On quas-monotonous graphs

Mekkia Kouider

To cite this version:

Mekkia Kouider. On quas-monotonous graphs. 2012. hal-00801393

HAL Id: hal-00801393

https://hal.science/hal-00801393

Preprint submitted on 18 Mar 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON QUASI-MONOTONOUS GRAPHS

Mekkia KOUIDER
LRI, UMR 8623, University Paris-Sud and CNRS
F-91405 Orsay cedex, France

Abstract

A dominating coloring by k colors is a proper k coloring where every color i has a representative vertex x_{i} adjacent to at least one vertex in each of the other classes. The b-chromatic number, $b(G)$, of a graph G is the largest integer k such that G admits a dominating coloring by k colors. A graph $G=(V, E)$ is said b-monotonous if $b\left(H_{1}\right) \geq b\left(H_{2}\right)$ for every induced subgraph H_{1} of G and every subgraph H_{2} of H_{1}. Here we say that a graph G is quasi b-monotonous, or simply quasi-monotonous, if for every vertex $v \in V, b(G-v) \leq b(G)+1$. We show study the quasi-monotonicity of several classes. We show in particular that chordal graphs are not quasi-monotonous in general,whereas chordal graphs with large b-chromatic number, and (P, co P, chair, cochair)-free graphs are quasimonotonous; $\left(P_{5}, c o P_{5}, P\right)$-free graphs are monotonous.Finally we give new bounds for the b-chromatic number of any vertex deleted subgraph of a chordal graph.

Key words:

1 Introduction

All graphs considered here are simple and undirected. We denote by P_{n} (respectively C_{n}) an elementary path (resp. an elementary cycle) with n vertices. Let G be a graph with a proper coloring. For any two disjoints subsets A and B, let $E(A, B)$ be the set of edges of G with one extremity in A and the other in B. Let u_{i} be any vertex u of color i. Let us denote by \mathcal{C}_{i} the class of color i. If y is a vertex of the graph G, let $N_{i}(y)$ be the set of neighbours of y of color i; while for any integer p non zero, $N^{p}(y)$ is the set of vertices at distance exactly p from y.

Email address: mekkia.kouider@1ri.fr (Mekkia KOUIDER).

In a proper coloring, a vertex x_{i} of color i is said a dominating vertex if x_{i} adjacent to at least one vertex in each of the other classes. The vertex x_{i} is also called a dominant. The color i is said dominating if there exists at least a vertex of color i which is dominating. A dominating coloring by k colors is a proper k coloring where every color i has a at least a dominating vertex.

The b-chromatic number, $b(G)$, of a graph G is the largest integer k such that G admits a dominating coloring by k colors. A dominating coloring with $b(G)$ colors will be called a b-coloring.

This parameter was defined by Irving and Manlove [6]. They proved that determining $b(G)$ for an arbitrary graph G is an NP-complete problem.

For a given graph G, it may be easily remarked that $\chi(G) \leq b(G) \leq \Delta(G)+1$. If we are limited to regular graphs, Kratochvil et al. proved in [7] that for a d-regular graph G with at least d^{4} vertices, $b(G)=d+1$. Kouider and El Sahili ([4]) proved that for every regular graph of girth 5 and no induced cycle C_{6} the same equality holds.

Let v be any vertex of a graph G. It is known that $\chi(G-v) \leq \chi(G)$. The function χ is said monotonous. This is not the case for the b chromatic number.

A graph $G=(V, E)$ is called b-monotonous if $b\left(H_{1}\right) \geq b\left(H_{2}\right)$ for every induced subgraph H_{1} of G and every subgraph H_{2} of H_{1}. This was a definition of Bonomo et al.

Here we say that a graph G is quasi b-monotonous, or simply quasi-monotonous, if for every vertex $v \in V, b(G-v) \leq b(G)+1$.

A chordal graph is a graph where every cycle of length at least 4 has at least one chord. A quasi-line graph is a graph where the neighborhood of every vertex has a partition into at most 2 cliques. A P_{4}-sparse graph is a graph where every 5 -vertex subset contains at most one induced P_{4}.

It was shown by Bonomo and al.([2]) that P_{4}-sparse graphs are b monotonous. On the other hand, we showed in [5] that every graph of girth at least 5 is b-monotonous.

Clique-width A parameter used in complexity of graphs is the clique-width. Many problems of optimisation which are NP Hard can be solved efficiently on graphs with bounded clique-width. Some of the classes with bounded cliquewidth are defined by forbidden subgraphs on 5 vertices, among $P_{5}, c o P_{5}, P$, chair, cochair, coP (see fig. 1)([3]).

The class of $\left(P_{5}\right.$, co P_{5}, cochair)-free graphs was defined, by Giakoumakis and

Fig. 1. Extensions of P4
Fouquet, as the class of semi- P_{4}-sparse graphs, a superclass of P_{4}-sparse graphs.The class (P_{5}, co P, chair, cochair)-free deserves the name of semi P_{4}-sparse.

For general graphs S.F.Raj and R.Balakrishnan proved that
Theorem 1 [1] For every connected graph of order $n \geq$ 5, and for every vertex $v \in V(G)$,
$b(G)-(\lceil n / 2\rceil-2) \leq b(G-v) \leq b(G)+(\lfloor n / 2\rfloor-2)$
The upper bound is attained.

2 Quasi-monotonous graphs

Our main results are the following.
Theorem 2 Let $G=(V, E)$ be a graph.

1) If each vertex is contained in at most two cycles of length 4 . Then G is quasi-b-monotonous.
2) If G is (P, coP, Chair, Cochair)-free, G is quasi-b-monotonous.

Corollary 1 [5] Every graph of girth at least 5 is quasi-b-monotonous.
Theorem 3 Let $G=(V, E)$ be a graph.

1) If G is $\left(P_{5}, P\right.$, Cochair $)$-free, G is b-monotonous.
2) If G is $\left(P_{5}, c o P_{5}, P\right)$-free, G is b-monotonous.

Theorem 4 Let $G=(V, E)$ be quasi-line-graph. Then for each vertex $x, b(G-$ $x) \leq b(G)+2$

Theorem 5 Let $G=(V, E)$ be a chordal graph of clique-number ω.
Then, for each vertex x of G, of degree $d(x)$,

$$
\begin{align*}
b(G-x) & \leq b(G)+1+\frac{d(x)-1}{b(G-x)} \tag{1}\\
b(G-x) & \leq b(G)+1+\frac{\omega-1}{b(G-x)-\omega} \tag{2}\\
b(G-x) & \leq b(G)+1+\frac{(\omega-1)^{3 / 4}}{(b(G)-\omega)^{1 / 2}} \tag{3}
\end{align*}
$$

From the preceding theorem, we deduce
Corollary 2 Let $G=(V, E)$ be a chordal graph of clique-number ω and b chromatic number $b(G)$. Then, for each vertex x,

$$
\begin{gathered}
b(G-x) \leq b(G)+1+\sqrt{d(x)-1} \\
b(G-x) \leq b(G)+1+\sqrt{\omega-1}
\end{gathered}
$$

Corollary 3 Let $G=(V, E)$ be a chordal graph of clique-number ω and b chromatic number b such that $b \geq 2 \omega-3$.

Then G is quasi b-monotonous.

There exist chordal graphs and quasi-line graphs not b-monotonous.

Examples 1) Let $k \geq 3$ be an integer .
Let ω be an even integer and $2 k$ be a divisor of ω, furthermore we suppose $\omega \geq 4 . k^{2}$. We give an example of a chordal graph G_{1} with dominating number $b=\omega+\frac{\omega}{2 k}-k+1$ and not quasi-b-monotonous. The gap $b\left(G_{1}-x\right)-b\left(G_{1}\right)$ in this example is of the order of $\sqrt{\omega}$.

Consider the following graph H composed by 4 vertex-disjoint cliques $A_{1}, A_{2}, A_{3}, A_{4}$ such the order of A_{1} (resp. of A_{4}) is $\omega-\omega / 2 k$. Furthermore, $A_{1} \cup A_{2}$ is a clique of order ω as well as $A_{4} \cup A_{3}$, and, $A_{3} \cup A_{2}$ is a clique of order ω / k (see fig.2). Let us call H^{\prime} the graph $H-A_{4}$.

The graph G_{1} is a graph composed by k disjoint copies of H and a copy of H^{\prime}, and, with a vertex x, external to the copies of H and H^{\prime}, joined to every vertex of any copy of A_{1} and to every vertex of H^{\prime}.

Fig. 2. Chordal graph not quasi-monotonous
We observe that

$$
d(v) \leq \omega+1
$$

for every vertex v of H^{\prime};

$$
d(x)=k \cdot \omega+\omega / 2+\omega / 2 k
$$

and,

$$
d(u)=\omega+\omega / 2 k-1
$$

for every vertex u of a copy of A_{2} in G_{1} or every vertex of a copy of A_{3} in $G_{1}-H^{\prime}$. The other vertices have degree at most ω. The number of vertices of degree at least $\omega+\omega / 2 k-k-1$ is

$$
\omega+\omega / 2 k+1
$$

The graph $G_{1}-x$ has a b-chromatic number equal to $\omega+\omega / 2 k$, the set of dominating vertices is the set of vertices of maximum degree in $G_{1}-x$. We show that the graph G_{1} has a b-chromatic number equal to $\omega+\omega / 2 k-k+1$.

Indeed, suppose $b\left(G_{1}\right) \geq \omega+\omega / 2 k-k$, so $b\left(G_{1}\right) \geq \omega+3$. Given a b coloring of G, at least $\omega / 2 k-k-1$ colors have a dominating vertex in H^{\prime}; then x is neighbour of $b-1$ colors, and is dominating. Every dominating vertex outside H^{\prime} must be neighbour of the color $c(x)$. And as $\omega / 2 k-(k+1)>0$, each copy of A_{2} and each copy of A_{3} outside H^{\prime} must contains a dominating vertex; as x is neighbour of each copy of A_{1}, this implies that each copy of $A_{2} \cup A_{3}$ outside
H^{\prime} must contain a vertex of color $c(x)$. Then by (a), $b\left(G_{1}\right) \leq \omega+\omega / 2 k-k+1$. One can verify easily the equality $b\left(G_{1}\right) \leq \omega+\omega / 2 k-k+1$. So $b\left(G_{1}-x\right)=$ $b\left(G_{1}\right)+k-1$.

In that example, if $\omega=4 k^{2}$, then
$b\left(G_{1}-x\right)=b\left(G_{1}\right)-1+\frac{\sqrt{w}}{2}$.
2) With the notations of the precedent example, we consider a graph G_{2} composed by two vertex disjoint copies of H, and an external vertex x joined to each copy of A_{1}. We have $\left|A_{1}\right|=\left|A_{4}\right|=2 \omega / 3$ and $\left|A_{2}\right|=\left|A_{3}\right|=\omega / 3$.

Then G_{2} is a quasi-line graph and $b\left(G_{2}-x\right)=b\left(G_{2}\right)+1$.

Fig. 3. Quasi-line graph not monotonous
Remark: There exist chordal graphs with b-chromatic number at least 2ω. Let $\omega \geq 2, p=5(\omega-1)$. Let $S(u)$ be the graph composed by 5 cliques sharing exactly one vertex u. Consider the graph H composed by an elementary path $P\left(u_{1}, \ldots, u_{p}\right)$ and a family of p graphs $S\left(u_{i}\right)$ for $1 \leq i \leq p$. It is easy to see that H is chordal and $b(H) \geq p \geq 4 \omega$.

3 Proofs

Remarks For each of our results the following remarks are valid. The proofs are by contradiction. Let x be a fixed vertex of G. Let $H=G-x$. We may suppose first that $q=b(H) \geq \omega+2$ otherwise we have $b(H) \leq b(G)+1$. Suppose the b-coloring of H is not extendable to G. Then, necessarily,

R1) All the colors appear in $N(x)$.
R2) x is not neighbour to q dominating vertices s of different colors, so there exists an integer r such that for every color $i \geq r+1, N_{i}(x)$ contains no dominanting vertex.

R3)Let us consider r minimum. For each $i \geq r+1, N\left(N_{i}(x)\right) \cap N^{2}(x)$ contains all the dominating vertices of some color j and no one of these dominating vertices has a neighbour of color i outside $N_{i}(x)$; otherwise for each $y \in N_{i}(x)$, we change the color i of the vertex y into a color missing in the neighborhood of y and we give color i to the vertex x and we obtain a b-coloring of G with q colors. Let us call I the set colors $i, i \geq r+1$.

Note that, as the coloring is proper and $j>r$, we get $q-r \geq 2$. From now we say that a set $A \in N_{i}(x)$ covers a color j if $\left.N(A)\right) \cap N^{2}(x)$ contains all the dominating vertices of some color j and no one of these dominating vertices has a neighbour of color i outside A. Note that $j \in I$ necessarily.

Now we give first the proof of theorem2.

Proof of Theorem 2

Proof of the first part of the theorem2
Case 1:There exists $i \geq r+1$ such that $N_{i}(x)$ covers at most one color, say j
For each $y \in N_{i}(x)$, we change the color i of y into a color missing in the neighborhood of y.

We x by i. Either there remains a dominating vertex of the color j, we keep color j. Or the color j has no dominating vertex. For each vertex of color j we give a color missing in its neighborhood. In any case, we get a b coloring of G with at least $q-1$ colors..

Case 2:For each $i \geq r+1, N_{i}(x)$ covers at least 2 different colors.
Let b^{\prime} the number of colors with all dominating vertices contained in $N^{2}(x)$ and neighbours of $\cup_{i \geq r+1} N_{i}(x)$. As the coloring is proper, and $q-r \geq 2$, then $b^{\prime} \geq 3$ by definition of case 2 ; so $b-r \geq b^{\prime} \geq 3$. Let S be a system of b^{\prime} dominating vertices of the b^{\prime} different colors.

There exist at least $2(q-r)$ edges between $\cup_{i \geq r+1} N_{i}(x)$ and the set S, by definition of case 2.Then either there exists a vertex s_{0} which sends at least 3 edges to $\cup_{i \geq r+1} N_{i}(x)$, or each vertex of S sends exactly 2 edges to $\cup_{i \geq r+1} N_{i}(x)$. As $|S| \geq 3$, there are at least 3 cycles of length 4 containing x. A contradiction to the hypothesis on G.

This ends the proof of part1 of theorem 2.

Proof of part 2 of Theorem 2

We use the proof of the first part. And we may suppose we are in case 2. For each color $j, j \geq r+1, N_{j}(x)$ covers at least 2 colors. Let $i, i \geq r+1$ be a color such that a dominating vertex x_{i} is in $N^{2}(x)$, neighbour of $u_{t} \in N(x)$. Let us note that, by definition of the covering, x_{i} is independent of the dominants of each color covered by $N_{i}(x)$.

There exists a vertex $y_{i} \in N_{i}$ covering a color k, otherwise, there are y_{i} and y_{i}^{\prime} in $N_{i}(x), x_{k}$ and x_{k}^{\prime} dominants of the same color such that the path $Q=$ $\left\{x_{k}, y_{i}, x, y_{i}^{\prime}, x_{k}^{\prime}\right\}$ is induced and forms with $u_{k} \in N_{k}(x)$ a chair, a coP or a cochair; and we get a contradiction with the hypothesis.

Furthermore, there is a second color, say s, covered by $N_{i}(x)$; either s is covered by y_{i}, then as there is no chair the dominants x_{k} and x_{s} are adjacent; or $\left|N_{i}(x)\right| \geq 2$, and there exists $y_{i}^{\prime} \in N_{i}(x)$ neighbour of a dominant $x_{s}, s \neq k$ independent of $y_{i} ; x_{k}$ is independent of y_{i}^{\prime} otherwise $x_{i}, y_{i}^{\prime}, x, y_{i}, x_{k}$ should be a P.

Case $\alpha: x_{k}, u_{t}$ adjacent

The set $u_{t}, x, y_{i}, x_{i}, x_{k}$ forms P if y_{i}, u_{t} are independent, or a cochair if y_{i}, u_{t} are adjacent.

Case $\beta: x_{k}, u_{t}$ independent
Case α being excluded, we may suppose that x_{s}, u_{t} are independent too. (a) If y_{i}, u_{t} are independent,
we have a chair or coP composed by $u_{t}, y_{i}, x_{s}, x_{k}$, or if y_{i}^{\prime} exists, a chair or a cochair composed by $u_{t}, x, y_{i}, y_{i}^{\prime}, x_{k}$.
(b) If y_{i}, u_{t} are adjacent,

Either y_{i} is adjacent to x_{k}, x_{s}, we have coP composed by $x_{i}, u_{t}, y_{i}, x_{s}, x_{k}$.
Or, y_{i} is adjacent to x_{k} and not to x_{s}, and y_{i}^{\prime} is adjacent to x_{s} and not to x_{k} otherwise we are in some precedent case. Then $y_{i}, u_{t}, x, y_{i}^{\prime}, x_{s}$ forms either a coP (if $\left[y_{i}^{\prime}, u_{t}\right] \notin E(G)$) or a cochair (if $\left[y_{i}^{\prime}, u_{t}\right] \in E(G)$). As the subgraphs P, coP,chair,cochair are excluded, in any subcase, there is a contradiction. Case2 cannot occur.We get part2 of the theorem.

Proof of theorem 3

1) Each class considered here is hereditary. It is sufficient to show by contradiction that for any graph G of the class and any vertex x of G a dominating coloring of $G-x$ extends to G, so $b(G-x) \leq b(G)$.

We keep the notations of the proof of the second part of Theorem 2. There exists at least a vertex y_{i} such that $N(y) \cap N^{2}(x)$ contains all the dominants of at least a color k, otherwise we know that there is at least a color k with all dominants in $N\left(N_{i}(x)\right) \cap N^{2}(x)$ and we get a P_{5} composed by $x y_{i} y_{i}^{\prime} x_{k} x_{k}^{\prime}$ where y_{i}, y_{i}^{\prime} are in $N_{i}(x)$ and x_{k}, x_{k}^{\prime} are 2 dominants of color k, a contradiction with the hypothesis on G. By remark R3, no dominating vertex of the color k has a neighbour of color i outside $N_{i}(x)$.

1) Case $\alpha: y_{i}, u_{t}$ independent

We have a P_{5} or P composed by $x_{k}, y_{i}, x, u_{t}, x_{i}$.

Case β : y_{i}, u_{t} adjacent

As u_{t} is not dominant, there is a color s and a vertex $z_{s} \in N(x)$ not neighbour of u_{t}. As x_{i} is dominant,there exists a vertex v_{s} neighbour of x_{i}. We may suppose x_{k}, u_{t} independent otherwise we have a cochair $x_{k}, y_{i}, u_{t}, x_{i}$.
subcase: z_{s} neighbour of x_{i} :
(a) Either x_{k} is not neighbour of z_{s}, then $x_{k}, y_{i}, u_{t}, x_{i}, z_{s}$ gives either P_{5} or P;
(b) Or, $x, u_{k}, z_{s}, x_{i}, x_{k}$ form P.
subcase: z_{s}, x_{i} independent:
As u_{t} and v_{s} are independent, then x, u_{t}, v_{s}, x_{i} and z_{s} form either P_{5} or P. As the graph is (P_{5}, P, cochair) free, there is a contradiction in any case. So there exists a color j such that $N\left(N_{j}(x)\right) \cap N^{2}(x)$ contains no dominant. 2) The proof is similar to that of part1. The only difference is that in the subcase where x_{k} and y_{i} are adjacent to u_{t}, we have a co P_{5} composed by $y_{i}, u_{t}, x_{i}, v_{s}, x$

Proof of theorem4

Let i be a color in I. As G is a quasi-line graph,there are at most two neighbours u_{i} and u_{i}^{\prime} of x which are of color $i ; N^{2}(x) \cap N\left(u_{i}\right)$ is a clique, the same holds for $N^{2}(x) \cap N\left(u_{i}^{\prime}\right)$ if u_{i}^{\prime} exists. By remarque R3, there exists at least a color $j \in I$ with all dominating vertices in $N^{2}(x) \cap\left(N\left(u_{i}\right) \cup N\left(u_{i}^{\prime}\right)\right)$.

We do the following operation:

1) We change the color of u_{i} into a missing color $p\left(u_{i}\right)$ and that of u_{i}^{\prime} into a missing color $p\left(u_{i}^{\prime}\right)$. We color x by i.
2)We choose one color, say s, which is no more dominating
a) either the initial dominating vertex w_{s} was unique and in $N^{2}(x) \cap N(u)$, where $u \in\left\{u_{i}, u_{i}^{\prime}\right\}$, we recolor w_{s} by the color i.

Furthermore, if there is a color s^{\prime} which the initial dominating vertex $w_{s^{\prime}}$ was unique and in $N^{2}(x) \cap N(v)$ where $v \in\left\{u_{i}, u_{i}^{\prime}\right\}, v \neq u$, we choose one such color and we do the same operation as precedently on $w_{s^{\prime}}$.
b) case (a) being excluded, the color s had exactly 2 initial dominating vertices and they were in $N^{2}(x) \cap\left(N\left(u_{i}\right) \cup\left(N\left(u_{i}^{\prime}\right)\right)\right.$, we recolor them by i.
3) For each color, s or s^{\prime}, we recolor each vertex of the corresponding class by a missing color.

Thus, after steps(1) and (2) of this operation, we get a proper coloring; the vertex x is so a dominant vertex of the color i;furthermore, each neighbour of u_{i} (resp. of u_{i}^{\prime}) which is not of color i is neighbour of a vertex of color i. At most 2 colors of the initial coloring are not used, namely s and s^{\prime}. After step (3), we have a dominating coloring of G with at least $q-2$ colors.

This finishes the proof of theorem4

Proof of theorem 5 We suppose we have a dominating coloring of $H=$ $G-x$. We use notations and remarks R1, R2,R3 given upper, in the proof of Theorem2. For each color i in I, we choose a dominating vertex w_{i}. Let W be the set of these dominating vertices. Let $t, t \geq r+1$ be a fixed color. Let y in $N_{t}(x)$, and let $p(y) \neq t$ a color not neighbour of y. If no ambiguity, we shall write simply p instead of $p(y)$. We call $\mathcal{C}_{t, p}(y)$ the set of vertices joined to y by a path with vertices in $\mathcal{C}_{t} \cup \mathcal{C}_{p} \cup W$ such that no 2 vertices of W are consecutive.

Let us first describe the operation \mathcal{O} on $N(x)$.
We fix a color t.
O_{1}) Process $O_{1}(y)$: If $y \in N_{t}(x)$ is not neighbour of $N_{p}(x)$ for some p, we choose such a color and we color y by p. We exchange the two colors t and p in the component $\mathcal{C}_{t, p}(y)$.
We do this operation successively for each vertex y of $N_{t}(x)$.
O_{2}) Finally, we give the color t to x.

We remark that:
As G is a chordal graph, two vertices of $N_{t}(x)$ have no common neighbour outside $x \cup N(x)$; furthermore, there is no path $P\left(y, N_{t}(x)\right)$ with internal
vertices in $\mathcal{C}_{(t, p)}(y)$, and, no path $P\left(y, N_{p}(x)\right)$ in $\mathcal{C}_{(t, p)}(y)$;so $\mathcal{C}_{(t, p)}(y)$ does not meet $x \cup N(x)$ outside y.

The operation \mathcal{O} is possible for every color t with no dominating vertex in $N(x)$.

Lemma 1 Let $t \geq r+1$ fixed.
1)After an application of operation $O_{1}(y)$, we obtain a proper coloring of G; at most one element of W, w_{t} or w_{p}, is no more dominant. If the color $p(y)$ is no more dominating, then $w_{p} \in \mathcal{C}_{t, p(y)}(y)$

Furthermore, if $y, y^{\prime} \in N_{t}(x), y \neq y^{\prime}$, then $\mathcal{C}_{t, p(y)}(y) \cap \mathcal{C}_{t, p\left(y^{\prime}\right)}\left(y^{\prime}\right)=\emptyset$.
2)After operation \mathcal{O}, the vertex x is a dominating vertex of color t. The colors which have no dominating vertex are among the chosen missing colors.

Proof of Lemma 1

1)If for some $j \neq p(y), j \neq t, w_{j} \in \mathcal{C}_{t, p(y)}(y)$, then necessarily its neighbours of colors $p(y)$ and t are also in $\mathcal{C}_{t, p(y)}(y)$; then by operation $O_{1}(y)$, there is a permutation of the colors $p(y)$ and t in $\mathcal{C}_{t, p(y)}(y)$;so the vertex w_{j} remains dominating of color j. We remark that if $w_{j} \notin \mathcal{C}_{t, p(y)}(y)$, then its neighbours of colors $p(y)$ and t are not in $\mathcal{C}_{t, p(y)}(y)$; their colors are not changed after operation $O_{1}(y)$, the same conclusion holds for w_{j}; so vertex w_{j} remains dominating of color j.

If $w_{t} \in \mathcal{C}_{t, p(y)}(y)$, then after operation $O_{1}(y)$, the vertex w_{t} becomes dominating of color p. Analogously, if $w_{p} \in \mathcal{C}_{t, p(y)}(y)$, after operation $O_{1}(y), w_{p}$ becomes a dominating vertex of color t.

Suppose $u \in \mathcal{C}_{t, p(y)}(y) \cap \mathcal{C}_{t, p\left(y^{\prime}\right)}\left(y^{\prime}\right)$. Then there exists a path from u to y and another one from u to y^{\prime}, so there is a cycle C containing the induced path [$\left.y, x, y^{\prime}\right]$ and no vertex of $C-\left\{y, y^{\prime}\right\}$ is neighbour of x. We may suppose C is a shortest cycle with the latest properties . C is of length at least 4 and has no chord. As G is chordal we get a contradiction.
2) After operation \mathcal{O}, the vertex x is neighbour of every color except t; so x is dominating vertex of color t. As $\mathcal{C}_{t, p(y)}(y) \cap \mathcal{C}_{t, p\left(y^{\prime}\right)}\left(y^{\prime}\right)=\emptyset$, any vertex is recolored at most one time and by 1) of the Lemma, the possible non dominating colors are in the set $(p(y))_{y \in N_{t}(x)}$

Let R_{t} be the set of vertices of \mathcal{C}_{t} such that for each vertex y of R_{t} for any missing color $p(y)$, after the operation \mathcal{O}, the color $p(y)$ has no dominating vertex. Furthermore, if $\mathcal{C}_{t}=\mathcal{C}$, let us denote R_{t} simply by R.

Lemma 2 Let G be a chordal graph. Then, for each $t \in I$,

1) $b(G-x) \leq b(G)+\left|R_{t}\right|$
2)For any vertices y, y^{\prime} of R_{t}, then $p(y) \neq p\left(y^{\prime}\right)$. And, if $d^{-}(y)$ is the number of colors which do not appear in $N(x) \cap N(y)$, we have

$$
\sum_{y \in R_{t}} d^{-}(y) \leq(q-1)
$$

Proof of Lemma 2

1) The first part is a consequence of (2) of Lemma1.
2)If y and y^{\prime} are elements of R_{t}, there exists a path $P\left(y, w_{p(y)}\right)$ in $\mathcal{C}_{(t, p(y))}$, and a path $P\left(y, w_{p\left(y^{\prime}\right)}\right) \mathcal{C}_{\left(t, p\left(y^{\prime}\right)\right)}$ in by Lemma 1. As $\mathcal{C}_{(t, p(y))} \cap \mathcal{C}_{\left(t, p\left(y^{\prime}\right)\right)}=\emptyset$, then by Lemma1, they have no common missing color j, so we get the inequality

End of the proof of theorem 5

We consider a b-dominating coloring of $G-x$ by $q=b(G-x)$ colors. After operation $O_{1}(v)$ applied on a vertex v, the color $p(v)$ remains dominating if $N_{t}(x)=v$ was missing only one color in G and v is a reprentative of $p(v)$.

In $N(x)$, let \mathcal{C} be a class of colors such that by the operation O the minimum number of colors are no more dominating.

In a chordal graph, if S_{1} and S_{2} are two vertex disjoint stable sets, the induced vertex graph of vertex- set $S_{1} \cup S_{2}$ is a forest. Then given a coloring of $N(x) \backslash \mathcal{C}$ by a minimum number of colors, we have a partition X_{1}, \ldots, X_{s} of $N(x) \backslash \mathcal{C}$. Then, as there is no induced C_{4}, the set of edges $E\left(R, X_{i}\right)$ is a matching between R and X_{i}. So

$$
e\left(R, X_{i}\right) \leq \min \left(|R|,\left|X_{i}\right|\right)
$$

for each $i \leq s$.
As $N(x)-\mathcal{C}$ is chordal of clique-number at most $(\omega-1)$, we get by summing

$$
\begin{equation*}
e(R, N(x)-\mathcal{C}) \leq \min ((\omega-1) \cdot|R|,(d(x)-|R|)) \tag{5}
\end{equation*}
$$

Each vertex y of \mathcal{C} is not neighbour in $N(x)$ of at least $\left.(q-1)-d_{N(x)}(y)\right)$ colors. So

$$
(q-1)|R|-e(R, N(x)-\mathcal{C}) \leq \sum_{y \in R} d^{-}(y) .
$$

On the other hand, as G is chordal,by Lemma 2,

$$
\sum_{y \in R} d^{-}(y) \leq(q-1),
$$

we get, using inequality (5), that

$$
\begin{gathered}
(q-1)|R|-(d(x)-|R|] \leq q-1 \\
\text { and, }(q-1)|R|-(\omega-1)|R| \leq q-1
\end{gathered}
$$

So $|R| \leq 1+\min \left(\frac{d(x)-1}{q}, \frac{(\omega-1)}{(q-\omega)}\right)$
As by Lemma2, $b(G-x) \leq b(G)+|R|$, we get the inequalities 1 and 2 of the theorem.

Let us set $\theta=b(G-x)-b(G)-1$, and $a=q-\omega$. From inequality (2), we get

$$
\theta^{2}+a \cdot \theta-(\omega-1) \leq 0 .
$$

It follows that

$$
\begin{equation*}
\theta \leq \frac{(\omega-1)}{\sqrt{a^{2} / 4+(\omega-1)}+a / 2} \tag{6}
\end{equation*}
$$

As $\sqrt{a^{2} / 4+(\omega-1)} \geq \sqrt{a} .(\omega-1)^{1 / 4}$, we get the third inequality of the theorem

Proof of corollary 2 From inequality 1 of the last theorem, we have $(\theta+1)^{2} \leq$ $d(x)-1$. Whereas inequality (6) of the last proof gives

$$
\begin{equation*}
\theta \leq \frac{(\omega-1)}{\sqrt{a^{2} / 4+(\omega-1)}+a / 2} \tag{6}
\end{equation*}
$$

Proof of corollary 3 Let us set $\theta=b(G-x)-b(G)$. The inequality (2) of the last theorem gives

$$
(\theta-1)(b(G)-\omega+3) \leq \omega-1
$$

Suppose $\theta \geq 2$. Then we get $b(G) \leq 2 \omega-4$. The corollary 2 follows

References

[1] S.F.Raj and R.Balakrishnan
"Bounds for the b-chromatic number of vertex deleted subgraphs and the extremal graphs",

Electronic notes in Discrete Mathematics 34 (2009),353-358.
[2] F.Bonomo,G.Duran,F.Maffray, J.Marenco, M.Valencia-Pabon,
"On the b-coloring of cographs and P_{4}-sparse graphs",
Graphs and Combinatorics (2009) 25,1-15.
[3] A.Brandstadt and R.Mosca "On Variations of P_{4} sparse graphs, Discrete Applied Mathematics 129 (2003),521-532.
[4] A. El Sahili and M.Kouider
"About b-coloring of regular graphs", Utilitas Mathematica (2009) 80, 211-215
[5] M.Kouider
"On b chromatic number of graphs, subgraphs and degrees" Rapport interne LRI no 1392 (2004)
[6] I. W. Irving and D. F. Manlove,
" The b-chromatic number of a graph", Discrete Applied Math.,91 (1999), 127-141.
[7] J. Kratochvil, Zs Tuza, and M. Voigt,
"On the b-chromatic number of graphs",
Lectures Notes in Computer Science, Springer, Berlin, 2573 (2002), 310-320.

