
HAL Id: hal-00801610
https://hal.science/hal-00801610

Submitted on 18 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional-architectural diagnosability analysis of
embedded architecture

Manel Khlif, M. Shawky

To cite this version:
Manel Khlif, M. Shawky. Functional-architectural diagnosability analysis of embedded architecture.
Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Conference on, Oct 2011,
Washington, DC, United States. pp.469 - 476, �10.1109/ITSC.2011.6082819�. �hal-00801610�

https://hal.science/hal-00801610
https://hal.archives-ouvertes.fr

Functional-Architectural Diagnosability Analysis of
Embedded Architecture

Manel KHLIF, M. SHAWKY
Heudiasyc-UMR CNRS 6599

Université de Technologie de Compiègne
 Compiègne, France

{manel.khlif; shawky}@hds.utc.fr

Abstract—Diagnosability analysis of functions offers now a
serious complement to knowledge-based methods of diagnosis,
such as FMEA (Failure Mode and Effects Analysis) and fault tree
analysis. State of the art of diagnosability analysis focus on what
we call "functional diagnosability", where the hardware
architecture of the system and its constraints are not directly
considered.
This paper contributes to the analysis of the functions-
architecture interaction impact on the diagnosability of an
embedded system, especially automotive systems. The approach
we developed can be integrated into the design cycle. It has two
important phases; first, the diagnosability analysis of discrete
event systems, then the verification of a property set that we have
defined and called the “diagnosability functional-architectural
properties”. Properties verification is done in two stages: check
the description of the architecture, described in AADL, and
check the functions-architecture interaction, modeled in
SystemC-Simulink. The validation process is applied on a real
automotive experimental embedded platform based on several
Electronic Control Units.
Finally, we have developed through this paper a novel
methodology for the analysis of diagnosability that takes into
account the constraints of the hardware architecture of the
system.

I. INTRODUCTION

N complex automated systems failures are increasingly
difficult to predict, understand and repair. The need for
methods and tools for the supervision of these systems has

initiated many research projects. Thus, the implementation of
these systems was naturally modular to control the complexity
and risk, hoping that the errors do not affect all parts of the
modules. However, this modularity, or distribution of
functions, has contributed to increase the vulnerability of this
type of system.

Research works on dependability helped to develop
verification techniques to control hazards. Most of these
techniques of diagnosis are knowledge-based (rules-based
systems, fault dictionary, etc.)[1]. At the same time, other
research works undertaken to improve the reliability of these
systems by reviewing the design methodologies. Diagnosis
methods have evolved to model-based approaches [2] that deal
better with distribution. To improve the fault tolerance in
embedded systems and their ability to self-diagnose, the field
of "diagnosability" analysis has emerged. Nowadays, the

system designer must ensure that the system is diagnosable,
i.e. must ensure that the errors that may appear are
identifiable. Diagnosability is considered as a requirement to
be verified during the design, as important as the properties
related to dependability (safety, reliability, etc.) to provide a
more reliable system, with predictable maintenance costs.
Methods of diagnosability analysis focus on what can be
called "functional diagnosability", where the hardware
architecture was not directly considered [3]. In fact, the
classical diagnosability is a property defined on the paths
representing a system. It specifies that whenever a fault may
occur, it exists a finite set of observations that allows us to
decide whether this fault did happen or not [4]. However, the
need to analyze the diagnosability of hardware-software
architecture has been discussed mainly by transportation
industry. Indeed, the automotive industry reported the problem
of on-board diagnosis implementation because of the large
distribution of functions (on computing units), the large
interaction of functions with sensors and actuators (through
communication bus) and real time constraints. Model-based
diagnosis is the answer to this problem and led to the need of
diagnosability analysis.
Hence, we are interested in a specific point: Do hardware
architecture and even the couple software-hardware
architecture influence system diagnosability?

In this paper, we present a method of functional-
architectural diagnosability analysis. We discuss our method
that makes confrontation between the architecture description
and the classical model of diagnosability (functional model).
We define a property set that takes into consideration the
architecture distribution and the time constraint, to analyze the
functional-architectural diagnosability.

II. FUNCTIONAL DIAGNOSABILITY

The diagnosability research area is recent. Several
communities have developed different approaches for model-
based diagnosis. Indeed, for the diagnosability analysis of
embedded electronic architectures, the most commonly used
approaches are using “discrete-event based” models, not
considering directly the hardware architecture board at the
system description.

 In order to perform a functional diagnosability analysis, a
behavioral model of the system is needed. As indicated before,

I

multiple models can be envisioned: continuous-state-based,
event-based, or hybrid. When dealing with the diagnosability
of discrete event systems, the most widely accepted analysis
method is the “Diagnoser” approach due to M. Sampath et al
[4]. The input model is a finite deterministic state machine
modeling the system behaviors (Figure 1).

Figure 1. Behavioral components models of PVC (Pump, Valve,

Controller) sub-system of HVAC (Heating, Ventilating, Air Conditioning)
system [4]

The analysis is performed by augmenting that model with
non-normal or fault states and checking if the augmented and
transformed model is diagnosable.

III. FUNCTIONAL-ARCHITECTURAL DIAGNOSABILITY

PROPERTIES DEFINITION

A. Architecture in diagnosability

While the system model being functionally diagnosable
and the existence of a diagnoser are necessary conditions for
the final embedded system to be diagnosable by itself, they are
not sufficient. The interaction between the functions, the
diagnoser and their mapping to the underlying architecture has
to be considered. It is thus necessary to define checkable
properties that the architecture has to demonstrate with respect
to the functions and the diagnoser in order to be diagnosable.

To verify the functional-architectural diagnosability, we
propose a set of properties to check used as a complement to
the method of verification of diagnosability of discrete event
systems cited in [4]. We focus on distributed embedded
architectures based on computing units connected with one or
more communication networks.

These properties are necessary for the different diagnosis
structures (i.e. centralized, decentralized and distributed) and
involve the notion of time for certain scenarios. The first step
in the properties verification, is determining the diagnosis
structure (centralized, decentralized or distributed) to identify
all the necessary properties. Thus, an architecture is called
diagnosable if and only if all the properties concerning its
structure are verified.

B. Properties defintion

In order to define properties, we first define the system
using a set of variables and functions representing the different
components and characteristics.

Variables definition:
A : All computing units (or component) containing one or
more functions to analyze
B : All components sources of state variables
C : All components that are computing units
D_principal : The computing unit (or component) diagnoser
(Case of centralized and decentralized diagnosis)
D : All computing units (or components) diagnosers
F : All functions
F_Diag : All diagnosis functions
M : All messages sent through the communication bus
O : The computing unit (or component) containing the
observer process
V : The set of state variables issued from sensors or other
components of the system

Types definition :
void : Undefined return type, not null

Functions definition:
F_Data : (x,y)�{0,1}\ (x,y) � C² returns 1 if x and y are
connected by a data connection, otherwise returns 0
Size_F : x�y\ x � F_Diag, y � � returns the size of x
Size_Mem : x�y\ x � C, y � � returns the memory size of x
�T : x�y\ x � F_Diag, y � � function that returns the desired
frequency for performing the function x
WCET : (x,y)�z\ x � F_Diag, y � C, z � � returns the
maximum execution time that x can make on y platform, it is
the WCET (Worst-Case Execution Time) of x on y[9]. We
assume the existence of this function.
Conn_I/O : (x,y)�z\ x� C, y � B, z �{0,1} returns 1 if x and
y are connected
Implemented : (x,y)�z\x� F, y � C, z � {0,1} returns 1 if x
is implemented on y
Source : x�y\ x� M, y� C returns the name (or the address)
of the computing unit sender of the message x.
Destination : x�y\ x� M, y� C returns the name (or
address) of the computing unit receiver of the message x
Content : x�y\ x� M, y� « void » returns the content of the
message M.
Value : x�y\ x� V, y� « void » returns the value of the
variable V.
Origin : x�y\ x� {E, V}, y� B returns the component source
of the event or the state variable

Properties must be checked in the following order:

Rule 1 : For every diagnosis structure, we have a properties
set to verify :

- Centralized : properties 1.1, 2, 3, 4, 5 and 6

- Decentralized : properties 1.2, 3, 4, 5 and 6

- Distributed : properties 1.3, 2, 3, 4, 5 and 6

Property 1. Connectivity to diagnoser : Checking this
property ensures that every hardware component executing a

SC

SC

VC VO
C2

C4

C1 C3

OPEN_VALVE, CLOSE_VALVE

OPEN_VALVE, CLOSE_VALVE

OPEN_VALVE

CLOSE_VALVE
CLOSE_VALVE
OPEN_VALVE

STUCK_OPEN

STUCK_CLOSED

Faults
Control actions

STOP_PUMP

START_PUMP

START_PUMP
STOP_PUMP

OPEN_VALVE

CLOSE_VALVE

START_PUMP

STOP_PUMP

POFF PON

Valve Pump

Controller
State after a fault
State after a normal event Legend:

function to diagnose is connected to the diagnoser
component. That connection depends on the structure of the
diagnoser:

• In a centralized structure, each hardware component
executing a diagnosed function must have at least one
data connection to the diagnoser component.

• In a decentralized structure, each secondary diagnoser
component must have at least one data connection to
the primary diagnoser component.

• In a distributed structure, each hardware component
executing a diagnosed function must also be a
diagnoser component.

� Property 1.1 : For any component (computing unit)
containing a function to diagnose, we must have at least
one “data” connection with the component (computing
unit) diagnoser (1) .

�
��������

�	AB�C������BADEF��FD������������BADEF��FD����

���������CF�FC�ABF������E��������

����

� Property 1.2 : For any component (Computing unit) of

auxiliary diagnosis, we must have at least one “data”
connection with the principal diagnose (2).

�����B��

������A !"�����BADEF��FD����������
���������CF�FC�ABF������E��������

(2)

� Property 1.3 : For any component (computing unit)
containing a function to diagnose, it must be itself a
component diagnose(3).

�������������B���

�������

���������CF�FC�ABF������E��������
(3)

Property 2. Executability : This property ensures that every
diagnosis function can indeed be executed on the computing
units it has been mapped to. It is twofold:

• The diagnoser memory footprint must not be higher
than the memory available on the computing unit

• The WCET of the diagnoser must not be higher than its
minimum desired execution period.

If any of the two sub-properties above reaches the limits of
the computing unit, it has to be entirely devoted to the
diagnoser function and cannot be shared (4).

�����B���#���	ABF�����

�� $D��$��C����#���������%���&F'�A(�$����)�&F'�A	��#����%���*+�

�#��,��-�.+��#������

��./��0C�1F�FC���#��������
(4)

Property 3. Reachability : In our approach, we see that the
decision of the observability of an event, in the model (the
finite automaton) representing the system, do not stop at the
only information issued from the sensors, because the whole
architecture hardware and software, in interaction with the
sensors, can have an important role in observing system
events.

Thus an “observer” process (Figure 2), part of the

diagnoser must be implemented and must achieve (receive)
the values of all state variables representing the information
from sensors or other system components (Figure 3).

Figure 2. Observer process

The “observer” process must receive the values of state

variables of all components of the system to analyze. A state
variable is called reachable when the hardware component
including the origin of this variable is physically reachable by
the hardware component on which the observer is located (5).

�����2��"�������$���(��

�����A !"��"EF�F�������"����	AB�C���"EF�F�������"���%��

�&�0E����$���"EF�F�������%��B��CF��CF����$���"��%�����C��C�

�$����2��0�������
��3���4�1F�FC���������

(5)

Property 4. Accessibility : An observer has to be notified of all
the events occurring within the diagnosed components. This
property is similar to the reachability, but pertains to event
variables instead of state variables. An event is said to be
accessible when the hardware component implementing the
observer can physically access the originating component for
that event (6).

�����.�����������$���(��

�����A !"��"EF�F�������"����	AB�C���"EF�F�������"���%��&�0E����$��

�"EF�F�������%��B��CF��CF����$���"��%�����C��C��$���2��0��������

��������F1F�FC����������
(6)

��������1 �������� �

��������	 A���

	ABCDECDF

�D��CBBCBF

Figure 3. Event example
OPEN_VALVE: variable representing the event

NP, NF: state variables representing the information issued from the
sensor

1

4

OPEN_VALVE, NP, NF

Property 5. Temporal availability : This property is verified
when the available time on the computing unit intended for the
diagnosis function is sufficient for the execution of a
diagnoser (or a secondary diagnoser in a decentralized
structure). To verify this property, all the time slices not used
by the nominal operation of the system are considered and
their total length compared to the diagnoser needs [5].

Property 6. Observability : All event variables from the
automaton (Figure 3) have to be observable for the whole
event to be itself observable. Observability is thus a compound
property, deriving from the previous ones. It is verified if:

• the temporal availability of the system is sufficient to
implement a diagnoser,

• its state variables are reachable,

• its events are accessible [5].

Rule 2: Every property of functional-architectural
diagnosability is verified through system representation or
modeling. Properties {1.1, 1.2, 1.3, 2, 3, and 4} are
verifiable at the architecture description level, while the
properties {5 and 6} are verifiable at the level of functions-
architecture interaction:
•Verification of the architecture description: no time, made
from the architecture description (or documentation).
•Verification of the functions-architecture interaction: takes
into account the progress of the state of the hardware-
software system through time.

IV. ARCHITECTURE MODEL FOR DIAGNOSABILITY

A. Architecture description and associated tools

Most of the architectural properties the diagnosability
depends on are of a static nature. They are only affected by the
structure of the hardware architecture and the location of the
diagnoser within that architecture. Therefore, the models used
to evaluate these properties must be able to capture the
physical organisation of the architecture, including its
computing units, communication buses and devices such as
sensors and also their interaction, through description of data
and event flows. Several description languages can be used for
this purpose.

In this paper the focus is essentially on AADL
(Architecture Analysis & Description Language) [6], but the
methodology could be applied from models expressed using
VHDL (Very high speed integrated circuit Hardware
Description Language) [7] or EAST-ADL for instance, as both
of them support hardware architecture description.

The case for AADL comes from the fact that it is getting a
growing attention both in the avionics and automotive fields
and that it is specifically tailored for hardware architecture
description, ignoring its proposed behaviour annex.

B. Functions-architecture interaction modelling and
associated tools

While architecture description is enough to cater for the
first four properties (1 to 4), the temporal availability property
can only be evaluated by considering the whole system,

including the interaction of the functions with the hardware
architecture.

The architecture description model discussed above has to
be augmented to also include the behaviour of the functions
and the use they make of the hardware resources as they are
mapped onto the hardware architecture. The resulting model
should be suitable for either formal analysis or simulation-
based analysis. The latter approach is often preferred, as tools
are readily available that can be used to generate simulation
traces useful for further analysis.

One idea is to describe the functional behaviour using the
same language or modelling framework used to describe the
architecture. The advantage of this idea is that it leads to a
complete, homogenous functional-architectural model of the
system to be analysed. In the case of VHDL for instance, a lot
of simulators are available that can be used to provide
execution traces for analysis. However, the functional model
is rarely expressed from the start in such languages. For
instance, MATLAB/Simulink is widely used in the industry
for such a task. In order to again reduce the need for model
translation and adaptation, a heterogeneous approach is
preferred.

As AADL is not really suitable for such a goal, because it
cannot describe processes behavior, other languages can be
considered. If we keep MATLAB/Simulink functional models
in mind, a SystemC model can be used for co-simulation and
trace generation as described for instance by J.F Boland [10]
by making calls to the MATLAB environment from the
SystemC model. While translating an AADL model to
SystemC can be done by hand, there is ongoing work towards
automatic translation tools, such as AADS [11].

V. ARCHITECTURAL-FUNCTIONAL DIAGNOSABILITY

VERIFICATION

A. Automata and architecture description matching

The first step is to parse the AADL model to extract and
identify all the architectural features necessary to the analysis,
such as the embedded computing units, devices such as
sensors, communication links, data flows and inputs/outputs
connections representing state and event variables.

Using that information, each state and event variable found
in the functional model (automata) can be matched to the
corresponding data flow in the AADL model, including its
origin, its destinations, the physical links supporting the data
or message transmission, etc.

B. Properties verification

1) Property verification at the architecture description
level

The architecture properties are evaluated using that
matching mentioned previously. For example, in order to
check the accessibility property for a given event variable, we
have to check that a data flow exists for that variable, i.e. it is
actually output by some component, that the data flow actually
reaches the observer, i.e. there exists a connection between its
source and the observer or its source and the observer are
mapped to the same computing unit. The global accessibility

property is evaluated by repeating that process
variable, one at a time. Checking for other prop
similar processes.

2) Property verification at the function
interaction level
We proceed to the analysis of properties that d
architecture and on the evolution of the system
To do this we had a choice between develop
analysis engine analysis or rely on existing eng
chosen to use simulation engines compati
formalism of models expression of the most
industry (such as Matlab / Simulink, etc.). We
different simulation engines to "unroll" the sys
according to his model and according to sim
representing critical scenarios. To develop rele
for simulation cycles, we are inspired by
techniques MC / DC (Modified Condition/Decis
for the selection of inputs values, and for the ev
[14]. MC/DC is a testing process that meets a
coverage criterion; it is used by the DO-178B
Therefore, we focused our efforts on the int
simulation results of a model. Indeed, when w
model, we can produce a log file that records
precisely dated values of the signals.

The main point of that approach is tha

completely automated, making its integration int
possible. While hand checking is still possible
very time-consuming and error-prone. Tools,
prototype COSITA (CO-Simulation Trace Ana
still a work in progress, but are essential if diagn
be considered as a useable metric in an
exploration process. We developed the tool s
where iterated co-simulations traces are analyze
the interaction of functions with the architecture
selected critical scenarios. We compared re
simulation trace analysis with results that we obt
a physical emulation automotive platform.

VI. CASE STUDY

Figure 4. SDK (Smart Distance Keeping) function
We have tested our approach on the Sm

Keeping (SDK) function, given by a truck manuf
part of a national project. “SDK” is equivalent to
Cruise Control (ACC) function, excep
distance/velocity regulation is based only on a
of 50 m (compliant to European regulations for
[12]. Thus, using embedded radar, the SDK
maintains a safe headway time, i.e. the inter-ve
is varying as a function of the velocity and is m
minimum legal distance of 50 m (Figure 4). The
of this case study, in the project, is to make a
board-diagnosis of this function based on system

ss for each event
properties follow

ions-architecture

t depend on the
em state in time.
loping our own
ngines. We have
tible with the

ost practiced in
e therefore use

system behavior
imulation inputs
elevant scenarios

 some of the
cision Coverage)
 events sequence
ts a source code

178B standard [13].
interpretation of
n we simulate a
ords all changes,

that it can be
 into a tool chain
ble, it would be
ls, such as our
nalysis) [8], are

agnosability is to
an architecture

ool suite COSITA
lyzed to evaluate
ure, according to
 results of co-
obtained through

Smart Distance
anufacturer, as a

nt to the Adaptive
xcept that the

 a fixed distance
for heavy trucks)
DK sub-system
vehicle distance

s maintained at a
he final purpose
 a real time on-
em model.

We have first verified the “functiona
SDK, through the approach of M. Sa
Hence, we model the SDK functio
automata. A partitioning of the diagn
system must be made to identify al
analyzed. Other components in inter
another diagnosability analysis, such
braking function diagnosability analy
the following components: radar, com
velocity value and engine. Expected “F

• « Radar failure » : F1 leads to
• « Velocity_measure failure »

« Failure 2» (Figure 5).

Figure 5. Behavior model of SD
Vvar : Succeeding vehicle velocity
Vva : Preceding vehicle velocity

The result of the analysis is positi

diagnosable. After that, we des
architecture of SDK (Figure 6) with A

Figure 6. Different electronic com

We described also messages excha

units in pseudo code:

• The two messages containing
Message_1 :
Source : ECU1
Destination : ECU1
Content : Value(RV)
Message_2 :
Source : ECU1
Destination : ECU1
Content : Value (VV)

ECU1
SDK computing unit Engine c

actuator
Engine
sensor

Vehicle Velocity

Velocity
of the

preceding
vehicle

Control signal

Radar

Other computing
units

Detection Send_Vva

Send_Vva

Detection

F1

Failures
Control actions

Regulation_Decision
Regu

Send

Radar

State after a failure
State after a normal eventLegend:

Observe Send

Failure

F1

Send_Vvar Send

Regulation_Decision

Engine_control

Controle compute Regulation_DecisionEngine_control

Engine function

onal” diagnosability of the
Sampath (using automata).
tion using a set of finite
gnosability analysis of the
all the components to be
teractions may be part of
ch as engine function, or
alysis, etc....SDK includes
omputing units, the vehicle
 “Faults” events are:

s to the state « Failure 1»
»: F2 leads to the state

SDK components

sitive: SDK is functionally
described the electronic
 AADL language.

omponents of SDK

change between computing

ing state variables values,

ECU2
e computing unit

Engine
actuators

Control signal

Other computing
units

Vva^ Vvar
Vva^Vvar

gulation_Decision

Compute
SDK

SDK
computing

Measure_Velocity

Send_Vvar

Measure_Velocity

F2

Measure
Succeeding_vehicle_velocity

Measure

Failure

F2

ion

• And four messages to notify the following
events « detection », « VVa^VVar »,
« Regulation_Decision » and « Engine_Control »:

Message_3 :
Source : ECU1
Destination : ECU1
Content : Value (Detection)
Message_4 :
Source : ECU1
Destination : ECU1
Content : Value (VVa ^ VVar)
Message_5 :
Source : ECU2
Destination : ECU1
Content : Value (Regulation_Decision)
Message_6 :
Source : ECU2
Destination : ECU1
Content : Value(Engine_Control)

A. Property verification results for SDK

By parsing the AADL architecture description, we verified
that the description of the architecture meets the properties 1,
2, 3 and 4 of functional-architectural diagnosability. In the
following, we check properties 5 and 6, they require a deeper
analysis.
Property 5 verification:
This property is «TRUE" when the available time is sufficient
for a diagnoser (or sub-function of diagnoser, in the case of
decentralized diagnosis).
The proposed diagnoser for SDK function is indeed a general
diagnoser for the entire vehicle. The objective is to ensure that
SDK function will always be diagnosable even when it is
implemented on the same computing unit that the diagnoser.

After a co-simulation of one minute of system operation,
COSITA tool displays an interface that allows opening co-
simulation trace file(s) in order to verify temporal availability
for a diagnoser on “ECU1” (SDK_computing_unit). Given
that:

• The desired frequency of diagnosis is once every
4200ns = 4200/25= 168 clock cycles,

• The duration of the diagnosis process is estimated at
160 cycles = 160*25ns= 4000ns

• And the access time to the computing unit for read or
write is estimated at 10 ns.

COSITA opens trace files, allow entering information about
the diagnoser process and the implemented function(s) onto
the component that we want to analyze. Then, COSITA
conducts an analysis of the temporal availability of the
selected component regarding the desired and entered
parameters, based on co-simulation trace files analysis.

With the parameters we have, the module OBSAN concluded
that the analyzed component (ECU1) is not available to
execute a diagnosis process with the desired criteria. The
result is negative for the duration of the execution, because the
function analyzed is periodic and the intended diagnosis
process is periodic also. Hence, if the result is negative for a
period it is also for all others throughout the simulation
(Figure 7).

Figure 7. Temporal availability analysis result

Thus, with the proposed features for architecture, property 5 is
not satisfied.
Property 6 verification:
To satisfy this property, we have to:

• Check that there is a temporal availability at the
system level to implement a diagnoser,

• check the observer accessibility to variables carrying
information from the sensors, depending on the
functional diagnosability model,

• and check the Reachability of computing units
participating in the concerned event.

The last two points of the property 6 are satisfied, and the
temporal availability is not satisfied. Thus, property 6 cannot
be satisfied.
Since both properties 5 and 6 are not satisfied, the functional-
architectural diagnosability is not satisfied. We note that
although the SDK function is functionally diagnosable, his
proposed software-hardware architecture prevents it from
being diagnosed. In other words, if we neglect the architecture
constraints at the diagnosability analysis time, the
implementation of a diagnoser in the next step may have
problems that contradict the positive result of diagnosability.

Our approach proposes in this case to make changes to the
architecture description and the model of hardware-software
architecture in order to make it diagnosable and not prevent it
from being diagnosed. This amounts to the fact that the
diagnosability analysis is done at the system design step and
the necessary changes to improve the system must be done on
models.

B. Return on design

After property verification, we should find a solution at the
design level of hardware-software architecture in order to
satisfy "Temporal availability". We propose in this case, two
different solutions:

• The first one is to use a computing unit more
powerful instead of ECU1 (SDK_computing_unit)
provided for the implementation of SDK and the
diagnoser.

• The second solution is to add a computing unit
having the same frequency of ECU1
(SDK_computing_unit) and ECU2
(Engine_computing_unit) in order to implement onto
it the diagnoser.

Below, we test the two proposed solutions by estimating the
cost of each case.

1) First proposal for modifying the architecture
Taking a more powerful computing unit of 80MHz for
example (taken off the shelf), the duration of the clock cycle is

5

678579
s = 12.5.10-9 s = 12.5 ns.

As the “SDK ()” method is executable in 16 clock cycles, it is
then executable on this computing unit in 16*12.5 = 200ns.
Similarly, the diagnoser is executable on 160 clock cycles, it is
then executable on this new computing unit on 160*12.5 =
2000ns.
We presume that the desired frequency of diagnosis is the
same as in the previous configuration of architecture, once
every 4200ns.
Hence, for the first solution to test the description and the
SystemC model of the architecture remains the same except
the clock of ECU1 which must pass to 80MHz:

sc_clock clock("clock" ,12.5,SC_NS);

At checking properties of the architecture, the results remain
the same for the property 1.1, property 3 and property 4;
because the description of the architecture has changed at the
level of attribute "microprocessor" of SDK_computing_unit:

system implementation SDK_computing_unit.imp
 subcomponents
 ……;
 Proc : processor MPC563.Motorola {Clock_Period
=> 12.5 ns ;};
 …..;
end SDK_computing_unit.imp;

Thus, property 2 was re-checked by parsing AADL
architecture description.
Property 2 verification result:
�����B� �#���F_Diag,
Executability (f,d)=1

At checking functions-architecture interaction, we co-simulate
this configuration of hardware-software architecture with the
same SDK Simulink model and the same inputs values as the
previous configuration, which reproduces the same result in
the execution of the SDK function.

Property 5 verification result:
The access time to this computing unit for read/write is
estimated at 10 ns. The desired frequency of diagnosis is the
same as in the previous configuration of architecture, once

every 4200 ns, equivalent to
:;77

5;<=
 = 336 clock cycles. The

duration of the diagnoser process is the same 160 cycles equal
to 12.5*160 = 2000ns.
With the new entered parameters, Temporal availability
analysis of the 80MHz computing unit becomes true.
Property 6 verification result:
The property "Temporal availability is satisfied, the property"
Observability "is then also satisfied, because his other two
sub-points "Reachability" and "Accessibility" are already
satisfied.

With the proposed changes, the architecture becomes
diagnosable from a functional-architectural point of view.

2) Second proposal for modifying the architecture
The second proposal solution is to a computing unit to the
architecture, having the same power of
« SDK_computing_unit» and « Engine_computing_unit »

(40MHz) in order to implement onto it only the diagnose
(Figure 8).

The 40MHz computing unit has a clock cycle of
5

:78579
 s =

25.10-9 s = 25 ns.

Figure 8. Configuration of the hardware-software architecture with an

additional computing unit

Messages destinations change following the new description
of the architecture :

• The two messages containing state variables values,
Message_1 :
Source : ECU1
Destination : ECU3
Content : Value(RV)
Message_2 :
Source : ECU1
Destination : ECU3
Content : Value (VV)

• And four messages to notify the following
events « detection », « VVa^VVar »,
« Regulation_Decision » and « Engine_Control »:

Message_3 :
Source : ECU1
Destination : ECU3
Content : Value (Detection)
Message_4 :
Source : ECU1
Destination : ECU3
Content : Value (VVa ^ VVar)
Message_5 :
Source : ECU2
Destination : ECU3
Content : Value (Regulation_Decision)
Message_6 :
Source : ECU2
Destination : ECU3
Content : Value(Engine_Control)

At checking properties of the architecture -of functional-
architectural diagnosability- we verify that the system
description meets the required properties of the architecture.

Variables values are:
���>.�?���.�?@A�

B���>.�?�A�

���>.�?���.�?@A�

BADEF��FD����.�?C�

B�D�������$D0CF���0�FC����E���$D����C����F������E���

.���>B�C��CF�����2��%2��E���3��0��CF��AB��F�F����

.��F��A���CE��A����
	�D�����#0��CF�����

	ABF����>.�?CA�

ECU1

(SDK)

ECU2

(Engine)

Radar + SDK
CAN CAN

CAN_bus

ECU3

(Diagnoser)

Diagnosis

CAN

(��>(������A���(������A@��(������AC��(������AE��(������AF��

(������AGA�
"�D����+4����$D0CF���0�FC���E���$D����C�����C�F�F���C4���1��E��E�

DE������

2��>3���2�A�����

Rule 1 verification :
Since the diagnosis framework used is centralized, we have to
check properties 1.1, 2, 3, 4, 5, 6 and 7. After parsing AADL
description, properties 1.1, 2, 3and 4 are satisfied. Then, to
verify properties 5 and 6, we have first integrated in the
SystemC model of the architecture the model of the new
computing unit (and its link through the CAN bus to ECU1
ECU2).
Since our objective is not interested in achieving a diagnoser,
we have incorporated a simplified diagnostic process in the
model, which reads all values sent by SDK_computing_unit
and Engine_computing_unit. We co-simulate this
configuration of hardware-software architecture with the same
Simulink model of SDK function and the same input values as
the previous configuration. We get the same result in the
execution of the SDK function on ECU1 and ECU2.
Property 5 verification:
The access time to this computing for read / write is estimated
to be 10ns. The desired frequency of diagnosis is the same as
in the previous configuration of architecture, one time per

4200ns which is equivalent to
:;77

;=
 =168 clock cycles. The

duration of the diagnoser process is the same 160 cycles equal
to 25*160= 4000 ns. With the new parameters entered, the
analysis of the temporal availability of the 40MHz additional
computing unit becomes favorable.
Property 6 verification:
The property "Temporal availability" is satisfied, the property
"Observability" is then also satisfied, because his other two
points needed "Reachability" and "Accessibility" are already
satisfied. With the proposed changes, the architecture becomes
diagnosticable in the functional-architectural point of view.

C. Comparison of two solutions

The two solutions we have proposed lead to two different
configurations of diagnosable architecture. The major
difference between the two solutions is the cost; a difference
estimated to be approximately 1800 Euros (there are hidden
costs of engineering and technical validation) offers greater
speed of execution (Table 1).

Table 1. Summary of advantages and disadvantages of both solutions

In the case of the system we have analyzed, we did not
need a faster execution of the SDK function or of the

diagnosis function; our attention is focused on diagnosable
hardware-software architecture. Thus, the first solution is
more reasonable.

VII. CONCLUSIONS AND PERSPECTIVES

According to the literature, taking into account the
characteristics of the hardware architecture -often considered
as "constraints" of implementation- for the analysis of
diagnosability is very original. The method we developed to
compare the model of architecture (expressed in AADL) with
the classical functional model of diagnosability is unusual.

Properties of the architecture and functions-architecture
interaction have been defined to analyze the functional-
architectural diagnosability. During construction of our
approach, these properties were considered as indicators for
the verification of the diagnosability of an embedded system.
However, these properties have gradually become
requirements for iterative design of hardware-software
architecture, including registering and verification of
diagnosability as the major step.

As future works, we aim at automating the AADL code

parsing following functional-architectural properties. We aim
also at resuming the development of our prototype COSITA to
refine and finalize the automatic generation of scenarios. We
must also build more bridges to existing tools, both those used
for capturing requirements and for the verification of temporal
constraints.

REFERENCES
[1] J.C. Laprie, Dependability: Basic Concepts and Terminology Springer-
Verlag, 1992. ISBN 0387822968
[2] W. Hamscher, et al, Readings in model-based diagnosis. Morgan
Kaufmann Publishers Inc., ISBN: 1-55860-249-6, 1992.
[3] X. Pucel, A unified point of view on diagnosability, 2008
[4] M. Sampath, et al, Diagnosability of discrete-event systems. IEEE
transactions On Automatic Control 9(40), p-p: 1555-1575, 1995.
[5] M. Khlif, M. Shawky, Observability Checking to Enhance Diagnosis of
Real Time Electronic Systems. DS-RT 2008. The 12-th IEEE International
Symposium on Distributed Simulation and Real Time Applications.
Vancouver, British Columbia, Canada, 2008.
[6] http://www.aadl.info/aadl/currentsite/
[7] J. Rouillard, Lire & Comprendre VHDL & AMS. Lulu éditeur, ISBN
978-1-4092-2787-8, 2008.
[8] M. Khlif, O. Tahan, M. Shawky, CO-SImulation Trace Analysis
(COSITA) Tool for Vehicle Electronic Architecture Diagnosability Analysis.
University of California, San Diego, CA, USA, 2010.
[9] R. Wilhelm. The Worst-Case Execution Time Problem— Overview of
Methods and Survey of Tools. ACM Transactions on Embedded Computing
Systems (TECS), Vol 7, Issue 3, 2008.
[10] Boland, J.F., Thiebeault, C. And Zilic, Z.; Using MATLAB and Simulink
in a SystemC verification environment; 2nd North American SystemC User’s
Group. Santa Clara, CA, USA. 2004.
[11] Varona-Gomez, R. And Villar, E.; AADL Simulation and Performance
Analysis in SystemC; Proceedings of the 14th IEEE Conference on Engineering
of Complex Computer System, 2009
[12] X. Claeys, and al, “Chauffeur Assistant Functions,” Report restricted to
RENAULT TRUCKS, European Contract number IST-1999-10048, Lyon,
FRANCE, 2003
[13] Anon. Software Considerations in Airborne Systems and Equipment
Certification, DO-178B RTCA, Washington D.C. 1992
[14] Chilensky, J.J. and Miller, S.P. Applicability of modified
condition/decision coverage to software testing. Software Engineering
Journal, 1994.

B�C�����D E�AD �F�������������D ���	������C���D ����D

�F ����F�F

�����F

���FD���F����BF

������B�BFD���F

�����BF

 CBF !��F��D�BFC"�D�F��#$�DC%F��F

�F&����F��#$�����F����F

����F�F

&����F

F

�F ����F�F

&����F

���FD���F&���BF CBF ����FC�D�BF'$D��CF�(F�F

��#$�����F����)F*F+��FC�D�BF

'$D��CF�(F����C�����F��A,CB)F
����F�F

&����F

F

���+F�F

&����F

������B�BFD��F�F

&����BF

