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ON QUASI-MONOTONOUS GRAPHS

Mekkia KOUIDER

LRI, UMR 8623, University Paris-Sud and CNRS

F-91405 Orsay cedex, France

Abstract

A dominating coloring by k colors is a proper k coloring where every color i has a
representative vertex xi adjacent to at least one vertex in each of the other classes.
The b-chromatic number, b(G), of a graph G is the largest integer k such that G

admits a dominating coloring by k colors.

A graph G = (V,E) is said b-monotonous if b(H1) ≥ b(H2) for every induced
subgraph H1 of G and every subgraph H2 of H1.

Here we say that a graph G is quasi b-monotonous , or simply quasi-monotonous,
if for every vertex v ∈ V , b(G− v) ≤ b(G) + 1.

We show study the quasi-monotonicity of several classes. We show in particular
that chordal graphs are not quasi-monotonous in general,whereas chordal graphs
with large b-chromatic number, and (P, coP, chair, cochair)-free graphs are quasi-
monotonous; (P5, coP5, P )-free graphs are monotonous.Finally we give new bounds
for the b-chromatic number of any vertex deleted subgraph of a chordal graph.

Key words:

1 Introduction

All graphs considered here are simple and undirected. We denote by Pn (re-
spectively Cn) an elementary path (resp. an elementary cycle) with n vertices.
Let G be a graph with a proper coloring. For any two disjoints subsets A and
B, let E(A,B) be the set of edges of G with one extremity in A and the other
in B. Let ui be any vertex u of color i. Let us denote by Ci the class of color
i. If y is a vertex of the graph G, let Ni(y) be the set of neighbours of y of
color i; while for any integer p non zero, Np(y) is the set of vertices at distance
exactly p from y.
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In a proper coloring, a vertex xi of color i is said a dominating vertex if xi

adjacent to at least one vertex in each of the other classes. The vertex xi is
also called a dominant. The color i is said dominating if there exists at least
a vertex of color i which is dominating. A dominating coloring by k colors is
a proper k coloring where every color i has a at least a dominating vertex.

The b-chromatic number, b(G), of a graph G is the largest integer k such that
G admits a dominating coloring by k colors. A dominating coloring with b(G)
colors will be called a b-coloring.

This parameter was defined by Irving and Manlove [6]. They proved that
determining b(G) for an arbitrary graph G is an NP-complete problem.

For a given graph G, it may be easily remarked that χ(G) ≤ b(G) ≤ ∆(G)+1.
If we are limited to regular graphs, Kratochvil et al. proved in [7] that for a
d-regular graph G with at least d4 vertices, b(G) = d + 1. Kouider and El
Sahili ([4]) proved that for every regular graph of girth 5 and no induced cycle
C6 the same equality holds.

Let v be any vertex of a graph G. It is known that χ(G − v) ≤ χ(G). The
function χ is said monotonous. This is not the case for the b chromatic number.

A graph G = (V,E) is called b-monotonous if b(H1) ≥ b(H2) for every induced
subgraph H1 of G and every subgraph H2 of H1. This was a definition of
Bonomo et al.

Here we say that a graphG is quasi b-monotonous , or simply quasi-monotonous,
if for every vertex v ∈ V , b(G− v) ≤ b(G) + 1.

A chordal graph is a graph where every cycle of length at least 4 has at least
one chord. A quasi-line graph is a graph where the neighborhood of every
vertex has a partition into at most 2 cliques. A P4-sparse graph is a graph
where every 5-vertex subset contains at most one induced P4.

It was shown by Bonomo and al.([2]) that P4-sparse graphs are b monotonous.
On the other hand, we showed in [5] that every graph of girth at least 5 is
b-monotonous.

Clique-width A parameter used in complexity of graphs is the clique-width.
Many problems of optimisation which are NP Hard can be solved efficiently on
graphs with bounded clique-width. Some of the classes with bounded clique-
width are defined by forbidden subgraphs on 5 vertices, among P5,coP5, P ,
chair, cochair, coP (see fig. 1)([3]).

The class of (P5, coP5, cochair)-free graphs was defined, by Giakoumakis and
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Fig. 1. Extensions of P4

Fouquet,as the class of semi-P4-sparse graphs, a superclass of P4-sparse graphs.The
class (P5, coP, chair, cochair)-free deserves the name of semi P4-sparse.

For general graphs S.F.Raj and R.Balakrishnan proved that

Theorem 1 [1] For every connected graph of order n ≥ 5, and for every
vertex v ∈ V (G),

b(G)− (⌈n/2⌉ − 2) ≤ b(G− v) ≤ b(G) + (⌊n/2⌋ − 2)

The upper bound is attained.

2 Quasi-monotonous graphs

Our main results are the following.

Theorem 2 Let G = (V,E) be a graph.

1) If each vertex is contained in at most two cycles of length 4. Then G is
quasi-b-monotonous.

2) If G is (P, coP, Chair, Cochair)-free, G is quasi-b-monotonous.

Corollary 1 [5] Every graph of girth at least 5 is quasi-b-monotonous.

Theorem 3 Let G = (V,E) be a graph.

1) If G is (P5, P, Cochair)-free, G is b-monotonous.
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2) If G is (P5, coP5, P )-free, G is b-monotonous.

Theorem 4 Let G = (V,E) be quasi-line-graph. Then for each vertex x, b(G−
x) ≤ b(G) + 2

Theorem 5 Let G = (V,E) be a chordal graph of clique-number ω.

Then, for each vertex x of G,of degree d(x),

b(G− x) ≤ b(G) + 1 +
d(x)− 1

b(G− x)
(1)

b(G− x) ≤ b(G) + 1 +
ω − 1

b(G− x)− ω
(2).

b(G− x) ≤ b(G) + 1 +
(ω − 1)3/4

(b(G)− ω)1/2
(3)

From the preceding theorem, we deduce

Corollary 2 Let G = (V,E) be a chordal graph of clique-number ω and b-
chromatic number b(G). Then, for each vertex x,

b(G− x) ≤ b(G) + 1 +
√

d(x)− 1

b(G− x) ≤ b(G) + 1 +
√
ω − 1.

Corollary 3 Let G = (V,E) be a chordal graph of clique-number ω and b-
chromatic number b such that b ≥ 2ω − 3.

Then G is quasi b-monotonous.

There exist chordal graphs and quasi-line graphs not b-monotonous.

Examples 1) Let k ≥ 3 be an integer .

Let ω be an even integer and 2k be a divisor of ω, furthermore we suppose
ω ≥ 4.k2. We give an example of a chordal graph G1 with dominating number

b = ω +
ω

2k
− k + 1 and not quasi-b-monotonous. The gap b(G1 − x)− b(G1)

in this example is of the order of
√
ω.

Consider the following graphH composed by 4 vertex-disjoint cliquesA1, A2, A3, A4

such the order of A1 (resp. of A4) is ω−ω/2k. Furthermore, A1∪A2 is a clique
of order ω as well as A4∪A3, and, A3∪A2 is a clique of order ω/k (see fig.2).Let
us call H ′ the graph H − A4.
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The graph G1 is a graph composed by k disjoint copies of H and a copy of
H ′, and, with a vertex x, external to the copies of H and H ′, joined to every
vertex of any copy of A1 and to every vertex of H ′.

X

H k

H’

H 1

A

A

A

1

1

1

x

Fig. 2. Chordal graph not quasi-monotonous

We observe that
d(v) ≤ ω + 1

for every vertex v of H ′;

d(x) = k.ω + ω/2 + ω/2k;

and,
d(u) = ω + ω/2k − 1

for every vertex u of a copy of A2 in G1 or every vertex of a copy of A3 in
G1 − H ′. The other vertices have degree at most ω. The number of vertices
of degree at least ω + ω/2k − k − 1 is

ω + ω/2k + 1 (a)

The graph G1 − x has a b-chromatic number equal to ω + ω/2k, the set of
dominating vertices is the set of vertices of maximum degree inG1 − x . We
show that the graph G1 has a b-chromatic number equal to ω+ω/2k −k+1.

Indeed, suppose b(G1) ≥ ω + ω/2k − k, so b(G1) ≥ ω + 3. Given a b coloring
of G, at least ω/2k − k − 1 colors have a dominating vertex in H ′; then x is
neighbour of b− 1 colors, and is dominating. Every dominating vertex outside
H ′ must be neighbour of the color c(x). And as ω/2k − (k+1) > 0, each copy
of A2 and each copy of A3 outside H

′ must contains a dominating vertex; as x
is neighbour of each copy of A1, this implies that each copy of A2∪A3 outside
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H ′ must contain a vertex of color c(x). Then by (a), b(G1) ≤ ω+ω/2k −k+1.
One can verify easily the equality b(G1) ≤ ω + ω/2k − k + 1. So b(G1 − x) =
b(G1) + k − 1.

In that example, if ω = 4k2, then

b(G1 − x) = b(G1)− 1 +

√
w

2
.

2) With the notations of the precedent example, we consider a graph G2

composed by two vertex disjoint copies of H, and an external vertex x joined
to each copy of A1. We have |A1| = |A4| = 2ω/3 and |A2| = |A3| = ω/3.

Then G2 is a quasi-line graph and b(G2 − x) = b(G2) + 1.

x

H 1

H2

Fig. 3. Quasi-line graph not monotonous

Remark: There exist chordal graphs with b-chromatic number at least 2ω.
Let ω ≥ 2, p = 5(ω−1). Let S(u) be the graph composed by 5 cliques sharing
exactly one vertex u. Consider the graph H composed by an elementary path
P (u1, ..., up) and a family of p graphs S(ui) for 1 ≤ i ≤ p. It is easy to see
that H is chordal and b(H) ≥ p ≥ 4ω.

3 Proofs

Remarks For each of our results the following remarks are valid. The proofs
are by contradiction. Let x be a fixed vertex of G. Let H = G − x. We may
suppose first that q = b(H) ≥ ω + 2 otherwise we have b(H) ≤ b(G) + 1.
Suppose the b-coloring of H is not extendable to G. Then, necessarily,

R1) All the colors appear in N(x).

R2) x is not neighbour to q dominating vertices s of different colors, so there
exists an integer r such that for every color i ≥ r + 1, Ni(x) contains no
dominanting vertex.
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R3)Let us consider r minimum. For each i ≥ r+1, N(Ni(x))∩N2(x) contains
all the dominating vertices of some color j and no one of these dominating
vertices has a neighbour of color i outside Ni(x); otherwise for each y ∈ Ni(x),
we change the color i of the vertex y into a color missing in the neighborhood
of y and we give color i to the vertex x and we obtain a b-coloring of G with
q colors. Let us call I the set colors i, i ≥ r + 1.

Note that, as the coloring is proper and j > r,we get q− r ≥ 2. From now we
say that a set A ∈ Ni(x) covers a color j if N(A)) ∩ N2(x) contains all the
dominating vertices of some color j and no one of these dominating vertices
has a neighbour of color i outside A. Note that j ∈ I necessarily.

Now we give first the proof of theorem2.

Proof of Theorem 2

Proof of the first part of the theorem2

Case 1:There exists i ≥ r + 1 such that Ni(x) covers at most one color, say j

For each y ∈ Ni(x), we change the color i of y into a color missing in the
neighborhood of y.

We x by i. Either there remains a dominating vertex of the color j, we keep
color j. Or the color j has no dominating vertex.For each vertex of color j we
give a color missing in its neighborhood. In any case, we get a b coloring of G
with at least q − 1 colors..

Case 2:For each i ≥ r + 1, Ni(x) covers at least 2 different colors.

Let b′ the number of colors with all dominating vertices contained in N2(x)
and neighbours of ∪i≥r+1Ni(x). As the coloring is proper, and q− r ≥ 2, then
b′ ≥ 3 by definition of case 2; so b − r ≥ b′ ≥ 3. Let S be a system of b′

dominating vertices of the b′ different colors.

There exist at least 2(q − r) edges between ∪i≥r+1Ni(x) and the set S, by
definition of case 2.Then either there exists a vertex s0 which sends at least 3
edges to ∪i≥r+1Ni(x), or each vertex of S sends exactly 2 edges to ∪i≥r+1Ni(x).
As |S| ≥ 3, there are at least 3 cycles of length 4 containing x. A contradiction
to the hypothesis on G.

This ends the proof of part1 of theorem 2.

Proof of part 2 of Theorem 2
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We use the proof of the first part. And we may suppose we are in case 2. For
each color j, j ≥ r+1, Nj(x) covers at least 2 colors. Let i, i ≥ r+1 be a color
such that a dominating vertex xi is in N2(x), neighbour of ut ∈ N(x). Let us
note that, by definition of the covering,xi is independent of the dominants of
each color covered by Ni(x).

There exists a vertex yi ∈ Ni covering a color k, otherwise, there are yi and
y′i in Ni(x), xk and x′

k dominants of the same color such that the path Q =
{xk, yi, x, y

′
i, x

′
k} is induced and forms with uk ∈ Nk(x) a chair,a coP or a

cochair; and we get a contradiction with the hypothesis.

Furthermore,there is a second color, say s, covered by Ni(x); either s is cov-
ered by yi, then as there is no chair the dominants xk and xs are adjacent;
or|Ni(x)| ≥ 2, and there exists y′i ∈ Ni(x) neighbour of a dominant xs, s 6= k
independent of yi; xk is independent of y′i otherwise xi, y

′
i, x, yi, xk should be a

P .

Case α: xk, ut adjacent

The set ut, x, yi, xi, xk forms P if yi, ut are independent, or a cochair if yi, ut

are adjacent.

Case β: xk, ut independent

Case α being excluded, we may suppose that xs, ut are independent too. (a)
If yi, ut are independent,

we have a chair or coP composed by ut, yi, xs, xk, or if y
′
i exists, a chair or a

cochair composed by ut, x, yi, y
′
i, xk.

(b) If yi, ut are adjacent,

Either yi is adjacent to xk, xs, we have coP composed by xi, ut, yi, xs, xk.

Or, yi is adjacent to xk and not to xs, and y′i is adjacent to xs and not to
xk otherwise we are in some precedent case. Then yi, ut, x, y

′
i, xs forms either

a coP (if [y′i, ut] /∈ E(G)) or a cochair (if [y′i, ut] ∈ E(G)). As the subgraphs
P ,coP,chair,cochair are excluded, in any subcase, there is a contradiction.
Case2 cannot occur.We get part2 of the theorem. �

Proof of theorem 3

1) Each class considered here is hereditary. It is sufficient to show by contra-
diction that for any graph G of the class and any vertex x of G a dominating
coloring of G− x extends to G, so b(G− x) ≤ b(G).
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We keep the notations of the proof of the second part of Theorem 2. There
exists at least a vertex yi such that N(y) ∩N2(x) contains all the dominants
of at least a color k, otherwise we know that there is at least a color k with
all dominants in N(Ni(x)) ∩ N2(x) and we get a P5 composed by xyiy

′
ixkx

′
k

where yi, y
′
i are in Ni(x) and xk, x

′
k are 2 dominants of color k, a contradiction

with the hypothesis on G . By remark R3, no dominating vertex of the color
k has a neighbour of color i outside Ni(x).

1) Case α: yi, ut independent

We have a P5 or P composed by xk, yi, x, ut, xi.

Case β: yi, ut adjacent

As ut is not dominant, there is a color s and a vertex zs ∈ N(x) not neighbour
of ut. As xi is dominant,there exists a vertex vs neighbour of xi. We may
suppose xk, ut independent otherwise we have a cochair xk, yi, ut, xi.

subcase:zs neighbour of xi:

(a) Either xk is not neighbour of zs, then xk, yi, ut, xi, zs gives either P5 or P ;

(b) Or, x, uk, zs, xi, xk form P .

subcase:zs, xi independent :

As ut and vs are independent, then x, ut, vs, xi and zs form either P5 or P . As
the graph is (P5, P, cochair) free, there is a contradiction in any case. So there
exists a color j such that N(Nj(x)) ∩ N2(x) contains no dominant. 2) The

proof is similar to that of part1 . The only difference is that in the subcase
where xk and yi are adjacent to ut, we have a coP5 composed by yi, ut, xi, vs, x
�

Proof of theorem4

Let i be a color in I. As G is a quasi-line graph,there are at most two neigh-
bours ui and u′

i of x which are of color i; N2(x) ∩N(ui) is a clique, the same
holds for N2(x) ∩ N(u′

i) if u
′
i exists. By remarque R3, there exists at least a

color j ∈ I with all dominating vertices in N2(x) ∩ (N(ui) ∪N(u′
i)).

We do the following operation:

1) We change the color of ui into a missing color p(ui) and that of u′
i into a

missing color p(u′
i). We color x by i.

2)We choose one color, say s, which is no more dominating
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a) either the initial dominating vertex ws was unique and in N2(x) ∩ N(u)
,where u ∈ {ui, u

′
i}, we recolor ws by the color i.

Furthermore, if there is a color s′ which the initial dominating vertex ws′ was
unique and in N2(x) ∩ N(v) where v ∈ {ui, u

′
i}, v 6= u, we choose one such

color and we do the same operation as precedently on ws′ .

b) case (a) being excluded, the color s had exactly 2 initial dominating vertices
and they were in N2(x) ∩ (N(ui) ∪ (N(u′

i)), we recolor them by i.

3) For each color, s or s′, we recolor each vertex of the corresponding class by
a missing color.

Thus, after steps(1) and (2) of this operation, we get a proper coloring; the
vertex x is so a dominant vertex of the color i;furthermore, each neighbour of
ui (resp. of u

′
i) which is not of color i is neighbour of a vertex of color i. At

most 2 colors of the initial coloring are not used, namely s and s′. After step
(3), we have a dominating coloring of G with at least q − 2 colors.

This finishes the proof of theorem4 �

Proof of theorem 5 We suppose we have a dominating coloring of H =
G− x. We use notations and remarks R1, R2,R3 given upper, in the proof of
Theorem2. For each color i in I, we choose a dominating vertex wi. Let W
be the set of these dominating vertices. Let t, t ≥ r + 1 be a fixed color. Let
y in Nt(x), and let p(y) 6= t a color not neighbour of y. If no ambiguity, we
shall write simply p instead of p(y). We call Ct,p(y) the set of vertices joined
to y by a path with vertices in Ct ∪ Cp ∪W such that no 2 vertices of W are
consecutive.

Let us first describe the operation O on N(x).

We fix a color t.

O1) Process O1(y): If y ∈ Nt(x) is not neighbour of Np(x) for some p, we
choose such a color and we color y by p . We exchange the two colors t and p
in the component Ct,p(y).
We do this operation successively for each vertex y of Nt(x).
O2) Finally, we give the color t to x.

We remark that:

As G is a chordal graph, two vertices of Nt(x) have no common neighbour
outside x ∪ N(x); furthermore, there is no path P (y,Nt(x)) with internal
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vertices in C(t,p)(y), and, no path P (y,Np(x)) in C(t,p)(y) ;so C(t,p)(y) does not
meet x ∪N(x) outside y.

The operation O is possible for every color t with no dominating vertex in
N(x).

Lemma 1 Let t ≥ r + 1 fixed.

1)After an application of operation O1(y), we obtain a proper coloring of G;
at most one element of W , wt or wp, is no more dominant. If the color p(y)
is no more dominating, then wp ∈ Ct,p(y)(y)

Furthermore, if y, y′ ∈ Nt(x), y 6= y′, then Ct,p(y)(y) ∩ Ct,p(y′)(y′) = ∅.

2)After operation O, the vertex x is a dominating vertex of color t. The colors
which have no dominating vertex are among the chosen missing colors.

Proof of Lemma 1

1)If for some j 6= p(y), j 6= t, wj ∈ Ct,p(y)(y), then necessarily its neighbours
of colors p(y) and t are also in Ct,p(y)(y); then by operation O1(y), there is
a permutation of the colors p(y) and t in Ct,p(y)(y);so the vertex wj remains
dominating of color j. We remark that if wj /∈ Ct,p(y)(y), then its neighbours of
colors p(y) and t are not in Ct,p(y)(y); their colors are not changed after opera-
tion O1(y), the same conclusion holds for wj; so vertex wj remains dominating
of color j.

If wt ∈ Ct,p(y)(y), then after operation O1(y), the vertex wt becomes dominating
of color p. Analogously, if wp ∈ Ct,p(y)(y), after operation O1(y), wp becomes a
dominating vertex of color t.

Suppose u ∈ Ct,p(y)(y) ∩ Ct,p(y′)(y′). Then there exists a path from u to y and
another one from u to y′, so there is a cycle C containing the induced path
[y, x, y′] and no vertex of C − {y, y′} is neighbour of x. We may suppose C is
a shortest cycle with the latest properties . C is of length at least 4 and has
no chord. As G is chordal we get a contradiction.

2) After operation O, the vertex x is neighbour of every color except t; so
x is dominating vertex of color t. As Ct,p(y)(y) ∩ Ct,p(y′)(y′) = ∅, any vertex
is recolored at most one time and by 1) of the Lemma, the possible non
dominating colors are in the set (p(y))y∈Nt(x) •

Let Rt be the set of vertices of Ct such that for each vertex y of Rt for any
missing color p(y), after the operation O, the color p(y) has no dominating
vertex. Furthermore, if Ct = C , let us denote Rt simply by R.

11



Lemma 2 Let G be a chordal graph. Then, for each t ∈ I,

1) b(G− x) ≤ b(G) + |Rt|

2)For any vertices y, y′ of Rt, then p(y) 6= p(y′). And, if d−(y) is the number
of colors which do not appear in N(x) ∩N(y), we have

∑

y∈Rt

d−(y) ≤ (q − 1)

.

Proof of Lemma 2

1) The first part is a consequence of (2) of Lemma1.

2)If y and y′ are elements of Rt, there exists a path P (y, wp(y)) in C(t,p(y)), and
a path P (y, wp(y′)) C(t,p(y′)) in by Lemma 1. As C(t,p(y)) ∩ C(t,p(y′)) = ∅, then by
Lemma1, they have no common missing color j, so we get the inequality •

End of the proof of theorem 5

We consider a b-dominating coloring of G − x by q = b(G − x) colors. After
operation O1(v) applied on a vertex v, the color p(v) remains dominating if
Nt(x) = v was missing only one color in G and v is a reprentative of p(v) .

In N(x), let C be a class of colors such that by the operation O the minimum
number of colors are no more dominating.

In a chordal graph, if S1 and S2 are two vertex disjoint stable sets, the induced
vertex graph of vertex- set S1∪S2 is a forest. Then given a coloring of N(x)\C
by a minimum number of colors, we have a partition X1, ..., Xs of N(x) \ C.
Then, as there is no induced C4, the set of edges E(R,Xi) is a matching
between R and Xi. So

e(R,Xi ) ≤ min(|R|, |Xi|)

for each i ≤ s.

As N(x)−C is chordal of clique-number at most (ω− 1), we get by summing

e(R,N(x)− C) ≤ min((ω − 1).|R|, (d(x)− |R|)) (5)

Each vertex y of C is not neighbour in N(x) of at least (q − 1) − dN(x)(y))
colors. So

(q − 1)|R| − e(R,N(x)− C) ≤
∑

y∈R

d−(y).
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On the other hand, as G is chordal,by Lemma 2,

∑

y∈R

d−(y) ≤ (q − 1),

we get, using inequality (5), that

(q − 1)|R| − (d(x)− |R|] ≤ q − 1

and, (q − 1)|R| − (ω − 1)|R| ≤ q − 1

So |R| ≤ 1 + min(
d(x)− 1

q
,
(ω − 1)

(q − ω)
)

As by Lemma2, b(G− x) ≤ b(G) + |R|, we get the inequalities 1 and 2 of the
theorem.

Let us set θ = b(G−x)− b(G)− 1, and a = q−ω. From inequality (2), we get

θ2 + a.θ − (ω − 1) ≤ 0.

It follows that

θ ≤ (ω − 1)
√

a2/4 + (ω − 1) + a/2
(6)

As
√

a2/4 + (ω − 1) ≥ √
a.(ω−1)1/4, we get the third inequality of the theorem

�

Proof of corollary 2 From inequality 1 of the last theorem, we have (θ+1)2 ≤
d(x)− 1. Whereas inequality (6) of the last proof gives

θ ≤ (ω − 1)
√

a2/4 + (ω − 1) + a/2
(6)

Proof of corollary 3 Let us set θ = b(G− x)− b(G). The inequality (2) of

the last theorem gives

(θ − 1)(b(G)− ω + 3) ≤ ω − 1

Suppose θ ≥ 2. Then we get b(G) ≤ 2ω − 4. The corollary 2 follows •
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