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The displacement-traction problem of three-dimensional linearized elasticity can be
posed as three different minimization problems, depending on whether the displacement

vector field, or the stress tensor field, or the strain tensor field, is the unknown.

The objective of this paper is to put these three different formulations of the same
problem in a new perspective, by means of Legendre-Fenchel duality theory. More specif-
ically, we show that both the displacement and strain formulations can be viewed as

Legendre-Fenchel dual problems to the stress formulation. We also show that each corre-
sponding Lagrangian has a saddle-point, thus fully justifying this new duality approach

to elasticity.
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1. Introduction

All notions, notations, or assumptions not defined or stated here are defined in the

next sections.

Let Ω be a domain in R3, let its boundary Γ be partitioned as Γ = Γ0 ∪Γ1 with

Γ0 ∩ Γ1 = ∅ and dΓ-meas Γ0 > 0, and let Ω be the reference configuration of a lin-

early elastic body with elasticity tensor field A, subjected to an applied body forces of

∗Corresponding author.
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density f ∈ L2(Ω) and to an applied surface forces of density F ∈ L2(Γ1), and sub-

jected to a boundary condition of place u = 0 on Γ0 (only homogeneous boundary

conditions of place are considered here). This problem is called a displacement-

traction problem if dΓ-meas Γ1 > 0, or a pure displacement problem if Γ0 = Γ. The

pure traction problem, which corresponds to Γ1 = Γ, is not considered here.

It is then well-known (see, e.g., Ref. ?) that the unknown displacement vector

field v : Ω→ R3 is the unique solution of the minimization problem

J(v) = inf
v∈V

J(v),

where

J(v) =
1

2

∫
Ω

A∇sv : ∇svdx− L(v),

L(v) =

∫
Ω

f · vdx+

∫
Γ1

F · vdΓ,

V = {v ∈H1(Ω); trv = 0 on Γ0}.

This minimization problem, which constitutes the modern version of the clas-

sical principle of minimum potential energy (for a historical perspective, see

Gurtin ? or Benvenuto ?), will be referred to as the displacement formulation of

the displacement-traction problem of three-dimensional linearized elasticity.

It is also well-known (see, e.g., Brezzi & Fortin ?) that the same problem can

be also formulated as another minimization problem, where the stress tensor field

σ = A∇sv : Ω→ S3 is the unknown, viz.,

g(σ) = inf
σ∈S

g(σ),

where

g(σ) =
1

2

∫
Ω

Bσ : σdx,

S = {σ ∈ H(div; Ω); divσ + f = 0 in L2(Ω),

〈σν − F , trv〉Γ = 0 for all v ∈ V },

and B denotes the compliance tensor, i.e., the inverse of the tensor field A.

This minimization problem, which constitutes the modern version of the clas-

sical principle of minimum complementary energy (for a historical perspective, see

again Gurtin ? or Benvenuto ?), will be referred to as the stress formulation of the

displacement-traction problem of three-dimensional linearized elasticity.

It is much less known that yet another approach is possible, where the strain

tensor field e = ∇sv is the unknown. The idea of such an approach, which bears

the name of intrinsic approach, is not new: in nonlinear three-dimensional elasticity,

it was first suggested, albeit only briefly, by Antman ? in 1977; a similar idea for

shells and plates goes back even earlier, to Synge & Chien ? (see also Chien ?),

who already in 1941 advocated using the change of metric and change of curvature
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tensors as the primary unknowns. This approach was then considerably developed

during the past decades, from the mechanical and computational viewpoints, by

Wojciech Pietraszkiewicz and his group. See in particular Opoka & Pietraszkiewicz ?

and Pietraszkiewicz ?. But it is only recently that the mathematical analysis and

numerical analysis of the intrinsic approach to three-dimensional elasticity were

undertaken, by Ciarlet & Ciarlet, Jr. ?,?, Amrouche, Ciarlet, Gratie & Kesavan ?,

Ciarlet, Ciarlet, Jr., Iosifescu, Sauter & Zou ? in the linear case, and by Ciarlet &

Mardare ? in the nonlinear case.

As shown in Ref. ? (in the case of the pure displacement problem, but the

extension to a genuine displacement-traction problem poses no difficulty), one in-

trinsic approach to the same problem takes the form of the following minimization

problem:

j(e) = inf
e∈M⊥

j(e),

where

j(e) =
1

2

∫
Ω

Ae : edx− L(F(e)),

M = {µ ∈ L2
s(Ω); divµ = 0 in H−1(Ω); 〈µν, trv〉Γ = 0 for all v ∈ V },

M⊥ = {e ∈ L2
s(Ω);

∫
Ω

e : µdx = 0 for all µ ∈M}.

This minimization problem will be referred to as the strain formulation of the

displacement-traction problem of three-dimensional linearized elasticity. Note that

another strain formulation is possible, but it does not seem to be amenable to the

present approach, however (cf. the discussion given in Section ??).

The objective of this paper is to put these three different formulations of the

same problem in a different perspective, new to the best of our knowledge, by means

of Legendre-Fenchel duality theory (the principles of which are recalled in Section

2). More specifically, we show in Sections 6 and ?? that both the displacement and

strain formulations are nothing but Legendre-Fenchel dual problems to the stress for-

mulation, once this formulation has been appropriately recast within the framework

of this duality theory (Section 5). We also show that each corresponding Lagrangian

has a saddle-point, thus fully justifying this new duality approach to elasticity.

The results of this paper were announced in Ref. ?.

2. Legendre-Fenchel duality

All vector spaces, matrices, etc., considered in this paper are real. The dual space

of a normed vector space X is denoted X∗, and X∗〈·, ·〉X designates the associated

duality. The bidual space of X is denoted X∗∗; if X is a reflexive Banach space,

X∗∗ will be identified with X by means of the usual canonical isometry.
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The indicator function IA of a subset A of a set X is the function IA defined by

IA(x) := 0 if x ∈ A and IA(x) := +∞ if x /∈ A. A function g : X → R ∪ {+∞} is

proper if {x ∈ X; g(x) < +∞} 6= ∅.

For the reader’s convenience, the notations chosen below are on purpose either

identical or similar (up to, e.g., italics instead of boldface) to those used later on.

Let Σ be a normed vector space and let g : Σ→ R∪{+∞} be a proper function.

The Legendre-Fenchel transform of g is the function g∗ : Σ∗ → R ∪ {+∞} defined

by

g∗ : e ∈ Σ∗ → g∗(e) := sup
σ∈Σ
{Σ∗〈e, σ〉Σ − g(σ)}.

The next theorem summarizes some basic properties of the Legendre-Fenchel

transform when the space Σ is a reflexive Banach space. For proofs, see, e.g., Ekeland

& Temam ? or Brezis ?.

Theorem 2.1. Let Σ be a reflexive Banach space, and let g : Σ → R ∪ {+∞} be

a proper, convex, and lower semi-continuous function. Then the Legendre-Fenchel

transform g∗ : Σ∗ → R ∪ {+∞} of g is also proper, convex, and lower semi-

continuous. Let

g∗∗ : σ ∈ Σ∗∗ → g∗∗(σ) := sup
e∈Σ∗
{Σ∗〈e, σ〉Σ − g∗(e)}

denote the Legendre-Fenchel transform of g∗. Then (recall thatX∗∗ is here identified

with X)

g∗∗ = g.

The equality g∗∗ = g constitutes the Fenchel-Moreau theorem; cf. Fenchel ? and

Moreau ?.

Given a minimization problem

inf
σ∈Σ

G(σ), (P)

with a function G : Σ→ R ∪ {+∞} of the specific form given in Theorem 2.2, the

following simple result will be the basis for defining two different dual problems of

problem (P). The functions L and L̃ defined in the next theorem are the Lagrangians

associated with the minimization problem (P).

Theorem 2.2. Let Σ and V be two reflexive Banach spaces, let g : Σ→ R∪{+∞}
and h : V ∗ → R∪{+∞} be two proper, convex, and lower semi-continuous functions,

let Λ : Σ → V ∗ be a linear and continuous mapping, let the function G : Σ →
R ∪ {+∞} be defined by

G : σ ∈ Σ→ G(σ) := g(σ) + h(Λσ),

and finally, let the two functions

L : Σ× Σ∗ → {−∞} ∪ R ∪ {+∞} and L̃ : Σ× V → {−∞} ∪ R ∪ {+∞}
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be defined by

L : (σ, e) ∈ Σ× Σ∗ → L(σ, e) := Σ∗〈e, σ〉Σ − g∗(e) + h(Λσ),

L̃ : (σ, v) ∈ Σ× V → L̃(σ, v) := g(σ) + V ∗〈Λσ, v〉V − h∗(v).

Then

inf
σ∈Σ

G(σ) = inf
σ∈Σ

sup
e∈Σ∗

L(σ, e) = inf
σ∈Σ

sup
v∈V

L̃(σ, v).

Proof. Since g(σ) = g∗∗(σ) for each σ ∈ Σ (Theorem 2.1), we also have

G(σ) = g∗∗(σ) + h(Λσ) = sup
e∈Σ∗
{Σ∗〈e, σ〉Σ − g∗(e)}+ h(Λσ)

= sup
e∈Σ∗

L(σ, e) for each σ ∈ Σ.

Hence

inf
σ∈Σ

G(σ) = inf
σ∈Σ

sup
e∈Σ∗

L(σ, e).

Since likewise h(v∗) = h∗∗(v∗) for each v∗ ∈ V ∗ and the space V ∗∗ is identified

with V , we have

h(v∗) = h∗∗(v∗) = sup
v∈V
{V ∗〈v∗, v〉V − h∗(v)} for each v∗ ∈ V ∗,

so that

G(σ) = g(σ) + h(Λσ)

= g(σ) + sup
v∈V
{V ∗〈Λσ, v〉V − h∗(v)} = sup

v∈V
L̃(σ, v) for each σ ∈ Σ.

Hence

inf
σ∈Σ

G(σ) = inf
σ∈Σ

sup
v∈V
L̃(σ, v).

As is classical in duality theory (see, e.g., Chapter 6 in Ekeland & Temam ?),

the replacement of the minimization problem (P) by an inf-sup problem, such as

either one found in Theorem 2.2, is the basis for defining a dual problem of the

minimization problem (P), as the corresponding sup-inf problem. In our case, this

means that the dual problem corresponding to the first inf-sup problem found in

Theorem 2.2 is defined as:

sup
e∈Σ∗

G∗(e), where G∗(e) := inf
σ∈Σ
{Σ∗〈e, σ〉Σ−h(Λσ)}−g∗(e) for each e ∈ Σ∗, (P∗)

while the dual problem corresponding to the second sup-inf problem is defined as:

sup
v∈V

G̃∗(v), where G̃∗(v) := inf
σ∈Σ
{g(σ) + Σ∗〈Λσ, v〉V } − h∗(v) for each v ∈ V. (P̃∗)
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A key issue (see ibid.) then consists in deciding whether the infimum found in

problem (P) is equal to the supremum found in either one of its dual problems, i.e.,

for instance in the case of the first dual problem (to fix ideas), whether

inf
σ∈Σ

G(σ) = sup
e∈Σ∗

G∗(e),

or equivalently, whether

inf
σ∈Σ

sup
e∈Σ∗

L(σ, e) = sup
e∈Σ∗

inf
σ∈Σ
L(σ, e).

If this is the case, the next issue consists in deciding whether the Lagrangian L
possesses a saddle-point (σ, e) ∈ Σ× Σ∗, i.e., that satisfies

inf
σ∈Σ

sup
e∈Σ∗

L(σ, e) = inf
σ∈Σ
L(σ, e) = L(σ, e) = sup

e∈Σ∗
L(σ, e) = sup

e∈Σ∗
inf
σ∈Σ
L(σ, e).

This is precisely the type of questions that will be addressed in this paper, the

point of departure (P) being a classical quadratic minimization problem arising in

three-dimensional linearized elasticity.

3. Some functional analytic preliminaries

Latin indices vary in the set {1, 2, 3}, save when they are used for indexing sequences,

and the summation convention with respect to repeated indices is systematically

used in conjunction with this rule.

In what follows, Ω is a domain in R3, i.e., a bounded, connected, open subset

of R3 whose boundary, denoted Γ, is Lipschitz-continuous, the set Ω being locally

on a single side of Γ (see, e.g., Adams ? or Nečas ?), and x = (xi) designates a

generic point in Ω. Partial derivative operators of the first, second, and third order

are then denoted ∂i := ∂/∂xi, ∂ij := ∂2/∂xi∂xj , and ∂ijk := ∂3/∂xi∂xj∂xk. The

same symbols also designate partial derivatives in the sense of distributions.

The notation D(Ω) denotes the space of functions that are infinitely differ-

entiable in Ω and have compact supports in Ω. The notation D′(Ω) denotes the

space of distributions defined over Ω. The notations H1(Ω), H1
0 (Ω), H1/2(Γ) and

H−1/2(Γ) := (H1/2(Γ))∗ designate the usual Sobolev spaces. The trace operator

from H1(Ω) onto H1/2(Γ) is denoted tr.

Spaces of functions, vector fields in R3, and 3 × 3 matrix fields, defined over

Ω are respectively denoted by italic capitals, boldface Roman capitals, and special

Roman capitals. The space of all symmetric matrices of order 3 is denoted S3. The

subscript s appended to a special Roman capital denotes a space of symmetric

matrix fields. Combining the above rules, we shall thus encounter spaces such as

D(Ω), D′(Ω), D′(Ω), L2
s(Ω), H1/2(Γ), etc.

The notation (v)i designates the i-th component of a vector v ∈ R3 and the

notation v = (vi) means that vi = (v)i. The notation (A)ij designates the element

at the i-th row and j-th column of a square matrixA of order three and the notation

A = (aij) means that aij = (A)ij . The inner-product of a ∈ R3 and b ∈ R3 is
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denoted a · b. The notation s : t := sijtij designates the matrix inner-product of

two matrices s := (sij) and t := (tij) of order three.

The inner product in the space L2
s(Ω) is given by

(σ, τ ) ∈ L2
s(Ω)× L2

s(Ω)→
∫

Ω

σ : τ dx,

so that the corresponding norm is given by

‖σ‖L2
s(Ω) =

(∫
Ω

σ : σdx

)1/2

for any σ ∈ L2
s(Ω).

The space L2
s(Ω) will be identified with its dual space; hence the corresponding

duality bracket will be identified with the inner product of L2
s(Ω).

The norm in the space H1(Ω) is given by

v = (vi) ∈H1(Ω)→ ‖v‖H1(Ω) =

( 3∑
i=1

‖vi‖2H1(Ω)

)1/2

.

For notational conciseness, the duality bracket between the space H1/2(Γ) and

its dual space will be denoted

〈·, ·〉Γ := H−1/2(Γ)〈·, ·〉H1/2(Γ).

Note in this respect that, if F ∈ L2(Γ), then

〈F , trv〉Γ =

∫
Γ

F · vdΓ for any v ∈H1(Ω).

The matrix gradient operator ∇ : D′(Ω)→ D′(Ω) is defined by

(∇v)ij := ∂jvi for any v = (vi) ∈D′(Ω).

For any vector field v = (vi) ∈D′(Ω), the associated linearized strain tensor is

the symmetric matrix field ∇sv ∈ D′s(Ω) defined by

∇sv :=
1

2
(∇vT + ∇v),

or equivalently, by

(∇sv)ij =
1

2
(∂ivj + ∂jvi).

The vector divergence operator div : D′(Ω)→ D′(Ω) is defined by

(divµ)i := ∂jµij for any µ = (µij) ∈ D′(Ω).

We now recall some functional analytic preliminaries, due to Geymonat & Su-

quet ? and Geymonat & Krasucki ?,?, which are the “matrix analogs” of results of

Girault & Raviart ? for spaces of vector fields. Given a domain Ω in R3, define the

space

Hs(div; Ω) := {µ ∈ L2
s(Ω); divµ ∈ L2(Ω)}
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(in this definition divµ is of course to be understood in the sense of distributions).

Equipped with the norm defined by

‖µ‖Hs(div;Ω) :=
(
‖µ‖2L2

s(Ω) + ‖divµ‖2L2(Ω)

)1/2

for all µ ∈ Hs(div; Ω),

the space Hs(div; Ω) is a Hilbert space. Let ν : Γ→ R3 denote the unit outer normal

vector field along the boundary Γ of Ω (such a field is defined dΓ-everywhere since Γ

is Lipschitz-continuous). The set Ω being a domain, the density of the space C∞s (Ω)

in the space H(div; Ω) then implies that the mapping µ ∈ C∞s (Ω) → µν|Γ can be

extended to a continuous linear mapping from the space Hs(div; Ω) into H−1/2(Γ),

which for convenience will be simply denoted

µ ∈ Hs(div; Ω)→ µν ∈ H−1/2(Γ).

Theorem 3.1. The Green formula∫
Ω

µ : ∇svdx+

∫
Ω

(divµ) · vdx = 〈µν, trv〉Γ

holds for all µ ∈ Hs(div; Ω) and all v ∈H1(Ω).

The following extension of the classical Donati theorem (for a brief history of

this result, see Section 7 in ?) plays an essential role in the sequel. The case where

Γ0 = ∅ (which is thus excluded here) is considered in Refs. ? and ?.

Theorem 3.2. Let Ω be a domain in R3, let Γ0 and Γ1 be two relatively open

subsets of Γ such that

dΓ- meas Γ0 > 0, Γ = Γ0 ∪ Γ1, and Γ0 ∩ Γ1 = ∅,

and let there be given a matrix field e ∈ L2
s(Ω). Then there exists a vector field

v ∈ V := {v ∈H1(Ω); trv = 0 on Γ0}

such that e = ∇sv if and only if∫
Ω

e : µdx = 0 for all µ ∈M,

where the space M is defined as

M := {µ ∈ L2
s(Ω); divµ = 0 in H−1(Ω), 〈µν, trv〉Γ = 0 for all v ∈ V }.

Besides, such a vector field v ∈ V is uniquely defined.

4. Three different formulations of the displacement-traction

problem of three-dimensional linearized elasticity as a

minimization problem

Let Ω be a domain in R3 and let Γ0 and Γ1 be two relatively open subsets of Γ := ∂Ω

that satisfy

dΓ- meas Γ0 > 0, Γ = Γ0 ∪ Γ1, and Γ0 ∩ Γ1 = ∅.
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The following assumptions are made in the rest of the paper. The set Ω is

the reference configuration of a linearly elastic body, characterized by its elasticity

tensor field A = (Aijk`) with components Aijk` ∈ L∞(Ω). It is assumed as usual

that these components satisfy the symmetry relations Aijk` = Ajik` = Ak`ij and

that the tensor field A is uniformly positive-definite almost-everywhere in Ω, in the

sense that there exists a constant α > 0 such that

At : t ≥ αt : t for almost all x ∈ Ω and all matrices t = (tij) ∈ S3,

where (A(x)t)ij := Aijk`(x)tk`. The body is subjected to applied body forces with

density f ∈ L2(Ω) in its interior and to applied surface forces of density F ∈ L2(Γ1)

on the portion Γ1 of its boundary. Finally, it is assumed that the body is subjected

to a homogeneous boundary condition of place along Γ0.

Then the corresponding displacement-traction problem, or the pure displace-

ment problem if Γ0 = Γ, of three-dimensional linearized elasticity classically takes

the form of the minimization problem described in the next theorem, where the

minimizer v : Ω→ R3 is the unknown displacement field.

Theorem 4.1 (the classical displacement formulation). There exists a unique

vector field

v ∈ V := {v ∈H1(Ω); trv = 0 on Γ0}

that satisfies

J(v) = inf
v∈V

J(v), where J(v) :=
1

2

∫
Ω

A∇sv : ∇svdx− L(v) for all v ∈ V ,

and

L(v) :=

∫
Ω

f · vdx+

∫
Γ1

F · vdΓ for all v ∈H1(Ω).

That this minimization problem has one and only one solution is well known

(see, e.g., Theorem 3.4 in Duvaut & Lions ?).

In view of describing a second formulation of the same displacement-traction

problem, we first note that, because the elasticity tensor field A = (Aijk`) with

components Aijk` ∈ L∞(Ω) is uniformly positive-definite almost-everywhere in Ω,

there exists a tensor field B = (Bijk`) that is the inverse of A, in the sense that, for

almost all x ∈ Ω,

s = A(x)t is equivalent to t = B(x)s for all matrices t ∈ S3.

Furthermore, it is easily seen that Bijk` ∈ L∞(Ω) and that B is also uniformly

positive-definite almost-everywhere in Ω, i.e., there exists a constant β > 0 such

that

B(x)s : s ≥ βs : s for almost all x ∈ Ω and all matrices s ∈ S3.

The tensor field B is called the compliance tensor field.
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It is then classical that, like the displacement field, the stress tensor field

σ := A∇sv ∈ L2
s(Ω) inside the body can be also obtained as the solution of a

minimization problem. To show this, one first uses the Babuška-Brezzi inf-sup the-

orem (Babuška ? and Brezzi ?) to derive a “mixed” formulation of the elasticity

problem, i.e., where both v ∈ V and σ ∈ L2
s(Ω) are the unknowns; then, using

a standard procedure in optimization theory, one constructs a dual problem with

σ = A∇sv as the sole unknown (Brezzi & Fortin ?). The dual problem obtained in

this fashion is then a constrained quadratic minimization problem (the constraints

here are the relations divσ+f = 0 in L2(Ω) and 〈σν−F , trv〉Γ = 0 for all v ∈ V
that must be satisfied by the “admissible” stress fields σ; cf. Theorem 4.2).

Theorem 4.2 (the classical stress formulation). Let the space V be defined

as in Theorem 4.1, i.e.,

V := {v ∈H1(Ω); trv = 0 on Γ0}.

Then there exists a unique tensor field

σ ∈ S := {σ ∈ Hs(div; Ω); divσ + f = 0 in L2(Ω),

〈σν − F , trv〉Γ = 0 for all v ∈ V },

that satisfies

g(σ) = inf
σ∈S

g(σ), where g(σ) :=
1

2

∫
Ω

Bσ : σdx for all σ ∈ L2
s(Ω).

Besides,

σ = A∇sv in L2
s(Ω),

where the vector field v ∈ V is the unique solution to the minimization problem of

Theorem 4.1.

An intrinsic approach to the same displacement-traction problem consists in

considering the linearized strain tensor field e := ∇sv ∈ L2
s(Ω) inside the body as

the primary unknown, instead of the displacement field itself.

Accordingly, one first needs to characterize those 3× 3 matrix fields e ∈ L2
s(Ω)

that can be written as e = ∇sv, with v ∈ V . Theorem 3.2 provides such a charac-

terization.

Thanks to this theorem, the displacement-traction problem of three-dimensional

elasticity can then be recast as yet anotherconstrained quadratic minimization prob-

lem, with e = ∇sv ∈ L2
s(Ω) as the unknown.

Theorem 4.3 (the strain formulation, a.k.a. the intrinsic approach). Let

the space M be defined as in Theorem 3.2, i.e.,

M := {µ ∈ L2
s(Ω); divµ = 0 in H−1(Ω); 〈µν, trv〉Γ = 0 for all v ∈ V }.

Define the Hilbert space

M⊥ := {e ∈ L2
s(Ω);

∫
Ω

e : µdx = 0 for all µ ∈M},
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and, for each e ∈ M⊥, let F(e) denote the unique element in the space V that

satisfies ∇sF(e) = e (Theorem 3.2). Then the mapping F : M⊥ → V defined in

this fashion is an isomorphism between the Hilbert spaces M⊥ and V .

The minimization problem: Find e ∈M⊥ such that

j(e) = inf
e∈M⊥

j(e), where j(e) :=
1

2

∫
Ω

Ae : edx− L(F(e)),

has one and only one solution e. Besides,

e = ∇sv,

where the vector field v ∈ V is the unique solution to the minimization problem of

Theorem 4.1.

Remark 4.1. A proof similar to that of the corollary to Theorem 4.1 in Ref. ?

shows that the Korn inequality in the space V can then be recovered as a simple

corollary to Theorem 4.3, which thus provides an entirely new proof of this classical

inequality.

5. The classical stress formulation of the displacement-traction

problem as a point of departure

The minimization problem found in the classical stress formulation described in

Theorem 4.2 constitutes our point of departure for constructing dual problems, by

means of the approach described in Section 2. Accordingly, our first task consists

in verifying that this formulation can be indeed recast in the abstract framework

of Theorem 2.2. Note in this respect that the spaces denoted L2
s(Ω), identified here

with its dual space, V , and V ∗, in the next theorem play the rôle of the spaces

respectively denoted Σ,Σ∗, V , and V ∗ in Theorem 2.2.

Theorem 5.1. Let the space V and the linear form L ∈ V ∗ be defined as in

Theorem 4.1, let the mapping Λ : σ ∈ L2
s(Ω)→ Λσ ∈ V ∗ be defined by

V ∗〈Λσ,v〉V :=

∫
Ω

σ : ∇svdx for all v ∈ V ,

and finally, let the functions g : L2
s(Ω)→ R and h : V ∗ → R∪{+∞} be respectively

defined by

σ ∈ L2
s(Ω)→ g(σ) :=

1

2

∫
Ω

Bσ : σdx,

v∗ ∈ V ∗ → h(v∗) := 0 if v∗ = L or h(v∗) := +∞ if v∗ 6= L.

Then Λ ∈ L(L2
s(Ω);V ∗) and the functions g and h are both proper, convex, and

lower semi-continuous.

Define the function G : L2
s(Ω)→ R ∪ {+∞} by

G(σ) := g(σ) + h(Λσ) for all σ ∈ L2
s(Ω).



12 Philippe G. Ciarlet, Giuseppe Geymonat, Françoise Krasucki

Then

h(Λσ) = IS(σ) for all σ ∈ L2
s(Ω),

where the set S is defined as in Theorem 4.2, and the minimization problem of

Theorem 4.2, viz.,

inf
σ∈S

g(σ)

is the same as the minimization problem

inf
σ∈L2

s(Ω)
G(σ). (P)

Proof. Given any σ ∈ L2
s(Ω), the linear functional

Λσ : v ∈ V → Λσ(v) :=

∫
Ω

σ : ∇svdx ∈ R

is clearly continuous; hence Λσ ∈ V ∗. Besides, the mapping Λ : L2
s(Ω) → V ∗

defined in this fashion is continuous since

‖Λσ‖V ∗ = sup
v∈V

|
∫

Ω
σ : ∇svdx|
‖v‖H1(Ω)

≤ ‖σ‖L2
s(Ω) for all σ ∈ L2

s(Ω).

Therefore the mapping Λ : σ ∈ L2
s(Ω) → Λσ ∈ V ∗, which is clearly linear, is

continuous.

The function g : L2
s(Ω) → R is convex since the compliance tensor B is uni-

formly positive-definite almost-everywhere in Ω, and lower semi-continuous since g

is continuous for the norm ‖·‖L2
s(Ω).

The function h : V ∗ → R ∪ {+∞} is the indicator function of the subset {L}
of V ∗. Hence it is proper, convex because {L} is a convex subset of V ∗, and lower

semi-continuous because {L} is a closed subset of V ∗.

Clearly, solving the minimization problem

inf
σ∈S

g(σ)

of Theorem 4.2 is the same as solving the minimization problem

inf
σ∈L2

s(Ω)
(g(σ) + IS(σ)).

To prove the last assertion in the theorem therefore amounts to proving that G(σ) =

g(σ) + IS(σ) for all σ ∈ L2
s(Ω), i.e., that

h(Λσ) = IS(σ) for all σ ∈ L2
s(Ω).

Assume that σ ∈ S. Then the Green formula of Theorem 3.1, and the definition

of the set S together imply that

V ∗〈Λσ,v〉V =

∫
Ω

σ : ∇svdx = −
∫

Ω

(divσ) · vdx+ 〈σν, trv〉Γ

=

∫
Ω

f · vdx+ 〈F , trv〉Γ = L(v) for all v ∈ V .
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Therefore h(Λσ) = h(L) = 0, by definition of the function h.

Conversely, assume that σ ∈ L2
s(Ω) is such that h(Λσ) = 0; hence Λσ = L,

again by definition of h. Consequently, the same Green formula and the definition

of the mapping Λ together imply that

V ∗〈Λσ,v〉V =

∫
Ω

f · vdx+ 〈F , trv〉Γ =

∫
Ω

σ : ∇svdx

= −
∫

Ω

(divσ) · vdx+ 〈σν, trv〉Γ for all v ∈ V .

Letting the functions v vary in the subspace D(Ω) of V first shows that −divσ =

f ∈ L2(Ω); hence we are left with 〈σν − F , trv〉 = 0 for all v ∈ V . Consequently,

σ ∈ S.

We have thus shown that, given σ ∈ L2
s(Ω), h(Λσ) = 0 if and only if σ ∈ S.

Therefore h(Λσ) = IS(σ) for all σ ∈ L2
s(Ω), and the proof is complete.

In view of identifying the dual problems of the minimization problem (P) of

Theorem 5.1, it remains to identify the Legendre-Fenchel transforms (Section 2) of

the functions h and g introduced in this theorem. Although the next result is known

(see, e.g., Ref. ?), we nevertheless include its proof for completeness.

Theorem 5.2. Let the functions g : L2
s(Ω) → R and h : V ∗ → R ∪ {+∞} be

respectively defined by

σ ∈ L2
s(Ω)→ g(σ) :=

1

2

∫
Ω

Bσ : σdx

v∗ ∈ V ∗ → h(v∗) := 0 if v∗ = L or h(v∗) := +∞ if v∗ 6= L.

Then their Legendre-Fenchel transforms g∗ : L2
s(Ω) → R and h∗ : V → R are

respectively given by

g∗(e) :=
1

2

∫
Ω

Ae : edx for all e ∈ L2
s(Ω),

h∗(v) :=

∫
Ω

f · vdx+

∫
Ω

F · vdΓ = L(v) for all v ∈ V .

Proof. By definition, for each e ∈ L2
s(Ω) = (L2

s(Ω))∗.

g∗(e) := sup
σ∈L2

s(Ω)

{∫
Ω

e : σdx− g(σ)

}
:= sup

σ∈L2
s(Ω)

{∫
Ω

e : σdx− 1

2

∫
Ω

Bσ : σdx

}
:= − inf

σ∈L2
s(Ω)

{
1

2

∫
Ω

Bσ : σdx−
∫

Ω

e : σdx

}
=

1

2

∫
Ω

e : σdx,

where σ ∈ L2
s(Ω) satisfies∫

Ω

Bσ : σdx =

∫
Ω

e : σdx for all σ ∈ L2
s(Ω).
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Therefore Bσ = e, or equivalently σ = Ae. This shows that g∗(e) =
1

2

∫
Ω
Ae : edx,

as announced.

Likewise, for each v ∈ V ∗∗ = V ∗,

h∗(v) := sup
v∗∈V ∗

{V ∗〈v∗,v〉V − h(v∗)}.

But the definition of the function h implies that V ∗〈v∗,v〉V − h(v∗) = −∞ unless

v∗ = L. Therefore the supremum is attained for v∗ = L, which means that

h∗(v) = V ∗〈L,v〉V = L(v).

6. A first dual problem to the stress formulation

Following the approach described in Section 2, we now identify the first dual for-

mulation (P∗) to the stress formulation of the displacement-traction problem, for-

mulated for this purpose in the form of the equivalent minimization problem (P)

described in Theorem 5.1. In so doing, we also show that the infimum found in (P)

is equal to the supremum found in (P∗).

Theorem 6.1. Consider the minimization problem

inf
σ∈L2

s(Ω)
G(σ),

where

G(σ) := g(σ) + h(Λσ) for each σ ∈ L2
s(Ω),

the functions g : L2
s(Ω) → R and h : V ∗ → R ∪ {+∞} and the operator Λ ∈

L(L2
s(Ω);V ∗) being defined as in Theorem 5.1. Let

G∗(e) := inf
σ∈L2

s(Ω)

{∫
Ω

e : σdx+ h(Λσ)

}
− g∗(e) for each e ∈ L2

s(Ω),

where g∗ : L2
s(Ω)→ R is the Legendre-Fenchel transform of the function g, and let

sup
e∈L2

s(Ω)

G∗(e),

be the corresponding dual problem. Let the space M⊥ and the functional j : M⊥ → R
be defined as in Theorem 4.3.

Then the dual problem (P∗) can be also written as

sup
e∈L2

s(Ω)

G∗(e) = − inf
e∈M⊥

j(e).

Besides,

G(σ) = inf
σ∈L2

s(Ω)
G(σ) = sup

e∈L2
s(Ω)

G∗(e) = G∗(e),

where σ ∈ S ⊂ L2
s(Ω) and e ∈ M⊥ ⊂ L2

s(Ω) are the solutions of the minimization

problems of Theorems 4.2 and 4.3.
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Proof. We showed in Theorem 5.1 that h(Λσ) = IS(σ) for all σ ∈ L2
s(Ω) and we

showed in Theorem 5.2 that g∗(e) =
1

2

∫
Ω
Ae : edx for all e ∈ L2

s(Ω). Consequently,

G∗(e) := inf
σ∈L2

s(Ω)

{∫
Ω

e : σdx+ h(Λσ)

}
− g∗(e)

= inf
σ∈S

{∫
Ω

e : σdx

}
− 1

2

∫
Ω

Ae : edx for each e ∈ L2
s(Ω).

Let an element σ̃ ∈ S be chosen and kept fixed in what follows. Then any element

σ ∈ S can be written as σ = σ̃ + µ with µ ∈M, so that

G∗(e) = inf
µ∈M

{∫
Ω

e : µdx

}
+

∫
Ω

e : σ̃dx− 1

2

∫
Ω

Ae : edx for each e ∈ L2
s(Ω).

Since infµ∈M{
∫

Ω
e : µdx} = −∞ unless e ∈ M⊥, in which case

∫
Ω
e : µdx = 0 for

all µ ∈M, it is clear that

sup
e∈L2

s(Ω)

G∗(e) = sup
e∈M⊥

G∗(e).

For each e ∈M⊥, there exists a unique element F(e) ∈ V such that e = ∇sF(e)

(Theorem 3.2). Using the Green formula of Theorem 3.1, we can therefore re-write

the inner product
∫

Ω
e : σ̃dx as∫

Ω

e : σ̃dx =

∫
Ω

∇sF(e) · σ̃dx

=

∫
Ω

f ·F(e)dx+

∫
Γ1

F ·F(e)dΓ = L(F(e)).

Consequently,

sup
e∈L2

s(Ω)

G∗(e) = sup
e∈M⊥

{
− 1

2

∫
Ω

Ae : edx+ L(F(e))

}
= sup
e∈M⊥

{−j(e)} = − inf
e∈M⊥

j(e),

as announced. Finally

inf
σ∈L2

s(Ω)
G(σ) = inf

σ∈S

{
1

2

∫
Ω

Bσ : σdx

}
=

1

2

∫
Ω

Bσ : σdx = G(σ)

= −1

2

∫
Ω

A∇sv : ∇svdx+ L(v) = −j(∇sv) = −j(e)

= − inf
e∈M⊥

j(e) = sup
e∈M⊥

G∗(e) = G∗(e) = sup
e∈L2

s(Ω)

G∗(e),

and the proof is complete.

Theorem 6.1 thus shows that the dual problem (P∗) of the stress formulation of

the displacement-traction problem of linearized elasticity is, up to a change of sign,

the strain formulation of the same problem (Theorem 4.3).
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In addition, we give a positive answer to the last question raised in Section 2, by

showing that the Lagrangian associated to (P∗) has a saddle-point. The notations

and definitions used in the next theorem are those of Theorem 6.1.

Theorem 6.2. Define the Lagrangian

L : L2
s(Ω)× L2

s(Ω)→ R ∪ {+∞}

by

L(σ, e) :=

∫
Ω

e : σdx− g∗(e) + h(Λσ) for all (σ, e) ∈ L2
s(Ω)× L2

s(Ω).

Then

inf
σ∈L2

s(Ω)
sup

e∈L2
s(Ω)

L(σ, e) = L(σ, e) = sup
e∈L2

s(Ω)

inf
σ∈L2

s(Ω)
L(σ, e).

Proof. In view of Theorem 6.1, it suffices to prove that

G(σ) = L(σ, e),

where (recall that σ ∈ S)

G(σ) = g(σ) =
1

2

∫
Ω

Bσ : σdx =
1

2

∫
Ω

e : σdx,

and

L(σ, e) =

∫
Ω

e : σdx− g∗(e) + h(Λσ).

Hence the conclusion follows since, by Theorem 5.2,

g∗(e) =
1

2

∫
Ω

Ae : edx =
1

2

∫
Ω

σ : edx,

and, by Theorem 5.1, h(Λσ) = 0 because σ ∈ S.

7. A second dual problem to the stress formulation

We now identify the second dual formulation (P̃∗) to the stress formulation of the

displacement problem, again formulated as the problem (P) of Theorem 5.1. In so

doing, we also show that the infimum found in (P) is equal to the supremum found

in (P̃∗).

Theorem 7.1. Consider the minimization problem

inf
σ∈L2

s(Ω)
G(σ),

where the function G : L2
s(Ω)→ R ∪ {+∞} is defined as in Theorem 5.1. Let

G̃∗(v) := inf
σ∈L2

s(Ω)

{
1

2

∫
Ω

Bσ : σdx+ V ∗〈Λσ,v〉V
}
− h∗(v) for each v ∈ V ,
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where h∗ : V → R is the Legendre-Fenchel transform of the function h, and let

sup
v∈V

G̃∗(v) (P̃∗)

be the corresponding dual problem.

Let the functional J : V → R be defined as in Theorem 4.1. Then the dual

problem (P̃∗) can be also written as

sup
v∈V

G̃∗(v) = − inf
v∈V

J(v).

Besides,

G(σ) = inf
σ∈L2

s(Ω)
G(σ) = sup

v∈V
G̃∗(v) = G∗(−v),

where σ ∈ S ⊂ L2
s(Ω) and v ∈ V are the solutions of the minimization problems of

Theorems 4.2 and 4.1.

Proof. By definition (Theorem 5.1), V ∗〈Λσ,v〉V =
∫

Ω
σ : ∇svdx for all σ ∈ L2

s(Ω)

and all v ∈ V ; besides, h∗(v) = L(v) for all v ∈ V (Theorem 5.2). Consequently,

G̃∗(v) = inf
σ∈L2

s(Ω)

{
1

2

∫
Ω

Bσ : σdx+

∫
Ω

σ : ∇svdx

}
− L(v) for each v ∈ V .

But

inf
σ∈L2

s(Ω)

{
1

2

∫
Ω

Bσ : σdx+

∫
Ω

σ : ∇svdx

}
= −1

2

∫
Ω

A∇sv : ∇svdx,

so that

G̃∗(v) = −1

2

∫
Ω

A∇sv : ∇svdx− L(v) for each v ∈ V .

Noting that V is a vector space, we thus have

sup
v∈V

G̃∗(v) = sup
v∈V

G̃∗(−v) = − inf
v∈V

J(v),

as announced. Finally,

inf
σ∈L2

s(Ω)
G(σ) = inf

σ∈S

{
1

2

∫
Ω

Bσ : σdx

}
=

1

2

∫
Ω

Bσ : σdx = G(σ)

= −1

2

∫
Ω

A∇sv : ∇svdx+ L(v) = J(v) = G̃∗(−v)

= − inf
v∈V

J(v) = sup
v∈V

G̃∗(v),

and the proof is complete.

Theorem ?? thus shows that the dual problem (P̃∗) to the stress formulation of

the displacement-traction problem of linearized elasticity is, up to a change of sign,

the displacement formulation of the same problem (Theorem 4.1).
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To conclude this analysis, we show that the Lagrangian associated to (P̃∗) has a

saddle-point (like the Lagrangian associated to (P∗); cf. Theorem ??). The notations

and definitions are those of Theorem ??.

Theorem 7.2. Define the Lagrangian

L̃ : L2
s(Ω)× V → R

by

L̃(σ,v) :=
1

2

∫
Ω

Bσ : σdx+ V ∗〈Λσ,v〉V − h∗(v) for all (σ,v) ∈ L2
s(Ω)× V .

Then

inf
σ∈L2

s(Ω)
sup
v∈V

= L̃(σ,v) = L̃(σ,v) = sup
v∈V

inf
σ∈L2

s(Ω)
L̃(σ,v).

Proof. In view of Theorem ??, it suffices to prove that

G(σ) = L̃(σ,v),

where

G(σ) =
1

2

∫
Ω

Bσ : σdx

(see the proof of Theorem ??), and

L̃(σ,v) :=
1

2

∫
Ω

Bσ : σdx+ V ∗〈Λσ,v〉V − h∗(v).

Hence the conclusion follows since, by Theorem 5.1,

V ∗〈Λσ,v〉V =

∫
Ω

σ : ∇svdx =

∫
Ω

A∇sv : ∇svdx = L(v),

and, by Theorem 5.2, h∗(v) = L(v).

8. Concluding remarks

The strain formulation of, a.k.a. the intrinsic approach to, the displacement-traction

problem described in Theorem 4.3 was derived a priori in ?, as a way to re-formulate

this problem as a quadratic minimization problem with the strain tensor field as the

sole unknown. One main conclusion to be drawn from the present analysis is thus

that this strain formulation may be also viewed as a Legendre-Fenchel dual problem

to the classical stress formulation (Theorem 6.1). This constitutes the main novelty

of this paper.

Another novelty is that the classical displacement formulation can be also viewed

as a Legendre-Fenchel dual problem to the same classical stress formulation (The-

orem ??).
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For the pure traction problem (not considered here), i.e., when Γ0 = ∅, another

strain formulation is possible. More specifically, Ciarlet & Ciarlet, Jr. ? have estab-

lished the following Saint Venant theorem in L2
s(Ω): Let Ω be a simply-connected

domain in R3 and let e ∈ L2
s(Ω) be a matrix field that satisfies the Saint Venant

compatibility conditions

Rijk`(e) := ∂`jeik + ∂kiej` − ∂`iejk − ∂kjei` = 0 in H−2(Ω).

Then there exists a vector field v ∈ H1(Ω) such that e = ∇sv in L2
s(Ω). Further

extensions, to Sobolev spaces of weaker regularity, have since then been given, in

Refs. ? and ?.

Furthermore, it was subsequently shown, in Ciarlet & Ciarlet, Jr. ?, that the

above Saint-Venant compatibility conditions can be exactly satisfied in an ad hoc

finite element subspace of L2
s(Ω) that uses edge finite elements in the sense of

Nédélec ?,?, thus yielding an efficient way to directly approximate the strain tensor

field e or equivalently the stress tensor field σ through the constitutive equation

σ = Ae. Indeed, the first numerical simulations are very encouraging; cf. Ciarlet,

Ciarlet, Jr. & Vicard ?.

Be that as it may, the latter approach suffers from two shortcomings. First, the

domain Ω must be simply-connected; second, this approach does not seem so far to

be amenable to treat displacement-traction, or even pure displacement, problems.

By contrast, the Donati-like strain approach considered here does not suffer from

such shortcomings.

It is therefore remarkable that a totally different approach, based on Legendre-

Fenchel duality, leads to the same conclusion, namely that the Donati-like ap-

proach is more natural, and more efficient, than the Saint-Venant-like approach

for constructing a strain formulation of the displacement-traction problem of three-

dimensional linearized elasticity.
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Application to Poincaré theorem and Korn’s inequality in Sobolev spaces with negative
exponents, Analysis and Applications (to appear).

3. C. Amrouche, P.G. Ciarlet, L. Gratie and S. Kesavan, On the characterizations of
matrix fields as linearized strain tensor fields, J. Math. Pures Appl. 86 (2006) 116–
132.

4. S.S. Antman, Ordinary differential equations of nonlinear elasticity I: Foundations of
the theories of non-linearly elastic rods and shells, Arch. Rational Mech. Anal. 61
(1976) 307–351.



20 Philippe G. Ciarlet, Giuseppe Geymonat, Françoise Krasucki
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