we aim at automating the AADL code 

parsing following functional-architectural properties. We aim 
also at resuming the development of our prototype COSITA to 
refine and finalize the automatic generation of scenarios. We 
must also build more bridges to existing tools, both those used 
for capturing requirements and for the verification of temporal 
constraints. 
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