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A NEW DUALITY APPROACH TO

ELASTICITY

P. G. Ciarlet ∗, G. Geymonat † and Françoise Krasucki ‡

Abstract

The displacement-traction problem of three-dimensional linearized elas-
ticity can be posed as three different minimization problems, depending
on whether the displacement vector field, or the stress tensor field, or the
strain tensor field, is the unknown.

The objective of this paper is to put these three different formulations
of the same problem in a new perspective, by means of Legendre-Fenchel
duality theory. More specifically, we show that both the displacement and
strain formulations can be viewed as Legendre-Fenchel dual problems to
the stress formulation. We also show that each corresponding Lagrangian
has a saddle-point, thus fully justifying this new duality approach to elas-
ticity.

Keywords Linearized elasticity; intrinsic elasticity; constrained quadratic op-
timization; Legendre-Fenchel transform; duality; Lagrangians.

AMS Subject Classification: 49N10, 49N15, 74B05

1 Introduction

All notions, notations, or assumptions not defined or stated here are defined
in the next sections.

Let Ω be a domain in R3, let its boundary Γ be partitioned as Γ = Γ0∪Γ1

with Γ0∩Γ1 = ∅ and dΓ-meas Γ0 > 0, and let Ω be the reference configuration
of a linearly elastic body with elasticity tensor field A, subjected to an applied
body forces of density f ∈ L2(Ω) and to an applied surface forces of density
F ∈ L2(Γ1), and subjected to a boundary condition of place u = 0 on Γ0

(only homogeneous boundary conditions of place are considered here). This
problem is called a displacement-traction problem if dΓ-meas Γ1 > 0, or a
pure displacement problem if Γ0 = Γ. The pure traction problem, which
corresponds to Γ1 = Γ, is not considered here.
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It is then well-known (see, e.g., Ciarlet [11]) that the unknown displace-
ment vector field v : Ω → R3 is the unique solution of the minimization
problem

J(v) = inf
v∈V

J(v),

where

J(v) =
1

2

∫
Ω

A∇sv : ∇svdx− L(v),

L(v) =

∫
Ω

f · vdx+

∫
Γ1

F · vdΓ,

V = {v ∈H1(Ω); trv = 0 on Γ0}.

This minimization problem, which constitutes the modern version of the
classical principle of minimum potential energy (for a historical perspective,
see Gurtin [26] or Benvenuto [6]), will be referred to as the displacement for-
mulation of the displacement-traction problem of three-dimensional linearized
elasticity.

It is also well-known (see, e.g., Brezzi & Fortin [9]) that the same problem
can be also formulated as another minimization problem, where the stress
tensor field σ = A∇sv : Ω→ S3 is the unknown, viz.,

g(σ) = inf
σ∈S

g(σ),

where

g(σ) =
1

2

∫
Ω

Bσ : σdx,

S = {σ ∈ H(div; Ω);divσ + f = 0 in L2(Ω),

〈σν − F , trv〉Γ = 0 for all v ∈ V },

and B denotes the compliance tensor, i.e., the inverse of the tensor field A.
This minimization problem, which constitutes the modern version of the

classical principle of minimum complementary energy (for a historical per-
spective, see again Gurtin [26] or Benvenuto [6]), will be referred to as the
stress formulation of the displacement-traction problem of three-dimensional
linearized elasticity.

It is much less known that yet another approach is possible, where the
strain tensor field e = ∇sv is the unknown. The idea of such an approach,
which bears the name of intrinsic approach, is not new: in nonlinear three-
dimensional elasticity, it was first suggested, albeit only briefly, by Antman
[4] in 1977; a similar idea for shells and plates goes back even earlier, to
Synge & Chien [33] (see also Chien [10]), who already in 1941 advocated
using the change of metric and change of curvature tensors as the primary
unknowns. This approach was then considerably developed during the past
decades, from the mechanical and computational viewpoints, by Wojciech
Pietraszkiewicz and his group. See in particular Opoka & Pietraszkiewicz [31]
and Pietraszkiewicz [32]. But it is only recently that the mathematical anal-
ysis and numerical analysis of the intrinsic approach to three-dimensional
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elasticity were undertaken, by Ciarlet & Ciarlet, Jr. [12, 13], Amrouche, Cia-
rlet, Gratie & Kesavan [3], Ciarlet, Ciarlet, Jr., Iosifescu, Sauter & Zou [15]
in the linear case, and by Ciarlet & Mardare [18] in the nonlinear case.

As shown in C. Amrouche, P.G. Ciarlet, L. Gratie & S. Kesavan, [3] (in
the case of the pure displacement problem, but the extension to a genuine
displacement-traction problem poses no difficulty), one intrinsic approach to
the same problem takes the form of the following minimization problem:

j(e) = inf
e∈M⊥

j(e),

where

j(e) =
1

2

∫
Ω

Ae : edx− L(F(e)),

M = {µ ∈ L2
s(Ω);divµ = 0 in H−1(Ω); 〈µν, trv〉Γ = 0 for all v ∈ V },

M⊥ = {e ∈ L2
s(Ω);

∫
Ω

e : µdx = 0 for all µ ∈ M}.

This minimization problem will be referred to as the strain formulation of
the displacement-traction problem of three-dimensional linearized elasticity.
Note that another strain formulation is possible, but it does not seem to be
amenable to the present approach, however (cf. the discussion given in Section
8).

The objective of this paper is to put these three different formulations of
the same problem in a different perspective, new to the best of our knowledge,
by means of Legendre-Fenchel duality theory (the principles of which are re-
called in Section 2). More specifically, we show in Sections 6 and 7 that both
the displacement and strain formulations are nothing but Legendre-Fenchel
dual problems to the stress formulation, once this formulation has been ap-
propriately recast within the framework of this duality theory (Section 5).
We also show that each corresponding Lagrangian has a saddle-point, thus
fully justifying this new duality approach to elasticity.

The results of this paper were announced in P.G. Ciarlet, G. Geymonat
& F. Krasucki, [17].

2 Legendre-Fenchel duality

All vector spaces, matrices, etc., considered in this paper are real. The dual
space of a normed vector space X is denoted X∗, and X∗〈·, ·〉X designates the
associated duality. The bidual space of X is denoted X∗∗; if X is a reflexive
Banach space, X∗∗ will be identified with X by means of the usual canonical
isometry.

The indicator function IA of a subset A of a set X is the function IA
defined by IA(x) := 0 if x ∈ A and IA(x) := +∞ if x /∈ A. A function
g : X → R ∪ {+∞} is proper if {x ∈ X; g(x) < +∞} 6= ∅.

For the reader’s convenience, the notations chosen below are on purpose
either identical or similar (up to, e.g., italics instead of boldface) to those
used later on.
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Let Σ be a normed vector space and let g : Σ → R ∪ {+∞} be a proper
function. The Legendre-Fenchel transform of g is the function g∗ : Σ∗ →
R ∪ {+∞} defined by

g∗ : e ∈ Σ∗ → g∗(e) := sup
σ∈Σ
{Σ∗〈e, σ〉Σ − g(σ)}.

The next theorem summarizes some basic properties of the Legendre-
Fenchel transform when the space Σ is a reflexive Banach space. For proofs,
see, e.g., Ekeland & Temam [20] or Brezis [7].

Theorem 1. Let Σ be a reflexive Banach space, and let g : Σ→ R∪{+∞} be a proper,
convex, and lower semi-continuous function. Then the Legendre-Fenchel transform
g∗ : Σ∗ → R ∪ {+∞} of g is also proper, convex, and lower semi-continuous. Let

g∗∗ : σ ∈ Σ∗∗ → g∗∗(σ) := sup
e∈Σ∗
{Σ∗〈e, σ〉Σ − g∗(e)}

denote the Legendre-Fenchel transform of g∗. Then (recall that X∗∗ is here identified
with X)

g∗∗ = g.

The equality g∗∗ = g constitutes the Fenchel-Moreau theorem; cf. Fenchel
[21] and Moreau [27].

Given a minimization problem

inf
σ∈Σ

G(σ), (P)

with a function G : Σ → R ∪ {+∞} of the specific form given in Theorem
2, the following simple result will be the basis for defining two different dual
problems of problem (P). The functions L and L̃ defined in the next theorem
are the Lagrangians associated with the minimization problem (P).

Theorem 2. Let Σ and V be two reflexive Banach spaces, let g : Σ→ R∪{+∞} and
h : V ∗ → R ∪ {+∞} be two proper, convex, and lower semi-continuous functions, let
Λ : Σ→ V ∗ be a linear and continuous mapping, let the function G : Σ→ R ∪ {+∞}
be defined by

G : σ ∈ Σ→ G(σ) := g(σ) + h(Λσ),

and finally, let the two functions

L : Σ× Σ∗ → {−∞} ∪ R ∪ {+∞} and L̃ : Σ× V → {−∞} ∪ R ∪ {+∞}

be defined by

L : (σ, e) ∈ Σ× Σ∗ → L(σ, e) := Σ∗〈e, σ〉Σ − g∗(e) + h(Λσ),

L̃ : (σ, v) ∈ Σ× V → L̃(σ, v) := g(σ) + V ∗〈Λσ, v〉V − h∗(v).

Then
inf
σ∈Σ

G(σ) = inf
σ∈Σ

sup
e∈Σ∗

L(σ, e) = inf
σ∈Σ

sup
v∈V

L̃(σ, v).
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Proof. Since g(σ) = g∗∗(σ) for each σ ∈ Σ (Theorem 1), we also have

G(σ) = g∗∗(σ) + h(Λσ) = sup
e∈Σ∗
{Σ∗〈e, σ〉Σ − g∗(e)}+ h(Λσ)

= sup
e∈Σ∗

L(σ, e) for each σ ∈ Σ.

Hence
inf
σ∈Σ

G(σ) = inf
σ∈Σ

sup
e∈Σ∗

L(σ, e).

Since likewise h(v∗) = h∗∗(v∗) for each v∗ ∈ V ∗ and the space V ∗∗ is identified
with V , we have

h(v∗) = h∗∗(v∗) = sup
v∈V
{V ∗〈v∗, v〉V − h∗(v)} for each v∗ ∈ V ∗,

so that

G(σ) = g(σ) + h(Λσ)

= g(σ) + sup
v∈V
{V ∗〈Λσ, v〉V − h∗(v)} = sup

v∈V
L̃(σ, v) for each σ ∈ Σ.

Hence
inf
σ∈Σ

G(σ) = inf
σ∈Σ

sup
v∈V
L̃(σ, v).

As is classical in duality theory (see, e.g., Chapter 6 in Ekeland & Temam
[20]), the replacement of the minimization problem (P) by an inf-sup problem,
such as either one found in Theorem 2, is the basis for defining a dual problem
of the minimization problem (P), as the corresponding sup-inf problem. In
our case, this means that the dual problem corresponding to the first inf-sup
problem found in Theorem 2 is defined as:

sup
e∈Σ∗

G∗(e), where G∗(e) := inf
σ∈Σ
{Σ∗〈e, σ〉Σ − h(Λσ)} − g∗(e) for each e ∈ Σ∗, (P∗)

while the dual problem corresponding to the second sup-inf problem is defined
as:

sup
v∈V

G̃∗(v), where G̃∗(v) := inf
σ∈Σ
{g(σ) + Σ∗〈Λσ, v〉V } − h∗(v) for each v ∈ V. (P̃∗)

A key issue (see ibid.) then consists in deciding whether the infimum
found in problem (P) is equal to the supremum found in either one of its
dual problems, i.e., for instance in the case of the first dual problem (to fix
ideas), whether

inf
σ∈Σ

G(σ) = sup
e∈Σ∗

G∗(e),

or equivalently, whether

inf
σ∈Σ

sup
e∈Σ∗

L(σ, e) = sup
e∈Σ∗

inf
σ∈Σ
L(σ, e).

If this is the case, the next issue consists in deciding whether the Lagrangian
L possesses a saddle-point (σ, e) ∈ Σ× Σ∗, i.e., that satisfies

inf
σ∈Σ

sup
e∈Σ∗

L(σ, e) = inf
σ∈Σ
L(σ, e) = L(σ, e) = sup

e∈Σ∗
L(σ, e) = sup

e∈Σ∗
inf
σ∈Σ
L(σ, e).

This is precisely the type of questions that will be addressed in this paper,
the point of departure (P) being a classical quadratic minimization problem
arising in three-dimensional linearized elasticity.
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3 Some functional analytic preliminaries

Latin indices vary in the set {1, 2, 3}, save when they are used for indexing
sequences, and the summation convention with respect to repeated indices is
systematically used in conjunction with this rule.

In what follows, Ω is a domain in R3, i.e., a bounded, connected, open
subset of R3 whose boundary, denoted Γ, is Lipschitz-continuous, the set Ω
being locally on a single side of Γ (see, e.g., Adams [1] or Nečas [28]), and x =
(xi) designates a generic point in Ω. Partial derivative operators of the first,
second, and third order are then denoted ∂i := ∂/∂xi, ∂ij := ∂2/∂xi∂xj , and
∂ijk := ∂3/∂xi∂xj∂xk. The same symbols also designate partial derivatives
in the sense of distributions.

The notation D(Ω) denotes the space of functions that are infinitely dif-
ferentiable in Ω and have compact supports in Ω. The notation D′(Ω) denotes
the space of distributions defined over Ω. The notationsH1(Ω), H1

0 (Ω), H1/2(Γ)
and H−1/2(Γ) := (H1/2(Γ))∗ designate the usual Sobolev spaces. The trace
operator from H1(Ω) onto H1/2(Γ) is denoted tr.

Spaces of functions, vector fields in R3, and 3 × 3 matrix fields, defined
over Ω are respectively denoted by italic capitals, boldface Roman capitals,
and special Roman capitals. The space of all symmetric matrices of order 3
is denoted S3. The subscript s appended to a special Roman capital denotes
a space of symmetric matrix fields. Combining the above rules, we shall thus
encounter spaces such as D(Ω), D′(Ω), D′(Ω), L2

s(Ω), H1/2(Γ), etc.
The notation (v)i designates the i-th component of a vector v ∈ R3 and

the notation v = (vi) means that vi = (v)i. The notation (A)ij designates
the element at the i-th row and j-th column of a square matrix A of order
three and the notation A = (aij) means that aij = (A)ij . The inner-product
of a ∈ R3 and b ∈ R3 is denoted a · b. The notation s : t := sijtij designates
the matrix inner-product of two matrices s := (sij) and t := (tij) of order
three.

The inner product in the space L2
s(Ω) is given by

(σ, τ ) ∈ L2
s(Ω)× L2

s(Ω)→
∫

Ω

σ : τ dx,

so that the corresponding norm is given by

‖σ‖L2
s(Ω) =

(∫
Ω

σ : σdx

)1/2

for any σ ∈ L2
s(Ω).

The space L2
s(Ω) will be identified with its dual space; hence the correspond-

ing duality bracket will be identified with the inner product of L2
s(Ω).

The norm in the space H1(Ω) is given by

v = (vi) ∈H1(Ω)→ ‖v‖H1(Ω) =

( 3∑
i=1

‖vi‖2H1(Ω)

)1/2

.

For notational conciseness, the duality bracket between the spaceH1/2(Γ)
and its dual space will be denoted

〈·, ·〉Γ := H−1/2(Γ)〈·, ·〉H1/2(Γ).
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Note in this respect that, if F ∈ L2(Γ), then

〈F , trv〉Γ =

∫
Γ

F · vdΓ for any v ∈H1(Ω).

The matrix gradient operator ∇ : D′(Ω)→ D′(Ω) is defined by

(∇v)ij := ∂jvi for any v = (vi) ∈D′(Ω).

For any vector field v = (vi) ∈ D′(Ω), the associated linearized strain
tensor is the symmetric matrix field ∇sv ∈ D′s(Ω) defined by

∇sv :=
1

2
(∇vT + ∇v),

or equivalently, by

(∇sv)ij =
1

2
(∂ivj + ∂jvi).

The vector divergence operator div : D′(Ω)→ D′(Ω) is defined by

(divµ)i := ∂jµij for any µ = (µij) ∈ D′(Ω).

We now recall some functional analytic preliminaries, due to Geymonat
& Suquet [24] and Geymonat & Krasucki [22, 23], which are the “matrix
analogs” of results of Girault & Raviart [25] for spaces of vector fields. Given
a domain Ω in R3, define the space

Hs(div; Ω) := {µ ∈ L2
s(Ω); divµ ∈ L2(Ω)}

(in this definition divµ is of course to be understood in the sense of distri-
butions). Equipped with the norm defined by

‖µ‖Hs(div;Ω) :=
(
‖µ‖2L2

s(Ω) + ‖divµ‖2L2(Ω)

)1/2

for all µ ∈ Hs(div; Ω),

the space Hs(div; Ω) is a Hilbert space. Let ν : Γ → R3 denote the unit
outer normal vector field along the boundary Γ of Ω (such a field is defined
dΓ-everywhere since Γ is Lipschitz-continuous). The set Ω being a domain,
the density of the space C∞s (Ω) in the space H(div; Ω) then implies that
the mapping µ ∈ C∞s (Ω) → µν|Γ can be extended to a continuous linear
mapping from the space Hs(div; Ω) into H−1/2(Γ), which for convenience
will be simply denoted

µ ∈ Hs(div; Ω)→ µν ∈ H−1/2(Γ).

Theorem 3. The Green formula∫
Ω

µ : ∇svdx+

∫
Ω

(divµ) · vdx = 〈µν, trv〉Γ

holds for all µ ∈ Hs(div; Ω) and all v ∈H1(Ω).

The following extension of the classical Donati theorem (for a brief history
of this result, see Section 7 in [15]) plays an essential role in the sequel. The
case where Γ0 = ∅ (which is thus excluded here) is considered in Refs. [3]
and [15].
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Theorem 4. Let Ω be a domain in R3, let Γ0 and Γ1 be two relatively open subsets
of Γ such that

dΓ- meas Γ0 > 0, Γ = Γ0 ∪ Γ1, and Γ0 ∩ Γ1 = ∅,

and let there be given a matrix field e ∈ L2
s(Ω). Then there exists a vector field

v ∈ V := {v ∈H1(Ω); trv = 0 on Γ0}

such that e = ∇sv if and only if∫
Ω

e : µdx = 0 for all µ ∈ M,

where the space M is defined as

M := {µ ∈ L2
s(Ω);divµ = 0 in H−1(Ω), 〈µν, trv〉Γ = 0 for all v ∈ V }.

Besides, such a vector field v ∈ V is uniquely defined.

4 Three different formulations of the displacement-
traction problem of three-dimensional lin-
earized elasticity as a minimization prob-
lem

Let Ω be a domain in R3 and let Γ0 and Γ1 be two relatively open subsets of
Γ := ∂Ω that satisfy

dΓ- meas Γ0 > 0, Γ = Γ0 ∪ Γ1, and Γ0 ∩ Γ1 = ∅.

The following assumptions are made in the rest of the paper. The set
Ω is the reference configuration of a linearly elastic body, characterized by
its elasticity tensor field A = (Aijk`) with components Aijk` ∈ L∞(Ω). It
is assumed as usual that these components satisfy the symmetry relations
Aijk` = Ajik` = Ak`ij and that the tensor field A is uniformly positive-
definite almost-everywhere in Ω, in the sense that there exists a constant
α > 0 such that

At : t ≥ αt : t for almost all x ∈ Ω and all matrices t = (tij) ∈ S3,

where (A(x)t)ij := Aijk`(x)tk`. The body is subjected to applied body forces
with density f ∈ L2(Ω) in its interior and to applied surface forces of density
F ∈ L2(Γ1) on the portion Γ1 of its boundary. Finally, it is assumed that the
body is subjected to a homogeneous boundary condition of place along Γ0.

Then the corresponding displacement-traction problem, or the pure dis-
placement problem if Γ0 = Γ, of three-dimensional linearized elasticity clas-
sically takes the form of the minimization problem described in the next
theorem, where the minimizer v : Ω→ R3 is the unknown displacement field.
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Theorem 5 (the classical displacement formulation). There exists a unique
vector field

v ∈ V := {v ∈H1(Ω); trv = 0 on Γ0}
that satisfies

J(v) = inf
v∈V

J(v), where J(v) :=
1

2

∫
Ω

A∇sv : ∇svdx− L(v) for all v ∈ V ,

and

L(v) :=

∫
Ω

f · vdx+

∫
Γ1

F · vdΓ for all v ∈H1(Ω).

That this minimization problem has one and only one solution is well
known (see, e.g., Theorem 3.4 in Duvaut & Lions [19]).

In view of describing a second formulation of the same displacement-
traction problem, we first note that, because the elasticity tensor field A =
(Aijk`) with components Aijk` ∈ L∞(Ω) is uniformly positive-definite almost-
everywhere in Ω, there exists a tensor field B = (Bijk`) that is the inverse of
A, in the sense that, for almost all x ∈ Ω,

s = A(x)t is equivalent to t = B(x)s for all matrices t ∈ S3.

Furthermore, it is easily seen that Bijk` ∈ L∞(Ω) and that B is also uniformly
positive-definite almost-everywhere in Ω, i.e., there exists a constant β > 0
such that

B(x)s : s ≥ βs : s for almost all x ∈ Ω and all matrices s ∈ S3.

The tensor field B is called the compliance tensor field.
It is then classical that, like the displacement field, the stress tensor field

σ := A∇sv ∈ L2
s(Ω) inside the body can be also obtained as the solution of a

minimization problem. To show this, one first uses the Babuška-Brezzi inf-sup
theorem (Babuška [5] and Brezzi [8]) to derive a “mixed” formulation of the
elasticity problem, i.e., where both v ∈ V and σ ∈ L2

s(Ω) are the unknowns;
then, using a standard procedure in optimization theory, one constructs a
dual problem with σ = A∇sv as the sole unknown (Brezzi & Fortin [9]).
The dual problem obtained in this fashion is then a constrained quadratic
minimization problem (the constraints here are the relations divσ + f = 0
in L2(Ω) and 〈σν −F , trv〉Γ = 0 for all v ∈ V that must be satisfied by the
“admissible” stress fields σ; cf. Theorem 6).

Theorem 6 (the classical stress formulation). Let the space V be defined as in
Theorem 5, i.e.,

V := {v ∈H1(Ω); trv = 0 on Γ0}.
Then there exists a unique tensor field

σ ∈ S := {σ ∈ Hs(div; Ω);divσ + f = 0 in L2(Ω),

〈σν − F , trv〉Γ = 0 for all v ∈ V },

that satisfies

g(σ) = inf
σ∈S

g(σ), where g(σ) :=
1

2

∫
Ω

Bσ : σdx for all σ ∈ L2
s(Ω).
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Besides,
σ = A∇sv in L2

s(Ω),

where the vector field v ∈ V is the unique solution to the minimization problem of
Theorem 5.

An intrinsic approach to the same displacement-traction problem consists
in considering the linearized strain tensor field e := ∇sv ∈ L2

s(Ω) inside the
body as the primary unknown, instead of the displacement field itself.

Accordingly, one first needs to characterize those 3× 3 matrix fields e ∈
L2
s(Ω) that can be written as e = ∇sv, with v ∈ V . Theorem 4 provides

such a characterization.
Thanks to this theorem, the displacement-traction problem of three-dimensional

elasticity can then be recast as yet anotherconstrained quadratic minimization
problem, with e = ∇sv ∈ L2

s(Ω) as the unknown.

Theorem 7 (the strain formulation, a.k.a. the intrinsic approach). Let the
space M be defined as in Theorem 4, i.e.,

M := {µ ∈ L2
s(Ω);divµ = 0 in H−1(Ω); 〈µν, trv〉Γ = 0 for all v ∈ V }.

Define the Hilbert space

M⊥ := {e ∈ L2
s(Ω);

∫
Ω

e : µdx = 0 for all µ ∈ M},

and, for each e ∈ M⊥, let F(e) denote the unique element in the space V that satisfies
∇sF(e) = e (Theorem 4). Then the mapping F : M⊥ → V defined in this fashion is
an isomorphism between the Hilbert spaces M⊥ and V .

The minimization problem: Find e ∈ M⊥ such that

j(e) = inf
e∈M⊥

j(e), where j(e) :=
1

2

∫
Ω

Ae : edx− L(F(e)),

has one and only one solution e. Besides,

e = ∇sv,

where the vector field v ∈ V is the unique solution to the minimization problem of
Theorem 5.

Remark 1. A proof similar to that of the corollary to Theorem 4.1 in P.G. Ciarlet
and P., Ciarlet, Jr., [12] shows that the Korn inequality in the space V can then be
recovered as a simple corollary to Theorem 7, which thus provides an entirely new proof
of this classical inequality.

5 The classical stress formulation of the
displacement-traction problem as a point
of departure

The minimization problem found in the classical stress formulation described
in Theorem 6 constitutes our point of departure for constructing dual prob-
lems, by means of the approach described in Section 2. Accordingly, our

10



first task consists in verifying that this formulation can be indeed recast in
the abstract framework of Theorem 2. Note in this respect that the spaces
denoted L2

s(Ω), identified here with its dual space, V , and V ∗, in the next
theorem play the rôle of the spaces respectively denoted Σ,Σ∗, V , and V ∗ in
Theorem 2.

Theorem 8. Let the space V and the linear form L ∈ V ∗ be defined as in Theorem
5, let the mapping Λ : σ ∈ L2

s(Ω)→ Λσ ∈ V ∗ be defined by

V ∗〈Λσ,v〉V :=

∫
Ω

σ : ∇svdx for all v ∈ V ,

and finally, let the functions g : L2
s(Ω) → R and h : V ∗ → R ∪ {+∞} be respectively

defined by

σ ∈ L2
s(Ω)→ g(σ) :=

1

2

∫
Ω

Bσ : σdx,

v∗ ∈ V ∗ → h(v∗) := 0 if v∗ = L or h(v∗) := +∞ if v∗ 6= L.

Then Λ ∈ L(L2
s(Ω);V ∗) and the functions g and h are both proper, convex, and lower

semi-continuous.
Define the function G : L2

s(Ω)→ R ∪ {+∞} by

G(σ) := g(σ) + h(Λσ) for all σ ∈ L2
s(Ω).

Then
h(Λσ) = IS(σ) for all σ ∈ L2

s(Ω),

where the set S is defined as in Theorem 6, and the minimization problem of Theorem
6, viz.,

inf
σ∈S

g(σ)

is the same as the minimization problem

inf
σ∈L2

s(Ω)
G(σ). (P)

Proof. Given any σ ∈ L2
s(Ω), the linear functional

Λσ : v ∈ V → Λσ(v) :=

∫
Ω

σ : ∇svdx ∈ R

is clearly continuous; hence Λσ ∈ V ∗. Besides, the mapping Λ : L2
s(Ω)→ V ∗ defined

in this fashion is continuous since

‖Λσ‖V ∗ = sup
v∈V

|
∫

Ω
σ : ∇svdx|
‖v‖H1(Ω)

≤ ‖σ‖L2
s(Ω) for all σ ∈ L2

s(Ω).

Therefore the mapping Λ : σ ∈ L2
s(Ω)→ Λσ ∈ V ∗, which is clearly linear, is continu-

ous.
The function g : L2

s(Ω) → R is convex since the compliance tensor B is uniformly
positive-definite almost-everywhere in Ω, and lower semi-continuous since g is contin-
uous for the norm ‖·‖L2

s(Ω).

11



The function h : V ∗ → R ∪ {+∞} is the indicator function of the subset {L}
of V ∗. Hence it is proper, convex because {L} is a convex subset of V ∗, and lower
semi-continuous because {L} is a closed subset of V ∗.

Clearly, solving the minimization problem

inf
σ∈S

g(σ)

of Theorem 6 is the same as solving the minimization problem

inf
σ∈L2

s(Ω)
(g(σ) + IS(σ)).

To prove the last assertion in the theorem therefore amounts to proving that G(σ) =
g(σ) + IS(σ) for all σ ∈ L2

s(Ω), i.e., that

h(Λσ) = IS(σ) for all σ ∈ L2
s(Ω).

Assume that σ ∈ S. Then the Green formula of Theorem 3, and the definition of
the set S together imply that

V ∗〈Λσ,v〉V =

∫
Ω

σ : ∇svdx = −
∫

Ω

(divσ) · vdx+ 〈σν, trv〉Γ

=

∫
Ω

f · vdx+ 〈F , trv〉Γ = L(v) for all v ∈ V .

Therefore h(Λσ) = h(L) = 0, by definition of the function h.
Conversely, assume that σ ∈ L2

s(Ω) is such that h(Λσ) = 0; hence Λσ = L, again
by definition of h. Consequently, the same Green formula and the definition of the
mapping Λ together imply that

V ∗〈Λσ,v〉V =

∫
Ω

f · vdx+ 〈F , trv〉Γ =

∫
Ω

σ : ∇svdx

= −
∫

Ω

(divσ) · vdx+ 〈σν, trv〉Γ for all v ∈ V .

Letting the functions v vary in the subspace D(Ω) of V first shows that −divσ =
f ∈ L2(Ω); hence we are left with 〈σν − F , trv〉 = 0 for all v ∈ V . Consequently,
σ ∈ S.

We have thus shown that, given σ ∈ L2
s(Ω), h(Λσ) = 0 if and only if σ ∈ S.

Therefore h(Λσ) = IS(σ) for all σ ∈ L2
s(Ω), and the proof is complete.

In view of identifying the dual problems of the minimization problem (P)
of Theorem 8, it remains to identify the Legendre-Fenchel transforms (Section
2) of the functions h and g introduced in this theorem. Although the next
result is known (see, e.g., I. Ekeland and R. Temam, [20]), we nevertheless
include its proof for completeness.

Theorem 9. Let the functions g : L2
s(Ω)→ R and h : V ∗ → R∪{+∞} be respectively

defined by

σ ∈ L2
s(Ω)→ g(σ) :=

1

2

∫
Ω

Bσ : σdx

v∗ ∈ V ∗ → h(v∗) := 0 if v∗ = L or h(v∗) := +∞ if v∗ 6= L.

12



Then their Legendre-Fenchel transforms g∗ : L2
s(Ω) → R and h∗ : V → R are respec-

tively given by

g∗(e) :=
1

2

∫
Ω

Ae : edx for all e ∈ L2
s(Ω),

h∗(v) :=

∫
Ω

f · vdx+

∫
Ω

F · vdΓ = L(v) for all v ∈ V .

Proof. By definition, for each e ∈ L2
s(Ω) = (L2

s(Ω))∗.

g∗(e) := sup
σ∈L2

s(Ω)

{∫
Ω

e : σdx− g(σ)

}
:= sup

σ∈L2
s(Ω)

{∫
Ω

e : σdx− 1

2

∫
Ω

Bσ : σdx

}
:= − inf

σ∈L2
s(Ω)

{
1

2

∫
Ω

Bσ : σdx−
∫

Ω

e : σdx

}
=

1

2

∫
Ω

e : σdx,

where σ ∈ L2
s(Ω) satisfies∫

Ω

Bσ : σdx =

∫
Ω

e : σdx for all σ ∈ L2
s(Ω).

Therefore Bσ = e, or equivalently σ = Ae. This shows that g∗(e) =
1

2

∫
Ω
Ae : edx,

as announced.
Likewise, for each v ∈ V ∗∗ = V ∗,

h∗(v) := sup
v∗∈V ∗

{V ∗〈v∗,v〉V − h(v∗)}.

But the definition of the function h implies that V ∗〈v∗,v〉V − h(v∗) = −∞ unless
v∗ = L. Therefore the supremum is attained for v∗ = L, which means that

h∗(v) = V ∗〈L,v〉V = L(v).

6 A first dual problem to the stress formu-
lation

Following the approach described in Section 2, we now identify the first dual
formulation (P∗) to the stress formulation of the displacement-traction prob-
lem, formulated for this purpose in the form of the equivalent minimization
problem (P) described in Theorem 8. In so doing, we also show that the
infimum found in (P) is equal to the supremum found in (P∗).

Theorem 10. Consider the minimization problem

inf
σ∈L2

s(Ω)
G(σ),

where
G(σ) := g(σ) + h(Λσ) for each σ ∈ L2

s(Ω),

13



the functions g : L2
s(Ω) → R and h : V ∗ → R ∪ {+∞} and the operator Λ ∈

L(L2
s(Ω);V ∗) being defined as in Theorem 8. Let

G∗(e) := inf
σ∈L2

s(Ω)

{∫
Ω

e : σdx+ h(Λσ)

}
− g∗(e) for each e ∈ L2

s(Ω),

where g∗ : L2
s(Ω)→ R is the Legendre-Fenchel transform of the function g, and let

sup
e∈L2

s(Ω)

G∗(e),

be the corresponding dual problem. Let the space M⊥ and the functional j : M⊥ → R
be defined as in Theorem 7.

Then the dual problem (P∗) can be also written as

sup
e∈L2

s(Ω)

G∗(e) = − inf
e∈M⊥

j(e).

Besides,
G(σ) = inf

σ∈L2
s(Ω)

G(σ) = sup
e∈L2

s(Ω)

G∗(e) = G∗(e),

where σ ∈ S ⊂ L2
s(Ω) and e ∈ M⊥ ⊂ L2

s(Ω) are the solutions of the minimization
problems of Theorems 6 and 7.

Proof. We showed in Theorem 8 that h(Λσ) = IS(σ) for all σ ∈ L2
s(Ω) and we showed

in Theorem 9 that g∗(e) =
1

2

∫
Ω
Ae : edx for all e ∈ L2

s(Ω). Consequently,

G∗(e) := inf
σ∈L2

s(Ω)

{∫
Ω

e : σdx+ h(Λσ)

}
− g∗(e)

= inf
σ∈S

{∫
Ω

e : σdx

}
− 1

2

∫
Ω

Ae : edx for each e ∈ L2
s(Ω).

Let an element σ̃ ∈ S be chosen and kept fixed in what follows. Then any element
σ ∈ S can be written as σ = σ̃ + µ with µ ∈ M, so that

G∗(e) = inf
µ∈M

{∫
Ω

e : µdx

}
+

∫
Ω

e : σ̃dx− 1

2

∫
Ω

Ae : edx for each e ∈ L2
s(Ω).

Since infµ∈M{
∫

Ω
e : µdx} = −∞ unless e ∈ M⊥, in which case

∫
Ω
e : µdx = 0 for all

µ ∈ M, it is clear that
sup

e∈L2
s(Ω)

G∗(e) = sup
e∈M⊥

G∗(e).

For each e ∈ M⊥, there exists a unique element F(e) ∈ V such that e = ∇sF(e)
(Theorem 4). Using the Green formula of Theorem 3, we can therefore re-write the
inner product

∫
Ω
e : σ̃dx as∫

Ω

e : σ̃dx =

∫
Ω

∇sF(e) · σ̃dx

=

∫
Ω

f ·F(e)dx+

∫
Γ1

F ·F(e)dΓ = L(F(e)).
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Consequently,

sup
e∈L2

s(Ω)

G∗(e) = sup
e∈M⊥

{
− 1

2

∫
Ω

Ae : edx+ L(F(e))

}
= sup
e∈M⊥

{−j(e)} = − inf
e∈M⊥

j(e),

as announced. Finally

inf
σ∈L2

s(Ω)
G(σ) = inf

σ∈S

{
1

2

∫
Ω

Bσ : σdx

}
=

1

2

∫
Ω

Bσ : σdx = G(σ)

= −1

2

∫
Ω

A∇sv : ∇svdx+ L(v) = −j(∇sv) = −j(e)

= − inf
e∈M⊥

j(e) = sup
e∈M⊥

G∗(e) = G∗(e) = sup
e∈L2

s(Ω)

G∗(e),

and the proof is complete.

Theorem 10 thus shows that the dual problem (P∗) of the stress formu-
lation of the displacement-traction problem of linearized elasticity is, up to a
change of sign, the strain formulation of the same problem (Theorem 7).

In addition, we give a positive answer to the last question raised in Section
2, by showing that the Lagrangian associated to (P∗) has a saddle-point. The
notations and definitions used in the next theorem are those of Theorem 10.

Theorem 11. Define the Lagrangian

L : L2
s(Ω)× L2

s(Ω)→ R ∪ {+∞}

by

L(σ, e) :=

∫
Ω

e : σdx− g∗(e) + h(Λσ) for all (σ, e) ∈ L2
s(Ω)× L2

s(Ω).

Then
inf

σ∈L2
s(Ω)

sup
e∈L2

s(Ω)

L(σ, e) = L(σ, e) = sup
e∈L2

s(Ω)

inf
σ∈L2

s(Ω)
L(σ, e).

Proof. In view of Theorem 10, it suffices to prove that

G(σ) = L(σ, e),

where (recall that σ ∈ S)

G(σ) = g(σ) =
1

2

∫
Ω

Bσ : σdx =
1

2

∫
Ω

e : σdx,

and

L(σ, e) =

∫
Ω

e : σdx− g∗(e) + h(Λσ).

Hence the conclusion follows since, by Theorem 9,

g∗(e) =
1

2

∫
Ω

Ae : edx =
1

2

∫
Ω

σ : edx,

and, by Theorem 8, h(Λσ) = 0 because σ ∈ S.
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7 A second dual problem to the stress for-
mulation

We now identify the second dual formulation (P̃∗) to the stress formulation of
the displacement problem, again formulated as the problem (P) of Theorem
8. In so doing, we also show that the infimum found in (P) is equal to the

supremum found in (P̃∗).

Theorem 12. Consider the minimization problem

inf
σ∈L2

s(Ω)
G(σ),

where the function G : L2
s(Ω)→ R ∪ {+∞} is defined as in Theorem 8. Let

G̃∗(v) := inf
σ∈L2

s(Ω)

{
1

2

∫
Ω

Bσ : σdx+ V ∗〈Λσ,v〉V
}
− h∗(v) for each v ∈ V ,

where h∗ : V → R is the Legendre-Fenchel transform of the function h, and let

sup
v∈V

G̃∗(v) (P̃∗)

be the corresponding dual problem.
Let the functional J : V → R be defined as in Theorem 4.1. Then the dual problem

(P̃∗) can be also written as

sup
v∈V

G̃∗(v) = − inf
v∈V

J(v).

Besides,
G(σ) = inf

σ∈L2
s(Ω)

G(σ) = sup
v∈V

G̃∗(v) = G∗(−v),

where σ ∈ S ⊂ L2
s(Ω) and v ∈ V are the solutions of the minimization problems of

Theorems 6 and 5.

Proof. By definition (Theorem 8), V ∗〈Λσ,v〉V =
∫

Ω
σ : ∇svdx for all σ ∈ L2

s(Ω) and
all v ∈ V ; besides, h∗(v) = L(v) for all v ∈ V (Theorem 9). Consequently,

G̃∗(v) = inf
σ∈L2

s(Ω)

{
1

2

∫
Ω

Bσ : σdx+

∫
Ω

σ : ∇svdx

}
− L(v) for each v ∈ V .

But

inf
σ∈L2

s(Ω)

{
1

2

∫
Ω

Bσ : σdx+

∫
Ω

σ : ∇svdx

}
= −1

2

∫
Ω

A∇sv : ∇svdx,

so that

G̃∗(v) = −1

2

∫
Ω

A∇sv : ∇svdx− L(v) for each v ∈ V .

Noting that V is a vector space, we thus have

sup
v∈V

G̃∗(v) = sup
v∈V

G̃∗(−v) = − inf
v∈V

J(v),
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as announced. Finally,

inf
σ∈L2

s(Ω)
G(σ) = inf

σ∈S

{
1

2

∫
Ω

Bσ : σdx

}
=

1

2

∫
Ω

Bσ : σdx = G(σ)

= −1

2

∫
Ω

A∇sv : ∇svdx+ L(v) = J(v) = G̃∗(−v)

= − inf
v∈V

J(v) = sup
v∈V

G̃∗(v),

and the proof is complete.

Theorem 12 thus shows that the dual problem (P̃∗) to the stress formu-
lation of the displacement-traction problem of linearized elasticity is, up to a
change of sign, the displacement formulation of the same problem (Theorem
5).

To conclude this analysis, we show that the Lagrangian associated to (P̃∗)
has a saddle-point (like the Lagrangian associated to (P∗); cf. Theorem 11).
The notations and definitions are those of Theorem 12.

Theorem 13. Define the Lagrangian

L̃ : L2
s(Ω)× V → R

by

L̃(σ,v) :=
1

2

∫
Ω

Bσ : σdx+ V ∗〈Λσ,v〉V − h∗(v) for all (σ,v) ∈ L2
s(Ω)× V .

Then
inf

σ∈L2
s(Ω)

sup
v∈V

= L̃(σ,v) = L̃(σ,v) = sup
v∈V

inf
σ∈L2

s(Ω)
L̃(σ,v).

Proof. In view of Theorem 12, it suffices to prove that

G(σ) = L̃(σ,v),

where

G(σ) =
1

2

∫
Ω

Bσ : σdx

(see the proof of Theorem 11), and

L̃(σ,v) :=
1

2

∫
Ω

Bσ : σdx+ V ∗〈Λσ,v〉V − h∗(v).

Hence the conclusion follows since, by Theorem 8,

V ∗〈Λσ,v〉V =

∫
Ω

σ : ∇svdx =

∫
Ω

A∇sv : ∇svdx = L(v),

and, by Theorem 9, h∗(v) = L(v).
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8 Concluding remarks

The strain formulation of, a.k.a. the intrinsic approach to, the displacement-
traction problem described in Theorem 7 was derived a priori in [15], as a
way to re-formulate this problem as a quadratic minimization problem with
the strain tensor field as the sole unknown. One main conclusion to be drawn
from the present analysis is thus that this strain formulation may be also
viewed as a Legendre-Fenchel dual problem to the classical stress formulation
(Theorem 10). This constitutes the main novelty of this paper.

Another novelty is that the classical displacement formulation can be also
viewed as a Legendre-Fenchel dual problem to the same classical stress for-
mulation (Theorem 12).

For the pure traction problem (not considered here), i.e., when Γ0 = ∅,
another strain formulation is possible. More specifically, Ciarlet & Ciarlet,
Jr. [12] have established the following Saint Venant theorem in L2

s(Ω): Let Ω
be a simply-connected domain in R3 and let e ∈ L2

s(Ω) be a matrix field that
satisfies the Saint Venant compatibility conditions

Rijk`(e) := ∂`jeik + ∂kiej` − ∂`iejk − ∂kjei` = 0 in H−2(Ω).

Then there exists a vector field v ∈ H1(Ω) such that e = ∇sv in L2
s(Ω).

Further extensions, to Sobolev spaces of weaker regularity, have since then
been given, in C. Amrouche, P.G. Ciarlet, and P. Ciarlet, Jr., [2] and C.
Amrouche, P.G. Ciarlet, L. Gratie and S. Kesavan, [3].

Furthermore, it was subsequently shown, in Ciarlet & Ciarlet, Jr. [13],
that the above Saint-Venant compatibility conditions can be exactly satisfied
in an ad hoc finite element subspace of L2

s(Ω) that uses edge finite elements
in the sense of Nédélec [29, 30], thus yielding an efficient way to directly
approximate the strain tensor field e or equivalently the stress tensor field
σ through the constitutive equation σ = Ae. Indeed, the first numerical
simulations are very encouraging; cf. Ciarlet, Ciarlet, Jr. & Vicard [16].

Be that as it may, the latter approach suffers from two shortcomings.
First, the domain Ω must be simply-connected; second, this approach does
not seem so far to be amenable to treat displacement-traction, or even pure
displacement, problems. By contrast, the Donati-like strain approach con-
sidered here does not suffer from such shortcomings.

It is therefore remarkable that a totally different approach, based on
Legendre-Fenchel duality, leads to the same conclusion, namely that the
Donati-like approach is more natural, and more efficient, than the Saint-
Venant-like approach for constructing a strain formulation of the displacement-
traction problem of three-dimensional linearized elasticity.
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