
HAL Id: hal-00801395
https://hal.science/hal-00801395

Submitted on 15 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Approach for Modeling and Formalizing SOA Design
Patterns

Imen Tounsi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, Khalil Drira

To cite this version:
Imen Tounsi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, Khalil Drira. An Approach for Modeling
and Formalizing SOA Design Patterns. IEEE International Conference on Enabling Technologies:
Infrastructures for Collaborative Enterprises (WETICE), Jun 2013, Hammamet, Tunisia. 11p. �hal-
00801395�

https://hal.science/hal-00801395
https://hal.archives-ouvertes.fr

An Approach for Modeling and Formalizing SOA Design

Patterns

Imen Tounsi1, Mohamed Hadj Kacem1, Ahmed Hadj Kacem1, and Khalil Drira2,3

1 ReDCAD-Research unit, University of Sfax, Sfax, Tunisia,
2 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

3 Univ de Toulouse, LAAS, F-31400 Toulouse, France,
{imen.tounsi,mohamed.hadjkacem}@redcad.org, ahmed.hadjkacem@fsegs.rnu.tn, khalil@lass.fr

Abstract. Although design patterns has become increasingly popular, most of them are pre-
sented in an informal way, which can give rise to ambiguity and may lead to their incorrect
usage. Patterns proposed by the SOA design pattern community are described with informal
visual notations. Modeling SOA design patterns with a standard formal notation contributes
to avoid misunderstanding by software architects and helps endowing design methods with re-
finement approaches for mastering system architectures complexity. In this paper, we present
a formal architecture-centric approach that aims, first, to model message-oriented SOA design
patterns with the SoaML standard language, and second to formally specify these patterns at
a high level of abstraction using the Event-B method. These two steps are performed before
undertaking the effective coding of a design pattern providing correct by construction pattern-
based software architectures. Our approach is experimented through an example we present in
this paper. We implemented our approach under the Rodin platform, which we use to prove
model consistency.

Keywords: SOA Design Patterns: SoaML modeling: Formal methods: Event-B method

1 Introduction

The communication and the integration between heterogeneous applications are great challenges of
computing science research works. Several research have tried to solve them by various methods and
technologies (message-oriented middleware, Enterprise Application Integration (EAI), etc.). They have
tried to bring a response to these problems but without leading to real decisive success. For instance,
the stack of applications led to an unbearable situation, and the lack of an efficient architectural
solution led information systems to a deadlock with respect to business requirements.

Service-oriented architectures (SOA) is a technology that offers a model and an opportunity to
solve these problems [Erl, 2009]. Nevertheless these architectures are subject to some quality attribute
failures (e.g., reliability, availability, and performance problems). Design patterns, as tested solutions
to common design problems within a context, have been widely used to solve this weakness.

Most design patterns are presented in an informal way that can raise ambiguity and may lead to
their incorrect usage. Patterns, proposed by the SOA design pattern community, are described with
informal visual notations [Erl, 2009]. Modeling SOA design patterns with a standard formal notation
contributes to avoid misunderstanding by software architects and helps endowing design methods with
refinement approaches for mastering system architectures complexity. The intent of our approach is
to model and formalize message-oriented SOA design patterns. These two steps are performed before
undertaking the effective coding of a design pattern, so that the pattern in question will be correct by
construction. Our approach allows to reuse correct SOA design patterns, hence we can save effort on
proving pattern correctness.

In this paper, we present a formal architecture-centric design approach. The key idea is to model
SOA design patterns with the semi-formal Service oriented architecture Modeling Language (SoaML)
and to formally specify them with the Event-B method. We illustrate our approach through a pattern
example. We proceed by modeling the Asynchronous Queuing pattern, proposed by the SOA design
pattern community, with the SoaML language. This modeling step is proposed in order to attribute a
standard notation to SOA design patterns. Then, we propose a generic formalization of these patterns
using the Event-B method. Next, we illustrate the formalization step with the same pattern example
used in the modeling step. We implement the specifications under the Rodin platform which we use to
prove model consistency. We provide both structural and behavioral features of SOA design patterns

2 Imen Tounsi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, and Khalil Drira

in the modeling step as well as in the formalization step. Structural features of a design pattern are
generally specified by assertions on the existence of entities types in the pattern. The configuration of
the entities is also described, in terms of the static relationships between them. Behavioral features
are defined by assertions on the temporal orders of the messages exchanged between the entities
[Zhu and Bayley, 2010].

This paper is organized as follows. Section 2 gives background information of some used concepts.
Section 3 focuses on modeling SOA design patterns with the SoaML language. Section 4 describes
how to formally specify SOA design patterns with the Event-B method. Section 5 discusses related
work. Section 6 concludes and gives future work directions.

2 Event-B method

Event-B [Abrial, 2010] is a formal method for developing systems via stepwise refinement, based
on first-order logic. The method is enhanced by its supporting Rodin Platform [Abrial et al., 2010]
for analyzing and reasoning rigorously about Event-B models. The basic concept in the Event-B
development is the model which is made of two types of components: contexts and machines. A
context describes the static part of a model, whereas a machine describes the dynamic behavior of
a model. Machines and contexts can be inter-related: a machine can be refined by another one, a
context can be extended by another one and a machine can see one or several contexts. Each context
has a name and other clauses like ”Extends”, ”Constants”, ”Sets” to declare a new data type and
”Axioms” that denotes the type of the constants and the various predicates which the constants obey.
It is a predicate that is assumed to be true in the rest of the model. Like a context, a machine has an
identification name, variables that constitute the state of the machine (their values are determined by
an initialization and can be changed by events), invariants and events.

A relation is used to describe ways in which elements of two distinct sets are related. If A and
B are two distinct sets, then R ∈ A ↔ B denotes a relation between A and B. The domain of R is
the set of elements in A related to something in B: dom(R). The range of R is the set of elements
of B to which some element of A is related: ran(R). We also say that A and B are the source and
target sets of R, respectively. Given two elements a and b belonging to A and B respectively, we call
ordered pair a to b, the pair having the first element a (start element) and the last element b (arrival
element). We denote that by a 7→ b or (a,b).

A partial function is a relation where each element of the domain is uniquely related to one
element of the range. If A and B are two sets, then A 7→ B denotes the set of partial functions from
A to B.

Partitions are used in two different manners. The first one is partition(S, A,B). It means that A

and B partition the set S, i.e. S=A∪B ∧ A∩B = ∅. The second one is partition(S, {A},{B},{C})
which is a specialized use for enumerated sets. It means that S={A,B,C} ∧ A6=B ∧ B 6=C ∧ C 6=A.

3 Modeling SOA design patterns

We provide a modeling solution for describing SOA design patterns using a visual notation based on
the graphical SoaML language [OMG, 2012]. Three main reasons lead to use SoaML. First, it is a
standard modeling language defined by OMG. Second, it is used to describe SOA. Third, diagrams
used in SoaML, allow to represent structural features as well as behavioral features of design patterns.

In this paper, we model as example the Asynchronous Queuing pattern proposed by Erl [Erl, 2009].
This pattern example is also used in the formalizing step as a case study. Asynchronous Queuing

pattern 4 is an SOA design pattern for inter-service message exchange [Erl, 2009]. It belongs to the
category ”Service Messaging Patterns”. It establishes an intermediate queuing mechanism that en-
ables asynchronous message exchanges and increases the reliability of message transmissions when
service availability is uncertain. The problem addressed by this pattern is that when services inter-
act synchronously, it can inhibit performance and compromise reliability when one of services cannot
guarantee its availability to receive the message. Synchronous message exchanges can impose process-
ing overhead, because the service consumer needs to wait until it receives a response from its original
request before proceeding to its next action. Responses can introduce latency by temporally locking

4 http://soapatterns.org/design patterns/asynchronous queuing

An Approach for Modeling and Formalizing SOA Design Patterns 3

both consumer and service. The proposed solution by this pattern is to introduce an intermediate
queuing technology into the architecture. The behavior of this pattern is described in detail in section
3.2.

3.1 Structural features

In the structural modeling step, we specify entities of the pattern and their dependencies (connections)
in the Participant diagram (Figure 1) and we specify their interfaces and exchanged messages in the
ServiceInterface and MessageType diagrams respectively (Figure 2).

ServiceA, ServiceB and the Queue are defined as participants because they provide and use
services. As shown in Figure 1, ServiceB provides a ServiceX used by ServiceA and the Queue

provides a storage service. We did not represent the storage service provided by the Queue in order to
concentrate principally on the communication between ServiceA and ServiceB and to not complicate
the presented diagrams. Participants provide capabilities through service ports. Both ServiceA and
ServiceB have a port typed with “ServiceX”. ServiceB is the provider of the service and has a
Service port. ServiceA is a consumer of the service and uses a Request port. We note that ServiceB’s
port provides the “ProviderServiceX” interface and requires the “OrderServiceX” interface. Since
ServiceA uses a Request port preceded with a tilde (∼), the conjugate interfaces are used. So,
ServiceA’s port provides the “OrderServiceX” interface and uses the “ProviderServiceX” interface.
In this diagram, ServiceChannels are explicitly represented, they enables communication between
the different participants.

« Participant »
ServiceA

« Participant »
ServiceB

« Participant »
Queue

« Request »
: ~ServiceX

ProviderServiceX

OrderServiceX

« Service »
: Service X

ProviderServiceX

OrderServiceX

«ServiceChannel»
PushAQ

«ServiceChannel»
PushBQ

«ServiceChannel»
PushQB

«ServiceChannel»
PushQA

MM

Fig. 1. Participant diagram

Figure 2 shows a couple of MessageType that are used to define the information exchanged
between ServiceA and ServiceB. These messages are “RequestMessage” and “ResponseMessage”,
they are used as types for operation parameters of the service interfaces. The type of the ServiceB’s
port is the UML interface “ProviderServiceX” that has the operation “processServiceXProvider”.
This operation has a message style parameter where the type of the parameter is the MessageType
“ResponseMessage”. ServiceA expresses its request for the “ServiceX” using its request port. The
type of this request port is the UML interface “OrderServiceX”. This interface has an operation
“ProcessServiceXOrder” and the type of parameter of this operation is the MessageType “RequestMessage”.

« Interface »
ProviderServiceX

« Interface »
OrderServiceX

+ processServiceXOrder (rq : RequestMessage)
«ServiceInterface»

~ServiceX

«ServiceInterface»
ServiceX

«use»

«use»

«MessageType»
RequestMessage

«MessageType»
ResponseMessage

ProviderServiceX

+ processServiceXProvider (rs : ResponseMessage)

«Participant»
ServiceA

«Request»
: ~ServiceX

OrderServiceX

+

processServiceXOrder

«Participant»
ServiceB

«Service»
: ServiceX

ProviderServiceX

processServiceXProvider

+

«use»
Type Type

Fig. 2. ServiceInterface and MessageType diagrams

4 Imen Tounsi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, and Khalil Drira

3.2 Behavioral features

We use UML2.0 sequence diagram (Figure 3) to specify behavioral features. During a course of ex-
changing messages, the first service (ServiceA) sends a request message to the second one (ServiceB),
at that time, its resources are locked and consumes memory. This message is intercepted and stored
by an intermediary queue. ServiceB receives the message forwarded by the Queue and ServiceA

releases its resources and memory. While ServiceB is processing the message, ServiceA consumes no
resources. After completing its processing, ServiceB issues a response message back to ServiceA (this
response is also received and stored by the intermediary Queue). ServiceA receives the response and
completes the processing of the response while ServiceB is deactivated.

Sending Request

Transmissing Request
Processing
Request

Sending Response

Storing Request

Storing
Response

Transmissing Response

Processing

ServiceA ServiceBQueue

Processing
Response

Fig. 3. Sequence diagram

4 Formalizing SOA Design Patterns

In this section, we present an overview of the generic formalization of SOA design patterns with the
Event-B method [Abrial, 2010]. We use the Rodin Platform [Abrial et al., 2010] in order to prove the
correctness of the pattern specification.

A pattern P is described with structural features and behavioral features. Structural features are
specified with one or several contexts PCi and behavioral features are specified with one or several
machines PMi.

4.1 Structural features

Structural features are generally specified by assertions on the existence of types of entities in the
pattern. Entities, that compose the architecture of an SOA design pattern, can be either Participants

or Agents. Using Event-B, we specify in a context PCi the two entities as constants. The set Entity

is composed of the set of all Participants and the set of all Agents (Entity = Participant∪Agent

∧ Participant∩Agent = ∅). This is specified by using a partition (section 2) in the AXIOMS clause
(Entity partition).

SETS

Entity
CONSTANTS

Participant
Agent

AXIOMS

Entity partition : partition(Entity, Participant, Agent)

Participants name Pi are specified as constants in the CONSTANTS clause. The set of participants is
composed of all participants name. Formally, this is specified by a partition (Participant partition)
i.e. Participant = {P1,...,Pn} ∧ P1 6=P2 ∧...∧ Pn−1 6=Pn.

Agents name Ai are also specified as constants. The set of agents is specified using a partition in
the AXIOMS clause (Agent partition), that is Agent = {A1,...,An} ∧ A1 6=A2 ∧...∧ An−1 6=An.

In the SoaML modeling a ServiceChannel PushEiEj is a connection between two entities. It can be
between two participants (PushPiPj), two agents (PushAiAj) and between a participant and an agent.
When the direction of the connection is from a participant to an agent, it is named PushPiAj and if

An Approach for Modeling and Formalizing SOA Design Patterns 5

CONSTANTS

P1, ..., Pn

AXIOMS

Participant partition : partition(
Participant, {P1}, ..., {Pn})

CONSTANTS

A1, ..., An

AXIOMS

Agent partition : partition(
Agent, {A1}, ..., {An})

it is from an agent to a participant, it is named PushAiPj . Formally, ServiceChannels are specified
with an Event-B relation between two entities. ServiceChannel’s name PushEiEj are specified with
constants in the CONSTANTS clause. The set of ServiceChannels is composed of all ServiceChannel’s
name. This is specified formally with a partition (ServiceChannel partition).

CONSTANTS

ServiceChannel
PushEiEj , ..., PushEnEm

AXIOMS

ServiceChannel Relation : ServiceChannel ∈ Entity ↔ Entity
ServiceChannel partition : partition(ServiceChannel, {PushEiEj}, ...,

{PushEnEm})

To define the source and the target of a service channel, two axioms must be added, namely the
domain and the range.

PushEiEj Domain : dom({PushEiEj}) = {Ei}
PushEiEj Range : ran({PushEiEj}) = {Ej}

MessageType is the type of messages exchanged between different entities, it is declared in the
SETS clause. Messages name Mi are specified in the CONSTANTS clause. They are attributed with their
type with a partition in the AXIOMS clause (Message partition).

SETS

MessageType
CONSTANTS

M1, ..., Mn

AXIOMS

Message partition : partition(MessageType, {M1}, ..., {Mn})

In some SOA design patterns, entities are organized in various ways across many orthogonal
dimensions. For example they can be organized by service layers or by physical boundaries. In the
SoaML modeling Catalogs provide a means of classifying and organizing elements by Categories .
A collection of related entities are characterized by a Category . Applying a Category to an entity
by using a Categorization places that entity in the Catalog . Formally Catalogs are specified with
an Event-B catalog type and catalogs name Ci are specified with constants in the CONSTANTS clause.
The set of Catalogs is composed of all Catalogs name. This is specified formally with a partition
(Catalog partition). Like Catalogs , Categories are specified with an Event-B category type and
categories name Ci are specified with constants in the CONSTANTS clause. The set of Categories is
composed of all Categories name. This is specified formally with a partition (Category partition).
The containment relation of a Catalog with Categories is specified with the relation Belongs to and
the link of Categorization is specified with a relation between a Category and an Entity.

SETS

Catalog
Category

CONSTANTS

C1, ..., Cn

Ca1, ..., Can

Belongs to
Categorization

AXIOMS

Catalog partition : partition(Catalog, {C1}, ..., {Cn})
Category partition : partition(Category, {Ca1}, ..., {Can})
Belongs to Relation : Belongs to ∈ Catalog ↔ Category
Categorization : Categorization ∈ Category ↔ Entity
Belongs to init : Belongs to = {Cn 7→ Ca1, ..., Cn 7→ Can}
Categorization init : Categorization = {Ca1 7→ Pi, ..., Can 7→ Aj}

6 Imen Tounsi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, and Khalil Drira

4.2 Behavioral features

A machine of a pattern specification PMi has a state defined by means of a number of variables and
invariants. Some of variables can be general as the variable Send, which denotes the sent message
and the variable Process, which denotes the message process. The variable Send is defined with
the invariant Send Relation which specify that Send is a relation between a ServiceChannel and
a MessageType so we know the sender, the receiver and the sent message. The variable Process

is defined with the invariant Process Function which specify that Process is a function between a
Participant and a MessageType so we know which participant is processing which message.

VARIABLES

Send
Process

INVARIANTS

Send Relation : Send ∈ ServiceChannel ↔ MessageType
Process Function : Process ∈ Participant 7→ MessageType

Each pattern has its own behavior but some events can be general like the event of sending a
message Sending Mi and the event of processing a message Processing Mi.

Event Sending Mi

when

grd : G(v)
then

act : Send := Send∪
{PushEiEj 7→ Mi}

end

Event Processing Mi

when

grd : G(v)
then

act : Process := Process⊳−
{Pi 7→ Mi}

end

4.3 Context extension and Machine refinement

The specification of a pattern P will be too complicated and error prone if it is done in one shot. To
reduce this complexity, we define specification levels. In the first level, we create an abstract model (a
context PC0 and a machine PM0). In the next levels, we use the refinement techniques to gradually
introduce detail and complexity into our model until obtaining the final pattern specification. Our
refinement strategy is explained in Figure 4. When we move from Level(i) to Level(i+1), we add a
new entity and its connections to the model. In Level(i+1), the context PCi is extended with the
context PC(i+1) and the machine PMi is refined with the machine PM(i+1). The refined machine
sees the extended context.

CONTEXT
PC0

Extends

Add a new entity Ei + Its connections

MACHINE
PM1

MACHINE
PM0

Refines

Sees

Sees

�

L
ev

el
0

CONTEXT
PC1 L

ev
el

1

Refines

MACHINE
PMn

CONTEXT
PCn

Extends

Sees

�

L
ev

el
n

Fig. 4. Refinement strategy

An Approach for Modeling and Formalizing SOA Design Patterns 7

4.4 Case study: Asynchronous Queuing pattern

To illustrate the formalization step of our approach, we apply it on the same pattern example used
in the modeling step (Asynchronous Queuing pattern). The model of this pattern is composed of
two contexts AQC0 and AQC1 and two machines AQM0 and AQM1 (AQC denotes Asynchronous
Queuing Context and AQM denotes Asynchronous Queuing Machine). In the first level of specification,
we specify the pattern at a high level of abstraction, i.e. we suppose that the communication is only
between ServiceA and ServiceB. In the second level, we add the Queue and all its behavior to the
model. Machines and contexts relationships are illustrated in Figure 5.

MACHINE
AQM1

MACHINE
AQM0

CONTEXT
AQC1

Refines

Sees

Sees CONTEXT
AQC0

Extends

Fig. 5. Contexts and machines relationships

Structural features In the Asynchronous Queuing pattern, we have three Participants: ServiceA,
ServiceB and the Queue. In the context AQC0, we specify only two participants ServiceA and
ServiceB.

CONSTANTS

ServiceA
ServiceB

AXIOMS

Participant partition : partition(Participant, {ServiceA}, {ServiceB})

ServiceA and ServiceB are connected together through the ServiceChannels PushAB and PushBA.

CONSTANTS

ServiceChannel
PushAB
PushBA

AXIOMS

ServiceChannel Relation : ServiceChannel ∈ Entity ↔ Entity
ServiceChannel partition : partition(ServiceChannel, {PushAB}, {PushBA})

For each service channel, we add two axioms in order to define the domain and the range. For
example, for PushAB relation we add the following two axioms to denote that its source is ServiceA

and its target is ServiceB.

PushAB Domain : dom(PushAB) = {ServiceA}
PushAB Range : ran(PushAB) = {ServiceB}

We did not specify ports and interfaces because they are fine details.Whereas, we specify mes-
sages to know what message is being exchanged. So, we define the MessageType set, two constants
RequestMessage and ResponseMessage and then the message partition.

SETS

MessageType
CONSTANTS

RequestMessage
ResponseMessage

AXIOMS

Message partition : partition(MessageType, {RequestMessage},
{ResponseMessage})

8 Imen Tounsi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, and Khalil Drira

The second context AQC1 is an extension of the context AQC0. In this context we add a new
constant Queue and we redefine the Participant partition by adding the Queue. Also we add four
constants PushAQ, PushQB, PushBQ and PushQA to define the new ServiceChannels. Axioms
that restrict the domain and the range of these ServiceChannels are also added to the context. This
part of specification belongs to the Participant diagram (Figure 1) and MessageType diagram
(Figure 2).

Behavioral features To specify behavioral features, we have two steps. First, we specify the pattern
with a machine at a high level of abstraction. Second, we add all necessary details to the first machine
by using the refinement technique.

In the first machine AQM0, we only specify the communication between ServiceA and ServiceB,
i.e. the queue is completely transparent, meaning that neither ServiceA nor ServiceB may know that
a queue was involved in the data exchange. So, the behavior is described as follows: ServiceA sends
a RequestMessage to ServiceB and then remains released from resources and memory (unavailable).
When ServiceB becomes available, it receives the Request Message, process it and sends the Response

Message. When ServiceA becomes available, it receives the Response Message, process it and then
becomes deactivated.

Formally, we can use three variables to represent the state of the pattern; Dispo to denote the state
of the participant either available or not, Send to indicate who sends what message and Process to
indicate which participant is processing what message. The first invariant Dispo Function specifies
the availability feature of participants. This feature is specified with a partial function which is a
special kind of relation (each domain element has at most one range element associated with it) i.e.
the function Dispo relates Participants to a Boolean value indicating that it is either available or
not. We use the partial function because a participant cannot be available and not available at the
same time. The second invariant, i.e. Send Relation, specifies what is the sent message, who is the
sender and the receiver. The third invariant, i.e. Process Function, specifies the message process with
a partial function that relates a Participant to a MessageType.

INVARIANTS

Dispo Function : Dispo ∈ Participant 7→ BOOL
Send Relation : Send ∈ ServiceChannel ↔ MessageType
Process Function : Process ∈ Participant 7→ MessageType

As presented in the pattern, initially ServiceA is available and ServiceB is not available. Also,
there are no messages sent and no message is processed. Hence, both Send relation and Process

function are initialized to the empty set.

INITIALISATION

begin

init1 : Dispo := {ServiceA 7→ TRUE, ServiceB 7→ FALSE}
init2 : Send := ∅

init3 : Process := ∅

end

The dynamic system can be seen in Figure 3. It is formalized by the following events; Send-

ing Req, Processing Req, Sending Resp and Processing Resp (Req denotes Request and Resp
denotes Response). Sending the request message starts when there is no messages sent and ServiceA

is available. This is formally specified with the event Sending Req.

Event Sending Req

when

grd1 : Send = ∅

grd2 : ServiceA ∈ dom(Dispo) ∧ Dispo(ServiceA) = TRUE
then

act1 : Send := Send ∪ {PushAB 7→ RequestMessage}
act2 : Dispo(ServiceA) := FALSE

end

The event of processing the request is triggered when the message is sent, not yet processed and
ServiceB is available. In the action part, we add, to the process function, the pair (ServiceB 7→
RequestMessage) to denote that ServiceB is processing the request.

An Approach for Modeling and Formalizing SOA Design Patterns 9

Event Processing Req

when

grd1 : RequestMessage ∈ ran(Send)
grd2 : RequestMessage /∈ ran(Process)
grd3 : ServiceB ∈ dom(Dispo) ∧ Dispo(ServiceB) = TRUE
then

act1 : Process := Process ⊳− {ServiceB 7→ RequestMessage}
end

ServiceB sends the ResponseMessage when the request message is processed and when ServiceB

is available. After that ServiceB becomes unavailable.

Event Sending Resp

when

grd1 : ServiceB ∈ dom(Dispo) ∧ Dispo(ServiceB) = TRUE
grd2 : RequestMessage ∈ ran(Process)
grd3 : ResponseMessage /∈ ran(Send)

then

act1 : Send := Send ∪ {PushBA 7→ ResponseMessage}
act2 : Dispo(ServiceB) := FALSE

end

After sending the response, ServiceA precess the received message and becomes unavailable.

Event Processing Resp

when

grd1 : RequestMessage ∈ ran(Send)
grd2 : ServiceA ∈ dom(Dispo) ∧ Dispo(ServiceA) = TRUE
then

act1 : Process := Process ⊳− {ServiceA 7→ ResponseMessage}
act2 : Dispo(ServiceA) := FALSE

end

The second machine AQM1 refines the cited above AQM0 machine and uses the AQC1 context.
In the AQM1 machine, we introduce the behavior of the Queue, so as to complete all the behavior
of the pattern. We add two new variables named Store and Transmit. Store is specified with a
relation that relates a Participant to a MessageType. We add an invariant that restrict the domain
of this relation to only the Queue indicating that the queue is storing what message. Transmit is
specified with a partial function that relates a Participant to a MessageType. We add an invariant
that restrict the domain of this function to only the Queue indicating that the Queue is transmitting
what message. Initially Store relation and Transmit function are both initialized to the empty set.

INVARIANTS

Store Relation : Store ∈ Participant ↔ MessageType
Store Dom Rest : dom(Store) = {Queue} ∨ Store = ∅

Transmit Function : Transmit ∈ Participant 7→ MessageType
Transmit Dom Rest : dom(Transmit) = {Queue} ∨ Transmit = ∅

The AQM1 machine events are defined in Figure 6. We keep the Sending Req and the Send-

ing Resp events. We add four new events namely Storing Req, Transmissing Req, Storing Resp

and Transmissing Resp. These events are related to the Queue behavior. We add more details to
the abstract events Processing Req and Processing Resp.

Sending_Req Processing_Req Sending_Resp Processing_Resp

Processing_Req Processing_Resp

refines refines

Storing_Req

skip

refines

Transmissing_Req

skip

refines

Storing_Resp

skip

refines

Transmissing_Resp

skip

refines

skip skip skip skip

���
Fig. 6. AQM1 events

Due to space restrictions, we did not present the four new events. We present only Storing Req

and Transmissing Req events, the other two events are similar to them. The event Storing Req is

10 Imen Tounsi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, and Khalil Drira

triggered when the RequestMessage is sent, not yet processed and when ServiceB is not available.
When the message is stored, the Transmissing Req event can be triggered.

Event Storing Req

when

grd1 : RequestMessage ∈ ran(Send)
...
grd4 : Stores = ∅

then

act1 : Stores := Stores ∪ {Queue 7→ RequestMessage}
end

Event Transmissing Req

when

grd1 : RequestMessage ∈ ran(Stores)
then

act1 : Transmit := Transmit ⊳− {Queue 7→ RequestMessage}
end

The two events of processing the messages are refined by adding in the guards clause the condition
of transmitting the message. If a participant (ServiceA or ServiceB) receives a message, the storage
of this message in the Queue becomes unnecessary, so in the processing event we empty the Queue.

Proof obligations Proof obligations define what is to be proved to ensure the consistency of an
Event-B model and there are no deadlocks present in it. More over, when we enrich the pattern model
by using refinement techniques, we make sure that refined models are not contradictory. These proofs
are automatically generated by the Rodin Platform. They ensure that the specified SOA design pattern
is correct by construction. Our approach allows developers to reuse correct SOA design patterns, hence
we can save effort on proving pattern correctness.

5 Related work

Research connected to design patterns in the field of software architecture, are mainly classified into
three branches of work according to their architectural style. The first is about design patterns for
Object-Oriented Architectures, the second is about design patterns for Enterprise Application Inte-
gration (EAI), and the third is for SOA.

Among research related to design patterns for Object-Oriented Architectures, we present the work
of Gamma et al [Gamma et al., 1995]. They have proposed a set of design patterns in the field of
object-oriented software design. These patterns are described with graphical notations based on the
OMT (Object Modeling Technique) notation. There is no formal semantics associated with these
patterns, hence their meanings can be imprecise. Several research have proposed the formalization of
these patterns [Gamma et al., 1995] (hereafter referred to as GoF) using different formal notations.
We quote: Zhu et al. [Zhu and Bayley, 2010] specify 23 GoF patterns formally. They use the First-
Order Logic (FOL) induced from the abstract syntax of UML defined in the Graphic Extension
of BNF (GEBNF) to define both structural and behavioral features of design patterns. Kim et al.
[Kim and Carrington, 2009] present an approach to describe design patterns based on role concepts.
First, they develop an initial role meta-model using Eclipse Modeling Framework (EMF), then they
transform the meta-model to Object-Z in order to specify structural features. Behavioral features
of patterns are also specified using Object-Z. Kim et al. also use GoF patterns as examples. Blazy
et al. [Blazy et al., 2003] propose an approach for specifying design patterns and how to reuse them
formally. They use B-method to specify structural features of design patterns but they do not consider
the specification of their behavioral features.

Among research related to design patterns for EAI, we present the work of Gregor et al. [Gregor and Bobby, 2003].
They have proposed a set of design patterns dealing with EAI using messaging. These patterns are
presented with a visual proprietary notation. To our knowledge, there is no research work that propose
the formalization of EAI design patterns and as examples it refer to Gregor et al. patterns and to EAI
patterns in general.

In the branch of SOA design patterns, we find out the work of Erl. Erl has proposed a set of
design patterns for SOA [Erl, 2009]. Each pattern is presented with a proprietary informal notation
presented in a symbol legend. In order to understand them, the first step is to form a knowledge on the

An Approach for Modeling and Formalizing SOA Design Patterns 11

pattern-related terminology and notation. In addition, Erl proposes a set of specific pattern symbols
used to represent a design pattern.

In our research work we are interested in SOA design patterns defined by Erl [Erl, 2009]. For
these patterns, there are no work that model or formally specify them. Erl presents his patterns with
an informal proprietary notation because there is no standard modeling notation for SOA, but now
OMG announces the publication of the SoaML language [OMG, 2012], it is a specification for the UML
profile and a metamodel for services. So, in our work, we propose to model SOA design patterns with
the SoaML standard language.After the modeling step, we propose to specify these patterns formally.
Similar to [Zhu and Bayley, 2010,Kim and Carrington, 2009] we define both structural and behavioral
features of design patterns using FOL, but we use a different formal method which is Event-B.

In conclusion, most proposed patterns are described with a combination of textual description and a
graphical presentation [Gamma et al., 1995], some times using proprietary notations [Gregor and Bobby, 2003],
[Erl, 2009], in order to make them easy to read and understand. However, using these descriptions
makes patterns ambiguous and may lack details. There have been many research that specify patterns
using formal techniques [Zhu and Bayley, 2010,Blazy et al., 2003] but research that model design pat-
terns with semi-formal languages are few [Mapelsden et al., 2002]. We find a number of approaches
that formally specify different sorts of features of patterns: structural, behavioral, or both.

6 Conclusions

In this paper, we presented a formal architecture-centric design approach supporting the modeling and
the formalization of message-oriented SOA design patterns. The modeling phase allows to represent
SOA design patterns with a graphical standard notation using the SoaML language. The formalization
phase allows to formally specify both structural and behavioral features of these patterns at a high
level of abstraction using the Event-B method.We implemented the elaborated specifications under the
Rodin platform. We illustrated our approach through a pattern example within the ”Service messaging
patterns” category. Currently, the transition from the SoaML modeling to the formal specification is
achieved manually, we are working on automating this phase by implementing transformation rules.
Also, we are working on formally specifying pattern composition to make design tasks easier for
complex software system architects.

References

[Abrial, 2010] Abrial, J.-R. (2010). Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edition.

[Abrial et al., 2010] Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T. S., Mehta, F., and Voisin, L. (2010).
Rodin: An Open Toolset for Modelling and Reasoning in Event-B. Int. J. Softw. Tools Technol. Transf.,
12(6):447–466.

[Blazy et al., 2003] Blazy, S., Gervais, F., and Laleau, R. (2003). Reuse of specification patterns with the B
method. In Proceedings of the 3rd international conference on Formal specification and development in Z
and B, ZB’03, pages 40–57, Berlin, Heidelberg. Springer-Verlag.

[Erl, 2009] Erl, T. w. a. c. (2009). SOA Design Patterns (The Prentice Hall Service-Oriented Computing
Series from Thomas Erl). Prentice Hall PTR, 1 edition.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R. E., and Vlissides, J. (1995). Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA.

[Gregor and Bobby, 2003] Gregor, H. and Bobby, W. (2003). Enterprise Integration Patterns - Designing,
Building, and Deploying Messaging Solutions. Addison Wesley.

[Kim and Carrington, 2009] Kim, S.-K. and Carrington, D. A. (2009). A formalism to describe design patterns
based on role concepts. Formal Asp. Comput., 21(5):397–420.

[Mapelsden et al., 2002] Mapelsden, D., Hosking, J., and Grundy, J. (2002). Design pattern modelling and
instantiation using DPML. In Proceedings of the 40th International Conference on Tools Pacific: Objects
for internet, mobile and embedded applications, CRPIT’02, pages 3–11. Australian Computer Society, Inc.

[OMG, 2012] OMG (2012). Service oriented architecture Modeling Language (SoaML) Specification. Technical
report.

[Zhu and Bayley, 2010] Zhu, H. and Bayley, I. (2010). Laws of pattern composition. In Proceedings of the
12th international conference on Formal engineering methods and software engineering, ICFEM’10, pages
630–645, Berlin, Heidelberg. Springer-Verlag.

