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Abstract

In imbalanced multi-class classification problems, the misclassification rate as an error measure

may not be a relevant choice. Several methods have been developed where the performance measure

retained richer information than the mere misclassification rate: misclassification costs, ROC-based

information, etc. Following this idea of dealing with alternate measures of performance, we propose

to address imbalanced classification problems by using a new measure to be optimized: the norm of

the confusion matrix.

Indeed, recent results show that using the norm of the confusion matrix as an error measure can be

quite interesting due to the fine-grain informations contained in the matrix, especially in the case of

imbalanced classes. Our first contribution then consists in showing that optimizing criterion based on

the confusion matrix gives rise to a common background for cost-sensitive methods aimed at dealing

with imbalanced classes learning problems. As our second contribution, we propose an extension of

a recent multi-class boosting method — namely AdaBoost.MM — to the imbalanced class problem,

by greedily minimizing the empirical norm of the confusion matrix. A theoretical analysis of the

properties of the proposed method is presented, while experimental results illustrate the behavior of

the algorithm and show the relevancy of the approach compared to other methods.

Keywords: Multi-class Learning, Classification, Imbalanced Learning, Boosting, Confusion Matrix

1 Introdution

In multi-class classification, learning from imbalanced data concerns theory and algorithms that process a
relevant learning task whenever data is not uniformly distributed among classes. When facing imbalanced
classes, the classification accuracy is not a fair measure to be optimized (Fawcett, 2006). Accuracy may be
artificially quite high in case of extremely imbalanced data: majority classes are favored, while minority
classes are not recognized. Prediction is biased toward the classes with the highest priors. Such a bias
gets stronger within the multi-class setting.

In the binary setting, learning from imbalanced data has been well-studied over the past years, leading
to many algorithms and theoretical results (He & Garcia, 2009). It is mostly achieved by either resampling
methods for rebalancing the data (e.g. Estabrooks et al. (2004)), and/or by using cost-sensitive methods
(e.g. Ting (2000)), or with additional assumptions (e.g. active learning within kernel-based methods
Bordes et al. (2005)).

However, learning from imbalanced data within a multi-class or multi-label setting is still an open
research problem, which is sometimes adressed through the study of some specific measures of interest.
Most of the time, generalizing the binary setting to the multi-class setting is based on the one-vs-all (or one-
vs-one) usual trade-off (Abe, 2004). Recently, Zhou & Liu (2010) proposed a well-founded general rescaling
approach of multi-class cost-sensitive learning, that pointed out the need of separating misclassification
costs from class imbalance rates during the learning algorithm.

It is worth noticing that specific learning tasks other than classification have been addressed through
the optimization of relevant measures within the multi-class imbalanced setting (Chapelle & Chang., 2011;
Yue et al., 2007; Wang et al., 2012; Tang et al., 2011). Although related to accuracy, these measures are
intended to better model what one would expect to be a a relevant performance measure in such a setting.
Meanwhile, the correlations between these alternative measures and accuracy have been partly studied
(Cortes & Mohri, 2004) without any theoretical result so far (He & Garcia, 2009).
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Cost-sensitive methods are usually based on a cost matrix which embeds misclassification costs car-
rying various meanings. These methods weight the error measure according to class-based costs of each
misclassification, computed from the confusion matrix results (Elkan, 2001). Indeed, the confusion matrix
is one of the most informative performance measures a multi-class learning system can rely on. Among
other information, it contains how much the classifier is accurate on one class, and the way it tends to
mistake each class for other ones (confusion among classes).

In the binary classification setting, cost-sensitive approaches provide algorithms that somehow optimize
a metric computed from the raw confusion matrix where the entries of a row sum up to the number of
examples of the class corresponding to the row. Basically, a raw confusion matrix is a square matrix that
represents the count of a classifier’s class predictions with respect to the actual outcome on some labeled
learning set. Computed from the raw matrix, the probabilistic confusion matrix (section 3) exhibits an
interesting property: the entries of a row sum up to 1, independently from the actual number of examples
of the class corresponding to the row. With such property, the confusion matrix constitutes a great
equalizer tool that can be used to overcome the class-imbalance problem. Moreover, if one only considers
the non-diagonal elements in the matrix, then summing over a row gets quite informing about how the
corresponding class is correctly handled by the predictor at hand. This paper explores one way to capitalize
on this property: we advocate that directly minimizing the norm of the confusion matrix is helpful for
smoothing the accuracy among imbalanced classes, thus giving more importance to minority classes.

Based on recent works on the confusion matrix (Morvant et al., 2012; Ralaivola, 2012) and helped
by a multi-class classification theoretical setting (Mukherjee & Schapire, 2011), the aim of this paper
is to sketch up a computationally and theoretically consistent classification algorithm dubbed CoMBo
(section 4) that is ensured to minimize the norm of the confusion matrix; while also minimizing the
classification error as proven in section 3. Based on Adaboost, this algorithm greedily processes a sort-
of regularization on imbalanced classes, in such a way that poorly represented classes are performed as
well as majority classes within the overall learning process, independently from any prior misclassification
cost. Section 5 summarizes the experimental performances of this algorithm, compared to Adaboost.MM
(Mukherjee & Schapire, 2011) and other boosting-based related approaches. Sections 6 and 7 propose a
discussion on the contributions of this paper and the future works.

2 General framework and notation

2.1 General notation

Matrices are denoted with bold capital letters like C, while vectors are denoted by bold small letters like
x. The entry of the l-th row and the j-th column of C is denoted C(l, j), or simply cl,j . λmax(C) and
Tr(C) respectively correspond to the largest eigenvalue and the trace of C. The spectral or operator norm
‖C‖ of C is defined as:

‖C‖ def
= max

v 6=0

‖Cv‖2
‖v‖2

def
=

√

λmax(C∗C),

where ‖ · ‖2 is the Euclidian norm and C∗ is the conjugate transpose of C. Let A and B be two matrices,
then AB and A ·B respectively refer to the inner product and the Frobenius inner product of A and B.

The indicator function is denoted by I; K is the number of classes, m the number of examples and
my is the number of examples of class y, where y ∈ {1, ...,K}. (xi, yi),xi or simply i are interchangeably
used to denote the ith training example.

2.2 Multi-class boosting framework

In this paper we use the boosting framework for multi-class classification introduced in Mukherjee & Schapire
(2011), and more precisely the one defined for AdaBoost.MM. Algorithms based on the AdaBoost family
maintain a distribution over the training samples in order to identify hard-to-classify examples: the greater
the weight of an example, the greater the effort devoted to classify these data correctly. In the considered
setting, the distribution over the training examples is replaced by a cost matrix. Let S = {(xi, y,i )}mi=1 be
a training sample, where xi ∈ X and yi ∈ {1, ...,K}. The cost matrix D ∈ R

m×K is constructed so that
for a given example (xi, yi), ∀l 6= yi: D(i, yi) ≤ D(i, l), where i is the row of D corresponding to (xi, yi).

This cost matrix is a particular case of cost matrices used in cost sensitive methods (for example,
Sun et al. (2006)), where classification costs are given for each example and each class. However, contrary
to those methods, the matrix is not given prior to the learning process, but it is updated after each
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iteration of AdaBoost.MM so that the misclassification cost reflects the difficulty of correctly classifying
an example. That is, the costs are increased for examples that are hard to classify, and they are decreased
for easier ones.

In the case of AdaBoost.MM, the cost matrix D at iteration T , is defined as follows:

DT (i, l)
def
=











exp(fT (i, l)− fT (i, yi)) if l 6= yi

− ∑

j 6=yi

exp(fT (i, j)− fT (i, yi)) otherwise,

where fT (i, l) is the score function computed as: fT (i, l) =
∑T

t=1 αtI(ht(i) = l).
At each iteration t, AdaBoost.MM selects the classifier h and its weight α that minimize the exponential

loss:

ht, αt = argmin
h,α

m
∑

i=1

∑

j 6=yi

eft(i,j)−ft(i,yi), where ft(i, j) =

t−1
∑

s=1

αsI(hs(i) = j) + αI(h(i) = j).

Finally, the output hypothesis of AdaBoost.MM is a simple majority vote:

H(x) = argmax
l=1...K

fT (i, l).

3 Boosting the confusion matrix

3.1 The confusion matrix as an error measure

When building predictors, most Empirical Risk Minimization based methods optimize loss functions de-
fined over a training sample and depending on the number of misclassified data. This reveals to be a poor
strategy when tackling problems with class-imbalance, since minimizing the estimated error may result in
overfitting the majority classes.

A common tool used for estimating the goodness of a classifier in the imbalanced classes scenario is the
confusion matrix. We give here the probabilistic definitions of the true confusion matrix and the empirical
confusion matrix.

Definition 1 (True and empirical confusion matrices). The true confusion matrix A = (al,j) ∈ R
K×K of

a classifier h : X ↔ {1, . . . ,K} over a distribution D is defined as follows:

∀l, j ∈ {1, ...,K}, al,j
def
= Ex|y=lI

(

h(x) = j
)

= P(x,y)∼D(h(x) = j|y = l).

For a given classifier h and a sample S = {(xi, yi)}mi=1 ∼ D, the empirical confusion matrix AS = (âl,j) ∈
R

K×K of h is defined as :

∀l, j ∈ {1, ...,K}, âl,j
def
=

m
∑

i=1

1

ml
I(h(xi) = j)I(yi = l).

An interesting property of these matrices is that the entries of a row sum up to 1, independently from
the number of examples contained in the corresponding class. Moreover, the diagonal entries represent
the capability of the classifier h to recognize the different classes, while the non-diagonal entries represent
the mistakes of the classifier.

In this paper, and in the following sections, we propose a framework which makes use of the confusion
matrix as an error measure in order to learn predictors for the imbalanced classes setting. As such, we need
to redefine the confusion matrices, so that only the mistakes of the classifier are taken into consideration.
This is done by keeping the non-diagonal entries and zeroing the diagonal ones:

Definition 2 (Error-focused true and empirical confusion matrices). For a given classifier h, we define
the empirical and true confusion matrices of h by respectively CS = (ĉl,j)1≤l,j≤K and C= (cl,j)1≤l,j≤K

such that for all (l, j):

ĉl,j
def
=

{

0 if l = j
âl,j otherwise,

cl,j
def
=

{

0 if l = j
al,j otherwise.

(1)
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Let p = [P (y = 1), ..., P (y = K)] be the vector of class priors distribution, then we have:

R(h)
def
= P(x,y)∼D(h(x) 6= y) = ‖pC‖1, (2)

where ‖ · ‖1 is the l1-norm. This result means that it is possible to retrieve the true error rate of h from
its confusion matrix. Using this result and the equivalence between norms in finite dimensions, we obtain
equation (3) between the operator norm and the true risk:

R(h) ≤
√
K‖C‖ (3)

Equations (2) and (3) together imply that minimizing the norm of the confusion matrix can be a good
strategy for dealing with imbalanced classes, while at the same time it would ensure a small risk. Our
aim is thus to find a classifier ĥ that verifies the following criterion:

ĥ = argmin
h∈H

‖C‖ (4)

3.2 Bounding the confusion matrix

The result given in equation (4) minimizes the operator norm of the true confusion matrix, but it is
difficult to use in a practical case, since the underlying distribution D is unknown. A popular way to
overcome this difficulty is to use the empirical estimation of the confusion matrix. Theorem 1 in Ralaivola
(2012) gives the relation between the true and the estimated norm of the confusion matrix. 1 We recall
here a particular formulation of this theorem applied to the supervised setting, where the considered loss
is the indicator function I.

Corollary 1. For any δ ∈ (0; 1], it holds with probability 1− δ over a sample S(x,y)∼D that:

‖C‖ ≤ ‖CS‖+

√

√

√

√2K

K
∑

k=1

1

mk
log

K

δ
,

where CS is the empirical confusion matrix computed for a classifier h over S.

The corollary suggests that our goal may boil down to minimizing the empirical norm of the confu-
sion matrix, which is fairly similar to other optimization problems, where empirical error measures are
considered. Unfortunately, due to the nature of the considered confusion matrix, finding an analytical
expression for the norm reveals to be quite challenging. This is why we propose to optimize an upper
bound of ‖CS‖2 instead.

‖CS‖2 = λmax(C
∗
SCS) ≤ Tr(C∗

SCS) (5)

The matrix C∗
SCS is positive semi-definite, meaning that all its eigenvalues are positive. Thus we

choose to upper-bound the norm of the confusion matrix by the trace of C∗
SCS as in equation (5). We

can now focus on the value of Tr(C∗
SCS).

Tr(C∗
SCS) =

K
∑

l=1

C∗
SCS(l, l) ≤

K
∑

l=1

∑

j 6=l

ĉl,j =

K
∑

l=1

∑

j 6=l

1

ml

m
∑

i=1

I(yi = l)I(H(i) = j) (6)

Most of the previous equalities are simple rewritings of the involved terms, while the inequality comes
from the fact that the entries of the confusion matrix CS are at most 1. We now have an upper bound
on the norm that depends only on the entries of the confusion matrix (equation (6)).

The drawback of this bound is the presence of the indicator function, which is not optimization friendly.
One way to handle this difficulty is to replace the indicator function with loss functions defined over the
two classes of indices l and j in the bound.

For a given classifier h and a sample S, let ℓl,j(h,x) be the loss of h choosing class j instead of class
l for the example x, such that ∀(x, y) ∈ S, 1 ≤ l, j ≤ K and 0 ≤ I(h(x) 6= y) ≤ ℓl,j(h,x). The bound on
the confusion matrix can be now expressed using loss functions:

Tr(C∗
SCS) ≤

K
∑

l=1

∑

j 6=l

1

ml

m
∑

i=1

I(yi = l)ℓl,j(h,xi) =

m
∑

i=1

∑

j 6=yi

1

myi

ℓyi,j(h,xi). (7)

1In the original paper, the theorem is applied to the online setting, but it holds also for the batch setting.
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The resulting bound is a sum over two penalization terms for all the learning examples: the first term
is 1

myi

and the second one represents the newly introduced loss function. The first term is often used in the

imbalanced classes problems in order to simulate the resampling effect over the training sample. Indeed,
by multiplying the weight of an example with the inverse of the number of examples having the same
class, the distribution over the classes becomes more uniform, thus promoting all the classes the same
way. Resampling over the examples achieves the same effect, since it aims to retain the same number of
examples for each class.

The second term is common in the imbalanced classes setting, where cost-sensitive methods — either
per-class based or per-couple of classes based — have been developed. In these methods this term depends
on some misclassification cost computed, or simply given, prior to the learning phase.

Based on these observations, it follows that the last term of the bound given in equation 7 is quite
similar to usual terms in optimization problems for the imbalanced classes setting. As such it can be seen
as a common base for most imbalanced classes learning problems, since it encompasses both resampling
and penalization, as advocated in Zhou & Liu (2010). Motivated by these results, and as an intermediate
conclusion, we strongly think that minimizing the operator norm of the confusion matrix defined as in
equation 1, yields a good strategy for the imbalanced classes problem.

3.3 Towards a boosting method

Let H be an ensemble of classifiers and S = {(xi, yi)}mi=1 a learning sample. Our goal is to find a classifier

Ĥ which can be written as a weighted combination of all the classifiers of H and at the same time, which
minimizes the norm of the confusion matrix. That is:

Ĥ = argmin
H∈H

‖CS‖2, (8)

where H(·) = argmaxl∈{1,··· ,K}

∑

h∈H αhI(h(·) = l), and αh ≥ 0, ∀h.
In order to make use of the bound given in equation (7), we need to choose loss functions adapted to

our problem. We start off by defining score functions for each example i and each class l as follows:

fH(i, l) =
∑

h∈H

αhI(h(xi) = l), ∀i ∈ {1, · · · ,m}, l ∈ {1, · · · ,K}. (9)

These simple functions measure the importance that the classifier H gives to class l for example i.
Since the prediction rule is based on the argmax (eq. (8)), H returns the class with the highest score. If
H correctly classifies an example, then the score given to its true class is higher than the score given to
any of the other classes. Hence, let the loss functions be the difference between the score given to a class
and the one given to the true class:

ℓyi,j(H,xi) = fH(i, j)− fH(i, yi), ∀j 6= yi. (10)

If an example is correctly classified then the loss is negative, while if it is misclassified, then the loss is
positive for at least one of the classes. This observation reveals to be the main downside of these losses,
since it implies that the requirements for the bound in equation (7) might not be met. This is why we
propose to consider the exponential losses instead, and to rewrite our goal (8) as:

Ĥ = argmin
H∈H

m
∑

i=1

∑

j 6=yi

1

myi

exp
(

fH(i, j)− fH(i, yi)
)

. (11)

Finding the optimal solution for the last equation can be quite challenging, since it depends on the
size of H and the weights. A popular approach when dealing with ensembles of classifiers is to use an
iterative greedy method based on the boosting framework. The goal of such methods is to consider, at each
iteration, the best classifier h ∈ H — and its weight α — that minimizes the loss. The main advantage
of boosting methods resides in the fact that the selected classifier h, and generally all the classifiers in H,
only need to perform slightly better than random guessing, a notion that is formalized later on. They are
also known as weak classifiers.

Suppose that at iteration t, the classifiers h1, . . . , ht ∈ H have been chosen in order to minimize the
loss of Ht(·) = argmaxl∈{1,··· ,K}

∑

s=1···t αsI(hs(·) = l). In the following iteration, the chosen classifier
would be the one verifying:

ht+1, αt+1 = argmin
h∈H,α

m
∑

i=1

∑

j 6=yi

1

myi

exp
(

ft+1(i, j)− ft+1(i, yi)
)

, (12)
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where ft+1(i, j) =
∑

s=1···t αsI(hs(xi) = j) + αI(h(xi) = j).
This last optimization problem is quite similar to the one defined for AdaBoost.MM byMukherjee & Schapire

(2011). As such, the method proposed in this paper is an extension of AdaBoost.MM to the imbalanced
classes setting.

In order to take advantage of the boosting framework recalled in section 2, we need to define a cost
matrix D so that ∀i, and ∀l 6= yi,D(i, l) ≤ D(i, yi). Due to the similarity of our minimization problem
(12) and AdaBoost.MM’s, the most straightforward choice for D is the following :

Dt(i, l)
def
=











1
myi

exp(ft(i, l)− ft(i, yi)) if l 6= yi

− ∑

j 6=yi

1
myi

exp(ft(i, j)− ft(i, yi)) otherwise.
(13)

4 Algorithm and theoretical properties

In the previous section, we showed why it is interesting to consider a boosting-based method for minimizing
the norm of the empirical confusion matrix. This section introduces CoMBo, the actual algorithm that
performs this minimization, where the loss decreases at each step of the algorithm.

4.1 The Confusion Matrix Boosting Algorithm

The pseudo-code of the proposed method named CoMBo is given in Algorithm 1. The inputs : a
training sample S, the total number of iterations T and a weak learner W . During the initialization step,
the score functions f are set to zero and the cost matrix D is initialized accordingly.

The training phase consists of two steps: the weak learner W is used in order to build the weak
classifiers, and the predictions of ht are used to update the cost matrix Dt. At each round t, W takes as

Algorithm 1 CoMBo : Confusion Matrix BOosting

Given

• S = {(x1, y1), ..., (xm, ym)} where xi ∈ X , yi ∈ {1, · · · ,K}

• T the number of iterations, W a weak learner

• ∀i ∈ {1, . . . ,m}, ∀l ∈ {1, . . . ,K} f1(i, l) = 0

• D1(i, l) =

{

1
myi

if yi 6= l
−(K−1)

myi

if yi = l

for t = 1 to T do

Use W to learn ht with edge δt on Dt, and αt =
1
2 ln

1+δt
1−δt

where :

δt =
−
∑m

i=1 Dt(i, ht(xi))
∑m

i=1

∑

l 6=yi
Dt(i, l)

Update D :

Dt+1(i, l) =











1
myi

exp(ft+1(i, l)− ft+1(i, yi)) if l 6= yi

− 1
myi

k
∑

j 6=yi

exp(ft+1(i, j)− ft+1(i, yi)) if l = yi

where ft+1(i, l) =
t
∑

z=1
I[hz(i) = l]αz

end for

Output final hypothesis :

H(x) = argmax
l∈1,...,k

fT (x, l), where fT (x, l) =

T
∑

t=1

I[ht(x) = l]αt
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input the cost matrix Dt and returns a weak classifier ht. The cost matrix is then used to compute the
weight αt for ht, which can be seen as the importance given to ht. αt depends on the edge δt obtained by
ht over the cost matrix Dt. For boosting methods based on AdaBoost, the edge measures the difference
of performances of the classifier and of random guessing (Mukherjee & Schapire, 2011). The underlying
idea is that the better ht performs over Dt, the greater the edge δt and αt.

The update rule for the cost matrix is designed so that the misclassification cost is increased for the
examples that are misclassified by ht, while it is decreased for the correctly classified ones. This forces
the weak learner W to focus on the most difficult examples. Then, using the term 1/myi

in the update
rule, allows the misclassification cost of an example to depend not only on the ability to correctly classify
a hard example, as in AdaBoost.MM, but also on the number of examples of S having the same class yi.

The output hypothesis is a simple weighted majority vote over the whole set of weak classifiers. So,
for a given example, the final prediction is the class that obtains the highest score.

4.2 Bounding the loss

Let us recall the minimal weak learning condition as given by Mukherjee & Schapire (2011).

Definition 3. Let Deor be the space of all cost matrices D that put the least cost on the correct label, that
is ∀(xi, yi), l,D(i, yi) ≤ D(i, l). Let Beor

γ be the space of baselines B which are γ more likely to predict
the correct label for every example (xi, yi), i.e. ∀l 6= yi,B(i, yi) ≥ B(i, l) + γ. Then, the minimal weak
learning condition is given by:

∀D ∈ Deor, ∃h ∈ H : D · 1h ≤ max
B∈Beor

D ·B, (14)

where H is a classifier space, and 1h is the matrix defined as 1h(i, l) = I[h(i) = l].

In the rest of this paper, we consider baselines that are close to uniform random guessing. Noted Uγ ,
these baselines have weights (1 − γ)/k on incorrect labels and (1 − γ)/k + γ on correct ones. The weak
learning condition is given by :

D · 1h ≤ D ·Uγ (15)

All of the weak classifiers returned by W during the training phase are assumed to verify that weak learner
condition.

Lemma 1 shows that the general loss decreases with each iteration, provided that the weak classifier
ht satisfies the weak learning condition (15). This result and its proof are similar to the ones given for
AdaBoost.MM.

Lemma 1. Suppose the cost matrix Dt is chosen as in the algorithm 1, and the returned classifier ht

satisfies the edge condition for the baseline Uδt and cost matrix Dt, i.e. Dt · 1ht
≤ Dt ·Uδt .

Then choosing a weight αt > 0 for ht makes the loss at round t at most a factor

1− 1

2
(eαt − e−αt)δt +

1

2

(

eαt + e−αt − 2)

of the loss before choosing αt, where δt is the edge of ht.

Proof. For readability reasons, let us note Lt and Lt(i) the following losses:

Lt =
m
∑

i=1

Lt(i), where Lt(i) =
∑

l 6=yi

1

myi

exp(ft(i, l)− ft(i, yi))

The weak classifier ht returned by W satisfies the edge condition, that is:

Dt · 1ht
≤ Dt ·Uδt , (16)

with δt being the edge of ht on Dt.
Denote S+ (resp. S−) the set of examples of S correctly classified (resp. misclassified) by ht. Using

the definitions of Dt, 1ht
and Uδt , the classification costs of ht and Uδt are given by:

Dt · 1ht
= − ∑

i∈S+

Lt−1(i) +
∑

i∈S
−

1
myi

exp (ft−1(i, ht(i))− ft−1(i, yi)) = −At
+ +At

−

Dt ·Uδt = −δt
∑m

i=1 Lt−1(i) = −δtLt−1
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Inserting these two costs in (16), we have :

At
+ −At

− ≥ δtLt−1. (17)

Taking a closer look at the drop of the loss after choosing ht and αt, we have:

Lt−1 − Lt =
∑

i∈S+

Lt−1(i)(1− e−αt) +
∑

i∈S
−

1
myi

exp(∆ft−1(i, ht, yi))(1− eαt)

= (1− e−αt)At
+ − (eαt − 1)At

−

=
(

eαt−e−αt

2

)

(At
+ −At

−)−
(

eαt+e−αt−2
2

)

(At
+ +At

−)

where ∆ft−1(i, ht, yi)) = ft−1(i, ht(i))− ft−1(i, yi).
The result in (17) gives a lower bound for At

+−At
−, while A

t
++At

− is upper-bounded by Lt−1. Hence,

Lt−1 − Lt =
∑

i∈S+

Lt−1(i)(1− e−αt) ≥ (
eαt − e−αt

2
)δtLt−1 − (

eαt + e−αt − 2

2
)Lt−1.

Therefore, the result of the lemma:

Lt ≤
(

1− eαt−e−αt

2 δt +
eαt+e−αt−2

2

)

Lt−1 =
(

((1−δt)
2 eαt + (1+δt)

2 e−αt)
)

Lt−1. (18)

The expression of the loss drop given in Lemma 1 can be further simplified. Indeed, if we choose the
value of αt as given in the pseudo-code of Algorithm 1, then the loss drop is simply equal to

√

1− δ2t .

Since the value of δ2t is always positive,
√

1− δ2t is smaller than 1, thus the loss Lt is always smaller than
Lt−1. The following theorem summarizes this result.

Theorem 1. Let δ1, · · · , δT be the edges of the classifiers h1, · · · , hT returned by W at each round of the

learning phase. Then the error after T rounds is K(K−1)
∏T

t=1

√

1− δ2t ≤ K(K−1) exp
{

−(1/2)
∑T

t=1 δ
2
t

}

.

Moreover, if there exists a γ so that ∀t, δt ≥ γ, then the error after T rounds is exponentially small,
K(K − 1)e−Tγ2/2.

5 Experimental results

5.1 Datasets and experimental setup

In order to compare CoMBo with other approaches, it was run on 9 imbalanced multi-class classification
datasets. They are all from the UCI Machine Learning Repository (Frank & Asuncion, 2010). They
exhibit various degrees of imbalance, as well as various numbers of instances and attributes. Table 1
summarizes information about these datasets.

Dataset # classes # examples distribution of classes Imb. ratio
New-Thyroid 3 215 150/35/30 5.00

Balance 3 625 49/288/288 5.88
Car 4 1728 1210/384/69/65 18.62

Connect 3 67557 44473/6449/16635 6.90
Nursery-s 4 12958 4320/328/4266/4044 13.17
Glass 6 214 70/76/17/13/9/29 8.44
E.coli 5 327 143/77/52/35/20 7.15
Yeast 10 1484 463/429/244/163/51/44/35/30/20/5 92.60

Satimage 6 6435 1533/703/1358/626/707/1508 2.45

Table 1: Class distributions of considered UCI datasets (the last column reports the ratio between the #
of instances of the majority class and the # of instances of the minority class (imbalance ratio).)

For each dataset, we performed 10 runs of 5-fold cross-validation of CoMBo and Adaboost.MM with
a low-size decision tree as a base learner (W) and T = 200, and we averaged the results. Two kinds
of results are reported: advanced accuracy performances are first compiled (MAUC, Gmean), then the
behavior of CoMBo is compared to AdaBoost.MM with a deeper insight on the norm of the confusion
matrix.
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G-mean CoMBo AdaBoost.NC SmoteBoost
Car 0.967± 0.023 0.924± 0.024 0.944± 0.031
Balance 0.675± 0.088 0.321± 0.173 0.000± 0.000
New-Thyroid 0.914± 0.081 0.927± 0.056 0.940± 0.057
Nursery-s 1.000± 0.001 0.967± 0.006 0.996± 0.003
Ecoli 0.784± 0.066 0.790± 0.062 0.803± 0.059
Glass 0.431± 0.0.375 0.578± 0.249 0.561± 0.343
Satimage †0.825± 0.012 0.881± 0.009 0.898± 0.010
Yeast 0.107± 0.216 0.237± 0.270 0.140± 0.240

MAUC CoMBo AdaBoost.NC SmoteBoost
Car 0.993± 0.003 0.982± 0.005 0.997± 0.000
Balance 0.884± 0.032 0.704± 0.037 0.703± 0.027
New-Thyroid 0.996± 0.010 0.983± 0.013 0.988± 0.003
Nursery-s 1.000± 0.000 0.998± 0.000 0.999± 0.000
Ecoli 0.961± 0.015 0.957± 0.002 0.963± 0.004
Glass 0.947± 0.027 0.881± 0.009 0.925± 0.009
Satimage †0.976± 0.003 0.990± 0.000 0.992± 0.000
Yeast 0.861± 0.025 0.857± 0.004 0.847± 0.003

Table 2: Comparison with algorithms addressing classification within imbalanced datasets. Means and
standard deviations are given over 10 runs of 5-fold cross-validations. Except for CoMBo, the results are
the best retrieved from Wang & Yao (2012), which analysed four algorithms. Results in boldface indicate
a significantly best measure of the algorithm over all the others, according to the sudent T-test with a
confidence of 95%; the † attached to the result on Satimage indicates that CoMBo is significantly worse
than all other reported methods.

5.2 Performance results

Usual performance measures of multi-class classification include MAUC (an extension of the AUC to
multi-class problems, (Hand & Till, 2001)), and G-mean (the geometric mean of recall values over all
classes (Sun et al., 2006)).

Table 2 reports these measures for CoMBo, as well as results from two boosting-based algorithms rely-
ing on resampling: AdaBoost.NC with oversampling (Wang & Yao, 2012), and SmoteBoost (Chawla et al.,
2003). These algorithms were chosen for comparison because they showed the best results on the consid-
ered datasets (Wang & Yao, 2012).

Looking at results in Table 2, CoMBo is quite promising w.r.t. current literature, without any tuning
nor trying to optimize the reported measures. Only the best results of AdaBoost.NC and SmoteBoost
from Wang & Yao (2012) are reported. Except for the dataset Satimage (the less imbalanced dataset),
CoMBo challenges the other boosting-based approaches. The advantage of preferring CoMBo over the
reported methods seems to be related to the imbalance ratio: the higher this ratio is, the more CoMBo
makes the difference, which is consistent with the aim of CoMBo. It is worth noticing that CoMBo does
not need any prior initialisation of the misclassification cost matrix: it computes and adjusts the cost
matrix along the learning stages, based on the confusion matrix norm computed at each step. In other
words, CoMBo gets these good results without any other parameters than the weak algorithm (actually a
2 to 3-depth decision tree), and the number T of rounds.

5.3 Improvements from Adaboost.MM

One may think that the good results of CoMBo are partly due to the fact that it is based on the theory
underlying Adaboost.MM. Therefore, it is worth exploring the way CoMBo differs from Adaboost.MM in
the processing of imbalanced datasets through the norm of the confusion matrix. Results are presented
Table 3: the confusion matrix norms are reported, together with the accuracies, the MAUC and the
G-mean.

These results confirm the good results of CoMBo on imbalanced datasets as evidenced by the low
values of the norms. They illustrate the impact of minimizing the norm of the confusion matrix. Let us
note that the accuracy with CoMBO tends to be a bit worse than the one of Adaboost.MM. Meanwhile,
as expected, the norm of the confusion matrix is always smaller with CoMBo. The performances of the
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dataset CoMBo AdaMM CoMBo AdaMM
‖C‖ ‖C‖ accuracy accuracy

Balance 0.460± 0.097 0.559± 0.112 0.856± 0.039 0.875± 0.032
Car 0.082± 0.064 0.116± 0.080 0.974± 0.009 0.977± 0.012
Connect 0.308± 0.015 0.670± 0.040 0.728± 0.015 0.805± 0.009
New-Thyroid 0.194± 0.158 0.186± 0.157 0.949± 0.033 0.952± 0.033
Nursery-s 0.002± 0.004 0.003± 0.006 1.000± 0.000 1.000± 0.001
Yeast 0.815± 0.150 1.101± 0.194 0.572± 0.025 0.577± 0.025

G-mean G-mean MAUC MAUC
Balance 0.675± 0.088 0.566± 0.190 0.884± 0.032 0.855± 0.039
Car 0.967± 0.023 0.954± 0.034 0.993± 0.003 0.988± 0.004
Connect 0.703± 0.013 0.497± 0.035 0.863± 0.008 0.852± 0.009
New-Thyroid 0.914± 0.081 0.915± 0.075 0.996± 0.010 0.996± 0.005
Nursery-s 1.000± 0.001 0.999± 0.002 1.000± 0.000 1.000± 0.000
Yeast 0.107± 0.216 0.000± 0.000 0.861± 0.025 0.847± 0.003

Table 3: Adaboost.MM vs. CoMBo. In non-reported datasets, results of both algorithms are equivalent).
Means and standard deviations are given over 10 runs of 5-fold cross-validations. Results in boldface
indicate a significantly best measure according to the sudent T-test with a confidence of 95%.

classifier trained with CoMBo is smoothed throughout all the classes, whatever the number of examples
they feature in the dataset. That way, majority classes are not as favored as they usually are in multi-class
approaches.

On non-reported datasets, computed measures for both algorithms are very close. On reported results,
we observe that the higher the decrease of the confusion matrix norm, the higher the gain on MAUC and
G-mean. However, we still have to investigate the relation between MAUC/G-mean and the norm of the
confusion matrix. These preliminary results let us think that there might be no gain using CoMBo instead
of Adaboost.MM in other cases, but there is no loss either (the computational times are the same).





0.000 0.147 0.068
0.146 0.000 0.169
0.056 0.203 0.000









0.000 0.011 0.055
0.656 0.000 0.179
0.246 0.048 0.000





CoMBo Adaboost.MM

Table 4: Confusion matrices obtained with Adaboost.MM and CoMBo, on the dataset Connect.

Finally, Table 4 illustrates what actually occurs on the dataset Connect2. The errors on minority
classes 2 (83.5%) and 3 (29.4%) are dramatically high with Adaboost.MM which promotes the majority
class (only 6.6% of errors). These differences are reduced with CoMBo: the error on the majority class
reaches 20.2% while errors on minority classes decrease respectively to 31.5% and 25.9%. However, the real
error is still higher with CoMBo: misclassified examples of the majority classes getting more numerous,
it directly impacts the overall error rate. Such a behavior of CoMBo points out that it equally considers
each class during the learning process, independently from any tricky misclassification cost.

These experiments acknowledge the smoothed learning processed by CoMBo over imbalanced classes.
We think that this smoothing effect is related to the link between the minimization of the confusion
matrix’s norm and the MAUC/G-mean, since it allows CoMBo to perform well on all the classes, contrary
to AdaBoost.MM, who performs excellently on majority classes and poorly on minority ones.

6 Discussion and future works

The framework proposed in this paper raises several questions and prospect works, some of which are
discussed in this section.

Some potential extensions consist in using the result obtained in equation (7) in order to derive other
cost sensitive algorithms. As briefly discussed in section 3, the optimization term depends on the different

2The dataset Connect was chosen for illustration because of readability (it only features 3 classes) and because it is much
imbalanced.
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loss functions defined over the classes. The only restriction on these losses is that their value should
be greater than the one returned by the indicator function. This implies that it is possible to embed
various informations into the loss functions, as long as they respect this condition. For instance, it is
easy to include in the proposed method penalization terms defined over two classes simply by replacing
the loss functions considered in section 3 with ℓyi,j(h,xi) = cyi,j exp(fH(i, j)− fH(i, yi)), where cyi,j is a
penalization term given as a prior or coming from a cost matrix.

Motivated by the theoretical and experimental results — think of the difference between the estimated
error of the proposed method and AdaBoost.MM’s — other works should focus on finding tighter bounds
for the operator norm of the confusion matrix. Depending on the singular values computed from the
confusion matrix, the bound given in equation (7) can be quite loose. Finding a tighter bound would then
be a first step towards a more effective method in minimizing both the risk and the norm of the confusion
matrix alike.

Continuing on the same line of thought, an important question that arises from the proposed framework
is: is it possible to obtain similar results for other norms? Even though minimizing the different norms of
the confusion matrix may be the same thing due to the equivalence between the norms, the main difference
consists in whether it is possible to find an analytical expression of the norm. Some of the considered
norms can be the l1−norm, entry-wise norms or even more exotic ones.

A second question that naturally comes to mind is: is it possible to consider other definitions for
the confusion matrix, such as loss-based matrices, where the entries are replaced by loss functions. More
generally, it would be interesting to see if there exists a relation between the choice of the confusion matrix
and choice of the norm to be minimized.

Finally, based on the empirical results, we think that the norm of the confusion matrix is quite an
useful tool for measuring the performance of a model in the multi-class and/or imbalanced classes setting,
alongside classical measures as MAUC, G-mean, F-measure, etc.

7 Conclusion

The contributions of this paper are two-fold: first we make use of the norm of the confusion matrix as
an error measure in order to derive a common bound for most cost sensitive methods; secondly, using
the bound as a starting point, we show step by step how to obtain an extension of AdaBoost.MM for the
imbalanced classes framework. Empirical results show that the proposed method compares favorably to
other cost-based boosting methods. These performances are both due to the inherited boosting framework
— which is more adapted to the multi-class problems than other frameworks — and to the weighting
scheme obtained from the choice of the loss functions in section 3. Although much work remains to be
done, as discussed in section 6, the proposed method is, to the best of our knowledge, the first boosting
based approach that aims to actively minimize the norm of the confusion matrix, by including it in the
learning process.
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