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This paper is devoted to the spectral analysis of a Schrödinger operator in presence of a vanishing magnetic field. The influence of the smoothness of the magnetic zeros locus is studied. In particular, it is proved that breaking the magnetic zero locus induces discrete spectrum below the essential spectrum. Numerical simulations illustrate the theoretical results.

Introduction and results

Montgomery operator

This paper is motivated by the analysis of R. Montgomery performed in [START_REF] Montgomery | Hearing the zero locus of a magnetic field[END_REF] where the problem is to investigate the semiclassical limit in presence of vanishing magnetic fields. Without going into the details let us explain which model operator is introduced in [START_REF] Montgomery | Hearing the zero locus of a magnetic field[END_REF]. Montgomery was concerned by the magnetic Laplacian (-ih∇ + A) 2 on L 2 (R 2 ) in the case when the magnetic field β = ∇ × A vanishes along a smooth curve Γ. Assuming that the magnetic field non degenerately vanishes, he was led to consider the self-adjoint realization on L 2 (R 2 ) of: L = D 2 t + (D s -st) 2 . In this case the magnetic field is given by β(s, t) = s so that the zero locus of β is the line s = 0. Let us write the following change of gauge:

L Mo = e -i s 2 t 2 L e i s 2 t 2 = D 2 s + D t + s 2 2 2 .
The Fourier transform (after changing ξ in -ξ) with respect to t gives the direct integral:

L Mo = ⊕ L Mo ξ dξ, where L Mo ξ = D 2 s + -ξ + s 2 2 2 .
From this representation, we deduce that:

s(L) = s ess (L) = [µ Mo , +∞) , (1.1) 
where µ Mo is defined as:

µ Mo = inf ξ∈R µ Mo 1 (ξ),
where µ Mo 1 (ξ) denotes the first eigenvalue of L Mo ξ . Let us recall a few important properties of µ Mo 1 (ξ) (for the proofs, see [START_REF] Pan | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF][START_REF] Helffer | The Montgomery model revisited[END_REF][START_REF] Helffer | Spectral properties of higher order Anharmonic Oscillators[END_REF]). Proposition 1. [START_REF] Bonnaillie-Noël | Harmonic oscillators with Neumann condition of the half-line[END_REF] The following properties hold:

1. For all ξ ∈ R, µ Mo 1 (ξ) is simple.

2. The function ξ → µ Mo 1 (ξ) is analytic.

3. We have: lim With a finite element method and Dirichlet condition on the artificial boundary, we are able to give a upper-bound of the minimum and our numerical simulations provide µ Mo 0.5698 reached for ξ Mo 0.3467 with a discretization step at 10 -4 for the parameter ξ. This numerical estimate is already mentioned in [START_REF] Montgomery | Hearing the zero locus of a magnetic field[END_REF]. Let us emphasize that the results of Proposition 1.1 were used to investigate the eigenvalues of (-ih∇ + A) 2 in the limit h → 0 in [START_REF] Pan | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF][START_REF] Helffer | Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells[END_REF][START_REF] Helffer | Spectral gaps for periodic Schrödinger operators with hypersurface magnetic wells: analysis near the bottom[END_REF][START_REF] Helffer | Semiclassical spectral asymptotics for a twodimensional magnetic schroedinger operator. ii the case of degenerate wells[END_REF][START_REF] Dombrowski | Semiclassical analysis with vanishing magnetic fields[END_REF].

Breaking the Montgomery operator

Heuristics and motivation

As mentioned above, the bottom of the spectrum of L is essential. This fact is due to the translation invariance along the zero locus of β. This situation reminds what happens in the waveguides framework (see [START_REF] Duclos | Curvature-induced bound states in quantum waveguides in two and three dimensions[END_REF]). The general philosophy developed by Duclos and Exner (see also for instance [START_REF] Carron | Topologically nontrivial quantum layers[END_REF][START_REF] Chenaud | Geometrically induced discrete spectrum in curved tubes[END_REF][START_REF] Krejčiřík | On the spectrum of curved quantum waveguides[END_REF]) establishes that eliminating the translation invariance induces discrete spectrum below the essential spectrum. More recently, waveguides with corners are considered in [START_REF] Dauge | Quantum waveguides with corners[END_REF][START_REF] Dauge | Plane waveguides with corners : small angle limit[END_REF] where it is enlightened that breaking the translation invariance by adding a corner creates bound states having nice structures (see also [START_REF] Bonnaillie-Noël | Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions[END_REF]).

Guided by the ideas developed for the waveguides, we aim at analyzing the effect of breaking the zero locus of β. Introducing the "breaking parameter" θ ∈ (-π, π], we will break the invariance of the zero locus in three different ways:

Essential spectra The following proposition states that the essential spectrum is the same for L Dir θ , L Neu θ and L θ .

Proposition 1.6 For θ ∈ 0, π 2 , we have s ess (L • θ ) = [µ Mo , +∞) . In the Dirichlet case, the spectrum is essential: Proposition 1.7 For all θ ∈ 0, π 2 , we have s(L Dir θ ) = [µ Mo , +∞). Propositions 1.6 and 1.7 will be proved in Subsection 2.1.

Discrete spectra From now we assume that • = Neu, ∅.

Notation 1.8 Let us denote by λ • n (θ) the n-th Rayleigh quotient of L • θ .
The two following propositions are Agmon type estimates and give the exponential decay of the eigenfunctions. R 2

• denotes R 2 + , R 2 when • = Neu, ∅ respectively. Proposition 1.9 There exist ε 0 , C > 0 such that for all θ ∈ 0, π 2 and all eigenpair (λ, ψ) of L • θ such that λ < µ Mo , we have:

R 2 • e 2ε 0 |t| √ µ Mo -λ |ψ| 2 dt ≤ C(µ Mo -λ) -1 ψ 2 .
Proposition 1.10 There exist ε 0 , C > 0 such that for all θ ∈ 0, π 2 and all eigenpair (λ, ψ) of L • θ such that λ < µ Mo , we have:

R 2 • e 2ε 0 |s| sin θ √ µ Mo -λ |ψ| 2 dt ≤ C(µ Mo -λ) -1 ψ 2 .
Propositions 1.9 and 1.10 will be proved in Subsections 2.2.1 and 2.2.2 respectively. The following proposition (the proof of which can be found in [START_REF] Pan | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF]) states that L Neu θ admits an eigenvalue below its essential spectrum when θ ∈ 0, π 2 . Proposition 1.11 For all θ ∈ 0, π 2 , λ Neu 1 (θ) < µ Mo .

Remark 1.12 The situation seems to be different for L θ . According to numerical simulations with finite element method, there exists θ 0 ∈ π 4 , π 2 such that λ 1 (θ) < µ Mo for all θ ∈ (0, θ 0 ) and λ 1 (θ) = µ Mo for all θ ∈ θ 0 , π 2 .

1.3 Singular limit θ → 0

1.3.

Renormalization

Thanks to Proposition 1.11, one knows that breaking the invariance of the zero locus of the magnetic field with a Neumann boundary creates a bound state. We also would like to tackle this question for L θ and in any case to estimate more quantitatively this effect. A way to do this is to consider the limit θ → 0. First, we perform a scaling:

s = (cos θ) -1/3 ŝ, t = (cos θ) -1/3 t. (1.2)
The operator L • θ is thus unitarily equivalent to (cos θ) 2/3 L• tan θ , where the expression of L• tan θ is given by:

D 2 t + D ŝ + sgn( t) t2 2 -ŝt tan θ 2 .
Notation 1. [START_REF] Helffer | Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells[END_REF] We let ε = tan θ.

For (α, ξ) ∈ R 2 and ε > 0, we introduce the unitary transform:

V ε,α,ξ ψ(ŝ, t) = e -iξŝ ψ ŝ - α ε , t ,
and the conjugate operator:

L• ε,α,ξ = V -1 ε,α,ξ L• ε V ε,α,ξ .
Its expression is given by:

L• ε,α,ξ = D 2 t + -ξ -α t + sgn( t) t2 2 + D s -εŝ t 2 .
Let us introduce the rescaled variable:

ŝ = ε -1/2 σ. (1.3) Therefore L• ε,α,ξ is unitarily equivalent to M • ε,α,ξ
whose expression is given by:

M • ε,α,ξ = D 2 t + -ξ -α t + sgn( t) t2 2 + ε 1/2 D σ -ε 1/2 σt 2 .
(1.4)

New model operators

By taking formally ε = 0 in (1.4) we are led to two families of one dimensional operators on L 2 (R 2 • ) with two parameters (α, ξ) ∈ R 2 :

M • α,ξ = D 2 t + -ξ -α t + sgn( t) t2 2 2 .
These operators have compact resolvents and are analytic families with respect to (α, ξ) ∈ R 2 .

Notation 1.14 We denote by µ • n (α, ξ) the n-th eigenvalue of M • α,ξ .

Roughly speaking M • α,ξ is the operator valued symbol of (1.4), so that we expect that the behavior of the so-called "band function" (α, ξ) → µ • 1 (α, ξ) determines the structure of the low lying spectrum of M • ε,α,ξ in the limit ε → 0.

The two following theorems state that the band functions admit a minimum (see Section 3 for the proofs and numerical simulations).

Theorem 1.15 The function R × R (α, ξ) → µ Neu 1 (α, ξ) admits a minimum denoted by µ Neu
1 . Moreover we have:

lim inf |α|+|ξ|→+∞ µ Neu 1 (α, ξ) ≥ µ Mo > min (α,ξ)∈R 2 µ Neu 1 (α, ξ) = µ Neu 1 .
Theorem 1.16 Under Conjecture 1.2, the function R × R (α, ξ) → µ 1 (α, ξ) admits a minimum denoted by µ 1 . Moreover we have:

lim inf |α|+|ξ|→+∞ µ 1 (α, ξ) ≥ µ Mo > min (α,ξ)∈R 2 µ 1 (α, ξ) = µ 1 .
Remark 1.17 We have:

µ Neu 1 ≤ µ 1 . (1.5)
Our numerical experiments lead to the following conjecture.

Conjecture 1.18 -The inequality (1.5) is strict.

-The minimum µ • 1 is unique and non-degenerate. Under this conjecture one can provide an asymptotic expansion of the eigenvalues (see [START_REF] Raymond | Breaking a magnetic zero locus: asymptotic analysis[END_REF]).

Theorem 1.19 If Conjecture 1.18 is true, then we have, for all n ≥ 1:

λ • n (θ) = µ • 1 + (2n -1)θ (det Hess • ) 1/2 + o(θ), (1.6) 
where Hess • denotes the Hessian matrix of µ • at the point where the minimum µ • 1 is reached. In particular, if Conjecture 1.2 is true, we infer that λ n (θ) is an eigenvalue when θ is small enough.

This theorem is illustrated and confirmed by our numerical simulations in Section 4. In particular we can even provide approximations of (det

Hess • ) 1/2 .
2 Rough localization near the "corner" 

Proof:

By the min-max principle, we have:

inf s L Dir θ ≥ inf s(M θ ),
where M θ is the Friedrichs extension on L 2 (R 2 ) of:

D 2 t + D s + t 2 2 cos θ -st sin θ 2 .
By using the rotation of angle π 2 -θ and a change of gauge we are reduced to the operator:

D 2 t + (D s -st) 2 .
From (1.1), we have s(M π 2 ) = [µ Mo , +∞). The conclusion follows.

Let us now prove Proposition 1.6.

Proof:

For this, we use the Persson's lemma [START_REF] Persson | Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator[END_REF]:

Lemma 2.2
Let Ω be an unbounded domain of R 2 with Lipschitzian boundary. Then the bottom of the essential spectrum of the Neumann realization P of the Schrödinger operator -∆ A := (-i∇ + A) 2 is given by

inf sp ess (P ) = lim R→∞ Σ(-∆ A , R), with Σ(-∆ A , R) = inf ψ∈C ∞ 0 (Ω∩ B R ) R 2 • |(-i∇ + A)ψ| 2 Ω |ψ| 2
, where B R denotes the ball of radius R (for any norm) centered at the origin and

B R = Ω\B R . We recall that R 2 • denotes R 2 when • = ∅ and R 2 + if • = Dir or Neu. Let us denote by Q • θ the quadratic form associated with L • θ .
Lower bound We introduce

Ω R,θ = {(s, t) ∈ R 2 • : |s| ≤ R(sin θ) -1 , |t| ≤ R}. Let ψ ∈ C ∞ Ω c θ,R
and (χ 0 , χ 1 ) be a partition of unity such that

χ 0 (t) = 1 for |t| ≤ 1 2 , 0 for |t| ≥ 1.
For j = 0, 1, we let:

χ j,R (t) = χ j (R -1 t),
so that:

χ 2 0,R + χ 2 1,R = 1.
The "IMS" formula gives:

Q • θ (ψ) ≥ Q • θ (χ 0,R ψ) + Q • θ (χ 1,R ψ) -CR -2 ψ 2 .
Using Lemma 2.1, we have:

Q • θ (χ 1,R ψ) ≥ µ Mo χ 1,R ψ 2 .
Moreover, using that

Q • θ (v) ≥ R 2 • β(s, t) |v| 2
ds dt , we have on the support of χ 0,R ψ:

Q • θ (χ 0,R ψ) ≥ R 2 • ||t| cos θ -s sin θ||χ 0,R ψ| 2 ds dt.
On the support of χ 0,R ψ, we have:

||t| cos θ -s sin θ| ≥ R(1 -cos θ).
It follows that:

Q • θ (ψ) ≥ min(µ Mo , R(1 -cos θ)) -CR -2 ψ 2 . Consequently, we deduce Σ(L • θ , R) ≥ min(µ Mo , R(1 -cos θ)) -CR -2 . Thus inf sp ess (L • θ ) ≥ µ Mo .
Upper bound Using the operator L or L Mo , we can realize a rotation and adaptative gauge transform to deal with the realization on R 2 of D 2 t + (D s + t 2 2 cos θ -st sin θ) 2 whose bottom of the spectrum equals µ Mo . For any ε > 0, there exists a

L 2 -normalized function u ∈ C ∞ 0 (R 2 ) such that µ Mo ≤ R 2 |D t u| 2 + D s + t 2 2 cos θ -st sin θ u 2 ds dt ≤ µ Mo + ε.
There exists > 0 such that supp u ⊂ [-, ] 2 . Let R > 0 be fixed. After a translation and gauge transform, we can construct a function ψ whose support is included in [R, R + 2 ] 2 such that:

µ Mo + ε ≥ [R,R+2 ] 2 |D t ψ| 2 + D s + t 2 2 cos θ -st sin θ ψ 2 ds dt = [R,R+2 ] 2 |D t ψ| 2 + D s + t 2 2 cos θ -st sin θ ψ 2 ds dt = Q • θ (ψ). Thus Σ(L • θ , R) ≤ µ Mo + ε.
Using the Persson's lemma and taking ε → 0, we deduce inf sp ess (L • θ ) ≤ µ Mo . Combining Lemma 2.1 and Proposition 1.6, we deduce Proposition 1.7.

Agmon estimates

In this section we aim at establishing Propositions 1.9 and 1.10.

Agmon estimates with respect to t

Let us fix m ≥ 1 and ε > 0. We let Φ m

(t) = |t|χ m (t) √ ε √ µ Mo -λ, where χ m is a C ∞ (R) cut-off function such that χ m (t) = χ 0 t m . (2.1) 
For shortness, we denote ψm = e Φm ψ. We have:

Q • θ (χ 0,R ψm ) + Q • θ (χ 1,R ψm ) -CR -2 ψm 2 ≤ λ ψm 2 + ∇Φ m ψm 2 .
Let C > 0 be independent of m and such that ∇Φ m

2 ∞ ≤ ε C(µ Mo -λ).
We have:

Q • θ (χ 1,R ψm ) ≥ µ Mo χ 1,R ψm 2 , (2.2) 
so that:

(µ Mo -λ -CR -2 -ε C(µ Mo -λ)) χ 1,R ψm 2 ≤ (λ + CR -2 + ε C(µ Mo -λ)) χ 0,R ψm 2 . We choose ε ≤ 1 2 C and R ≥ 2 √ C √ µ Mo -λ so that: (µ Mo -λ) χ 1,R ψm 2 ≤ Ĉ χ 0,R ψm 2 ≤ C ψ 2 .
It follows that:

(µ Mo -λ) ψm 2 ≤ C ψ 2 .
Then, we take the limit m → +∞.

Rough Agmon estimates with respect to s

Let us fix m ≥ 1 and ε > 0. We let Φ m (s

) = |s| sin θ χ m (s) √ ε √ µ Mo -λ.
For shortness, we let ψm = e Φm ψ. We have:

Q • θ (χ 0,R (t) ψm ) + Q • θ (χ 1,R (t) ψm ) -CR -2 ψm 2 ≤ λ ψm 2 + ∇Φ m ψm 2 .
As in the proof of Proposition 1.9, upper-bound (2.2) is still available and we choose ε

≤ 1 2 C and R ≥ 2 √ C √ µ Mo -λ so that: (µ Mo -λ) χ 1,R ψm 2 ≤ Ĉ χ 0,R ψm 2 .
Thus, we deduce:

Q • θ (χ 0,R (t) ψm ) ≤ (λ + CR -2 ) χ 0,R (t) ψm 2 + ∇Φ m χ 0,R (t) ψm 2 .
Let us now use a partition of unity with respect to s:

χ 2 0,R,θ + χ 2 1,R,θ = 1,
where χ j,R,θ (s) = χ j (s(2R) -1 sin θ). We have:

2 j=1 Q • θ (χ j,R,θ (s)χ 0,R (t) ψm ) ≤ (λ + ĈR -2 ) χ 0,R (t) ψm 2 + ∇Φ m χ 0,R (t) ψm 2 .
We get:

Q • θ (χ 1,R,θ (s)χ 0,R (t) ψm ) ≥ R 1 - cos θ 2 χ 1,R,θ (s)χ 0,R (t) ψm 2 .
We infer that:

R 1 - cos θ 2 -λ -ĈR -2 -Cε(µ Mo -λ) χ 1,R,θ (s)χ 0,R (t) ψm 2 ≤ (λ + ĈR -2 + Cε(µ Mo -λ)) χ 0,R,θ (s)χ 0,R (t) ψm 2 ≤ c χ 0,R (t)ψ 2 , so that: χ 0,R (t) ψm 2 ≤ c χ 0,R (t)ψ 2 .
We infer that:

e Φm ψ ≤ C((µ Mo -λ) -1 + 1) ψ .
It remains to take the limit m → +∞.

Montgomery operator with two parameters

We will see that the properties of M Neu α,ξ be can used to investigate those of M α,ξ . Therefore we begin by analyzing the family of operators M Neu α,ξ and we prove Theorem 1.15 and apply it to prove Theorem 1.16. 

Analysis of M Neu

P(α, ξ) = (α, δ) = α, ξ + α 2 2 .
A straight forward computation provides that P :

R 2 → R 2 is a C ∞ -diffeomorphism such that: |α| + |ξ| → +∞ ⇔ |P(α, ξ)| → +∞.
We have M Neu α,ξ = N Neu α,δ , where:

N Neu α,δ = D 2 t + (t -α) 2 2 -δ 2 ,
with Neumann condition on t = 0. Let us denote by ν Neu 1 (α, δ) the lowest eigenvalue of N Neu α,δ , so that:

µ Neu 1 (α, ξ) = ν Neu 1 (α, δ) = ν Neu 1 (P(α, ξ)) .
We denote by Dom(Q Neu α,δ ) the domain of the operator and by Q Neu α,δ the associated quadratic form. To prove Theorem 1.15, we establish the following result:

Theorem 3.1 The function R × R (α, δ) → ν Neu 1 (α, δ
) admits a minimum. Moreover we have:

lim inf |α|+|δ|→+∞ ν Neu 1 (α, δ) ≥ µ Mo > min (α,δ)∈R 2 ν Neu 1 (α, δ).
To prove this result, we decompose the plane in subdomains (see Figure 1) and analyze in each part. is too higher when parameters (α, δ) are in some areas. Lemma 3.2 For all (α, δ) ∈ R 2 such that δ ≥ α 2 2 , we have:

-∂ α ν Neu 1 (α, δ) + √ 2δ∂ δ ν Neu 1 (α, δ) > 0.
Thus there is no critical point in the area {δ ≥ α 2 2 }.

Proof:

The Feynman-Hellmann formulas provide:

∂ α ν Neu 1 (α, δ) = -2 +∞ 0 (t -α) 2 2 -δ (t -α)u 2 α,δ (t) dt, ∂ δ ν Neu 1 (α, δ) = -2 +∞ 0 (t -α) 2 2 -δ u 2 α,δ (t) dt.
We infer:

-∂ α ν Neu 1 (α, δ) + √ 2δ∂ δ ν Neu 1 (α, δ) = +∞ 0 (t -α - √ 2δ)(t -α + √ 2δ)(t -α - √ 2δ)u 2 α,δ (t) dt.
We have:

+∞ 0 (t -α - √ 2δ) 2 (t -α + √ 2δ)u 2 α,δ (t) dt > 0. Lemma 3.3 We have: inf (α,δ)∈R 2 ν Neu 1 (α, δ) < µ Mo .
Proof:

We apply Lemma 3.2 at α = 0 and δ = δ Mo to deduce that:

∂ α ν Neu 1 (0, δ Mo ) < 0.
The following lemma is obvious: Lemma 3.4 For all δ ≤ 0, we have:

ν Neu 1 (α, δ) ≥ δ 2 .
In particular, we have

ν Neu 1 (α, δ) > µ Mo , ∀δ < - √ µ Mo .
Lemma 3.5 For α ≤ 0 and δ ≤ α 2 2 , we have:

ν Neu 1 (α, δ) ≥ µ Mo 1 (0) > µ Mo .

Proof:

We have, for all ψ ∈ Dom(Q Neu α,δ ):

Q Neu α,δ (ψ) = R + |D t ψ| 2 + (t -α) 2 2 -δ 2 |ψ| 2 dt and (t -α) 2 2 -δ 2 ≥ t 2 2 -αt + α 2 2 -δ 2 ≥ t 4 4 .
The min-max principle provides:

ν Neu 1 (α, δ) ≥ µ Mo 1 (0).
Moreover, thanks to the Feynman-Hellmann theorem, we get:

∂ δ µ Mo 1 (δ) δ=0 = - R + t 2 u 0 (t) 2 dt < 0.
Lemma 3.6 There exist C, D > 0 such that for all α ∈ R and δ ≥ D such that α √ δ ≥ -1:

ν Neu 1 (α, δ) ≥ Cδ 1/2 .

Proof:

For α ∈ R and δ > 0, we can perform the change of variable:

τ = t -α √ δ .
The operator δ -2 N Neu α,δ is unitarily equivalent to:

N Neu α,h = h 2 D 2 τ + τ 2 2 -1 2 ,
on L 2 ((-α, +∞)), with α = α √ δ and h = δ -3/2 . We denote by νNeu 1 ( α, h) the lowest eigenvalue of N Neu α,h . We aim at establishing a uniform lower with respect to α of νNeu 1 (α, h) when h → 0. We have to be careful with the dependence on α.

We introduce a partition of unity on R with balls of size r > 0 and centers τ j and such that:

j χ 2 j,r = 1, j χ 2 j,r ≤ Cr -2 .
We can assume that there exist j -and j + such that τ j -= -√ 2 and τ j + = √ 2. The "IMS" formula provides:

QNeu α,h (ψ) ≥ j QNeu α,h (χ j,r ψ) -Ch 2 r -2 ψ 2 .
We let

V (τ ) = τ 2 2 -1 2 . Let us fix ε 0 such that V (τ ) ≥ V (τ j ± ) 4 (τ -τ j ± ) 2 if |τ -τ j ± | ≤ ε 0 . (3.1)
There exists η 0 > 0 such that

V (τ ) ≥ η 0 if |τ -τ j ± | > ε 0 4 . (3.2)
Let us consider j such that j = j -or j = j + . We can write the Taylor expansion:

V (τ ) = V (τ j ± ) 2 (τ -τ j ± ) 2 + O(|τ -τ j ± | 3 ) = 2(τ -τ j ± ) 2 + O(|τ -τ j ± | 3 ). (3.3)
We have:

QNeu α,h (χ j,r ψ) ≥ √ 2Θ 0 h χ j,r ψ 2 -Cr 3 χ j,r ψ 2 , (3.4)
where Θ 0 > 0 is the infimum of the bottom of the spectrum for the ξ-dependent family of de Gennes operators D 2 τ + (τ -ξ) 2 on R + with Neumann boundary condition ( [START_REF] Dauge | Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators[END_REF][START_REF] Bonnaillie-Noël | Harmonic oscillators with Neumann condition of the half-line[END_REF]). We are led to choose r = h 2/5 . We consider now the other balls: j = j -and j = j + . If the center τ j satisfies |τ j -τ j ± | ≤ ε 0 /2, then, for all τ ∈ B(τ j , h 2/5 ), we have for h small enough:

|τ -τ j ± | ≤ h 2/5 + ε 0 2 ≤ ε 0 . If |τ j -τ j ± | ≤ 2h 2/5
, then for τ ∈ B(τ j , h 2/5 ), we have |τ -τ j ± | ≤ 3h 2/5 and we can use the Taylor expansion (3.3). Thus (3.4) is still available. We now assume that |τ j -τ j ± | ≥ 2h 2/5 so that, on B(τ j , h 2/5 ), we have:

V (τ ) ≥ V (τ j ± ) 4 h 4/5 .
If the center τ j satisfies |τ j -τ j ± | > ε 0 /2, then, for all τ ∈ B(τ j , h 2/5 ), we have |τ -τ j ± | ≥ ε 0 /4 and thus:

V (τ ) ≥ η 0 .
Gathering all the contributions, we find:

QNeu α,h (ψ) ≥ ( √ 2Θ 0 h -Ch 6/5 ) ψ 2 .
We infer, using the min-max principle:

ν Neu 1 (α, δ) ≥ δ 2 ( √ 2Θ 0 δ -3/2 -Cδ -9/5 ) ≥ Cδ 1/2 ,
for δ small enough.

Lemma 3.7 Let u δ be an eigenfunction associated with the first eigenvalue of L Mo,+ δ . Let D > 0. There exist ε 0 , C > 0 such that, for all δ such that |δ| ≤ D, we have:

+∞ 0 e 2ε 0 t 3 |u δ | 2 dt ≤ C u δ 2 .

Proof:

We let Φ m = εχ m (t)t 3 . The Agmon identity provides:

∞ 0 t 2 2 -δ 2 |e Φm u δ | 2 dt ≤ µ Mo 1 (δ) e Φm u δ 2 + ∇Φ m e Φm u δ 2 .
It follows that:

∞ 0 t 4 8 |e Φm u δ | 2 dt ≤ (µ Mo 1 (δ) + 2δ 2 ) e Φm u δ 2 + ∇Φ m e Φm u δ 2 .
We infer that:

∞ 0 t 4 |e Φm u δ | 2 dt ≤ M (D) e Φm u δ 2 + 8 ∇Φ m e Φm u δ 2 .
With our choice of Φ m , we have

|∇Φ m | 2 ≤ 18ε 2 χ 2 m (t)t 4 + 2ε 2 χ m (t) 2 t 6 ≤ 18ε 2 t 4 + 2ε 2 χ m (t) 2 t 6 ≤ Cε 2 t 4 ,
since χ m (t) 2 t 2 is bounded. For ε fixed small enough, we deduce

∞ 0 t 4 |e Φm u δ | 2 dt ≤ M (D) 1 -8Cε 2 e Φm u δ 2 ≤ M (D) e Φm u δ 2 .
Let us choose R > 0 such that: R 4 -M (D) > 0. We have:

(R 4 -M (D)) +∞ R e 2Φm |u δ | 2 dt ≤ M (D) R 0 e 2Φm |u δ | 2 dy ≤ M (D)C(R) u δ 2 ,
and:

+∞ R e 2Φm |u δ | 2 dt ≤ C(R, D) u δ 2 .
We infer:

+∞ 0 e 2Φm |u δ | 2 dt ≤ C(R, D) u δ 2 .
It remains to take the limit m → +∞.

Lemma 3.8 For all D > 0, there exist A > 0 and C > 0 such that for all |δ| ≤ D and α ≥ A, we have:

ν 1 (α, δ) -µ Mo 1 (δ) ≤ Cα -2 .
Proof:

We perform the translation τ = t -α, so that N Neu α,δ is unitarily equivalent to:

Ñ Neu α,δ = D 2 τ + τ 2 2 -δ 2 ,
on L 2 (-α, +∞). The corresponding quadratic form writes:

QNeu α,δ (ψ) = +∞ -α |D τ ψ| 2 + τ 2 2 -δ 2 |ψ| 2 dτ.
Upper bound We take ψ(τ ) = χ 0 (α -1 τ )u δ (τ ). The "IMS" formula provides:

QNeu α,δ (χ 0 (α -1 τ )u δ (τ )) = µ Mo 1 (δ) χ 0 (α -1 τ )u δ (τ ) 2 + (χ 0 (α -1 τ )) u δ (τ ) 2 .
Jointly min-max principle with Lemma 3.7, we infer that:

ν 1 (α, δ) ≤ µ Mo 1 (δ) + (χ 0 (α -1 τ )) u δ (τ ) 2 χ 0 (α -1 τ )u δ (τ ) 2 ≤ µ Mo 1 (δ) + Cα -2 e 2cε 0 α 3 .
Lower bound Let us now prove the converse inequality. We denote by ũα,δ the positive and L 2 -normalized groundstate of Ñ Neu α,δ . On the one hand, with the "IMS" formula, we have:

QNeu α,δ (χ 0 (α -1 τ )ũ α,δ ) ≤ ν 1 (α, δ) χ 0 (α -1 τ )ũ α,δ 2 + Cα -2 .
On the other hand, we notice that:

+∞ -α t 4 |ũ α,δ | 2 dτ ≤ C, -α 2 -α t 4 |ũ α,δ | 2 dτ ≤ C,
and thus:

-α 2 -α |ũ α,δ | 2 dτ ≤ Cα -4 .
We infer that:

QNeu α,δ (χ 0 (α -1 τ )ũ α,δ ) ≤ (ν 1 (α, δ) + Cα -2 ) χ 0 (α -1 τ )ũ α,δ 2 .
We deduce that:

µ Mo 1 (δ) ≤ ν 1 (α, δ) + Cα -2 .
Proof of Theorem 1.15:

Using the decomposition of Figure 1, we proved in Lemmas 3.4-3.6 and 3.8 that the limit inferior of ν 1 (α, δ) in these areas are not less than µ Mo . Then, we deduce the existence of a minimum with Lemma 3.3. Setting these values for the determinants, Figures 8 give ρ • n (θ) (det Hess • ) -1/2 according to θ/π ∈ {2 -p , 5 ≤ p ≤ 11} and we observe the convergence to the odd numbers 2n -1 as θ → 0. Table 1 gives the characteristic of the geometric domains for the numerical computations: the artificial domain is Let us now give the first eigenvectors. The geometrical characteristic of the artificial domains are given in Table 2. In Figures 9 and10 

4 .Conjecture 1 . 2

 412 The function ξ → µ Mo 1 (ξ) admits a unique minimum at a point ξ 0 and it is non degenerate. We have: µ Mo ≥ 0.5.

2 2Proposition 1 . 3

 213 If we consider the Neumann realization L Mo,+ ξ of D 2 t + -ξ + t 2 on R + , then, by symmetry, the bottom of the spectrum of this operator is linked to the Montgomery operator: If we denote by µ Mo,+ 1 (ξ) the bottom of the spectrum of L Mo,+ ξ and µ Mo,+ = inf ξ∈R µ Mo,+ 1 (ξ), then µ Mo,+ 1 (ξ) = µ Mo 1 (ξ) and µ Mo,+ = µ Mo .

2. 1 7 : 2 . 1

 1721 Estimate of the essential spectrumLet us first prove a weaker version of Proposition 1.Lemma For all θ ∈ 0, π 2 , we have s(L Dir θ ) ⊂ [µ Mo , +∞).

α,ξ 3 . 1 . 1

 311 Existence of a minimum for µ Neu 1 (α, ξ) To analyze the family of operators M Neu α,ξ depending on parameters (α, ξ), we introduce the new parameters (α, δ) using a change of variables. Let us introduce the following change of parameters:

Figure 1 :

 1 Figure 1: Illustration of the partition of R 2 to localize the minimizer of N Neu α,δ

3. 1 . 2

 12 Numerical simulations for ν Neu 1 (α, δ) Figure2gives numerical estimates of ν Neu 1 (α, δ) using a finite differential method to discretize the operatorN Neu α,δ , for α ∈ { k 10 , 0 ≤ k ≤ 100}, δ ∈ { k 10 , 0 ≤ k ≤ 200}.We choose as computed domain [0, 60] with a discretized step of differential method h = 1/1000 and Dirichlet condition on the artificial boundary.

Figure 3 Figure 2 :Figure 3 :Figure 5

 3235 Figure 2: Bottom of the spectrum of N Neu α,δ , (α, δ) ∈ [0, 10] × [0, 20]

Figure 5 :

 5 Figure 5: Bottom of the spectrum µ 1 (α, ξ) of M α,ξ according to (α, ξ) ∈ [-5, 15]×[-20, 20]

Figures 6

 6 Figures 6 give an approximation of the first eigenvalues of L θ (left) for θ ∈ {kπ/60, 1 ≤ k ≤ 15} and L Neu θ (right) for θ ∈ {kπ/60, 1 ≤ k ≤ 30} below the bottom of the essential spectrum equal to µ Mo 0.5698. Let us notice that the computed eigenvalues λ n (θ; a, b, c) are larger than µ Mo as soon as θ ∈ {kπ/60, 16 ≤ k ≤ 30} and are consequently not represented in the Figure 6 (left). This is in fact the motivation for Remark 1.12. Figures 7 give an approximation of λ n (θ) and λ Neu n (θ) for small values of θ.Figure 7(a) gives the eigenvalues λ n (θ; -5, 75, 7) with 80 × 7 quadrangular elements of degree Q 8 for θ ∈ {kπ/200, 4 ≤ k ≤ 20} and λ n (θ; -10, 120, 7) with 130 × 7 quadrangular elements of degree Q 6 for θ ∈ {kπ/1000, 4 ≤ k ≤ 20}.Figure 7(b) gives the eigenvalues λ Neu n (θ; -20, 60, 10) with 80 × 10 quadrangular elements of degree Q 8 for θ ∈ {kπ/200, 4 ≤ k ≤ 20} and λ n (θ; -10, 90, 10) with 50 × 5 quadrangular elements of degree Q 10 for θ ∈ {kπ/1000, 8 ≤ k ≤ 20}.

Figure 7

 7 (a) gives the eigenvalues λ n (θ; -5, 75, 7) with 80 × 7 quadrangular elements of degree Q 8 for θ ∈ {kπ/200, 4 ≤ k ≤ 20} and λ n (θ; -10, 120, 7) with 130 × 7 quadrangular elements of degree Q 6 for θ ∈ {kπ/1000, 4 ≤ k ≤ 20}.

Figure 7 (

 7 b) gives the eigenvalues λ Neu n (θ; -20, 60, 10) with 80 × 10 quadrangular elements of degree Q 8 for θ ∈ {kπ/200, 4 ≤ k ≤ 20} and λ n (θ; -10, 90, 10) with 50 × 5 quadrangular elements of degree Q 10 for θ ∈ {kπ/1000, 8 ≤ k ≤ 20}.

  [a, b] × [-c, c] or [a, b] × [0, c] with nel quadrangular elements of degree Q 10 .

Figure 8 : 8 θ 5 Table 1 :

 8851 Figure 8: Convergence of ρ n (θ) (det Hess) -1/2 (left) and ρ Neu n (θ) det Hess Neu 1/2 (right) as θ → 0, n = 1, . . . , 8

Table 2 :Figure 9 :Figure 10 :

 2910 Figure 9: First eight eigenmodes of L θ , θ = π 100
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3.2 Analysis of M α,ξ 3.2.1 Existence of a minimum for µ 1 (α, ξ) Theoren 1.16 is a consequence of the two following lemmas. Lemma 3.9 If Conjecture 1.2 is true, we have:

Proof:

We have

We use a finite element method, with the Finite Element Library Mélina (see [START_REF] Martin | Mélina, bibliothèque de calculs éléments finis[END_REF]), on [-10, 10] with Dirichlet condition on the artificial boundary, with 1000 elements P 2 . For any α, these computations give a upper-bound of µ 1 (α, 0). We consider a discretized step 10 -3 for computation for α ∈ [0, 2]. Figure 4 gives the behavior of µ 1 (α, 0) according to α. Numerical computations and Conjecture 1.2 give

In fact, numerical simulations suggest that inf α∈R µ 1 (α, 0) 0.33227 which is an approximation of the first eigenvalue for α = 0.827. 

Proof:

Let u be a normalized eigenfunction associated with µ 1 (α, ξ). We can split: Let us now illustrate the asymptotic expansion (1.6). In this mind, we define 

Plotting the associated numerical quotient ρ • n (θ)/(2n -1) according to θ as θ → 0 (we take θ/π ∈ {2 -p , 5 ≤ p ≤ 11} for our numerical simulations), we deduce the numerical approximations (at 10 -2 ) (det Hess)