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Measuring Change with Multiple Visual Analogue Scales: Application to Tense Arousal

Although the visual analogue scale (VAS) may be useful for measuring change on subjective and potentially transient phenomena, there is concern about the reliability and construct validity of the associated measurement variables. The present study reports evidence for tau-equivalence of change scores associated with VASs designed for assessing tense arousal with synonymous indicators. This psychometric property allows an estimation of the truescore structure of the cross-sectional measurement variables in a longitudinal SEM model, including method eects. Findings suggest that VASs associated with synonymous indicators may yield highly reliable measurement variables. However, imperfect dynamic bipolarity was observed when data based on antonymous indicators were introduced into the analyses, a rather puzzling eect, which deserves further elaboration.

, is appealing for this reason. "A VAS is a straight line, the end anchors of which are labeled as the extreme boundaries of the sensation, feeling, or response to be measured" (Wewers & Lowe, 1990, p. 227). The respondent is asked to mark the line to indicate the intensity of the internal stimulus, and a linear function of the corresponding distance is assumed to measure it (Hofmans & Theuns,

framed in terms of measurement error. The measurement error is, by denition, the dierence between the observed measurement and its associated true value. However, since pain or mood experienced in a given situation are phenomena inaccessible to objective scrutiny [START_REF] Zealley | Measurement of mood[END_REF], the true values cannot be determined, and hence the measurement errors are unknown.

Classical Test Theory oers a theoretical framework from which to address the precision issue statistically, by assessing the reliability of a random measurement variable, which construes any observed score as the outcome of a postulated stochastic process (e.g., [START_REF] Lord | Statistical theories of mental test scores[END_REF][START_REF] Steyer | Models of classical psychometric test theory as stochastic measurement models: Representation, uniqueness, meaningfulness, identiability, and testability[END_REF][START_REF] Zimmerman | Probability spaces, Hilbert spaces, and the axioms of test theory[END_REF]. The random measurement variable is axiomatically decomposed into a true-score variable and an error variable, and its reliability is dened as a proportion of true variance. As observed measurements from a perfectly reliable random measurement variable are error free, the reliability estimate can be used to evaluate the probability that observed measurements will depart from perfect precision; the less reliable the variable, the more the measurements may lack precision (see [START_REF] Charter | Condence intervals for true scores: Is there a correct approach[END_REF]. A psychometric task consists then of "assessing the reliability of a VAS a", that is, of assessing the reliability of the random measurement variable Y at actually associated with VAS a, where t denotes the testing circumstance. 1 In their review of the topic, [START_REF] Wewers | A critical review of visual analogue scales in the measurement of clinical phenomena[END_REF] stressed appropriately that, as far as the phenomenon to be measured is dynamic, the widespread test-retest correlation approach to the reliability of a single measurement procedure is not suitable for the VAS technique. For the test-retest correlation to be interpreted as a reliability coecient, the variables entering the correlation must be essentially tau-parallel, an unlikely assumption when subjective phenomena like pain or mood are to be measured. 2 Recent work in psychometric modelling [START_REF] Vautier | The true-change model with individual method eects: Reliability issues[END_REF]) allows one to assess the reliability of a VAS a if at least two VASs, a and b, can be used in a testretest design, and if the dierence variables, Y a2 -Y a1 and Y b2 -Y b1 , where 1 and 2 index the test and the retest circumstances respectively, can be assumed to be tau-equivalent. This is an assumption that can be tested through conrmatory factor analysis [START_REF] Vautier | Modèles factoriels linéaires pour l'analyse de la délité des variables composites [Linear factor analytic models for reliability analysis of composite variables[END_REF]. 3 Furthermore, if measurements are used to assess change in a subjective phenomenon (e.g., [START_REF] Grunhaus | Monitoring the response to rTMS in depression with visual analog scales[END_REF][START_REF] Wigers | Measuring change in bromyalgic pain: The relevance of pain distribution[END_REF][START_REF] Zealley | Measurement of mood[END_REF], clinicians could be more interested in the reliability of the dierence variable , since the precision of a dierence score is at stake [START_REF] Zimmerman | Reliability of gain scores under realistic assumptions about properties of pre-test and post-test scores[END_REF]. Finally, it is a well known theorem of Classical Test Theory that if a set of variables can be assumed to be tau-equivalent, their sum can be used as a more reliable variable without loss of validity with respect to the true scores; the reliability coecient 1 Although reliability is not a property of a measurement device but of an associated random measurement variable [START_REF] Thompson | Psychometrics is datametrics: The test is not reliable[END_REF], it is customary in the assessment literature to read about the reliability of a measurement device. For the sake of simplicity I will conform to that custom, which can be understood as the concern for consensus in the use of specic measurement devices for given purposes: Reliability statistics are useful for ordering the overall precision of a set of competitive assessment procedures.

2 One must assume that (a) true change between the test and the retest is a constant, (b) error variance is a constant, and (c) error variables at the test and the retest are uncorrelated. Assumption (a) is hardly plausible as will be shown in the Results section. See also [START_REF] Gaudron | Estimating true short-term consistency in vocational interests: A longitudinal SEM approach[END_REF].

3 Tau-equivalency species essential tau-parallelism by constraining the true-score variables to be equal (vs. equality up to a constant in essential tau-parallelism), and relaxes essential tau-parallelism by freeing the equality constraint of the error variances.

of the composite variable is Cronbach's alpha (1951). Thus, the theorem applies to the measurement of dierence scores as well.

To further specify the problem of forming a multiple VAS device in the area of aective phenomena, one has to take into account the bipolarity issue (e.g., [START_REF] Cacioppo | Beyond bipolar conceptualizations and measures: The case of attitudes and evaluative space[END_REF], 1999;[START_REF] Green | Static, dynamic, and causative bipolarity of aect[END_REF][START_REF] Raufaste | An evolutionist approach to information bipolarity: Representations and aects in human cognition[END_REF][START_REF] Russell | On the bipolarity of positive and negative aect[END_REF][START_REF] Schimmack | Pleasure, displeasure, and mixed feelings: Are semantic opposites mutually exclusive?[END_REF][START_REF] Steyer | Is it possible to feel good and bad at the same time? New evidence on the bipolarity of mood-state dimensions[END_REF]. According to [START_REF] Wewers | A critical review of visual analogue scales in the measurement of clinical phenomena[END_REF], "scales that contain bipolar anchors (i.e., depressionelation) are discouraged since they compound conceptual diculties by introducing two phenomena" (p. 233). Consider the unipolar VAS a, the anchors of which are "no depression" and "worst depression I can imagine", and the unipolar VAS b, the anchors of which are "no elation" and "elation as high as it could possibly be". Can one assume that the two VASs measure change tauequivalently, even when one considers reversed scores on VAS b? Such an issue deserves empirical verication.

The present study draws on and extends [START_REF] Vautier | The true-change model with individual method eects: Reliability issues[END_REF] work to investigate from a psychometric point of view the suitability of forming a multiple VAS device to measure change in mood, starting from a set of VASs based on synonyms and antonyms (see also [START_REF] Vautier | Imperfect or perfect dynamic bipolarity? The case of antonymous aective judgments[END_REF]. For the purpose of illustration, I will focus on the concept of tense arousal, as opposed to energetic arousal and valence [START_REF] Schimmack | Experiencing activation: Energetic arousal and tense arousal are not mixtures of valence and activation[END_REF]. Thus, using a set of indicators like {tendu(e), crispé(e), sous pression, décontracté(e), relaxé(e), détendu(e)},4 the question arises as to whether the corresponding unipolar VASs may be assumed to measure change tau-equivalently, if the relevant score reversing is provided.

If tau-equivalence of the dierence variables can be corroborated, a multiple VAS device can be proposed as a tool statistically grounded for the measurement of change in tense arousal: Its associated composite variable Y ot can be used as a measurement variable of a latent composite at time t, where o means the summation of the measurement variables associated with each VAS, and t indexes the test or the retest circumstances. Interestingly, even if the structure of the latent composite is unknown, it is of theoretical importance that the dierence variable Y o2 -Y o1 can be interpreted as a measurement variable of something that is characterized by intraindividual change measured tau-equivalently with each VAS. Clearly, tau-equivalence in the present context means that the measurement of a latent change q is reproducible with all the VASs of the device; this is why the construct validity of the measurements rests strongly on tau-equivalence, an emerging statistical property, which can be interpreted causally as the structural eect of the phenomena to be measured (see [START_REF] Borsboom | The theoretical status of latent variables[END_REF]. Moreover, aggregating several VASs allows the resulting variable Y o2 -Y o1 to exhibit higher reliability than the single-VAS dierence variables.

If tau-equivalence of the dierence variables is rejected, one has no empirical support for interpreting scores from the composite measurement variable Y o2 -Y o1 as measurements of something that can be reproduced. Yet, the multivariate character of the measurements is useless from the viewpoint of internal validity. Although in practice there is no need to know the underlying statistical structure of a composite measurement variable to use the associated assessment technique i.e., the process of getting answers and computing scores , one would appreciate evidence ascertaining that the measurements reect a consistent statistical phenomenon, viz., the structure of tau-equivalence.

From Tau-equivalence to Method Eects Thus, it seems theoretically worthwhile, and it is practically easy, to examine the latent structure of the composite true-score dierence variable associated with a multiple VAS device by tting a suitably constrained one-factor model to the observed dierence variables (e.g., [START_REF] Jöreskog | Statistical analysis of sets of congeneric tests[END_REF]. Once a set of VASs has been qualied for its ability to measure change tau-equivalently, it is possible to "unfold" the statistical model to assess the importance of individual method eects, which likely occurred at each testing circumstance (Vautier et al., 2008). An individual method eect is dened at the level of a testing circumstance as the dierence between two true scores, namely the true score measured with VAS b minus the true score measured with VAS a, where VAS a serves as the measurement method of referencefor more details, see [START_REF] Pohl | Modelling method eects as individual causal eects[END_REF]; [START_REF] Steyer | Analyzing individual and average causal eects[END_REF]; [START_REF] Vautier | Do balanced scales assess bipolar constructs? The case of the STAI scales[END_REF][START_REF] Vautier | The true-change model with individual method eects: Reliability issues[END_REF], and Appendix B. As individual method eects bias the measurement of the true scores associated with the reference measurement method, it is a construct validity issue to assess their statistical eects through the modeling of method components in the true-score structure.

A method component in the unfolded statistical model of the latent structure represents interindividual variability in the individual method eects. If the method components can be assumed to be temporally reproducible, they cancel out in dierence scores, and the VASs can measure change tau-equivalentlywhich makes the model algebraically identied [START_REF] Vautier | Do balanced scales assess bipolar constructs? The case of the STAI scales[END_REF][START_REF] Vautier | The true-change model with individual method eects: Reliability issues[END_REF]. The statistical importance of a method component can be assessed by its eect size µ/σ. The smaller the variance of the method component, the larger its absolute eect size; the sign of µ/σ depends on the sign of µ : a positive (negative) sign means that on average, the indicator associated with the method component is less (more) dicult to endorse than the reference indicator.

In the context of the VAS technique, a method component can be interpreted as the eect of individual dierences in the way respondents order the various VASs, depending on their interpretation of the semantic nuances conveyed by the corresponding indicators.

For example, in the French language, the indicator crispé(e) seems semantically stronger than the indicator tendue(e), and it can be expected that on average, the true score on crispé(e) is smaller than the true score on tendue(e). If the individual method eects elicit individual dierences, the method component will have a non-null variance, and the eect size will be negative. If one assumes that the "diculty" of the indicator does not depend on the respondents, there are no individual dierences in the individual method eects, and the variance of the method component will equate to zero, which yields an undened eect sizeif the variance tends toward zero, the eect size tends toward innity. The concept of item diculty in mood questionnaires can be viewed as a special case of the concept of individual method eects, that is, the measurement variables at t are tau-equivalent, which is not the case if a method component with a non-null variance does exist (for more details, see Vautier et al., 2008, Section 6). Individual dierences in method eects are testable, as will be shown in the Method section.

If the method components have a non-negligible variance, the composite score formed by adding the scores from each VAS at time t will reect uncontrolled measurement biases, the population mean of which can be easily assessed. Concerning the interpretation of the true variance of the composite measurement variable Y ot , biases due to individual method eects threaten the validity of Y ot . Thus, the analysis based on the unfolded model may be helpful for those interested in having a look at the latent structure of the statistical phenomenon observed in a given testing circumstance.

Research Goals

To recapitulate, given a set of VASs based on "positive" and "negative" indicators of tense arousal, the psychometric hypothesis to be tested is that the VASs measure change tau-equivalently. Such a hypothesis is consistent with a realistic approach to the phenomena to be measured [START_REF] Borsboom | The theoretical status of latent variables[END_REF]. If tau-equivalence of the change variables does not hold, an alternative model that could enable one to gure out the kind of dynamics the VASs measure would be welcome. Previous work on dynamic bipolarity suggests the alternative interpretation according to which two kinds of change could be measured, depending on the semantic polarity of the indicators [START_REF] Raufaste | An evolutionist approach to information bipolarity: Representations and aects in human cognition[END_REF]Vautier & Raufaste, 2003;[START_REF] Vautier | Imperfect or perfect dynamic bipolarity? The case of antonymous aective judgments[END_REF]. [START_REF] Vautier | Imperfect or perfect dynamic bipolarity? The case of antonymous aective judgments[END_REF] call such a feature "imperfect dynamic bipolarity", as opposed to "perfect dynamic bipolarity". Perfect dynamic bipolarity means that latent change measured by the negatively cued indicators correlates -1 with latent change measured by the positively cued indicators. In both cases, in order to assess the reliability of the relevant composite dierence variable, compare it with the reliabilities of the dierence variables associated with each VAS, and evaluate the importance of the method eects in terms of their means and variances, it is necessary to highlight the latent structure of the cross-sectional composite true-score variables under the test and retest circumstances.

Method Participants, Material, and Design

The data from a sample of 909 French adults were analysed. As part of a survey, the sample had answered a 24-VAS self-rating mood questionnaire twice, with a time lag of 28.06 ± 6.95 days between test and retest. The questionnaire was adapted from the Multidimensional Mood Questionnaire [START_REF] Steyer | Der mehrdimensionale bendlichkeitsfragebogen [The multidimensional mood questionnaire[END_REF]. The respondents were contacted by undergraduate psychology students who were instructed to conduct the interviews as part of their course. The six indicators of interest were scattered amongst other VASs corresponding to dierent mood indicators. The response format was a continuous 102 mm horizontal line, the extremities of which were marked not at all and extremely, with the numerical equivalent coded by the interviewers. Appendix A displays the ordered list.

Analyses

Analyses were conducted in seven steps.

Step 1: Selecting a suitable sample. The rst step was aimed at selecting a suitable subsample of respondents by looking for a class of consistent response proles and excluding potentially careless respondents [START_REF] Schmitt | Factors dened by negatively keyed items: The result of careless respondents[END_REF][START_REF] Woods | Careless responding to reverse-worded items: Implications for conrmatory factor analysis[END_REF]. A consistent response prole was dened as follows. Let N is and P jt denote the measurement variables, where N and P respectively denote the positive and negative polarity of the corresponding indicator (see Appendix A), i and j denote the VAS number, and s and t denote the test or retest circumstance. Consistency of an individual response prole can be dened by a low prole on the following series of standardised deviations s(N 11 , N 21 , N 31 ), s(P 11 , P 21 , P 31 ), s(N 12 , N 22 , N 32 ), and s(P 12 , P 22 , P 32 ). These data were clustered via a K-means technique. Respondents belonging to the uniform lower class can hardly be suspected of carelessness in the way they treated the six VASs.

N 12  N 11  N1 N 12  N 11  N1 N 22  N 21  N2  N N 22  N 21  N2 N 32  N 31  N3 N 32 
Step 2: Testing tau-equivalence of the dierence variables. The second step consisted of testing tau-equivalence of the six dierence measurement variables, namely N 12 -N 11 , N 22 -N 21 , N 32 -N 31 , P 11 -P 12 , P 21 -P 22 , and P 31 -P 32 . A conrmatory one-factor analytic model was specied in such a way that the variance and the mean of the factor δ were estimated, the factor loadings were xed at one, and the measurement intercepts were xed at zero; the residuals were uncorrelated (see Figure 1, left panel). Thus, a one-factor model such as this depicts tau-equivalence of its manifest components.

Step 3: Adding the hypothesis of imperfect dynamic bipolarity. As tau-equivalence of the dierence measurement variables was rejected, the third step was aimed at tting the data by adding the feature of imperfect dynamic bipolarity in the model. Hypothesizing imperfect dynamic bipolarity consisted of generalising the previous model by splitting the common factor into two correlated common factors, namely one factor representing interindividual variability in change measured tau-equivalently by the negative VASs on the one hand, and one factor representing interindividual variability in reversed change measured tau-equivalently by the positive VASs on the other hand (see Figure 1, right panel).

Step 4: Assessing the merit of aggregating the VASs to improve the reliability of change measurements. Once a satisfactory latent structure was found to account for the data, it was possible to specify two multiple VASs that could be considered able to provide tauequivalent measurements of change, and thus to use Cronbach's alpha to estimate how reliably the change could be measured, with respect to how reliably each of the single VASs could measure the same change.

Step 5: Unfolding the model. The next step consisted of detailing the cross-sectional latent structure of the data, using [START_REF] Vautier | The true-change model with individual method eects: Reliability issues[END_REF] modeling (see also [START_REF] Vautier | Do balanced scales assess bipolar constructs? The case of the STAI scales[END_REF]. The modeling is depicted in Figure 2. True-score variables associated with measurement variables N 11 and RP 11 , where RP indicates that the variable P has been reverse scored, are denoted τ N 11 and τ P 11 respectively. The items tendu(e) and décontracté(e) were used as the reference methods (see Appendix B for details about the meaning of a reference method). Method components are denoted by υ i , i = 2, 3, 5, 6. The independent variables were freely correlated, although this is not depicted in the gure for the sake of legibility, and their variances and means were freely estimated. Measurement intercepts were xed at zero.

Step 6: Testing the method components. The sixth step consisted of rening the unfolded model by testing the need for including the method components in the model. Testing a method component means replacing it by two equal measurement intercepts, which ensures that the method component has no variance.

Step 7: Decomposing the variance of the cross-sectional composite-score variables.

The nal step consisted of using the parameter estimates of the nal model to express the variance of the four composite-score variables entering the two multiple VAS approaches to tau-equivalent measurement of change, namely, N ot = N 1t + N 2t + N 3t , and RP ot = RP 1t + RP 2t + RP 3t , t = 1, 2. Such a decomposition documents the internal validity of the cross-sectional measurements. Ideally, a measurement variable should reect a single component of true score variance . If the true score reects the combination of a mixture, it is hard or even impossible to interpret individual dierences with respect to these sources of variance. Method components act as undesirable true components in the total true variance, and its decomposition may help in assessing their relative importance. 

N 11  N11  N11 N 12  N12 N 21  N21 N 22  N22  3 N 31  N31 N 32  N32  N  P RP 11  RP11  RP11 RP 12  RP12 RP 21  RP21 RP 22  RP22  5 RP 31  RP31 RP 32  RP32  6

Results

The raw data as well as the Mplus command and output les are available online. 5 (Step 1) The K-means clustering analysis suggested the selection of about half of the original sample as consistent respondents, N = 427. Such a sample size is suciently large for the subsequent SEM analyses, and I will discuss the practical implications of this nding later.

As multivariate normality of the data cannot be assumed, all models were estimated by the maximum likelihood robust estimator as implemented in Mplus [START_REF] Muthén | Mplus version 5.1. Computer Program[END_REF], and the goodness of t was evaluated by using the χ 2 statisticsthe RMSEA statistics are also reported. (Step 2) The dierence measurement variables did not exhibit tauequivalence, as the one-factor model did not t the data, χ 2 (N = 427, df = 19) = 380.06, p < .0001, RMSEA = .211, p(RMSEA < .05) < .001. (Step 3) The alternative model implementing imperfect dynamic bipolarity t the data very well, χ 2 (N = 427, df = 16) = 17.65, p = .34, RMSEA = .014, p(RMSEA < .05) < .96. The two factors correlated .82 (.03), and their estimated variances were 860.30 (79.93) for change measured by the "negative" 5 http://w3.cerpp.univ-tlse2.fr/annuaire/vautier/LiensIndex/Publications.htm. VASs,and 889.92 (80.39) for change measured by the "positive" VASs. Notice that essential tau-parallelism, which allows for an interpretation of the test-retest correlation as an index of reliability, is rejected, since it implies that the change factors have a null variance. (Step 4) Furthermore, the corresponding parameter estimates were used to address the reliability issue. As the unique variance corresponds to the error variance, the coecient R 2 corresponds to the reliability coecient of each dierence measurement variable. The estimated values ranged from .82 (.02) to .89 (.02). Cronbach's alpha estimates were respectively .95 and .94.

(Step 5) The unfolded model t the data very well, χ 2 (N = 427, df = 34) = 36.89, p = .34, RMSEA = .014, p(RMSEA < .05) < .996. The estimated variances of method components υ 2 , υ 3 , υ 5 were nonsignicant or marginally signicant; the estimated means of method components υ 3 and υ 6 were nonsignicant. (Step 6) If the method component υ 2 has no variance, it reduces to a constant, and then the variables N 11 and N 21 are essentially tau-equivalent on the one hand, and N 12 and N 22 are essentially tau-equivalent on the other hand. This feature is modelled by introducing three changes into the original model depicted in Figure 1. (a) The method component υ 2 is removed, which entails that the variables N 11 and N 21 are tau-equivalent on the one hand, and that N 12 and N 22 are tau-equivalent on the other hand, which is too strong of an assumption. Thus (b) the measurement intercepts of the variables N 21 and N 22 are relaxed, which entails that the dierence variables N 12 -N 11 and N 22 -N 21 may be essentially tau-equivalent, which is too weak of an assumption since it is assumed from Step 3 that they are tau-equivalent. This is corrected by (c) constraining the intercepts of N 21 and N 22 to be equal, which yields tau-equivalence of N 22 -N 21 and N 12 -N 11 . The resulting model t the data better, χ 2 (N = 427, df = 42) = 44.74, p = .36, RMSEA = .012, p(RMSEA < .05) < .999. That specication was thus retained in the subsequent models.

Tau-equivalence of the variables N i1 on the one hand, and the variables N i2 on the other hand was then tested by replacing the method component υ 3 by equated measurement intercepts aecting N 31 and N 32 . The model t the data very well, χ 2 (N = 427, df = 49) = 66.31, p = .05, RMSEA = .029, p(RMSEA < .05) < .986. However, the appropriate χ 2 dierence test was signicant, χ 2 (7) = 21.17, p = .004, so the absence of individual dierences in the method component υ 3 (i.e., s 2 (υ 3 ) = 0) was rejected.

Tau-equivalence of the variables P 11 and P 21 on the one hand, and the variables P 12 and P 22 on the other was then tested following the same method. The model t the data very well, χ 2 (N = 427, df = 49) = 65.09, p = .06, RMSEA = .028, p(RMSEA < .05) < .989.

However, the appropriate χ 2 dierence test was signicant, χ 2 (7) = 21.40, p = .003, so the absence of individual dierences in the method component υ 5 was rejected.

Finally, tau-equivalence of the variables P 11 and P 31 on the one hand, and the variables P 12 and P 32 on the other was tested following the same method. The model t the data very well, χ 2 (N = 427, df = 49) = 65.23, p = .06, RMSEA = .028, p(RMSEA < .05) < .988.

However, the appropriate χ 2 dierence test was signicant, χ 2 (7) = 21.77, p = .003, so the absence of individual dierences in the method component υ 6 was rejected.

The nal model included all method components except υ 2 , which was replaced by a constant measurement intercept, the estimate of which was -2.54 (0.39). The estimated values of the eect sizes of the remaining method components were d(υ 3 ) = 0.603/19.731 0.5 = 0.136, d(υ 5 ) = 3.414/17.347 0.5 = 0.820, and d(υ 6 ) = 0.683/35.035 0.5 = 0.115. The estimated 

N o1 = 3 • τ N 11 -2.537 + υ 3 + ε N 11 + ε N 21 + ε N 31 .
(1) It follows that its variance decomposes as s 2 (N o1 ) = 9 • s 2 (τ N 11 ) + s 2 (υ 3 ) + 6 • s(τ N 11 , υ 3 ) + s 2 (ε N 11 ) + s 2 (ε N 21 ) + s 2 (ε N 31 ), (2) where s 2 (.) and s(., .) denote the estimated variance and covariance, respectively. The quantity 9 • s 2 (τ N 11 ), which refers to the true-score variable of reference, represents 95.92% of the total variance s 2 (N o1 ).

The mean bias of N o1 can be computed starting from the mean formula

m(N o1 ) = 3 • m(τ N 11 ) -2.537 + m(υ 3 ),
(3) where m(.) denotes the estimated mean. Thus, it turned out that the mean bias was about -1.93 points out of 306 points.

The formula of the composite variable N o2 is complicated by the change factor, which yields

N o2 = 3 • (τ N 11 + δ N ) -2.537 + υ 3 + ε N 12 + ε N 22 + ε N 32 .
(4) Hence, its variance decomposes as follows:

s 2 (N o2 ) = 9 • [s 2 (τ N 11 ) + s 2 (δ N ) + 2 • s(τ N 11 , δ N )] + s 2 (υ 3 ) + 6 • [s(τ N 11 , υ 3 ) + s(δ N , υ 3 )] + s 2 (ε N 12 ) + s 2 (ε N 22 ) + s 2 (ε N 32 ).
(5)

The quantity 9•[s 2 (τ N 11 )+s 2 (δ N )+6•s(τ N 11 , δ N )], which refers to the true-score variable of reference at the retest circumstance, represents 95.07% of s 2 (N o2 ). Because of the temporal stability of the method components, the mean bias of N o2 has the same value as that aecting the composite N o1 .

Following similar calculus computations, it was found that the proportions of "good" variance in s 2 (RP o1 ) were about 96.24% and 93.03% in s 2 (RP o2 ), while the mean bias was about 4.10 points.

Discussion

Using the VAS technique for measuring change in subjective phenomena like pain or mood is a long-running practice [START_REF] Aitken | Measurement of feeling using visual analogue scales[END_REF][START_REF] Freyd | The graphic rating scale[END_REF]. As the response format of a VAS is a continuous line, it may provide sensitive outcomes, although there is concern about potential lack of precision. For example, it has been found that the amplitude of the average minimum clinically signicant dierence in 100 mm VAS pain scores is about 10 mm [START_REF] Kelly | The minimum clinically signicant dierence in visual analogue scale pain score does not dier with severity of pain[END_REF]. Reliability analysis could be useful to document the precision issue, provided that suitable estimates are available. Particularly, one would like to be able to assess reliability of a dierence measurement variable while guring out its true-score structure, a critical aspect of construct validity. If a set of VASs measure change tau-equivalently, the reliability of (a) the dierence variables associated with each VAS, (b) the composite dierence variable formed by their sum, as well as the reliability of (c) the single and (d) composite crosssectional measurement variables may be assessed by using parameter estimates of relevant structural equation models [START_REF] Vautier | The true-change model with individual method eects: Reliability issues[END_REF].

The present study investigated measurement variables associated with a set of VASs designed for the assessment of tense arousal in a sample of French adults. The main ndings can be summarized as follows: (a) The VASs based on indicators sharing the same semantic polarity can be assumed to measure change tau-equivalently. This psychometric property gives statistical evidence for a changing phenomenon that underlies the observed responses in a reproducible way: if VAS a measures a quantity of change q, then VASs b and c will measure the same quantity of change q as well. (b) The estimated reliability of the two composite dierence measurement variables that can be dened with the single dierence measurement variables was about .95, a high level given the cautions that are traditionally raised against the use of dierences based on psychometric scores [START_REF] Cronbach | How we should measure "change"-or should we?[END_REF], but see [START_REF] Zimmerman | Gain scores in research can be highly reliable[END_REF]. (c) The hypothesis that VASs based on positive and negative indicators measure the same and only the same changing phenomenon was rejected. In other words, change measured by a VAS based on a negative indicator could not be reproduced exactly by change measured with a VAS based on a positive indicator, and vice versa. (d) From a cross-sectional perspective, the composite-score measurement variables exhibited nice properties, as the "good" proportion of variance amounted to about 95% of the total variance, and the average bias due to individual method eects was quite limited with respect to the metric of the composite scale.

As data from "careless" respondents [START_REF] Schmitt | Factors dened by negatively keyed items: The result of careless respondents[END_REF] may obscure the interpretation of factor analytic results (see also [START_REF] Woods | Careless responding to reverse-worded items: Implications for conrmatory factor analysis[END_REF], a preliminary caution consisted of selecting consistent respondents from the original sample. The present study suggests that the proportion of consistent respondents can be low, as about half of the sample was retained by a clustering analysis. Thus, depending on the experimental conditions of data collection, researchers should be well advised to take care of the quality of their dataset before analysing its moment structure. As the respondent plays the role of a subjective gauge during the rating process, such a low proportion suggests the following research issue: Could the quality of the data be improved substantively if, before the rating task, respondents were instructed in the bipolar principle of the scale development, and on how carefully to treat the direction of the items? [START_REF] Vautier | The instruction set of questionnaires can aect the structure of the data: Application to self-rated state anxiety[END_REF] showed that instructing the respondents to treat a series of nine state-anxiety items as indicators of a single construct can impact the structural properties of the data.

However, imperfect dynamic bipolarity in the data could not be imputed to careless respondents as soon as a proper subsample was selected. Such a nding raises the substantive issue of understanding how semantic bipolarization of the indicators could elicit factors. As no evidence for imperfect dynamic bipolarity was found in ordered categorical data [START_REF] Vautier | Imperfect or perfect dynamic bipolarity? The case of antonymous aective judgments[END_REF] and quasi-continuous composite data [START_REF] Vautier | Do balanced scales assess bipolar constructs? The case of the STAI scales[END_REF], the present nding suggests that the assessment technique is not neutral with respect to the target phenomenon to be measured. Moreover, imperfect dynamic bipolarity raises the practical issue of which multiple VAS to choose: the one based on the negative indicators, or that based on the positive indicators?

Tau-equivalence of a set of dierence measurement variables allows for the assumption of temporally stable individual method eects [START_REF] Vautier | Do balanced scales assess bipolar constructs? The case of the STAI scales[END_REF][START_REF] Vautier | The true-change model with individual method eects: Reliability issues[END_REF]. Such an assumption grounds the use of VASs at the intraindividual level. In other words, the person may be viewed as her own stable gauge of the subjective phenomenon to be assessed. Thus, two ratings from the same person using the same device can be compared to each other, and their dierence can be interpreted as a measurement of change on a latent attribute that possesses some measurement invariance at the individual scale and within the time lag associated with the measurement experiments. The present ndings suggest that multiple measurements based on synonyms can be useful for obtaining composite measurements of intraindividual change that exhibit internal validity. Interpreting these measurements as outcomes of an abstract random measurement variable, which is more reliable than the single random measurement variables associated with each VAS, a better precision is to be expected if change is assessed by a composite dierence score.

ε 1 Y 1 τ 1 ν 2 =τ 2 -E(τ 2 |τ 1 ) Y 2 ε 2 Regressive decomposition Y ε 1 Y 1 τ 1 * υ 2 =τ 2 -τ 1 Y 2 ε 2 Differential decomposition Figure B1
. Formal denitions of the method component associated with the true-score variables (τ 1 , τ 2 ). In the regressive decomposition approach, τ 2 = τ 1 + ν 2 ; in the dierential decomposition approach, τ 2 = τ 1 + υ 2 . * denotes a freely estimated covariance.

Figure 1 .

 1 Figure1. Path diagrams of the models used to test tau-equivalence of the dierence measurement variables (left panel) and tau-equivalence of the dierence measurement variables with imperfect dynamic bipolarity (alternative model, right panel). N it and P it respectively denote the negative and the positive manifest variable associated with the ith measurement method at the testing circumstance t; δ denotes the true-change variable. Factor loadings are set at unity; measurement intercepts are set at zero. Residual variables are uncorrelated.

Figure 2 .

 2 Figure 2. Path diagram of the "unfolded" model of the cross-sectional measurement variables with imperfect dynamic bipolarity. υ i denotes the method component i associated with VAS i with respect to the reference VAS 1. Factor loadings are set at unity; measurement intercepts are set at zero. Residual variables are uncorrelated. The independent variables are freely correlated with each other.

Table 1 :

 1 Estimated Reliabilities of the Cross-sectional Measurement Variables

	Variable	Reliability Estimate	Standard Error
	N 11	.911	.013
	N 12	.901	.013
	N 21	.907	.013
	N 22	.908	.013
	N 31	.893	.017
	N 32	.898	.015
	RP 11	.899	.016
	RP 12	.855	.025
	RP 21	.909	.017
	RP 22	.821	.029
	RP 31	.955	.013
	RP 32	.789	.038
	reliabilities of the cross-sectional variables ranged from .789 to .955, and are displayed in Table 1. (Step 7) Decomposing the variance of N o1 requires detailing its algebraic formula, which reads

For an English translation of the indicators, see Appendix A (raw translation only, not suitable for application).

Method eects have been represented in CFA models according to two main traditions. In the factor analysis tradition, method eects are represented by group factors, that is, factors common to a subset of manifest variables to be interpreted as measurements of the same construct (e.g., [START_REF] Vautier | The instruction set of questionnaires can aect the structure of the data: Application to self-rated state anxiety[END_REF][START_REF] Vautier | Dimensionality of the Revised Life Orientation Test and the status of ller items[END_REF]. A drawback of the factorial tradition is that it does not ensure that a model with method factors can be deduced from a stochastic measurement model.

In the tradition of Classical Test Theory, each measurement variable is decomposed as the sum of a reliable, or true, component, and of a residual component [START_REF] Lord | Statistical theories of mental test scores[END_REF][START_REF] Zimmerman | Probability spaces, Hilbert spaces, and the axioms of test theory[END_REF]. It is acknowledged that a true component has to be interpreted in an operationalistic way as reliable variation measured by using a given measurement method (see [START_REF] Kagan | The meanings of personality predicates[END_REF]. Method components have been modelled by using two techniques for decomposing the reliable variance that I will call "regressive decomposition" and "dierential decomposition" (see Figure B1). Both approaches rest on a couple of true-score variables (τ 1 , τ 2 ), which are associated with a couple of manifest measurement variables (Y 1 , Y 2 ). The method component is dened in contrast to a reference measurement method. The choice of the reference variable is a matter of convenience. Let the rst measurement method be used as the reference method.

In the regressive decomposition approach, the method component, ν 2 , is the residual variable of τ 2 once τ 2 has been statistically controlled for by τ 1 [START_REF] Eid | A multitrait-multimethod model with minimal assumptions[END_REF][START_REF] Geiser | On the meaning of latent variables in the CT-C(M -1) model: A comment on Maydeu-Olivares and Coman[END_REF]. Consequently, statements about the mean of ν 2 are not a matter of evidence because, by denition, as a residual variable, ν 2 has a null expectation. Therefore, the method component cannot account for the potential mean dierence between the truescore variables. Also by denition, ν 2 does not correlate with τ 1 .

In the dierential decomposition approach, the method component, υ 2 , is the dierence variable τ 2 -τ 1 (e.g., [START_REF] Mcardle | Patterns of change within latent variable equation models[END_REF][START_REF] Pohl | Modelling method eects as individual causal eects[END_REF][START_REF] Steyer | Analyzing individual and average causal eects[END_REF][START_REF] Vautier | Do balanced scales assess bipolar constructs? The case of the STAI scales[END_REF][START_REF] Vautier | The true-change model with individual method eects: Reliability issues[END_REF]. Consequently, statements about the mean of υ 2 are a matter of evidence. Moreover, υ 2 is characterized by its eect size, provided that its variance is strictly positive. Also, υ 2 may correlate with τ 1 . If υ 2 has no variance, it reduces to a constant parameter and Y 1 and Y 2 are essentially tau-equivalent and also strictly tau-equivalent if the value of the constant is zero.