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Determination and Evaluation of Efficient Strategies for a Stop or

Roll Dice Game: Heckmeck am Bratwurmeck (Pickomino)

Nathalie Chetcuti-Sperandio Fabien Delorme Sylvain Lagrue Denis Stackowiak

Abstract— This paper deals with a nondeterministic dice-
based game: Heckmeck am Bratwurmeck (Pickomino). This
game is based on dice rolling and on the stop or roll principle.
To decide between going on rolling or stopping a player has to
estimate his chances of improving his score and of losing. To
do so he takes into account the previous dice rolls and evaluate
the risk for the next ones.

Since the standard methods for nondeterministic games
cannot be used directly, we conceived original algorithms for
Pickomino presented in this paper. The first ones are based
on hard rules and not really satisfactory as their playing level
proved to be weak. We propose then an algorithm using a
Monte-Carlo method to evaluate probabilities of dice rolls and
the accessibility of resources. By using this tactical computing
in different ways the programs can play according to the
stage of the game (beginning or end). Finally, we present
experimental results comparing all the proposed algorithms.
Over 7’500’000 matches opposed the different AIs and the
winner of this contest turns out to be a strong opponent for
Human Players.

I. INTRODUCTION

Games represent an exciting challenge for Artificial Intel-

ligence. The ability of computers to confront human beings

in a convincing manner, or even to defeat them, fascinate

most people. Besides, games are a good framework to

test algorithms developed for more general problems. Thus

games are a good area to test out AI techniques and develop

new approaches.

Deterministic games (ie. games where the result of each

action is certain) have been substantially investigated. For in-

stance the best chess programs defeated the world champion

[1]. More recently checkers were totally solved [2]. On the

contrary, the playing level of the best Go programs remains

low, even if great progress has been made [3].

Unlike deterministic ones, nondeterministic games have

been less studied. In this kind of games the actions of a

player are affected by randomness. Dice games are good

examples of nondeterministic games. But dice games are

little studied in Artificial Intelligence. Their haphazard side

dissuades most people from really studying this kind of

games. However by taking randomness into account, some

strategies can be drawn to make strong artificial opponents.

Moreover despite randomness good human players often win

this kind of games against other human players. Backgam-

mon is an exception. It is the only nondeterministic game
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truly studied, with outstanding results [4]. The best programs

for backgammon are based on neural networks [5].

In this paper, we focus on a stop or roll dice game Heck-

meck am Bratwurmeck, (Pickomino in England and France).

This game was created by Reiner Knizia and is edited by

Zoch. "Heckmeck am Bratwurmeck" can be translated by the

"skewered roasted worms" but, in the sequel of this paper,

we will used the English name. The word "worms" comes

from the farm packaging used by the editor for this game

and the word "pickomino" is a blend of "to pick up" and

"domino" and refers to the equipment of the game. The main

principles and mechanisms of this game are very simple (it

can be played from 7) and are based on the stop or roll

principle, choice of dice and number decomposition.

It is a multi-player game based on dice rolling and

exploiting the results at best. More precisely the aim is to pile

up the most resources, represented by worms on tiles. Worms

represented on pickominos are collected with respect to the

score provided by a sequence of rolls. After each roll, under

conditions described in section 2, the player can stop and

takes worms. The player can also throw the dice again in the

hope of taking more worms, but at the risk of being blocked

and losing previously collected worms. The choice of dice

can change all the initial probabilities consequently the initial

decision will be modified too. To be efficient a program for

Pickomino should estimate the risk of rolling again and take

the appropriate decision. Unfortunately a priori probabilities

are extremely hard to be computed, the number of possible

states being exponential.

We propose in this paper different algorithms for a two-

player Pickomino. The first ones, based on hard rules, are

not really satisfactory and the playing level of such methods

turns out to be weak. We propose then an algorithm using a

Monte-Carlo method to evaluate probabilities of dice rolls,

thus the accessibility of resources. Monte-Carlo methods are

already used for bridge [7], [8] or Go [3], except that the

algorithm we propose deals with simulation-trees. By using

this tactical computing in different ways the programs can

play according to the stage of the game (beginning or end).

Finally, we present experimental results comparing all the

proposed algorithms. Over 7’500’000 matches opposed the

different AIs and the winner of this contest turns out to be

a strong opponent for Human Players.

First, Section 2 presents the detailed rules for Pickomino.

Then, Section 3 proposes different naive algorithms, based

on hard rules and on expected return. Section 4 introduces

a simulation-based algorithm that evaluate the risk in Pick-



omino and several programs based on this algorithm. Fi-

nally, Section 5 focuses on some improvements on programs

presented in the previous section. Experimental results are

provided in each section for all proposed algorithm. The final

Appendix sums up all the experimentations.

II. GAME RULES

Pickomino is a game for 2 to 7 players, aged from 8. The

goal of the game is to make high scores with dice to pick the

most worms. To make high scores one has to take chances

as the more one rolls the dice the higher the score is but

the more likely it is to lose one’s turn and some worms.

Detailed rules can also be found on Zoch’s website [9] or on

brettspielwelt [10].

The equipment consists of

• 16 tiles, called pickominos, numbered from 21 to 36 and

bearing from 1 to 4 worms, laying face upwards in the

center of the table;

Fig. 1. Some tiles

• 8 six-sided dice; the sides are numbered from 1 to 5,

the sixth side bearing a worm.

Fig. 2. Dice

Turn after turn each player builds a stack of tiles by trying,

when it is his turn, to pick a tile either in the center of the

table or on top of the stack of tiles of some other player. To

do so the player has to roll the dice several times in order

to get a high enough score.

A. A turn in progress

An ongoing turn can be broken down into three steps: first

the player rolls the dice, then if he did not reach a dead end

he chooses the dice he wants to keep (else he loses his turn),

last he decides either to stop or to roll again.

Fig. 3. The game in progress with 3 players

1) Rolling and choosing the dice: After rolling the avail-

able dice, the player puts aside all the dice of some value he

chooses among the values not chosen previously in the turn.

The put aside dice are no longer available for the current

turn.

Example 1: It is Alice’s turn, she throws the 8 dice and

gets:

She chooses the two 4-valued dice. Her score is 2 × 4 = 8.

Now she throws the 6 remaining dice and gets:

She cannot choose the 4-valued die as she already chose this

value. She chooses the 5-valued die. Her score is 2 × 4 +
1 × 5 = 13.

If all the current available values have already been chosen

the player reached a dead end and loses his turn.

Example 2: [continued] Alice kept 2 4-valued dice and

one 5-valued die. She throws the 5 remaining dice and gets:

She chooses the 2 2-valued dice and throws the 3 remaining

dice. She gets:

Alice cannot choose any value as she already chose both

2-valued dice and 5-valued dice.

One can notice that going on throwing the dice is increas-

ingly risky as the numbers of available values and of available

dice decrease.

2) Stop or go: When the player was able to choose some

dice, he must then decide either to stop and pick some tile

if possible or to roll again in the hope of being able to pick

a greater tile but risking reaching a dead end.

A player can pick a tile and put it on top of his stack if

first he kept at least one worm-bearing die and second his



score is either greater or equal to the number of some tile in

the center of the table or equal to the number of the top-stack

tile of another player. Note that a worm-bearing die is worth

5 points.

Example 3: It is Bob’s turn, he throws the 8 dice and

gets:

He chooses the 2 worm-bearing dice. His score is: 2 × 5 =

10. His score is not high enough so he throws the 6 remaining

dice and gets:

He chooses the 5-valued die. His score is: 2 × 5 + 5 = 15.

Bob throws the 5 remaining dice and gets:

He takes the 3 3-valued dice. Now his score is: 2 × 5 + 5

+ 3× 3 = 24.

Bob kept at least one worm-bearing die and his current score

is 24, so he can either stop (if some 24-or-less-valued tile is

available) or throw the dice again.

3) Failing turn: A player loses his turn in three cases :

first he could not choose any die after some dice rolling (all

the values having been chosen already), second he gathered

no worm through dice rolling, third his score is too low to

get an available tile.

Then the player has to give back his top-stack tile and the

greater available tile in the center of the table is returned face

downwards (making it unavailable for the rest of the game)

unless the player put back the current greater available tile.

The intent in making the greatest tile unavailable when a

tile is back in the center of the table is to lessen the risk of

looping.

B. End of the game

The game ends when no more tile is available in the center

of the table. The winner is the player having picked the most

worms. In case of a tie the winner is the player having the

highest-numbered tile.

III. SIMPLE AIS

In order to compare experimentally the different algo-

rithms provided in this paper, we present in this section

several naive artificial intelligences based on very simple

rules. However, these artificial intelligences have a good

behaviour at the beginning of the game and they regularly

defeat humans and more advanced programs. Moreover,

most evolved programs can be compared with these simple

programs and should beat them. As previously mentioned in

Introduction, we only consider account 2-player Pickomino

game.

A. Simple1AI and Simple2AI

Roughly speaking, a program playing Pickomino has to

take several decisions:

• What is the best dice-value to keep?

• Should I stop or roll ?

• Which pickomino should I take ?

The programs presented in this section take these decisions

with very simple hard rules. The first one, called Simple1AI

(S1), acts like a child when he learns to play the game.

1) Choice of dice: S1 takes worms first, then 5’s, then a

value at random.

2) Stop or Roll: S1 stops as soon as possible (when a

pickomino is accessible)

3) Choice of pickomino: in the stack of another player

first, else in the center of the table

The second one, named Simple1AI (S2), refines the choice

of dice of Simple1AI. It takes worms first, except if there are

more 5’s than worms. Last it takes the greatest value.

For instance, let us consider the following roll:

Simple1AI takes worms, while Simple2AI takes 5’s. If

worms and 5’s have already been chosen, Simple1AI takes

1’s, whereas Simple2AI takes 4’s.

B. Taking probabilities into account

In order to obtain more convincing results, the algo-

rithm Simple3AI computes the expected return for each

choice. To favour worms, we raise their value to 6.

Example 4: For instance, consider the following roll:

Intuitively, in order to make the greatest result as possible,

it is not a good idea to take the 1’s.

TABLE I

SIMPLE3AI IN ACTION

choice gain average of remain-
ing values

expected return

1 3 = 3× 1 4 23 = 3 + 4× 5

4 12 = 3× 4 3.4 29 = 12 + 3.4× 5

5 5 3.2 27.4 = 5 + 3.2× 7

6 6 3 27 = 6 + 3× 7

For each choice, the program computes the expected

return. In this case, it chooses the 4’s and it expects to obtain

29 in average.

Nevertheless Simple3AI has some limitations. For in-

stance, it does not check the validity of the sequence of

dice. Suppose that, at the beginning of the game, the program

obtains the following roll:



In this case, taking the 5’s, one has a probability of 1/12
(8%) only to get a worm afterwards, so to obtain a valid

sequence.

C. Experimental results

In order to compare these three first programs, they were

confronted in 20’000 matches. One algorithm is the first

player for the 10′000 first matches, then the algorithms

switch for the last 10′000 matches. The order of the players

change to avoid a possible bias. In fact, several matches

opposing different algorithm to themselves were played to

determinate the importance of the order of the players.

Experimental results (out of 30′000 matches) show that the

first player wins 50.6% of the matches.

Table II sum up the results. For instance the line corre-

sponding to S1 means that Simple1AI won 4094 times (out

of 20’000 matches) against Simple2AI and 3347 times (out

of 20’000 other matches) against Simple3AI.

TABLE II

MATCHES BETWEEN SIMPLE AIS

vs. S1 S2 S3

S1 - 4094 3347
S2 15906 - 9133
S3 16653 10867 -

As expected, Simple3AI is the best program. It beats the

two other programs (83% of victories against Simple1AI and

54% against Simple2AI).

IV. A SIMULATION-BASED ALGORITHM FOR

PROBABILITY ESTIMATION

The previous programs are unsatisfactory for different

reasons. First, they fail to reach high pickominos: Simple1

and Simple2 choose the greatest dice value even if it means

taking only one die, whereas Simple3 is too pessimistic.

Moreover, they do not take into account the accessible

pickominos.

A good program has to take the best decisions according

to dice rolls. Note that the decisions are not independent one

from the other so that an efficient program should adapt its

strategy for each dice roll, for each situation and for each

stage of the game.

A good Pickomino-playing program has to use a

simulation-based algorithm in order to evaluate risk. Such

a component is needed not only to choose beween stopping

and rolling, but also to choose the initial goals, to adjust these

goals and to determine the dice to be taken. Previous naive

algorithms are not able to adapt their goals. For instance, at

the end of the game, is it easier to aim for pickomino 21 on

the top of the stack of some opponent (that is, to obtain

exactly 21) or to aim for pickominos 31 and 32 on the

table? Hence, the objective depends on the first roll but also

on the accessible resources (pickominos on the table and

pickominos on the top of opponents’stacks).

The main problem, in this game, is that the a priori

probabilities are extremely hard to compute. They depends

especially on the decomposition of the values of pickominos,

on the number of rolls, on the order of choices. For example

the probability to obtain first the sequence , then

is different from obtaining first , then .

As the second roll is concerned, in the first case, one rolls

3 dice, whereas in the second one, one rolls 5 dice. Moreover,

the probabilities to obtain different values are entangled. For

instance, one can obtain 23 by the following sequence of

rolls: then and last . But after the second

roll, 22 was reached. Thus events are not independent and

are entangled.

A. A Simulation Algorithm

Algorithms based on Monte-Carlo simulations cannot take

into account this tangle property. Therefore we propose

an algorithm that produces trees of possibilities and not

consecutive dice rolls only. This algorithm fills a table that

can be used to make decision for dice choice. Algorithm 2

presents the algorithm used for simulation. It considers all the

possible dice choices and continue recursively the simulation.

The following example illustrates a single-tree simulation.

Algorithm 1: Initializing a table of risk

Risk and Fail are two global tables which contain the final
results
procedure Init()
begin

for i← 1 to 6 do
for j ← 21 to 37 do

Risk[i][j]← 0

Fail[i]← 0

end

Algorithm 2: Evaluating risk

procedure simul(DK , n)
Input: DK , the multiset of already-selected dice

n, the number of rolls

begin
if ∈ DK then

if Sum(DK) ∈ {21, 22, ..., 36} then
Risk[n][Sum(DK)]← Risk[Sum(DK)] + 1

else if Sum(DK) > 36 then
Risk[36]← Risk[37] + 1

D ← random(8−NbDice(DK)
D′ ← {d : d ∈ D and d 6∈ DK}
if D′ = ∅ then

Fail[nbTry]← Fail[n] + 1

else
foreach d ∈ D′ do

simul(DK ∪ {d}, A, n + 1)

end

Example 5: The current player took previously the fol-

lowing dice: . Figure 4 sums up a simulation from

this situation. The initial score is 7, the algorithm simulates

a dice roll, which is . Only two different dice can



be chosen: or . The algorithm explores both branches

by simulating dice rolls.

Underlined scores in the tree represents valid scores, i.e.

scores that are greater than 20 with at least one worm. Even

if it reaches a valid score, the simulation goes on evaluating

the risk or the gain for new rolls.

score: 7

Roll: 5 w 5 3 2

DK : 3 3 1

score: 12

Roll: w 5 4 5 1

DK : 3 3 1 w

score: 17

Roll: 3 w w

DK : 3 3 1 5 5

score: 9

Roll: 5 4 4 3

score: 22

Roll: 3 1

score: 16

Roll: 2 2 5

score: 27

Roll: 2
score: 14

Roll: 4 4 4

score: 17

Roll: 1 1

score: 20

Roll: 1

score: 21

Roll: 3 w

DK : 3 3 1 5 5DK : 3 3 1 w 5 5 DK : 3 3 1 w 4

DK : 3 3 1 w 4 2 2 DK : 3 3 1 w 4 5

DK : 3 3 1 2

DK : 3 3 1 2 5
DK : 3 3 1 2 4 4

w 2
5

5 4
w 5

4

2 5 2 4

score: 29

Roll: -

DK : 3 3 1 5 5

score: 26

Roll: -

DK : 3 3 1 2 5

4 4 4w w 2

w w

Fig. 4. Simulation of risk

When a sufficient number of simulations is realized, the

table of risk is filled. Table VII gives the evaluation of the

risk for the following initial roll (at the very beginning of

the game): .

TABLE III

3 RISK TABLES

Dice Roll # 21 22 23 24 25 26 27 28 29 30 . . .

1 5 0 0 0 0 3 0 0 0 0 . . .

2 89 12 10 10 6 28 2 3 1 0 . . .

3 123 142 166 162 137 25 33 37 42 23 . . .

4 613 458 384 167 89 241 139 114 29 12 . . .

5 0 141 159 148 314 35 72 63 37 51 . . .

6 0 0 0 0 0 0 0 0 0 0 . . .

1 0 0 0 0 193 0 0 0 0 59 . . .

2 0 0 0 0 0 146 158 135 161 0 . . .

3 0 0 0 0 0 0 0 123 122 253 . . .

4 0 0 0 0 0 0 0 0 0 0 . . .

5 0 0 0 0 0 0 0 0 0 0 . . .

6 0 0 0 0 0 0 0 0 0 0 . . .

1 92 0 75 16 97 0 16 0 0 15 . . .

2 370 462 268 274 134 175 93 131 92 9 . . .

3 176 178 379 460 406 329 326 192 97 213 . . .

4 0 0 0 0 175 209 203 248 287 0 . . .

5 0 0 0 0 0 0 0 0 0 150 . . .

6 0 0 0 0 0 0 0 0 0 0 . . .

It is the concatenation of 3 risk tables obtained after 500

simulations (for readability’s sake only values less than 30
were considered). The upper part of the table is the risk

part associated with the choice of dice 1, the middle one for

dice 5 and the lower one for worms. Dice 5 are clearly not

a good choice. On the contrary, the choice between 1 and

worms is more debatable and will be solved differently by

two algorithms presented further. Moreover, choice depends

on the goal: if the objective is to take pickomino 21, the

choice of 1 seems to be the best one, on the contrary, if one

wants to take a pickomino equal to 26 at least, worms are

more adequate. One remarks that risk tables have 6 lines,

because, according to the rules, the maximum number of

dice rolls is 6: if one rolls again, he cannot obtain a value

that was not previously kept.

B. MC Algorithm

Different algorithms can be developed in order to take

decision using a risk table. For instance algorithm 3 is

a generic algorithm in which the decisions depend on a

function evalRisk. This function returns a value representing

the risk of a choice (the greater is the value, the safer is the

choice), according to the set of accessible pickominos (on the

table or on the top of a stack of another player). In the first

program, called MC (for Monte-Carlo), evalRisk computes

the best sum of columns:

max
val∈A

6∑

i=0

Risk[i][val] (1)

where A denotes the set of accessible values of pickominos.

Algorithm 3: Making decision

function choice(DR,DK ,A,p)
Input: DR, the multiset of rolled dice

DK , the multiset of already-selected dice
A, the set of accessible pickominos
p, the number of simulations

begin
rmax ← +∞
val← 0
foreach (d, p) ∈ DR do

init()
for i← 1 to n do

simul(DK ∪ {(d, n)}, 1)
r ← evalRisk(Risk, A)
if r > rmin then

rmax ← r
val← d;

return val

end

Anytime a valid value (i.e. a sequence of rolls with at

least one worm kept and a score greater than 20) is reached,

the program increments the associated value in a risk table,

initialized by Algorithm 1. Several simulations are done and

from 100 to 1000 trees are developed so as to estimate the

risk for all possible decisions (another table of failures is

also filled but it is currently not really useful).

Using Table VII, the program takes die 1, because col-

umn 21 has the maximum score (812). This algorithm gets

pickominos as soon as possible and if it has to choose

between two pickominos, he takes first the one on the top

of an opponent’s stack. Experimental results show that this

elementary algorithm is better than any simple algorithm

presented in the previous section. Table IV sums up these

simulations. MC wins most of its 20′000 matches versus

Simple1 (85%), Simple2 (59%) and Simple3 (53%).

The algorithm MC launches 500 different simulations.

Now, the quality of this kind of algorithm depends on the

number of simulations. Moreover, the runtime is exponen-

tially affected by this number of simulations. The number of

500 iterations turns out to be an excellent compromise, as

it is shown in Table V. The gain from 100 to 500 iterations



TABLE IV

MC VS SIMPLE’S

vs. S1 S2 S3 MC

S1 - 4094 3347 2949
S2 15906 - 9133 8178
S3 16653 10867 - 9064
MC 17051 11822 10936 -

is over 2%, but the gain between 500 and 1000 iterations is

less than 0.4%.

TABLE V

ITERATIONS

vs. MC MC100It MC1000It

MC - 10345 9925
MC100It 9655 - 9626
MC1000It 10075 10374 -

C. Adding up Chances

The main problem of the algorithm MC is that it does

not add up chances: it only focuses on one possibility (the

best one for each table). Formula (1) can be modified to add

up chances, by changing the max operator into the sum
operator:

∑

val∈A

6∑

i=0

Risk[i][val] (2)

where A denotes the set of accessible values of pickominos.

Cumulating Algorithm (MCC) is based on this formula.

In that case, if one considers again Table VII at the very

beginning of the game, contrary to MC, that algorithm does

not choose die 1, but worms. Both algorithms were tested in

20’000 matches and MCC won only 10’097 times (50.5%).

V. IMPROVING ALGORITHMS

This section studies different methods to improve the al-

gorithms proposed in the previous section. More particularly,

this section focuses on:

• the choice of pickomino,

• taking more risk in dice rolling,

• a better management of the end of the game.

These methods were all experimentally evaluated. And the

program MC4C, that includes all these improvements, turns

out to be the best program and a strong opponent against

human players.

A. Which Pickomino to Take ?

One crucial moment in Pickomino is the choice of one

pickomino. Indeed, this choice can strongly change the

course of the game. There are at most two available pick-

ominos: the one on top of the opponent’s stack or a lesser

valued pickomino on the table. In the previous section, all the

algorithms take first the pickomino on the top of the oppo-

nent’s stack. This strategy has two advantages: increasing the

number of worms of the player while decreasing the number

of worms of the opponent. In a duel between MC and MC2

(a variant of MC that takes a pickomino on the table first)

MC wins 10’866 times on 20’000 matches (54%).

B. Taking More Risk

Should programs take more risk? This essential point

needs also to be evaluated. Actually, MC and MCC algo-

rithms stop as soon as possible, when a pickomino can be

taken. However, if one gets after the first roll,

the only danger with the next roll is to obtain 3 worms. The

probability of such an event is only 1/63, i.e. 0.4%. The

probability to improve the score is 99.6%. It is reasonable

to try another roll.

More formally, the simple probability to fail, i.e. to have

a roll with all the dice values already taken, is:

(|distinct(DK)|)8−|DK |

68−|Dk|
(3)

where DK denotes the multiset of already kept dice, |DK |
the cardinality of DK , distinct(DK) the set of distinct

elements in DK and |distinct(DK)| the cardinality of

distinct(DK).

Variations on MC were tested. These versions roll again

if the risk estimated by formula (3) is less than some limit.

Four thresholds were tried out: 5%, 10%, 25% and 50%.

Experimental results, described in Table VI and by Figure 5,

are quite surprising: taking too little or too big risk is not

efficient. A good compromise should be used.

TABLE VI

TAKING RISK

vs. MC MCPr5 MCPr10 MCPr25 MCPr50

MC - 15174 9667 10868 15233
MCPr5 4826 - 4496 4746 9990
MCPr10 10333 15504 - 11188 15440
MCPr25 9132 15254 8812 - 15118
MCPr50 4767 10010 4560 4882 -

Algorithm MC is beaten only by MCPr10 (MC with a

threshold of 10%) with a 48,335% of lost games. Algo-

rithms MCPr5 and MCPr50 are very close and inefficient.

The best compromise on these tests is 10%, but more precise

evaluation of the threshold should be made in the future.

Fig. 5. Taking more risk



C. End of the Game and Vicious Circles

Last, we concentrate on a particular stage of the game

(studied in all games): the end. The algorithm used in the

middle of a game is often ineffective at the end of the game.

Pickomino is not an exception.

1) What is a little pickomino: In Pickomino, we consider

that the end of the game begins when only 3 "little" pick-

ominos remain on the table. More than 50’000 simulations

were launched in order to determine what a little pickomino

is. Previously, dice were rolled once before starting the

simulations, here the simulations start from scratch. Figure 6

sums up these simulations. Values 21 to 25 gather 80.45%
of the valid rolls. In the sequel of the paper, we will consider

that little pickominos go from 21 to 26 and hard pickominos

go from 27 to 36.

Fig. 6. What is a little pickomino?

2) Breaking Vicious Circles: Vicious circles can appear

at the end of the game. Suppose that pickomino 21 is the

top-stack tile of current player Bob (the next one being

pickomino 22) and that pickomino 32 is the top-stack tile of

his opponent Alice. Three pickominos remain on the table:

33, 34, 35. In this case, Bob will most probably fail. Then he

gives back pickomino 21, which is much easier to take than

33, 34 or 35. In this case, if Alice obtains 22, she should

take 21 on the table and not 22 on Bob’s stack, else Bob

will most probably take 21 and Alice will enter a vicious

circle.

Two programs have been developed in order to take into

account vicious circles. These programs take more risk at

the end of the game when the number of the remaining little

pickominos is even. The first one, MC4, is based on MCPr10.

The second one, MC4C, which is based on MCC, takes risk

with a threshold of 10%. Table VII and Figure 7 sums up all

TABLE VII

TAKING RISK

vs. MC MC4 MCC MC4C

MC - 9562 9903 9487
MC4 10438 - 10376 9907
MCC 10097 9624 - 9508
MC4C 10513 10093 10492 -

the matches. Algorithms MC and MCC are added to have a

broader comparison. Algorithm MC4C proved to be the best

algorithm presented in this paper.

VI. CONCLUSION AND PERSPECTIVES

This article focuses on an original dice game, Pickomino.

We investigate several ways to make an efficient program

Fig. 7. Best programs

for this game. Some of them prove to be dead ends. On

the contrary the combination of complementary algorithms

(Monte-Carlo techniques, parsimonious risk taking, vicious

circles breaking) leads to a strong program: MC4C. It beats

all the other algorithms and it is the best winner (having

the most victories) against any algorithm, except for S1 and

MC2, where it is nearly the best (see table VIII). All the

algorithms were confronted in 20’000 matches for each duel

(see table VIII).

Some matches were organized against human players and

MC4C won most of them. We plan to develop the evaluation

against human players, for instance by the participation to a

league (e.g. on the brettspielwelt website [10]) or with a

match against the best European players (a first European

cup was organized by Zoch [11]).

Moreover some ways need to be explored. For instance,

the threshold of risk leading to the best result (10%) is

somewhat arbitrary and further simulations should help esti-

mating the finest threshold. Nondeterministic game trees [6]

could be used to improve the end of the game. Besides, the

proposed algorithms need to be generalized for more than

2 players, the difficult point being the management of the

end of the game. Finally, it would be interesting to adapt

the proposed algorithms to other advanced dice games, for

instance Yahtzee/Yams.
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APPENDIX

TABLE VIII

ALL THE 7’600’000 MATCHES

vs. S1 S2 S3 MC MC2 MC3 MC4 MCPr5 MCPr10 MCPr25 MCPr-

50

MC100It MC-

1000It

MCSF MC4Pr10 MC4-

Pr100

MCR2 MCR4 MCC MC4C

S1 - 4094 3347 2949 3302 4152 2777 10138 2845 4119 10267 3114 2903 17605 2713 3495 12182 2980 2910 2844

S2 15906 - 9133 8178 9148 10306 7978 14699 8013 9392 14608 8506 8287 19485 7993 8560 15625 8187 8292 7899

S3 16653 10867 - 9064 9833 11372 8827 15337 8883 10301 15405 9381 9099 19558 8888 9480 15980 9075 9062 8961

MC 17051 11822 10936 - 10866 12104 9562 15174 9667 10868 15233 10345 9925 19572 9690 10020 15477 9843 9903 9487

MC2 16698 10852 10167 9134 - 11380 8827 14660 9049 10089 14479 9509 9040 19445 8829 9399 14964 9214 9167 8853

MC3 15848 9694 8628 7896 8620 - 7549 14200 7577 8972 14325 8035 7785 19429 7607 8342 15052 7693 7833 7455

MC4 17223 12022 11173 10438 11173 12451 - 15820 10087 11220 15744 10675 10370 19648 10247 10682 16490 10238 10376 9907

MCPr5 9862 5301 4663 4826 5340 5800 4180 - 4496 4746 9990 4960 4729 16859 4479 5001 12760 4831 4594 4118

MCPr10 17155 11987 11117 10333 10951 12423 9913 15504 - 11188 15440 10435 10099 19616 9999 10244 15802 10022 10228 9734

MCPr25 15881 10608 9699 9132 9911 11028 8780 15254 8812 - 15118 9242 9088 19503 8809 9334 16297 9028 8956 8620

MCPr50 9733 5392 4595 4767 5521 5675 4256 10010 4560 4882 - 4907 4764 16887 4491 4969 12627 4826 4875 4241

MC100It 16886 11494 10619 9655 10491 11965 9325 15040 9565 10758 15093 - 9626 19484 9426 9822 15474 9659 9740 9276

MC1000It 17097 11713 10901 10075 10960 12215 9630 15271 9901 10912 15236 10374 - 19536 9670 10183 15504 9912 10052 9565

MCSF 2395 515 442 428 555 571 352 3141 384 497 3113 516 464 - 399 587 5559 446 438 293

MC4Pr10 17287 12007 11112 10310 11171 12393 9753 15521 10001 11191 15509 10574 10330 19601 - 10197 15862 10240 10220 9705

MC4Pr100 16505 11440 10520 9980 10601 11658 9318 14999 9756 10666 15031 10178 9817 19413 9803 - 15912 9780 9778 9326

MCR2 7818 4375 4020 4523 5036 4948 3510 7240 4198 3703 7373 4526 4496 14441 4138 4088 - 4366 4404 3435

MCR4 17020 11813 10925 10157 10786 12307 9762 15169 9978 10972 15174 10341 10088 19554 9760 10220 15634 - 9920 9583

MCC 17090 11708 10938 10097 10833 12167 9624 15406 9772 11044 15125 10260 9948 19562 9780 10222 15596 10080 - 9508

MC4C 17156 12101 11039 10513 11147 12545 10093 15882 10266 11380 15759 10724 10435 19707 10295 10674 16565 10417 10492 -

TABLE IX

SUMMARY OF ALL PROGRAMS

Algo. Hard rules Simulations Cumul Risk ? Threshold Break Cycles Misc.

S1 Y N N N - N -

S2 Y N N N - N -

S3 Y N N N - N -

MC N Y N N - N -

MC2 N Y N N - N takes first pickominos on table

MC3 N Y N N - N try to exploit Failure Table

MC4 N Y Y Y 10% Y -

MCPr5 N Y N Y 5% N -

MCPr10 N Y N Y 10% N -

MCPr25 N Y N Y 25% N -

MCPr50 N Y N Y 50% N -

MC100It N Y N N - N idem than MC with 100 iterations

MC1000It N Y N N - N idem than MC with 1000 iterations

MCSF N Y N N - N makes the sum of failures

MC4Pr10 N Y N Y 10% N

MC4Pr100 N Y N Y 100% N

MCR2 N Y N N - N rolls again if 4 dice left

MCR4 N Y N N - N rolls again if 2 dice left

MCC N Y Y N N N -

MC4C N Y Y Y 10% Y -

Fig. 8. All Results in one graph


