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[1] Supercritical perpendicular collisionless shocks are characterized by a fraction of the
incoming ions being reflected at the steep front. These reflected ions accumulate and form
a foot, where the relative drift of the reflected ion beam versus the electrons can easily
excite an electron cyclotron drift instability (ECDI). Here, we analyze the resulting wave
emissions by two approaches. First, our linear dispersion analysis shows that several
electron Bernstein harmonics can be unstable, their number being proportional to the
drift, yet limited by the ion beam temperature. Second, the three local populations
(incoming electrons/ions and reflected ions) of the foot region are introduced in full
electromagnetic particle-in-cell (PIC) periodic simulations in order to analyze the
nonlinear regime of the ECDI. The main results are the following: (1) High
gyroharmonics develop over a short time scale less than the lower hybrid period. (2) The
spectral power shifts toward lower k modes to accumulate on the first harmonic under the
effects of two complementary processes: (i) trapping of the reflected ion beam and (ii)
resonance broadening. The latter acts to demagnetize the electrons in the dispersion
relation. It initially applies to very high k modes (k�e >> 1) and progressively, as time
evolves, to lower k modes, invalidating the existence of all gyroharmonics except the first
one. (3) In the late stage, a magnetic field component surprisingly develops in the energy
spectrum that had so far been electrostatic. (4) The electrons are heated, which represents
a source of preheating in the foot region of the shock front.
Citation: Muschietti, L., and B. Lembège (2013), Microturbulence in the electron cyclotron frequency range at perpendicular
supercritical shocks, J. Geophys. Res. Space Physics, 118, 2267–2285, doi:10.1002/jgra.50224.

1. Introduction
[2] Supercritical quasi-perpendicular collisionless shocks

are commonly observed and often invoked as important
sources of particle acceleration and heating. One major dif-
ficulty of analysis is that such acceleration/heating takes
place via intricate wave-particle interactions over quite dif-
ferent spatial and temporal scales within the shock front
region. In supercritical regime, it is well known that part
of the incoming ions are reflected at the steepened ramp
and accumulate locally to form a foot during their gyromo-
tion before finally penetrating downstream. This accumu-
lation is at the origin of the shock front self-reformation,
which is one of the processes responsible for shock front
nonstationarity as shown in decades of particle-in-cell
(PIC) simulations [Biskamp and Welter, 1972; Lembege and
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Dawson, 1987; Lembege and Savoini, 1992; Scholer et al.,
2003; Hada et al., 2003; Chapman et al., 2005]. Besides
the self-reformation that occurs in some parameter regime,
reflected ions are also responsible for a chain of processes
leading to dissipation and irreversibility, a main ingredient
of shock physics. A blowup of the foot region (Figure 1)
shows the three different populations that coexist during
the gyration of the reflected ions: incoming electrons/ions
and reflected ions which can be described by an ion beam
during a part of their gyration. These three populations rep-
resent a local set of out-of-equilibrium particle distributions
and hence are potential sources of wave instabilities excited
by the relative drift between the populations. The unsta-
ble waves then grow sufficiently to alter these distributions
while reducing the free energy, which results in irreversible
dissipation.

[3] Several works have already examined various insta-
bilities which are expected within the shock front and are
summarized in the review by Wu et al. [1984]. In partic-
ular, with the help of PIC simulations, recent studies have
addressed instabilities excited along the shock normal when
the angle �BN between the normal of the shock front and
the upstream magnetostatic field is either exactly perpen-
dicular or slightly off 90°. Two types of instabilities have
been correspondingly identified: For �BN = 90°, a vari-
ety of the electron cyclotron drift instability caused by the

2267



MUSCHIETTI AND LEMBÈGE: ELECTRON CYCLOTRON DRIFT INSTABILITY

x

ion core

reflected ion beam

shock
ramp

ve
lo

ci
ty

 v
xi

velocity vx/vt

electrons
0.4

0.2

0.0
-4 0 4

reflected
ion beam

ion core

6

4

2

0
-2 0 2

-2 2

(a)

(b)

(c)

Figure 1. Models of ion and electron populations identi-
fied within the foot region of a supercritical perpendicular
shock from a 1-D PIC simulation (for typical Alfven Mach
MA= 3–5); (a) view of the ion phase space; (b and c) blowup
of the local ion core, reflected ion beam, and electron dis-
tributions to be introduced in the linear dispersion analysis
(section 2) and the 1-D periodic simulation (sections 3 and
4). The whole study is performed in the electron rest frame.
Note that the drift of each population is such that total
current is zero (as expected in the foot region).

reflected ion beam and the electrons (so-called ECDI herein)
[Muschietti and Lembege, 2006] and for �BN ¤ 90°, the
modified two-stream instability (so-called MTSI herein)
[Scholer et al., 2003; Matsukiyo and Scholer, 2003]. In addi-
tion, for very high Mach numbers in astrophysical context
such as supernova remnants where the relative drift between
reflected ions and the electron population is very large, the
Buneman instability plays an important role [Shimada and
Hoshino, 2000].

[4] The present study, which is devoted to the role of
waves in the electron cyclotron frequency range, will focus
on the ECDI excited within the foot region. It represents
an extension of a previous work [Muschietti and Lembege,
2006]. Unlike in that work, however, here the three popula-
tions are introduced separately and correspond to models
of typical local distributions encountered within the foot
region of a supercritical shock (with MA around 3–5, as in

Figure 1). This allows us to zoom in on the foot region and
in an area of order 20 electron inertia length to study the
evolution of the ECDI in detail. Results of linear dispersion
analysis are summarized in section 2. Numerical PIC simu-
lation conditions are summarized in section 3, while corre-
sponding numerical results are presented in sections 4 and 5.
The comparison with the ion-acoustic instability (so-called
IAI herein) deserves a particular interest and is presented in
section 6. Discussion and comparison of present results with
previous works is deferred to section 7. Lastly, section 8
summarizes our conclusions.

2. Study of Dispersion Properties
[5] We suppose that the standard assumptions of an infi-

nite, uniform plasma apply to the flat portion of the magnetic
foot and adopt a coordinate system in which the electrons
are at rest while ion beam and ion core drift in oppo-
site x-directions in a way such that the net current is zero
(as expected within the foot region). Key elements of the
dispersion tensor Q are given explicitly below.

[6] The electrons are taken as hot and magnetized. They
have a thermal velocity vte =

p
Te/m and a gyroradius

�e = vte/�ce, where �ce denotes their cyclotron frequency.
In their contribution to the susceptibility, one can recognize
the term for electron cyclotron Bernstein waves,

Qxx,e = –
1

k2�2
de

"
–1 +ƒ0(�) + 2

1X
n=1

ƒn(�)
!2

!2 – n2�2
ce

#
. (1)

Here ƒn(�) � In(�) exp(–�) is the modified Bessel function
which has for argument � � (k�e)2 = (!pe/�ce)2(k�de)2 with
the plasma frequency !pe and the Debye length �de.

[7] Ions are taken as unmagnetized, which is justified on
the time scale considered. The ion beam has density ˛ <
0.5, thermal spread vtb, and drift Vb, while the ion core has,
respectively, 1 – ˛, vtc, and –Vc, where Vc = Vb ˛/(1 – ˛).
Their contribution to the susceptibility reads as

Qxx,i = –
˛

k2�2
de

Te

2Tb
Z0
�
! – kVb
p

2kvtb

�
–

1 – ˛
k2�2

de

Te

2Tc
Z0
�
! + kVc
p

2kvtc

�
, (2)

with Z the usual plasma dispersion function [Fried and
Conte, 1961].

[8] For the perpendicular geometry considered here,
where Bo points in the Oz-direction and the wave vector k in
the Ox-direction, the electrostatic dispersion relation is simply

1 + Qxx,e + Qxx,i = 0. (3)

The instability is due to a coupling between electron
cyclotron Bernstein modes and ion beam modes. Figure 2a
shows 14 Bernstein harmonics in a frequency-versus-wave
number plot. The successive branches have the characteris-
tic negative group velocity up to the upper hybrid branch,
which is here marked in blue. The frequency of the n branch
lies between n�ce and (n + 1)�ce and tends to n�ce at high
k�e. Superimposed in red is the Doppler frequency of the
beam ! = kVb. Close to each intersection between the
Bernstein modes and the red line, an instability is possible.
Results from numerically solving the electrostatic dispersion
relation (3) are displayed in Figures 2b and 2c, where we
used the plasma parameters summarized in Table 1 for the
three populations. Each Bernstein branch reconnects with
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Figure 2. Linear dispersion analysis of the ECDI for the
reference case herein: Vb/vte = 1.5, !pe/�ce = 10, Tb/Te =
0.25 and ion beam density ˛ = 0.25. (a) Schematic where ion
beam curve and electron Bernstein curves are superimposed:
the ion beam mode (in red) intersects the 14 first branches of
electron Bernstein modes (in black), raising the possibility
of coupling (both below and above the upper hybrid branch
shown in blue). (b) Numerical solution of equation (3) show-
ing the coupling of the Bernstein waves with the ion beam
mode (frequency’s real part) and the associated unstable
ranges marked by red crosses “+.” (c) Growth rate (fre-
quency’s imaginary part) defined at the location of the red
crosses (in Figure 2b) corresponding to the 14 branches. The
plasma parameters used are defined in Table 1.

part of the ion beam mode. An unstable imaginary part
develops over a narrow range of wave numbers whose loca-
tion is marked here by small red crosses. Thus, the emission
is expected to occur in discrete bands of frequency as well
as wave number. Figure 2c shows the actual growth rate
for each band as a function of wave number. Note how the
envelope to the individual growth rates display a “knee”
shape whereby harmonics 6–9 have maximum growth as
compared with lower and higher harmonics. We shall see
below the reason for that feature. As for the physical reason

behind the unusual coupling of ion and electron frequen-
cies, it lies in the short wavelengths and a substantial value
of the drift. Each electron frequency at multiples of �ce is
Doppler-shifted by kVb and, seen from the beam, appears in
the range of ion-acoustic frequencies to which the ion beam
can respond.

[9] Returning to the discreteness of the emissions, we
stress that it is a signature of this instability and point
out the following. For low harmonics, the unstable por-
tion of the dispersion curve has a slope |d!/dk| close to
the beam drift (see locations of crosses in Figure 2b). For
high harmonic branches, the unstable portion of the disper-
sion curve becomes flatter. Thus, the unstable bandwidth ık
associated to each harmonic increases for higher harmon-
ics. Conversely, the bandwidth expressed in ı! narrows. As
will be seen in section 2.2, the feature is related to the finite
temperature of the beam.

[10] In order to understand the impact of thermal effects,
we first discuss the case of a cold and slow ion beam, for
which an analytical solution can be found [Wong, 1970;
Lampe et al., 1972], and then compare it to numerical
solutions of the dispersion relation including ion thermal
effects.

2.1. Cold Ions and Small Drift: Analytical Approach
[11] After lengthy analytical manipulations which are

detailed in the work of Lampe et al. [1972, see Appendix A]
the electron susceptibility in the limit k�e > 1 can be
rewritten from the familiar form (1) to the less usual expres-
sion

Qxx,e =
1

(k�de)2

�
1 –
p
��e–�2

�
cot

�
!

�ce
�

�
– i erf(i�)

��
, (4)

where � is the normalized phase velocity, � � !/(
p

2kvte).
As for the ions, their susceptibility in the cold limit takes the
simple form

Qxx,i = –
˛ !2

pi

(! – kVb)2 –
(1 – ˛)!2

pi

(! + kVc)2 , (5)

with !pi the ion plasma frequency. Since we know from the
discussion of Figure 2 that an unstable root has !r � kVb &
n�ce, the second term in (5), which is due to the ion core, is
expected to be of order (1 – ˛)3(m/M)(!pe/n�ce)2 � 1 and

Table 1. Species Characteristics in Normalized Units

Electrons Ion Core Ion Beam

Density ne = 1.0 nc = 0.75 nb = 0.25
Gyrofrequency �ce = 1. �cc = 2.5� 10–3 �cb = 2.5� 10–3

Plasma frequency !pe = 10. !pc = 0.433 !pb = 0.25
Gyroradius �e = 1. �c = 20. �b = 10.
Debye length �de = 0.1 �dc = 0.115 �db = 0.1
Temperature Te = 1. Tc = 1. Tb = 0.25
Thermal velocity vte = 1. vtc = 5.� 10–2 vtb = 2.5� 10–2

Kinetic/magnetic ˇe = 0.08 ˇc = 0.06 ˇb = 0.005
energy
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can be neglected. The dispersion relation (3) can therefore
be written as

1 + k2�2
de – ˛

(k�de !pi)2

(! – kVb)2 =
p
��e–�2

�
cot

�
!

�ce
�

�
– i erf(i�)

�
.

(6)

On the left-hand-side of equation (6), one recognizes the
acoustic beam mode

!r – kVb = –
kcs˛

1/2

(1 + k2�2
de)1/2 , (7)

where cs = (Te/M)1/2 is the acoustic speed. The role of the
cotangent on the right-hand side is to select in the broad
acoustic spectrum frequencies that are periodically spaced as
harmonics of the cyclotron frequency.

[12] Let us now assume that the drift is small compared to
the electron thermal speed, Vb < vte. Return to the top panel
of Figure 2 and consider a diagonal with a lesser slope than
the red line drawn. The Doppler frequency of the beam ! =
kVb would now intersect the Bernstein branches at high k�e,
where the frequency of branch n is actually close to n�ce.
Furthermore, the normalized phase velocity is below unity,
i.e., � < 1. Therefore, in the square bracket of (6), one can
neglect the erf term as compared with the cotangent term,
and in front of the bracket one can replace the exponential
term by unity. If we write ! = n�ce + i	n with |	n| << |n�ce –
kVb|, we find the growth of each harmonic to be

	n = �ce

� ˛
8�

m
M

	1/4 n1/2

1 + k2�2

de
�3/4 . (8)

The expression is essentially the same as in Wong [1970]
except for the factor ˛ (beam density over total ion den-
sity). One remarks that as long as k�de << 1, the value of
	n increases as n1/2. The first gyroharmonic has therefore
the slowest growth. Yet, since n and k grow in proportion
via kVb � n�ce, the growth 	n reaches a maximum for
some integer n0 and then decreases slowly. The value of n0
is given by

n0 = int[(Vb/vte)(!pe/�ce)/
p

2]. (9)

Hence, one can conclude that the number of gyroharmonics
excited is directly proportional to the drift. In contrast, the
number of harmonics is inversely proportional to the mag-
netization of the plasma, �ce/!pe. Be aware, however, that
equation (9) does not include ion thermal effects that can
significantly reduce it, as discussed in section 2.2.

2.2. Warm Ions: Numerical Analysis
[13] For beam drifts other than small, the transcendental

functions in the right-hand side of equation (6) cannot be
expanded, and no algebraic solution can be found. In addi-
tion, equation (6) does not include thermal effects of the
ions. We thus return to equation (3) with susceptibilities (1)
and (2) and have recourse to numerical solutions.

[14] Figure 3 shows the effects of beam pressure and
Landau damping on the growth rate. We use three beam
temperatures (Tb/Te = 0.1, 0.25, and 1.0) and display the
resulting modified growth in the successive harmonic bands.
The horizontal axis is plotted here in terms of k�de instead of
k�e in order to emphasize the strong effect of Tb where the
wave number k�de approaches unity. The stars indicate the
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Figure 3. Similar to Figure 2c, growth rates of the ECDI
(numerical solution of equation (3)) for three different
ion beam temperatures. All other plasma parameters (see
Table 1) are identical to those of Figure 2. The stars * report
the maximum growth rates defined by the fluid formula for
a cold beam (equation (8)).

maximum growth for each harmonic according to the fluid
formula 	n (equation (8)). Although formula (8) does not
strictly apply to a beam drift Vb/vte = 1.5 as considered here,
we can see that it provides a fairly good proxy for the cold
beam case with Tb/Te = 0.1. This is specially true for lower
harmonics such that k�de < 0.5. For higher wave numbers
and harmonics, the increasing beam pressure degrades the
growth rate. The instability tends to change character from
“reactive” to “resistive” [Dum, 1989]. We recall that a “reac-
tive” instability depends on fluid parameters describing the
beam-plasma system. Thus, equation (8) characterizes the
beam through its density only. On the other hand, a “resis-
tive” instability depends on a small number of resonant
particles that provide negative Landau damping. In the lat-
ter case, the real part of the frequency remains close to that
of the plasma eigenmode, while the imaginary part is related
to the slope of the distribution function at the phase velocity.
In Figure 3, the reactive growth rate (indicated by the stars)
is strongly degraded for high wave numbers. This is due
to thermal effects (increased pressure and increased Landau
damping), which augment with k and Tb. The general effect
is to shift the maximum growth toward gyroharmonics
well below the integer value n0 defined in equation (9).
Confirming the transition from reactive toward a weaker,
resistive type of instability, the frequency bandwidth ı! for
each harmonic (not shown) diminishes, and the frequencies
approach the Bernstein mode values, i.e., the eigenmode
values.

[15] At last, we stress that the information obtained in this
linear analysis is helpful for designing simulations of such
an instability. The simulation box needs to have a length L
sufficient to accommodate long wavelengths at the first har-
monic such as � = 60�de and to yield 
k = 2� /L small
enough to resolve the narrow emission bands. Simultane-
ously, the grid cells themselves need to be sufficiently small
to resolve features on the Debye scale.

3. Simulation Conditions
[16] Present simulations allow a very detailed analysis

(over an enlarged spatial scale) of the instabilities develop-
ing in the foot region of a supercritical shock in the presence
of the three particle components illustrated in Figures 1b
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and 1c. We use a periodic 1-D full PIC code where both
electrons and ions are described as an assembly of indi-
vidual particles. Detaching the present simulations from a
full shock simulation enables us to analyze such instabili-
ties with high time and spatial resolution during a time range
that remains small as compared to the shock dynamics scale;
one can carefully analyze rapid instabilities developing over
a time scale much shorter than the self-reformation cyclic
period (itself comparable to the ion gyroperiod). Following
this route allows one to access waves with high frequency
(here several electron gyroharmonics) and with a spatial
scale of a few Debye lengths, which develop simultaneously
with the large-scale ion dynamics.

[17] Among the many simulations of ECDI performed for
our study, we report herein on one specific simulation (used
as a reference) with a grid that covers 1024 cells and spans
1024 Debye lengths (or equivalently 102.4 electron gyro-
radii or 20.5 electron inertia lengths). The resulting wave
number resolution is 
k = 6 � 10–3�–1

de , which allows to
“hit” the growth range of each gyroharmonics, including
the first harmonic with its narrow ık (see Figure 2c). The
electric and magnetic fields have five self-consistent com-
ponents: Ex, Ey, Ez, and By, Bz among which only Ex is
electrostatic (solution of Poisson equation), while the oth-
ers are purely electromagnetic (solutions of full Maxwell
equations). As a reminder, the unique direction Ox, which
lies in the coplanarity plane defined by the background
magnetic field Bo and the shock normal n, is perpendicu-
lar to Bo such that Ox � n � 1. In our previous work that
simulated a full shock [Muschietti and Lembege, 2006],
the direction Ox corresponded to that of the normal to the
shock front.

[18] The particles have three velocity components, vx, vy,
and vz, and are represented by 409, 600 macroparticles for
each plasma component, namely, 400 electrons, 400 core
ions, and 400 beam ions per cell. The PIC code has been tai-
lored to keep the same number of macroparticles for each
population while one parameter allows to vary the relative
percentage of ion beam density to core density. The simula-
tion is performed in the electron frame; then, core and beam
ions undergo opposite drifts in proportion to their relative
density so that the total current is zero (as expected in the
foot region of a shock). All quantities are in computer units,
which is indicated by a tilde “�”, and are normalized (as
in previous simulations [see Lembege and Dawson, 1987])
as follows. The spatial coordinate is Qx = x/
, velocity
Qv = v/!pe
, time Qt = !pet, electric field QE = eE/m!2

pe
,
and magnetic field QB = eB/m!2

pe
. The parameters 
,
!pe, m, and e are, respectively, the numerical grid size, the

Table 2. Species Characteristics in Simulation Units

Description Parameter Electrons Ion Core Ion Beam

Gyrofrequency Q�c 0.1 2.5� 10–4 2.5� 10–4

Plasma frequency Q!p 1. 4.33� 10–2 0.025
Gyroradius Q� 10. 200. 100.
Debye length Q�d 1. 1.15 1.
Inertia length Qc/ Q!p 50. 1.15� 103 2.� 103

Thermal velocity Qvt 1. 5.� 10–2 2.5� 10–2

Kinetic/magnetic ˇ 0.08 0.06 0.005
energy

Figure 4. PIC simulation with plasma parameters of
Table 2. Time histories of (a) the electrostatic field energy,
(b) the ion beam kinetic energy, (c) the electron kinetic
energy, and (d) the magnetic field energy. For comparison’s
sake all dimensionless energies are normalized in the same
way by QKeo, the electron kinetic energy at time Qt = 0. The
time range is divided into three stages T1, T2, and T3 and
covers 1.43 Q�LH (with Q�LH the lower hybrid period ). Selected
snapshot times QtA = 41, QtB = 95, and QtC = 160 Q�–1

ce will be
referred to in the following figures.

electron plasma frequency, the electron mass, and the elec-
tric charge. All basic parameters are summarized as follows:
velocity of light Qc = 50, mass ratio of proton versus elec-
tron M/m = 400, and ambient magnetic field | QBo| = 5, which
yields a ratio Q!pe/ Q�ce = 10. The lower hybrid frequency is
Q!lh = 5 � 10–3 (the lower hybrid period being Q�lh = 1256),
the Alfven velocity is QVA = 0.25, and the relative density
of the ion beam is ˛ = Nb/(Nb + Nc) = Nb/Ne = 0.25. Ini-
tially, electrons and core ions have the same temperature,
Te = Tc = 1, while the ion beam is a little cooler, Tb = 0.25.
The foot plasma parameters expressed in computer units are
summarized in Table 2 for each particle population.

4. Simulation Results
[19] Figure 4 shows an overview of the simulation run.

The history of four global energy quantities is displayed
over a time span of 1.43 Q�lh, where Q�lh is the lower hybrid
period. In the graph of the electrostatic energy (Figure 4a),
one can identify three stages, which have been delimited
by vertical, dashed lines and denoted, respectively, T1, T2,
and T3. During the early stage T1, which we consider as
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Figure 5. Evolution of the electrostatic energy spectrum during the PIC simulation. Three separate
panels (with changing scale as indicated in color bars above) show the harmonics excited during the
successive stages T1, T2, and T3. Italicized figures on the right-hand side label the Bernstein harmonics.
Selected snapshot times QtA, QtB, and QtC of Figure 4 are marked with arrows.

corresponding to the linear regime, several high-frequency
harmonics with fast growth rates are excited, as will be
discussed in relation with Figure 5. During stage T2 (first
nonlinear stage), the electrostatic energy appears to saturate.
We shall see that this saturation corresponds to a redis-
tribution of the spectral energy toward lower harmonics.
Finally, the electrostatic energy rises again during stage T3
(second nonlinear stage) when it augments threefold. The
kinetic energy of the ion beam QKib (Figure 4b) indicates
that the beam loses a few percent of its energy, feeding
the instability. Meanwhile, most of the energy lost by the
beam reappears in the kinetic energy of the electrons QKe
(Figure 4c), which increases threefold in the course of the
run. We point out that all the quantities displayed in Figure 4
have been normalized in the same way by the initial kinetic
energy of the electrons QKe,0 � n QTe,0. It is thus evident that
at any given time the energy in the waves is a very small
fraction of the energy being transferred from the ions to the
electrons. The wave turbulence acts as a “conduit” between
the ion beam and the electrons. Lastly, Figure 4d displays
the magnetic energy, which indicates that the late nonlinear
stage (T3) comprises an unexpected and significant magnetic
component.

[20] Let us now examine the temporal evolution of the
electrostatic spectrum | QEk|2 shown in Figure 5. The three
panels replicate the stages T1, T2, and T3 introduced in
Figure 4. Be aware that the scale of | QEk|2, which is indicated
with color bars at the top, changes between panels in order
to follow the evolution in spectral intensity. The italicized
figures located on the right-hand side label the Bernstein
harmonics. So, one can see that near the end of stage T1,

harmonics 7, 6, 5, and 4 are excited in agreement with their
rapid linear growth rates. We note that harmonic 8 is barely
visible and harmonics 9, 10, and 11 not at all in the simu-
lation despite their equally fast linear growth rates. As we
shall see later in section 5.1, the growth of waves at these
large wave numbers is inhibited by resonance broadening.
During stage T2, the excited harmonics die out, while har-
monics 3, 2, and 1 grow and appear more clearly. Finally,
during stage T3, the spectral energy concentrates on the first
harmonic, while harmonics 3 and 2 (and higher) fade away.
Thus, one observes a shift of the spectrum from high wave
number harmonics to lower harmonics, or from high fre-
quency to low frequency, in what may look like an inverse
cascade which ends up on the first harmonic. Below, in
section 5, we will analyze the reasons behind this striking
behavior. Meanwhile, we discuss the phase space of the ion
beam, which also reflects the evolutionary shift from shorter
to longer wavelengths.

4.1. Ion Beam
[21] We have chosen three times representative of the

three stages T1, T2, and T3 and have reported them in
Figures 4 and 5 as QtA, QtB, and QtC. Figure 6 displays snapshots
of the ion beam at these times. Figures 6a, 6b, and 6c show
the [Qx, Qvx] phase space over a limited portion of the simula-
tion box that spans 30 Q�e. At time Qt = QtA, the first signs of trap-
ping become visible in the structuring of phase space within
the range Qvx/Qvte = [1.4, 1.5]. Note the short wavelength
(we measure Q� = 1.3 Q�e) in agreement with the high wave
number spectrum present during stage T1 (Qt = QtA in left panel
of Figure 5, harmonic 7). It is instructive to define a charac-
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Figure 6. Snapshots of the ion beam at times QtA, QtB, and QtC of Figures 4 and 5. Panels (a, b, c): Enlarged
view of the phase space. Panels (d, e, f): Isocontours distribution function f (Qvy, Qvx) at the same times. The
distributions have been obtained by binning particles from half the simulation box and hence are averaged
over many wavelengths. The innermost contour is at fmax/3 with fmax the maximum value of f. Subsequent
contours are at fmax/9, fmax/27, fmax/81, and fmax/243.

teristic nonlinear time that is based on the bounce time of the
beam’s ions in the wave [e.g., Nicholson, 1983, chap. 6]

Q�nl �
2�
Q�ce

s
M
m
Q�ce

Q!pe

1
Qk Q�e

1
QEx

(10)

and to evaluate it in relation to Figure 6. Using values for
the wave electric field QEx and wave number Qk typical of time
QtA, such as QEx = 0.05 and Qk Q�e = 5, one obtains Q�nl = 79 Q�–1

ce .
By Qt = QtA, the mode Qk Q�e = 5 has been intense since Qt = 30,
i.e., for a duration of only 10�–1

ce (see left panel of Figure 5),
hence to observe just early signs of trapping in some ions
seems consistent. Later, at time Qt = QtB (Figure 6b), the trap-
ping is more pronounced, and longer wavelengths appear
to structure the ion phase space. Although several wave-
lengths are clearly involved, we estimate the dominant one
to be 2.7 Q�e, in agreement with harmonic 3 of the spec-
trum displayed in the middle panel of Figure 5. We can
again evaluate Q�nl using values typical of time Qt = QtB such as
QEx = 0.1 and Qk Q�e = 2.3. One obtains Q�nl = 83 Q�–1

ce . Since
harmonic 3 has been intense for a duration 40 Q�–1

ce by t = tB
(see middle panel of Figure 5), one can expect half a trap-
ping loop as observed. Finally, at time Qt = QtC (Figure 6c), the
ion phase space evidences a strong signature of trapping in
the long-wavelength mode of the first harmonic at Qk Q�e = 1.
Structures of shorter scale, remnants of the interaction of the
ions with the higher harmonics, are carried away in the trap-
ping associated with the first harmonic. This causes a loss

of coherence in the high harmonics and hence their disap-
pearance from the spectrum. The effect will be discussed in
detail in section 5.

[22] The distribution function of the ion beam f(Qvy, Qvx) at
times QtA, QtB, and QtC is shown in Figures 6d, 6e, and 6f by
means of contours and shows three main features. First, all
the “tongues” in phase space, when averaged over many
wavelengths, add up and form a tail to the ion beam roughly
at a 10% level from the beam’s top. Second, since the ions
are magnetized in the simulation (unlike in our dispersion
study), the beam slowly gyrates during the course of the run
at the rate Q�ci = Q�ce/400. Be aware of the changing scales
on the axes between Figures 6d, 6e, and 6f, and note how
the center of the innermost contour shifts from one snapshot
to the next. As expected, the shift obeys Qvx � cos( Q�cit) and
Qvy � – sin( Q�cit). Third, the drift of the beam as computed
by integrating over all beam particles decreases in time due
to the tail formation and the loss of kinetic energy feeding
the instability.

4.2. Direct Measurement of the Wave Frequencies
[23] So far we have simply assumed that the unstable

waves observed in the simulation had the frequencies asso-
ciated to their wave number by the dispersion relation
presented in section 2. It seems desirable, though, to inde-
pendently determine these frequencies. To this end, several
“probes” were set up at various, fixed positions in the box
and recorded the local electric and magnetic field compo-
nents versus time. Records of the electrostatic field QEx and
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(a) (b) (c)

(e)(d)

Figure 7. Record of the electrostatic signal QEx in three successive time ranges (a) Q�ce
Qt = [40 – 60],
(b) Q�ce
Qt = [95 – 115], and (c) Q�ce
Qt = [140 – 160]. Corresponding power spectra computed within (d)
early time range Q�ce
Qt = [40 – 60] and (e) late time range Q�ce
Qt = [140 – 160]. Note the change in scale
between Figures 7d and 7e.

of the magnetic field QBz are shown in Figures 7 and 8,
respectively. Within each figure, the records of QEx and QBz

have been sequenced in three successive time ranges each

lasting 20 Q�–1
ce so as to render details visible. The first time

range Q�ceQt = [40, 60] (Figure 7a) illustrates the traces at
early time, and QEx clearly shows short-period oscillations.

(d)

(a) (b) (c)

(e)

Figure 8. Record of the magnetic signal QBz in the same time ranges as in Figure 7. Corresponding power
spectra computed within early time range Q�ce
Qt = [40 – 60] and late time range Q�ce
Qt = [140 – 160] are
displayed in Figures 8d and 8e. Note the change in scale between Figures 8d and 8e.
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Its power spectrum (Figure 7d) exhibits several discrete har-
monics as expected. In contrast, the trace of QBz (Figure 8a) is
weak at this time, even though, surprisingly, its power spec-
trum (Figure 8d) already reflects some harmonic structure.
The first harmonic is especially prominent. In Appendix
A, we show that the cross-field conductivity is a rapidly
decreasing function of the harmonics, which explains that
the spectrum of QBz imperfectly reflects the spectrum of
QEx. The traces of QEx and QBz in the second range, Q�ceQt =
[95, 115], show the emergence of a long-period oscillation
close to the electron cyclotron period (Figures 7b and 8b).
Finally, the third range, Q�ceQt = [140, 160], illustrates the
traces at late time when nearly all the wave power is accu-
mulated on the first harmonic (Figures 7c and 8c). Two
remarks are in order regarding the late power spectra of QEx
(Figure 7e) and QBz (Figure 8e). First, the frequency of the
wave is a little above Q�ce, more precisely, Q! = 1.3 Q�ce.
Second, the magnetic energy reaches a level comparable
to the electric energy, confirming what was already noted
about Figure 4. This magnetic buildup raises the ques-
tion of what oscillating current develops as source to the
oscillating QBz. One needs to analyze the behavior of the
electrons, in particular the deformation of their trajectories
during the late stage of the ECD instability. This is done
in section 4.3.

4.3. Electrons and Magnetic Signature of the Waves
[24] In a cross-field geometry where Bo = (0, 0, Bo) and

E = (Ex, 0, 0), it is well known that the response of electrons
to an electric field Ex oscillating with frequency ! depends
upon the relation of their cyclotron frequency �ce to !. For
�ce � !, the electrons oscillate mainly in the Ox direction,
whereas for �ce � !, they oscillate mainly in the Oy direc-
tion, i.e., perpendicularly to both Bo and E. What about in
a situation where ! � �ce as we have herein during stage
T3 (Figure 7e)? A formal answer is provided by examining
the cross-field conductivity �yx associated to the dispersion
tensor, which yields the current jy caused by a nominal elec-
tric field Ex according to linear analysis. In Appendix A, we
evaluate �yx and show that it is a sharply decreasing function
of the gyroharmonics. Thus, for high cyclotron harmonics
(i.e., ! � �ce), the response in the Oy direction is very weak.
For the first cyclotron harmonic, though, the response is
strong, meaning that the electrons’ motion comprises a sig-
nificant component in the Oy direction. This is the source of a
current jy that generates an oscillating magnetic component
Bz in addition to the background field (0, 0, B0).

[25] There is another approach to understanding the mag-
netic signature exhibited during the late stage T3. One
may directly examine the behavior of electrons in a given
Bernstein wave with frequency ! = 1.3�ce as determined
in Figure 7e. The analysis is detailed in Appendix B, which
yields two main points. First, some electrons from the core
can be significantly energized and reach speeds on the order
of 4vte for the wave characteristics we observe during stage
T3. Second, their orbits in (x, vy) hint to a “striation” of the
[x, vy] phase space (see the example of slanted orbit shown
in Figure B1, panel (c)). Now, a striated phase space is
indeed evidenced in Figure 9a, which is an enlarged view
taken from the simulation at time Qt = QtC and displays a snap-
shot of the electrons. Note the slanted, elongated patterns

Figure 9. Snapshot at Qt = QtC combining particle phase
space and field information. (a) Enlarged view of the elec-
tron phase space [Qx, Qvye] with a thick line indicating the
current component QJye obtained by integrating the electrons.
(b) Associated spatial profile of the main magnetic field
component QBz. Corresponding plots (c) of the ion beam
phase space and (d) of the electrostatic field QEx.

that extend in Qx over 14 Q�e. A solid line indicates the corre-
sponding spatial profile of Qjye. For comparison, we show the
spatial profile of QBz in Figure 9b. The phase relation between
the two profiles Qjye and QBz, which are shifted by � /2, is
clearly what can be expected from Ampere’s law, @xBz = –jy.
Now, which electrons contribute the most to this current –Qjy?
To answer the question, we have varied the bounds of
integration of the first moment

R
Qv yf (Qx, Qvy) dQvy. It turns

out that the main carriers of the current are electrons with
speeds 2 < |Qvy| < 4, confirming thus the importance of the
accelerated electrons.

[26] Figures 9c and 9d associate the electron dynamics
and magnetic field to the variations of the ion beam and
of the electrostatic field QEx that is responsible for the parti-
cles’ dynamics. It is clear that the main spatial fluctuation
of the electron current Qjye (Figure 9a) fits with the largest
wavelength scale of the ion beam modulation shown in
Figure 9c. Recall that the largest scale progressively dom-
inates as time evolves. The small scales present in the ion
beam are due to the early buildup of high k modes (respon-
sible for the well-developed “tongues” in Figure 9c) and
lead to much smaller amplitude fluctuations in the electron
current Qjye and in the electrostatic field (Figure 9d). The com-
petitive buildup of low and high k modes versus time, and
their mixing as evidenced in Figure 9c, is discussed next in
section 5.
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5. Inverse Cascade, Resonance Broadening,
and Trapping

[27] In Figure 5, the spectrum is seen to shift from high
wave number harmonics to lower wave number harmonics
in what may look like an inverse cascade ending up on the
first harmonic. We examine here the possible causes for this
evolution. As noted in section 2 and evidenced in Figure 3,
the individual growth rates among gyroharmonics are spread
out: e.g., harmonic 5 has a faster rate than harmonic 1. From
this spread, one can easily understand why higher harmonics
appear first and are followed by lower harmonics until the
first harmonic that appears last. On the other hand, why do
the higher harmonics die out first too? One may also won-
der why very high harmonics such that k�de > 0.6 are not
seen. An immediate approach is to investigate whether the
spectral energy accumulated in the high harmonics is being
transferred over the course of time to lower harmonics, as
it happens in an inverse cascade. To address the question,
we compared the run of Figure 5 to another run (not shown
herein) that was carried out with a low-pass filter prevent-
ing the growth of waves above the first cyclotron harmonic.
Of course, the electrostatic energy took longer to grow since
one artificially suppressed the faster growing modes. Thus,
at a given time the total electrostatic energy is smaller in
the run with the low-pass filter. Smaller are also the kinetic
energy lost by the ion beam and the energy gained by the
electrons. However, the spectral energy contained in the first
cyclotron harmonic at late time is comparable. For example,
by time Q�ceQt � 150 when the spectrum appears dominated
by the first harmonic, the spectral energy contained in this
harmonic is approximately 2�10–3 in both cases. Hence, we
can conclude that the spectral energy does not cascade down
the range of wave numbers to accumulate on the first har-
monic but is reabsorbed by the particles at the level of each
cyclotron harmonic (wave damping). Next, we analyze two
processes which contribute to the time evolution of the elec-
trostatic spectrum: one is resonance broadening, the other is
ion trapping.

5.1. Resonance Broadening
[28] In Appendix C, we briefly recall what is resonance

broadening and how it applies to electron Bernstein waves.
The alternate version of the electron susceptibility valid for
k�e > 1 that we presented in section 2 (see equation (4) ) is
modified to become the following:

QNL
xx,e =

1
(k�de)2

�
1–
p
��e–�2

�
cot
�
! + i < 
!k >

�ce
�

�
–i erf(i�)

��
,

(11)

where < 
!k > denotes the resonance broadening term
(equation (C2a) in Appendix C) and � � (! + i < 
!k >)/
(
p

2kvte). In equation (11), the magnetic field appears
directly via �ce in the argument of the cot term and indi-
rectly through < 
!k >, which itself is present in � and
in the imaginary argument of the cot term. As pointed out
by Lampe et al. [1972], there is a very interesting limit to
equation (11). For a given wave number k, once the broad-
ening < 
!k > is large enough, the cot term tends to the
constant –i. Hence, if the level of turbulence is sufficient
so that �ce/� 	< 
!k >� !, we can replace the cot
term by –i while neglecting < 
!k > in �. As a result,

the susceptibility (11) tends to that of an unmagnetized
plasma. Physically, it means that the helical electron orbit is
so perturbed that the phase relation between the electron and
the wave k is lost after a time �D = <
!k >–1 lasting less than
half a gyroperiod. The appropriate susceptibility, therefore,
cannot anymore reflect the magnetization of the electrons.
Explicitly, it becomes

Qxx,e0 =
1

(k�de)2

n
1 + i
p
��e–�2

[1 + erf(i�)]
o

. (12)

The latter can be combined with the ion susceptibility (2)
into the dispersion relation 1 + Qxx,e0 + Qxx,i = 0, which yields
the usual ion-acoustic instability (IAI). Out of brevity, we
will loosely state that the electrons become “demagnetized”
for that wave number k mentioned above. This demagnetiza-
tion, we emphasize, concerns the high cyclotron harmonics
because of the inequality < 
!k >� ! and certainly does
not apply to the first harmonic. In this regard, the electron
susceptibility remains magnetized as evidenced by the late
spectrum observed in the simulations. Note that in contrast
with Lampe et al. [1972], who could not observe this feature
since they excluded the first harmonic, the present analysis
includes all gyroharmonics.

[29] It is clear from expression (C2a) that the resonance
broadening is more effective on waves with large k�e.
We can therefore expect that as the simulation run devel-
ops (Figure 5), the high cyclotron harmonics with high
k�e might be “demagnetized” first when the turbulence
level is still low. Then, as the turbulence level increases,
electrons interacting with gyroharmonics of progressively
lower order become “demagnetized.” For each gyrohar-
monic k present in Figure 3, we have used the electrostatic
spectrum recorded in the simulation to compute < 
!k >
from (C2a) and noted the time when <
!k > reaches the
value �ce/� . Figure 10 shows the results in a diagram wave
number versus time. For each gyroharmonic, a diamond
labeled with italic (located at the edge of the yellow zone)
marks the time of “demagnetization.” Thus, harmonics 11,
10, 9, etc. become “demagnetized” at early times, while har-
monics 3 and 2 do so only later in the course of time. We
note that a precise determination of the “demagnetization”
time is difficult because of the complexity of the expression.
For example, if one assumes � < 1 as done in Lampe et al.
[1972] in order to simplify the expression, one obtains an
earlier time indicated with “X” in Figure 10. Still, the pro-
cess of resonance broadening may well explain the order in
which the harmonics disappear.

[30] With the chosen beam parameters (see Table 1), ion-
acoustic waves are weakly unstable for k�de < 0.4 (i.e.,
k�e < 4) and strongly damped for shorter wavelengths
(see section 6). The marginally unstable zone is marked
in Figure 10 with small pluses. We have thus three pos-
sibilities for the evolution of a given harmonic, which is
illustrated by three sample cases indicated by red arrows
in Figure 10. First, as shown with harmonic 7 (see the top
red arrow), an acoustic wave at this short wavelength would
be damped. Hence, once the electrons in the dispersion
becomes demagnetized, the wave ceases to exist. Second, as
shown with harmonic 3 (see the middle red arrow), an acous-
tic wave at this wavelength would not be damped. Hence,
once the electrons become demagnetized at time Q�ceQt > 130,
the wave intensity becomes diffuse without clear spectral
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Figure 10. Time when the electrons become demagnetized
in the dispersion relation according to resonance broadening.
The time is indicated by a diamond shape for each harmonic
(attached italic label) and is computed from the spectrum
of the simulation. It progressively shifts from high to low
harmonics. For reference, the crosses mark the solution of
Lampe et al. [1972, equation (23)]. The small pluses indicate
the wave number range that is weakly unstable to IA waves.
The horizontal red lines at harmonics 7, 3, and 1 correspond
to three cases discussed in the text.

feature. Last, in the case of harmonic 1 (see the bottom red
arrow), the electrons remain magnetized at any time, and the
wave keeps growing until another process like ion trapping
saturates its growth.

[31] Resonance broadening might also provide an expla-
nation for why harmonics with very large wave number such
as harmonics 9, 10, and 11 are not seen in the simulation.
Consider equation (C2a). The initial noise level

P
k0

|Ek0 |2
4�nTe

present in the simulation might just suffice to inhibit their
growth altogether. In order to test this hypothesis, we have
carried out another run with 4 times more particles per
grid cell, which reduced the noise level by a factor 4.
Figure 11 shows the electrostatic spectrum obtained during
early times. Figure 11a displays it in terms of wave number
and time in a format similar to Figure 5. Axis and ordi-
nate have only been exchanged, which allows us to show in
Figure 11b an accompanying snapshot of the spectrum along
the same Qk Q�e axis. The reduced noise level allows indeed
more harmonics to appear. Harmonic 8 shows up now very
clearly, while harmonics 9, 10, and 11 become visible, albeit
faintly. We note that the global “knee” shape predicted by
the linear dispersion analysis and plotted in Figure 2c is now
reflected in the spectrum. Reducing the term

P
k0

|Ek0 |2
4�nTe

in
equation (C2a), which diminishes the broadening < 
!k >
at early times, helps the emergence of modes that have both
low growth rates and large wave numbers. Thus, the non-
linear effect of resonance broadening adds to the thermal

effect studied in section 2.2 for damping the high gyrohar-
monics, thereby limiting the number of harmonics which can
possibly be excited.

5.2. Ion Trapping
[32] Another way to understand the evolutionary spec-

tral shift from high gyroharmonics to lower gyroharmonics
deals with the trapping of ions forming the reflected beam.
For a given level of electric field, the characteristic non-
linear time is shorter for high wave numbers than for
low wave numbers as indicated by the k�e dependence in
equation (10). Thus, the high harmonics that grow early are
also the first to initiate some ion trapping, as evidenced in
Figure 6a. Now, the same beam ions are also resonant with
lower harmonics. As time evolves and the lower harmon-
ics reach sufficient intensity to also begin ion trapping, the
coherence previously established between the ions and the
high harmonics becomes lost. In Figure 6b, one can see
that several different wavelengths are at play simultaneously.
As small-scale structures of the ion phase space (higher
harmonics) are displaced by larger-scale structures (lower
harmonics), the spectral energy contained in high k�e values
drops (strong damping). Figure 6c clearly shows structures
of shorter scales being carried away by the trapping associ-
ated with the first harmonic. Thus, what looks like an inverse
cascade is the result of the formation of a “broth” of vortices
of different spatial scale which have a different evolutionary
time scale.

6. Ion-Acoustic versus Electron Cyclotron
Drift Instability

[33] Other instabilities have been studied in the context
of the shock’s foot and the relative drift of its different
local populations. In Figure 12, we compare the growth
rate of ion-acoustic instability (IAI) to that of the ECDI
for our set of plasma parameters (see Table 1). The IAI,
which is shown here with a green line, is marginally unsta-
ble for wave numbers k�de < 0.45 and strongly damped for
shorter wavelengths. Since the modified two-stream insta-
bility (MTSI) has lately returned to the fore thanks to recent
studies [Scholer et al., 2003; Matsukiyo and Scholer, 2003,
2006; Umeda et al., 2012], we also show it here for fur-
ther comparison. In the little insert on the left, its growth
rate is indicated schematically for the optimal conditions of
Matsukiyo and Scholer [2003, Figure 4], namely � = 85°,
M/m = 1836, and ˇe = ˇi = 0. It clearly has a much longer
wavelength and a much smaller growth rate than the ECDI.
In spite of its weak growth rate relative to the ECDI, the
instability is important because it involves the dynamics of
the electrons along the magnetic field lines and allows for
their parallel heating. We note that the total time span of our
simulations corresponds to 180/�ce, namely 3/	MTSI. This
instability would thus hardly have the time to grow if our
simulation design had allowed for it.

[34] In order to compare and contrast features of the IAI
with those of the ECDI, we carried out another run with the
parameters of Table 1 except for the ambient Bo field that
was set to zero. Figure 13 compares the spectra obtained
in either case. The ECDI spectrum at Q�ceQt = 60 (beginning
of stage T2) is displayed in Figure 13a. Peaks at harmonics
3, 4, 5, 6, and 7 are well visible and much above the level
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Figure 11. (a) Early evolution of the electrostatic energy spectrum for an extra simulation run with
1600 particles/cell for each population. All other parameters are as in the reference run (cf. Table 2);
hence, Figure 11a can be compared with stage T1 of Figure 5. Italicized figures label the Bernstein har-
monics. Note the global “knee” shape reflecting the growth rates shown in Figure 2c. (b) Snapshot at time
Qt = 50 Q�–1

ce indicated by an arrow on the LHS of Figure 11a.

of the broad IAI spectrum which is shown in Figure 13c
at the same time for comparison. A late ECDI spectrum
(Figure 13b) is to be compared with the IAI spectrum at the
same time (Figure 13d). We use a logarithmic scale in order
to focus on features besides the intense peak at Qk Q�de = 0.09
associated with the first gyroharmonic. Clearly, the ECDI
spectrum is broadly enhanced around Qk Q�de � 0.1. However,
beyond Qk Q�de > 0.2, there is no significant difference between
the spectra produced by the two simulation runs.

Figure 12. Growth rate of the ion-acoustic instability (IAI)
from solving the linear dispersion with unmagnetized elec-
tron susceptibility (see equation (12)). Maximal growth
rates of the ECDI for each gyroharmonic (obtained from
Figure 2c) are marked with asterisks for reference. An insert
shows the MTSI in red for comparison.

[35] By contrast, the late particle phase space evidences
a very different picture between the ECDI run and the IAI
run, as demonstrated in Figure 14. Here, we focus on a short
portion of the simulation box spanning 20 Q�e and compare
the [Qx, Qvx] spaces of the electrons (Figures 14a and 14b) and
of the beam’s ions (Figures 14c and d). Electrons are sig-
nificantly heated in the ECDI case (Figure 14a), as already
noted about Figure 4 and explained in Appendix B by their
strong response to the electric field of the first gyroharmonic.
In the IAI case, they heat much less (Figure 14b) because
the spectrum is weak and broad without any particular reso-
nance. Interestingly, we note the presence of electron holes
(e.g., there are clear ones at Qx = 16 Q�e, 25 Q�e, and 28.5 Q�e).
Electron holes can form because no gyrating component
affects the one-dimensional electron motion driven by the
Ex-field. Regarding the ion beam, we can see that it is very
strongly affected in the ECDI case (Figure 14c), unlike in
the IAI case (Figure 14d) where it is only lightly affected by
the weak and broad spectrum that is displayed in Figure 13d.

7. Discussion
[36] The present study is focused on wave activity devel-

oping within the foot region of a supercritical perpendicular
shock, where three different particle populations interact and
are the sources of microinstabilities. Although the approach
used herein does not simultaneously include the full dynam-
ics of the shock itself, it offers the advantage of a very
detailed analysis of the wave activity with high spatial/time
resolution and high particle statistics. For the global picture,
the successive nonlinear stages which are evidenced herein
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Figure 13. Snapshots of the electrostatic energy spectrum at two times, Q�ceQt = 60 and 170, comparing
two different simulation runs: (a, b) ECDI reference run with QB0 = 5 and (c, d) IAI run with QB0 = 0. Apart
from QB0, other parameters are identical (cf. Table 2).

for the first time need to be re-inserted within the larger
frame of evolving shock front structures.

[37] First, we must take into account that these structures
vary in time when the shock front self-reforms. Yet, all the
processes described in this paper occur very quickly over
a time on the order of the lower hybrid period. By con-
trast, the self-reformation time is on the order of the ion
cyclotron period, namely a factor �ci/�lh =

p
M/m longer. It

is also noteworthy that the growth rate given in (8) is such
that 	 /�ci � (M/m)3/4. As the mass ratio increases to real-
istic values, the instability has more time to develop. One
may therefore expect that the processes described herein are
minimally affected by the evolution of the shock front (non-
stationarity) and that their nonlinear characteristics should
have plenty of time to emerge before the original narrow
beam of reflected ions has disappeared.

[38] Second, we must consider the effects of convection.
Remember that the simulations are performed in a frame
where the electrons are at rest. Seen from the shock frame,
the electrons drift toward the shock front with a speed Ve
that is related to the solar wind speed V1 by equation (6) of
Muschietti and Lembege [2006], namely

Ve = V1(1 – 2˛ + 2˛/r), (13)

where ˛ is the relative ion density in the beam and r is the
shock’s compression ratio. One needs to compare the dis-
tance covered by the drifting electrons during a lower hybrid
period �lhVe with a characteristic length of the foot region.

The latter is commonly evaluated as Lf = V1/�ci. Using
equation (13), one obtains

�lhVe = Lf

h
2�(1 – 2˛ + 2˛/r)

p
m/M

i
. (14)

Considering that the factor in bracket is approximately 0.2
for the chosen parameters and would further decrease for
a realistic mass ratio, our scenario appears quite reason-
able even when being inserted within the full dynamics of
a supercritical perpendicular shock. On the other hand, con-
vection effects are likely important and should be accounted
for in a more complete study. Lastly, even though the paper’s
title refers to perpendicular shock, we note that the ECDI
would also develop where shocks are not strictly perpen-
dicular. The preferred wave vector would then point to a
direction perpendicular to B0 within the coplanarity plane.

[39] We now turn to compare the present main results
with previous works. Our former study [Muschietti and
Lembege, 2006], which included the full dynamics of the
shock and its self-reformation, had first evidenced the devel-
opment of the electron cyclotron drift instability (ECDI)
within the foot region. However, the parameter regime was
far from realistic, partly due to numerical conditions and
partly in order to mimic the parameters in Hada et al.
[2003]. By contrast, the present work uses a more realistic
parameter regime. Ion and electron scales are now widely
separated thanks to a mass ratio M/m = 400 (instead of 100),
and the Debye length is considerably smaller than the elec-
tron gyroradius thanks to !pe/�ce = 10 (instead of 2). As
a result, the upper hybrid branch is well separated from the
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(a)

(b)

(c)

(d)

Figure 14. Snapshots of the phase space [Qx, Qvx] at Q�ceQt =
170 which compare the behavior of (a, b) the electrons and
(c, d) the beam ions for the two different simulation runs of
Figure 13: ECDI and IAI. Note the substantial heating of the
electrons in the ECDI case (in Figure 14a) and the modest
alteration of the ion beam in the IAI case (in Figure 14d).

first Bernstein branch. The present work confirms the strong
persistence of the ECDI when approaching more realistic
parameters. Moreover, it shows that the ECDI can excite
many harmonics belonging to purely backward propagating
branches below the upper hybrid branch. In Muschietti and
Lembege [2006], the first gyroharmonic only was observed,
which can be ascribed to physical and numerical reasons.
Numerically, the present periodic conditions allow to use a
better grid with resolution down to the Debye length and

better particle statistics with less numerical noise. Physi-
cally, the number of harmonics excited is indeed expected
to increase for a larger ratio !pe/�ce, as explained near the
end of section 2.1. In addition, the large value of !pe/�ce
used herein and hence the separation of the upper hybrid
branch from the first Bernstein branch allows to clarify the
following. The present ECDI should not be confused with
the so-called Buneman instability (BI) which has been pro-
moted by Shimada and Hoshino [2000] and which operates
for drift velocities of the ion beam Vb very large as com-
pared with the electron thermal speed vte, in contrast to the
ECDI. The fact that the electron cyclotron frequencies dis-
cussed in the present paper are well below the upper hybrid
frequency establishes unambiguously that the ECDI is not
a magnetized variant of the Buneman instability. As a mat-
ter of fact, the reflected ion beam used herein (see Table 1)
is absolutely not Buneman unstable. It can barely excite an
ion-acoustic instability as shown in Figure 12. We empha-
size this point because the BI has been reported [Shimada
and Hoshino, 2000] to occur in simulations of supercritical
shocks with an Alfven Mach number V1/VA & 10. How-
ever, the BI regime, namely the beam speed Vb � 2V1 =
2MAVA >> vte, occurs easily in simulations using a small
mass ratio. Indeed, because

vte = (ˇe/2)1/2(M/m)1/2VA, (15)

the electron thermal speed vte, which is just a few times
VA for strongly reduced mass ratio, becomes much larger
for realistic mass ratios. In Shimada and Hoshino [2000],
e.g., the simulations had ˇe = 0.15 and M/m = 20, which
yields vte/VA = 1.7. In this paper, the ratio is vte/VA = 4,
and in an ideal simulation with realistic mass ratio, it would
be of order 10. Thus, as the mass ratio increases toward
a realistic value, the range of Mach numbers where the
present ECDI applies expands, while the range where the
BI applies shifts toward very high Mach values that do not
concern Earth’s bow shock. In a later paper, Shimada and
Hoshino [2004] performed new simulations with a realis-
tic mass ratio, M/m = 1836, an improvement which was
partially offset by a small electron temperature, ˇe = 0.01,
resulting in a ratio vte/VA = 3. In spite of this rather mod-
est ratio, the Mach number was set to MA = 16 so as to
fully satisfy the criterion for the Buneman instability. Yet
again, although relevant for astrophysical shocks, such a
regime is not suitable for planetary shocks considered in the
present study.

[40] If one considers wave propagation directions that
are off the perpendicular to the ambient magnetic field Bo,
the modified two-stream instability (MTSI) [McBride et al.,
1972], or its generalized electromagnetic variant the“kinetic
cross-field streaming instability” [Wu et al. 1984, sec. 3.1.3],
is important and easy to excite since it operates for a
drift velocity less than the electron thermal speed

p
Te/m.

The unstable frequency lies between the ion and electron
gyrofrequencies, so that one assumes the ions as unmag-
netized but electrons as magnetized. The electrons can,
however, freely move in the wave propagation direction
thanks to a wave vector’s component along Bo that is small
yet finite. Scholer et al. [2003] performed 1-D PIC simu-
lation of a shock with �Bn = 87° and identified a MTSI
resulting from the relative drift between incoming ions and
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electrons in the foot region. Later, Matsukiyo and Scholer
[2006] performed a periodic 2-D PIC simulation of microin-
stabilities in the foot region and identified a second MTSI
which results from the relative drift between reflected ions
and electrons. The 2-D simulation design equally allowed
for wave propagation perpendicular to Bo and so the devel-
opment of the ECDI. Early on in their simulation, these
authors did indeed observe the ECDI yet confused it with
the Buneman instability. For !pe/�ce = 2 (value chosen
by the authors), the upper hybrid branch, where the BI is
expected to occur, is the second harmonic and thus close to
the first harmonic. This made it difficult to distinguish the
ECDI from a Buneman type of instability. Due to the ratio
!pe/�ce = 2, they could of course not observe the successive
nonlinear stages which are described in the present paper
and characterize the apparent “inverse cascade.” Generally,
as compared to the MTSI, whose growth rate is on the order
of the lower hybrid frequency, the ECDI growth is faster.
On the other hand, for a beam drift Vb <

p
Te/m, a regime

favorable for the MTSI, the wave intensity reached by the
ECDI is modest. The waves might be difficult to identify in
a noisy PIC simulation. Moreover, the wavelengths involved
can be quite short depending upon the chosen parame-
ters. As explained in Muschietti and Lembege [2006, see
equation (12)], the wave number k�de � (vte/Vb)(�ce/!pe).
If the simulation’s parameters are such vte > Vb while the
frequency ratio !pe/�ce is not large, the wavelength may be
just too short for the simulation’s grid.

[41] Although it is interesting to see the MTSI-1 and
MTSI-2 occurring in succession [Matsukiyo and Scholer,
2006], associated first with the incoming ions and second
with the reflected ions, one may wonder what convection’s
effects would do to this scenario. Indeed, the simulation
is performed with a periodic code, takes place in the rest
frame of the electrons, and therefore is subjected to the same
caveat as ours regarding the neglected effects of convection.
If, as we did with equation (14), one attempts to reinsert
these authors’ results within the framework of a supercriti-
cal shock and computes the distance covered by the drifting
electrons during the total period �sim of their simulation,
one obtains �simVe = 0.4Lf, which barely justifies neglect-
ing convection in a first approach. In fact, a recent work has
examined the two MTSI’s role within the framework of an
evolving shock [Umeda et al., 2012], which automatically
includes convection effects. Although these 2-D simulations
of a perpendicular shock evidenced the MTSI-2, the MTSI-
1 was not clearly observed, which the authors attributed to
convection effects limiting its growth.

[42] Several results presented herein confirm the early
work of [Lampe et al., 1972]. The major difference is that
we use a fully electromagnetic code (instead of electro-
static) and that our modern simulation design enables us to
excite several gyroharmonics while simultaneously resolv-
ing well the relatively long-wavelength first harmonic. Con-
sequently, we can recognize the apparent “inverse cascade,”
as exhibited in Figure 5, and can analyze the underlying
processes. In the late stage, the spectrum is completely dom-
inated by the first harmonic at k�e � 1 in sharp contrast
to the broad acoustic spectrum around k�de � 1 described
by Lampe et al. [1972]. Furthermore, we find that this late
spectrum has a substantial magnetic component which was
of course absent in these authors’ results since their code

was electrostatic. Lesser yet significant differences are in the
parameter choice. These authors use a denser (˛ = 0.5) and
colder (Tb = Te/100) reflected ion “beam” which does not
apply well to planetary shocks.

[43] So far, there have been scant observations of elec-
tron cyclotron harmonics in association with shocks. Only
one paper to our knowledge [Wilson et al., 2010] reports
Bernstein-like waves observed at a supercritical interplane-
tary shock. In the magnetosphere, though, electron cyclotron
harmonic waves have been often measured, e.g., by Geotail
[Usui et al., 1999], and could be destabilized by an ion beam
[Brinca et al., 2003] similar to the scenario described herein.

8. Conclusions
[44] We have analyzed the source mechanisms responsi-

ble for wave activity within the foot region of a supercritical
perpendicular shock. The present study, which is one dimen-
sional, is focused on the wave activity developing along
the shock normal and triggered by the interaction of the
three particle components that coexist within the foot region:
incoming electrons/ions and reflected ions. For perpen-
dicular propagation, the electron cyclotron drift instability
(ECDI), which results from the relative drift between the
reflected ions and the electrons, has been identified as the
source mechanism of electron Bernstein waves. We summa-
rize the main results concerning this instability hereafter.

[45] In the linear stage of 1-D PIC simulations, discrete
bands of emission, a characteristic signature of the ECDI,
are recovered in agreement with solutions obtained sep-
arately from wave dispersion analysis. In this stage, the
waves are mainly electrostatic, and the growth of the dif-
ferent gyroharmonics resulting from the interaction with
the reflected ion beam takes place on different time scales
in good agreement with dispersion analysis. The number
of gyroharmonics excited, while proportional to the drift,
is limited by kinetic effects (finite ion beam temperature)
that affect more the very high k modes and degrade their
growth. In addition, the process of resonance broadening is
shown to play a role. It applies even at early times and fur-
ther suppresses very high harmonics. In this sense, there is
no “linear” stage, strictly speaking, in the analysis of our
numerical simulation results.

[46] As for the subsequent nonlinear evolution, the most
salient features revealed in the present study are as follows:

[47] 1. The discrete band-type emission progressively
shifts from high harmonics to lower harmonics in what may
look like an “inverse cascade.” Eventually, most of the wave
electrostatic energy is stored at the lowest electron gyro-
harmonic. This evolutionary shift takes place within a time
scale around the lower hybrid period.

[48] 2. We have analyzed in detail the causes behind the
spectral evolution and found two complementary processes
at play: resonance broadening and ion trapping. The relative
efficiency of each process varies depending upon the time of
the simulation run and upon which of the different k modes
is concerned. A diagram shown in Figure 15 summarizes the
role of each process in the course of the simulation. The end
result always is a “broth” of different k modes of low spec-
tral intensity dominated by an intense first harmonic at wave
number k�e � 1 and frequency ! � �ce.
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Figure 15. Diagram which summarizes the relative effi-
ciency of resonance broadening versus ion trapping in
shaping the spectral evolution observed in the simulation
(Figure 5).

[49] 3. A striking feature is the buildup of a magnetic
component during the late stage. Since the ECDI is gen-
erally considered as an electrostatic instability, this widely
held view should be revised at least concerning its nonlin-
ear evolution. The magnetic field component Bz takes place
at the lowest harmonic branch (�ce). Its growth is supported
by a significant electron current Jye which occurs when a
large Bernstein wave develops on this low harmonic branch.
Indeed, electrons respond strongly to an electric field at their
cyclotron frequency. We have shown that electrons from the
core of the distribution can be momentarily trapped in the
electrostatic potential of the Bernstein wave and pick up
energy from the motional electric field which accelerates
them in the Oy direction. The process, which is reminiscent
of the shock drift type acceleration (SDA) familiar for ions,
gives birth to a substantial current Jye.

[50] 4. Through their participation in the ECDI, the elec-
trons experience some heating. In particular, their accelera-
tion during the late stage leads to the formation of a local
distribution function that has a flat top in v?. This is evi-
dence that some preheating of electrons can occur within the
foot region even for a strictly perpendicular shock.

[51] 5. The ECDI has been compared to the IAI. Although
the wave energy level is similar, the ECDI concentrates
the spectral energy in discrete bands, first at multiple
gyroharmonics and eventually at the first gyroharmonic.
This discretized spectrum turns out to be much more effi-
cient than the broad acoustic spectrum of the IAI for tapping
energy from the ion beam and energizing the electrons.

[52] 6. The ECDI has been briefly compared with fea-
tures of the MTSI. Our results show that the ECDI can
easily be excited over a time range much shorter than the
lower hybrid period �lh, in contrast to the MTSI which grows
around �lh.

[53] 7. The electron kinetic energy gain is comparable to
the loss of the ion beam energy. At any time, the energy in
the ECDI remains a very small fraction of the energy trans-
ferred from the ion beam to the electrons. In other words,
the ECDI is mainly a “conduit” to transfer energy from the
ion beam to electrons.

[54] All the features above take place very shortly,
namely over a time scale slightly above the lower hybrid
period, which is much less than any time scale charac-
teristic of the shock dynamics itself: (a) the upstream ion
gyroperiod which characterizes the ion reflection and (b)
the self-reformation cyclic period which characterizes the
nonstationarity of the whole shock front (ramp and foot).
Taking into account the convection effect due to the solar
wind motion, this wave activity (in terms of both electric
and magnetic fields) that originates from the foot region may
pollute the ramp region and contribute to the wave activity
within the overall shock front.

[55] Finally, a comparative study with previous works
has been performed and confirms that these features have
not been observed hitherto, mostly due to a lack of spatial
and time resolution. At present, the study is based on per-
pendicular propagation only. A parametric study is under
active investigation in order to establish the link with other
microinstabilities that are also responsible for wave activity
within the shock front but in conditions different from those
considered herein.

Appendix A: Magnetic Signature of the Waves
[56] Conductivity tensor � and susceptibility Q of linear

wave theory are closely related. The cross-field conductivity
�yx, which stems from the magnetized motion of the elec-
trons, expresses the linear response in the Oy direction due to
a nominal electric field in the Ox direction, jy = �yxEx. In the
case of electron Bernstein waves, it reads

�yx =
�ce

4�
!2

pe

�2
ce

"
1(�) –ƒ0(�) +

1X
n=1

!2

!2 – n2�2
ce

(n+1(�)

+n–1(�) – 2ƒn(�))

#
,

(A1)

where the modified Bessel functionsƒn and their arguments
� � (k�e)2 are the same as in equation (1). Figure A1 dis-
plays the values of –�yx for successive Bernstein harmonics.

Figure A1. Cross-field conductivity �yx versus dimension-
less wave number k�e. Equation (A1) is used to plot the
conductivity for successive Bernstein harmonics (see text of
Appendix A).
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For each harmonic, we numerically solve the dispersion
relation to determine the pair (k,!) at maximum growth.
This pair is then used to evaluate (A1) and place an asterisk
on the plot. It is clear that the cross-field conductivity
diminishes quickly with increasing wave number.

Appendix B: Orbits of Electrons in a
Bernstein Wave

[57] In this appendix, we consider a Bernstein wave prop-
agating in a direction Ox perpendicularly to the ambient
magnetic field OzBo and investigate the resulting motion of
an electron in the plane [x, y]. To eliminate all explicit time
dependence, we work in the wave frame moving with the
phase speed uwvte in the Ox direction. In dimensionless form
where �–1

ce and �e are the units of time and distance, respec-
tively, the dynamical equations for the electron can then be
written as

Pvx = –vy[1 – ıbz sin(kx + ')] – ıax cos(kx + ')
Pvy = +vx[1 – ıbz sin(kx + ')] + uw.

(B1)

The term ıax � (c/vte)(Ex/Bo) is the dimensionless accel-
eration due to the wave electric field. As we have seen in
section 4 (Figures 4d and 8), the simulation evidences a
fluctuating, self-consistent magnetic component Bz in addi-
tion to the ambient field Bo. This component is � /2 out of
phase with the electric field and accounted for here by a term

ıbz � (1/Bo)Bz. Integrating the dynamical equations (B1)
numerically with values for Ex and Bz taken from the simu-
lation during stage T3 (ıax = 2, ıbz = 0.02, uw = 1.3, and
k = 1) shows that some electrons from the core of the distri-
bution can be significantly energized. A temporary trapping
in the electrostatic potential of the wave and the associ-
ated motion in the Oy direction enables the motional electric
field Ey = –Bo(uwvte/c) to effect some work on the particles
[Goodrich and Scudder, 1984]. Figures B1a, B1b, and B1c
display the orbit of such an electron together with the profile
of the potential –�(x) =

R x Ex(x0)dx0 shown for reference.
The three panels show the orbit in [x, y], [x, vx], and [x, vy]
space, respectively. The small case letters “a,” “b,” “c,” “d,”
“e,” and “f” identify the electron’s successive locations on
the orbit. The particle is seen to move in x from right to left
because the view is from the wave frame. It starts at “a” with
velocities (vx, vy) = (–1.3, 1.) and moves to “b” where it is
reflected by the potential, i.e.„ where (vx, vy) = (0, 0). The
electron then begins an important excursion in y and is accel-
erated by the motional electric field until point “c” where the
y velocity reaches a maximum, vy � 4. Due to the Lorentz
force, this large velocity is progressively transferred from vy
to vx, while the drift in y continues at a reduced clip until
point “d” where the kinetic energy of the electron is maxi-
mum. One can easily evaluate the energy gain by computing
the work done by the motional electric field over the parti-
cle’s excursion in y. One obtains uw �
y = 1.3� 11 = 14.3.

(a)

(b)

(c)

(d)

Figure B1. Phase-space orbit of an electron as seen from the rest frame of a large Bernstein wave. In
grey, the electrostatic potential of the wave. (a) Solution in [x, y] of equation (B1) with wave field values
Ex and Bz typical of stage T3 of the simulation. Corresponding variations of the two velocity components
(b) [x, vx] and (c) [x, vy]. (d) Phase-space orbit in [vx, vy] of the electron showing its acceleration to a large
gyro-orbit. For description, see text of Appendix B.
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Hence, a thermal electron can reach a large energy over 14
times its initial energy. At point “e,” vy changes sign and
becomes negative. Its amplitude then increases until point
“f” where vy � –4. We note that the change from vy � +4
to vy � –4 takes place over a distance well over one wave-
length. The electron has been accelerated and its gyroradius
substantially increased, as visible in Figure B1d. The orbit
in [vx, vy] space demonstrates how the particle which origi-
nally belongs to the core of the distribution is at point “b”
kicked out from the core to reach a larger gyro-orbit with
v? � 4. A similar energization process for the electrons can
occur where they are blocked by ion phase-space holes that
move perpendicularly to OzBo. Shimada and Hoshino [2004]
invoked the motional electric field present in the rest frame
of the ion holes to account for a strong energization of the
electrons observed in their simulation.

Appendix C: Resonance Broadening and
Nonlinear Electron Susceptibility

[58] In conventional plasma theory, one uses linear orbits
to integrate Vlasov equation and obtain the dispersion rela-
tion. For example in a magnetized plasma, the electrons’
linear orbits consist of gyrocenters that follow the mag-
netic lines at constant speed, of constant gyroradii, and of
gyrophases varying as�cet. In Dupree’s theory of strong tur-
bulence [Dupree, 1966], the orbits take place in a turbulent
medium and are subjected to random forces. The effect of
the latter on the electrons is described in terms of diffusion
and causes the phase relation between an electron and a wave
to be destroyed after a time �D. This finite interaction time
corresponds to a broadening of the usual wave-particle res-
onance in the frequency domain, 
!k = �–1

D . For gyro-orbits
in a magnetized plasma, the diffusion has three origins:
a cross-field Brownian motion of the gyrocenters, random
changes in the gyroradii, and random changes in the phase
angles [Dum and Dupree, 1970]:


!k = k2
?

"
1

k2
?

k � D? � k +
1

2�2
ce

(Dv?v? + D��)

#
. (C1)

An expression for 
!k in terms of the spectral inten-
sity has been obtained by Dum and Dupree [1970] in the
case of an isotropic spectrum. The expression has been
adapted by Lampe et al. [1972] for a one-dimensional spec-
trum perpendicular to Bo such as generated by the electron
cyclotron drift instability. It depends upon the wave num-
ber and the gyroradii (i.e., the perpendicular velocities) of
the electrons and hence needs to be averaged over a velocity
distribution before it can be used in a dispersion relation:
<
!k>=

R
d3vfe
!k(v?). The averaged expression obtained

by Lampe et al. [1972, see (18)] is
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�ce
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Im[G(�+) + G(�–)],

(C2a)

where we write G(�˙) in terms of erf function (rather than
the Z function used by the authors)

G(�˙) � 2
p
�e–�2

˙

"
– cot

�
�
! + i < 
!k0 >

�ce

�
+ i erf(i�˙)

�
(C2b)

and
�˙ �

! ˙�ce + i < 
!k0 >
p

2k0vte
. (C2c)

Once the effects of the turbulent electric fields on the gyro-
orbits are lumped in < 
!k >, the nonlinear electron
susceptibility for Bernstein waves simply becomes

QNL
xx,e = –

1
k2�2

de

2
4 – 1+ƒ0(�)–2

1X
n=1

ƒn(�)
(!+i <
!k >)2

n2�2
ce –(!+i <
!k >)2

#
,

(C3)

which is to be compared to equation (1). Now, regarding
the size of the broadening < 
!k >, from (C2a) we note
that, first, it is proportional to the spectral level and, sec-
ond, it affects more large values of k�e, hence the higher
gyroharmonics which are excited by the ECDI.
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