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Abstract
We introduce number theoretic systems for use into the study of subsets as-
sociated with the reals. We will then show that such sets possess different
cardinalities, whilst having cardinality greater than that of the naturals.

In mathematics, especially with new mathematics, there is a huge difficulty
in drawing an entire picture of its usefulness in solving a particular problem or
its effectiveness in the way of a theory in just a few lines, yet this is necessary,
as very few will want to undertake the understanding of a new concept if one
does not see its potential immediately!
So in the next few lines, we will aim to draw a picture of the usefulness of num-
ber theory in the resolution of CH. The time is ripe for many such pictures as
was expressed in a Lecture by Matt Foreman, University of California, Irvine.
Therein was described all mainstream set-theoretic attempts at resolving CH
with concluding remarks surrounding other possible un-ventured possibilities
which the writer writes ”There are viable alternatives to the Woodin ’Solution’
of the CH and these should be considered and explored before we rush to cele-
brate.”
Many such attempts pioneered by W.H.Woodin involve a logical concept of
models, as our approach is far from set theoretic we will not explore this con-
cept beyond this mention.

Mathematic should not be just about finding an answer but more about under-
standing it. More specifically instead of some reducto et absurdum resolution to
CH, a more appealing anwser would express in conjunction with such an argu-
ment, (much like the original diagonalization) what specific property possessed
by numbers disallows/allows a grouping of numbers so as to form a cardinality
ℵ1|ℵ0 < ℵ1 < 2ℵ0 .

INTRODUCTION.

At present, the only way it seems possible to form a set is physical inclusions
where we physically choose individual numbers to include into a set or functional
association, where we define a domain of values for the function and associate
its outputs with a set. In each case the domain is in one to one correspondence
with its functional output, so the cardinality of the output will have to be the
same as that of its domain. The importance in knowing the ways and means of
constructing such sets lies in the question, can one construct a set with cardi-
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nality ℵ1? to answer this, one needs ways of calling on all subsets of R = Q1.
To answer this we need to understand what it means for a number to belong to
R. One might simply say any number followed by numbers at infinitum forming
its decimal portion must surely constitute an irrational number. There are two
problems with this definition, for one there is no guarantee that such a num-
ber is surely irrational as certain rationals have this property. Secondly little
contemplation shows such a definition has the exact shortcomings as that of
the functional inclusion method, as we will physically have to include individual
values to include into a set or make use of some functional argument that we
associate with portions of decimal values associated with each such number,
which renders the set inevitably countably finite.

Thus if we are to not form a set along the above lines, we require precision
in our definition of r ∈ R. A precise definition enables us to assign properties
to the possible distributions associated with decimal portions of real numbers.
This in turn might enable us to answer the question can one form a subset of the
reals? If so what is its cardinality with respect to the reals? Or do all subsets
of the reals have the same cardinality?

Finding such a definition might yet be simplified if we restrict ourselves dec-
imal progressions solely in base two.
Thus by decimal progressions in base two we mean progressions of the form
11010001000101011101 forming the decimal portion of an arbitrary number.
More specifically it is common to write base ten numbers in base two so long as
the base ten numbers are associated with the naturals. One can just as easily
extend this technique to cover base ten numbers belonging to the reals as well.
Upon transforming such base ten numbers to base two it is the decimal portion
of such transformed numbers that we will concern ourselves with.

For the sake of simplicity, we will denote such decimal portions of numbers
by the symbol d and a collection i.e. set of di by the symbol D. We will denote
the number having the decimal portion di via use of the symbol ni, thus for
instance in 11.1001, ni = 11, and we will denote the entire number simply by
ki.
Logic dictates that it is in the progression of 0, 1 symbols associated with di
that determines whether ki is an element of the irrationals.
The defining characteristic of an irrational number is that it simply cant be ex-
pressed as a quotient of two integers. As simple as this sounds, one can obtain
a vast amount of information from just this simple fact.

Let us start our analysis of this property by asking when is a number k ex-
pressible as a quotient a

b
? The simple answer is that if kb = a then it is so. Or

alternatively if Σkb = a then k is a rational number. The point we are to take

1We needn’t consider all subsets of R as any inclusion of elements of Q will be in one to

one correspondence with Q
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note of here is that k has an associated decimal portion whereas this is not the
case of a. We may as such say that k belongs with the rationals if only if via a
finite many summations of k to itself it decimal portion is reducible to zero. This
is simple to see if d associated with k is finitely long, for every two summations,,
the decimal shifts a position to the right. So what then for rational numbers
with infinitely long decimal numbers? We surely know of their existence as the
simplest case is 1

3
which in base two is expressed as 1

11
. A moments deliberation

of the base two fraction will show this to be true.
How then can such decimals be reducible to zero? As addition plays a key
role in numbers associated with the rationals, we might attempt an understand-
ing of what maybe required of the structure associated with such infinitely long
decimal portions, in terms of addition, that renders itself as one of the rationals.

Following two simple rules, one can perform addition in base two, both of which
pertain to the alignment of symbols associated with the numbers involved in
the addition.

a) (0) and (0) in alignment remains (0).
a) (1) and (1) in alignment at some position p associated with the symbols

leaves (0) at p and introduces (1) at p− 1.

This process is required (via finite additions) to reduce the decimal portions
of the number to zero or alternatively done = 1111111.... at infinitum.
The reason for the latter is simple to see if one understands why it is that 0.done
is in fact equivalent to one see (Appendix 1) for a clear exposition of this.

To simplify our analysis, we will refer to an arbitrary number added to itself
finitely many times as finite action on the number.
Consider now a decimal formed by a sequence of zeros and ones where every
one symbol is spaced evenly apart by the same number of zero symbols as every
other set of one symbols; as is in the following illustration.

du = (000010000100001) (1)

It is easy to see that sufficient action on du (sufficient number of additions of
du to itself) will transform the above sequence into:

(000100001000010)

and with further action into

(001000010000100)

With sufficiently many more all zeros inevitably begin to fill with one symbols

(110001100011000)
(111001110011100)
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Until eventually.

(111111111111111)

This is due to the nature of the spacing being equal in measure of zero symbols
between pairs of one symbols. As such logic dictates that forming a decimal
with infinitely many such pairs of one symbols spaced evenly by finitely many
zeros would surely render the chained decimal into done with finite action.

When then and for which schema of zero and ones is such a reduction im-
possible?

One logically intuitive idea seems to be the forming of a schema via the
targeting of the measure of zero symbols alone that lie between pairs of one
symbols. From the initial portion of this discourse, it seems clear that it is
such spacing of one symbols that seems intuitively responsible for whether such
reductions are possible or not. More clearly, the number of such periodically
recursive intervals is irrelevant, as each interval is periodically equivalent to
every other:

10001.....10001

and upon action (the number summed to itself), the result of the addition is
that every respective interval involved in the addition process is transformed
equivalently.

10001.....10001
10001.....10001
00010.....00010

If each such interval were to differ in the magnitude of zeros between pairs
of one symbols one would easily find that with continuous action, the smaller
such interval would initially fill out with one symbols before other larger such
intervals. For instance given the following schema:

000100000100000001......

the above with sufficient action would transform into:

111100111100001111......

which illustrates how a smaller interval of zeros between ones would fill out with
one symbols before other larger such intervals with sufficient action.
Naturally this argument can be generalized via induction. Specifically for ever
growing such intervals, the smaller interval of any one set of growing intervals
would naturally fill out in one symbols via finite action earlier than all others
exceeding in measure of zero symbols, thus by this logic, if there is always one
interval Ii exceeding in measure of zeros than every other, then by induction
if it takes d summations to fill interval Ii−1 then more summations than d is
required to fill out Ii in this manner, since I is arbitrary, it is impossible to fill
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every interval in this manner.

Let us formalize the means by which we define and describe such numbers and
the sets to which these belong.

Definition 0.0 (Stream)
We define a stream to be an arbitrary series of non-terminating zeros and ones
forming the decimal portion of a number.
An instance of this would be : 101.0001000101010001001....
We will from hereon denote such streams with the symbol S.

Definition 1.0 (Interval)
A series of uninterrupted zero symbols in a stream we refer to as an interval.
We will denote these via use of the symbol I.

Definition 2.0 (Action)
Given a stream S the summing of a stream to itself we define to be an action
on S. We will denote such action via use of the symbol A

Definition 3.0 (Packet)
Arbitrary portions of a stream we will refer to as packets. We will denote such
packets via use of the symbol P
For instance: 100101 in 1000000100101000000001, will be referred to as a
packet.

Definition 4.0 (Packet/Interval-Measure)
We define a packet/Interval-measure to be the number of elements associ-
ated with any one packet/Interval. We will denote such measures via use of the
symbol M and M(I),M(P) will mean the measure associated with an interval,
packet respectively.
In the above case the number (6) would be the measure of the packet.

Definition 5.0 (To Fill-Out a Packet)
We say a packet is filled out if via finite action, the positions associated with
the contents of the packet with relation to the entire stream is filled with ones
after sufficient action on the packet.
For instance if 1000000100101000000001 is reduced to 1111111......0001,
we say that the targeted packet has been filled out.

Theorem 1.0
Given a stream S with filled-out packets spaced by ever-growing intervals, specif-
ically each proceeding interval Ii is greater in measure than its preceding interval
Ii−1, are irreducible to done via finite action on S.
proof
If there is always one interval Ii exceeding in measure of zeros than every other,
then by induction if it takes d summations to fill interval Ii−1 then more sum-
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mations than d is required to fill out Ii in this manner, since I is arbitrary,
it is impossible to fill every interval in this manner. The nature of the packet
following the interval is arbitrary in the way of affecting the nature of how fast
such intervals are filled. 2

Sets of Packets.
As the nature of the packets are arbitrary in the way of affecting the nature of
how fast such intervals are filled, we can firmly make the statement that the
same is true of all arbitrary packets and not just those that are filled out.

In the way of grouping all such streams into a set, we may define the set in
terms of the interval and Packet measures associated with all packet and inter-
val measures associated with all elements of the set, and individual elements
of the set will be those having arbitrary zeros and ones forming all associated
packets of the stream forming the element.

To illustrate this, consider the number of streams one can form with the def-
inition : ∀t ∈ N, M(It) = M(It−1) + 1 and M(Pi) = g|g ∈ N, for finitely
countable i 7→ N.
If g = 3, we have the following few to be streams abiding by the same definition:

001 0 101 00 010 000..
101 0 111 00 110 000..

...

1-Spacing. With this new found ability a further endeavor would be to now
try to construct a subset of such a set, or a set to which the above is a subset.
Before this however we note some properties associated with numbers and their
decimals.
Convention has it that given any one stream forming the decimal portion of
a number, the nature of the positioning and spacing of one symbols deter-
mines the magnitude of the entire number. For instance: 11.01 > 11.001, and
11.11011110¿11.11001110. From these arbitrary examples one can easily see
that a simple addition or removal of a single (one) at the right position can
render the resultant number larger or smaller than the number in its initial
form. In instances where sufficient intervals are available, it is easy to see that
opportunities are always available in the way of adding or removing (ones) to
effect change in the way of magnitude of the number from its initial form(See
Fig 1.).

Subsets of Real Streams.
We shall define a real stream to be streams of the form:
Definition 6.0 (Real Stream)
SR := {∀t ∈ N, M(It) = M(It−1) + l and M(Pi) = g|l, g ∈ N}, for finitely
countable i 7→ N.
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Figure 1: One symbols associated the same positions are highlighted in lite gray, while the

darker gray highlights positions associated with one symbols that are different for c elements.

The element E includes the symbols that are associated with the light gray positions, the

position p1 of the first pair P 1

12
and the position P 2

12
− 1. By doing this we form an element

E|c1 < E < c2.

Figure 2: Real Stream: One symbols with growing number of zeros between them.

It is easy to see from the definition of real-streams that restricting positions
available for the introduction of one symbols within each packet within the set
definition, a means of constructing a sub set of such a set(See Fig 3.).

Restricted Sets.
We will from hereon refer to such sets as restricted real sets and we will use the
symbol /S to denote such sets.
An important junction has been reached here. One can take any two elements
e1, e2 of SR and by keeping some initial packet constant throughout all elements
of /SR which is derived from either element of SR, one can form an infinumerous
set of streams, all having elements whose magnitudes exist between e1, e2, if all
elements including e1, e2 were adjoined as a decimal of a single number.

With the aim of resolving the continuum hypothesis, we introduce the following
useful terms.
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Figure 3:

Definition 6.0 (Stream/Interval/Packet-Positions)
We define the set of positions associated with a Stream/Interval/Packet, to
be an ordered set, the elements of which are used in the identification of the
location of specific zero/one elements within a Stream/Interval/Packet. These
will be ordered from left to right.
For example in the packet associated with the following stream:

000000000000101001 000000000

the set : {p1, p2, p3, p4, p5, p6} refers to the elements 101001 respectively.
We will use the symbols p1, p2... to denote such positions.

The Continuum Hypothesis

Introducing a new representation by shrinking positions of /SR and SR that
are in one to one correspondence down to a single representation α1, α2, ... for
each element of SR, and by doing the same of /SR and forming a stream of all
zero/one elements not in one to one correspondence, i.e. of the elements left
over in /SR, we can rewrite the series in the following manner:
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Figure 4:

SR Unassociated packets of elements of /SR made into a stream
α1 [1000101001000101010...]
α2 [1010100011010101010...]
α3 [1010011000100100101...]

where in the above table, what is expressed to the right of the table is a stream
formed with only packet entries associated with /SR that cant be put into one to
one correspondence with positions associated with the streams associated with
SR.

What we see by the above process is that enumeration is again impossible as
the characteristics of the elements associated with SR,/SR is the same as that
of N,R.
Specifically, we have formed two subsets of R that have different cardinalities,
both of which have cardinality greater than that of N, as can be seen by form-
ing packets of all streams associated with these sets and running through the
diagonalization argument once again..
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