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Abstract

In many multi-class classification problems, the misclassification rate as an error measure is not

the relevant choice, think of the imbalanced classes problems. In order to overcome this shortcoming,

several methods have been proposed where the error measure embeds richer informations than the

mere misclassification rate. Yet, to the best of our knowledge, none of these methods makes use of

one of the most natural tools in the multi-class setting: the confusion matrix.

Recent results show that using the norm of the confusion matrix as an error measure can be

quite interesting due to the additional informations contained in the matrix, especially in the case

of imbalanced classes. In this paper, we show step by step how to obtain a boosting-based method

which minimizes the norm of the confusion matrix. The experimental results point out that the

proposed method performs better that AdaBoost.MM on imbalanced datasets, while both methods

are equivalent on balanced datasets.

Keywords: Multi-class Learning, Classification, Imbalanced Learning, Boosting, Confusion Matrix

1 Introdution

Learning from imbalanced data concerns theory and algorithms that process a relevant learning task when-
ever data is not uniformely distributed among classes. When facing imbalanced classes, the classification
accuracy is not the fair measure to be optimized Fawcett (2006). Accuracy can be quite high in case of
extreme imbalanced data: majority classes are promoted, while minority classes are not recognized. Such
a bias gets stronger within the multi-class setting

In the binary setting, learning from imbalanced data has been quite studied over the past years, leading
to many algorithms and theoretical results He & Garcia (2009). It is mostly achieved by either resampling
methods for rebalancing the data over classes (for example Estabrooks et al. (2004)), or/and by dealing
with cost-sensitive methods (for example Ting (2000)), or with additional assumptions such as active
learning within kernel-based methods (for example: Bordes & Bottou (2005)).

Despite the famous words “it is easy to generalize to more than two classes”, learning imbalanced data
within a multi-class or multi-label setting is still an open research problem, which is sometimes adressed
through the study of some alternate measures of interest. Most of times, generalizing the binary setting to
the multi-class setting is based on the one-vs-all (or one-vs-one) usual trade-off. It is worth to notice that
some specific learning tasks have been addressed through the optimization of relevant measures within
the multi-class imbalanced setting, whatever the average accuracy could be. For example, let us cite:
Chapelle & Chang. studies some ranking measures, Yue et al. (2007) focused on the maximization of
the Mean Average Precision (MAP) in the multi-label setting, Wang et al. (2012) addresses imbalanced
feature selection through the maximization of the MAUC, the multi-class extension of the Area Under the
ROC Curve, while K. Tang & 2011. maximizes the MAUC for improving classification. Meanwhile, the
correlations between these alternative measures and accuracy have been partly studied Cortes & Mohri
(2004) without any theoretical result so far He & Garcia (2009).

Furthermore, the confusion matrix is one of the most informative measure a multi-class learning system
can rely on. Among other information, it contains the ways :

• the classifier gets right or wrong on one class,

• and the amount of confusion among (imbalanced) classes.
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The sum of the entries of a row of the confusion matrix is equal to 1 independently from the number of
examples having the class corresponding to the row. As such the confusion matrix constitutes a great
tool that can be used to overcome the imbalanced classes problem. Moreover, if we consider the matrix
containing only the non-diagonal elements, than summing over a row of this new matrix can be quite
informing of how the corresponding class is recognized over the learning problem. Surprisingly, as far
as we know, no-one proposes an algorithm that would optimize a metric computed from the confusion
matrix.

In this work, we advocate that minimizing the norm of the confusion matrix is helpful for smoothing
the accuracy among imbalanced classes, so that minority classes are considered as important as majority
classes. We thus work on a multi-class learning framework, based on the confusion matrix. As far as we
know, this work presents the first multi-class learning algorithm that minimizes the norm of the confusion
matrix.

Starting from a strong multi-class classification theoretical setting Mukherjee & Schapire (2011), and
helped by previous recent works on the confusion matrix Morvant et al. (2012); Ralaivola (2012), the
aim of this paper is to sketch up a computationally and theoretically fair classification algorithm (section
4) that is ensured to minimize the norm of the confusion matrix, minimizing the classification error as
proven in section 3. Boosting based, this algorithm greedly processes a sort-of regularization on imbalanced
classes, in such a way that poorly represented classes are still of interest within the overall learning process,
independently from any prior misclassification cost. Section 5 summerizes the experimental resultats of
this algorithm, compared to Adaboost.MM Mukherjee & Schapire (2011). Section 6 wraps it all up with
a discussion on the contributions of this paper and the future works.

2 General framework and Notations

The method proposed in this paper uses the confusion matrix as a performance measure in order to build
a multi-class classifier from a boosting-based process. Before attacking the core of the problem and our
main contribution, we introduce the different notations used throughout the paper.

The first part of this section contains the notations on the matrices and some of the tools that will be
used to transform a confusion matrix towards an error measure. The second part introduces the boosting
framework used to obtain the method that constitutes the main contribution of this paper.

2.1 General notations

The matrices are noted with bold capital letters like C and C(l, j), or simply cl,j , corresponds to the
entry of the lth row and the jth column of C. λmax(C) and Tr(C) correspond respectively to the largest
eigenvalue and the trace of C, while ‖C‖ is its spectral or operator norm. ‖C‖ is defined as the square
root of the largest eigenvalue of C∗C, where C∗ is the conjugate transpose of C. Let A and B be two
matrices, then AB and A ·B refer respectively to the inner product and the Frobenius inner product of
A and B.

The indicator function is denoted by I and, unless stated otherwise, K is the number of classes, m the
number of examples and my if the number of examples of class y, where y ∈ {1, ...,K}.

2.2 Multi-class boosting framework

In this paper we make use of the boosting framework for multiclass classification introduced in Mukherjee & Schapire
(2011), and more precisely the one defined for AdaBoost.MM. In this setting the distribution on the train-
ing examples is replaced by a cost matrix. Let S = {(xi, y,i )} be a training sample, where xi ∈ X
and yi ∈ {1, ...,K}. The cost matrix D is constructed so that for a given example (xi, yi), ∀l 6= yi
D(i, yi) ≤ D(i, l), where i is the row of D corresponding to (xi, yi).

In the case of AdaBoost.MM, the cost matrix C at iteration T , is defined as follows:

DT (i, l)
def
=











exp(fT (i, l)− fT (i, yi)) if l 6= yi

− ∑

j 6=yi

exp(fT (i, j)− fT (i, yi)) otherwise,
(1)
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where fT (i, l) is the score function computed as:

fT (i, l) =

T
∑

t=1

αtI[ht(i) = l]. (2)

When needed, fT (i, l) will be noted as fT,i,l for readability reasons.
The output hypothesis of AdaBoost.MM is given by the following expression :

H(x) = argmax
l=1···K

fT (i, l). (3)

3 Boosting the confusion matrix

3.1 The confusion matrix as an error measure

Boosting algorithms, such as the AdaBoost family (AdaBoost, AdaBoost.M1, AdaBoost.MM,· · · ), are
designed in order to greedily minimize the empirical error computed on the training sample. Their goal
is therefore to iteratively construct a classifier H which minimizes :

1

m

m
∑

i=1

I[H(i) 6= yi].

The loss functions considered in these methods reflect this goal, that is they take into consideration
only the number of examples misclassified by H , independently from their class. For example, in the
case of AdaBoost, the exponential loss forces the weak learners to focus on the most difficult examples.
However, as mentioned in the introduction, in the case of imbalanced classes, this may not be optimal,
since the weak learner could possibly be focused only on the examples of one class. Take for example, a
binary classification problem where one of the classes makes up 99% of the training sample. The simple
”majority class” classifier would have an error of at most 1%. Nevertheless its generalization capabilities
would be catastrophic, since it can only recognize one class.

It would therefore be more preferable to have another error measure, and another loss function, which
can take into considerations richer informations. In this paper, we propose to use a particular form of the
confusion matrix of a classifier as an error measure. We start off by defining the true confusion matrix
and the empirical confusion matrix for a classifier h.

Definition 1. (True confusion matrix) The true confusion matrix A of a classifier h over a distribution
D is defined as :

∀l, j ∈ {1, ...,K}, al,j
def
= Ex|y=lI

(

h(x) = j
)

= P(x,y)∼D(h(x) = j|y = l).

Definition 2. (Empirical confusion matrix) For a given classifier h and a sample S = {(xi, yi)}mi=1 ∼ D,
the empirical confusion matrix AS of h is defined as :

∀l, j âl,j
def
=

m
∑

i=1

1

myi

I(h(xi) = j)I(yi = l).

One may notice that the entries of a row of the confusion matrix sum up to 1, independently from the
number of examples contained in the corresponding class. The diagonal entries of this matrix correspond
to the correctly classified examples. Since our aim is to use the confusion matrix as an error measure,
we zero these diagonal elements. The following definition gives the general terms of the new confusion
matrices:

Definition 3. For all h ∈ H we define the empirical and true confusion matrices of h by respectively
CS=(ĉl,j)1≤l,j≤K and C=(cl,j)1≤l,j≤K such that for all (l, j):

ĉl,j
def
=

{

0 if l = j
âl,j otherwise,

(4)

cl,j
def
=

{

0 if j = j
al,j=P(x,y)∼D(f(x) = j|y = l) otherwise.

(5)
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Let p = [P (y = 1), ..., P (y = K)] be the vector of class priors distribution, then using the new definition
of the confusion matrix, it is easy to see that, for a given classifier h:

R(h)
def
= P(x,y)∼D(h(x) 6= y) = ‖C‖1 (6)

where ‖C‖1 is the l1-norm of matrix C. This simple, yet beautiful, result means that it is possible to
retrieve the true error rate of h from its confusion matrix.

In this paper we focus on the operator norm of the confusion matrix, which is given by the square root
of the largest eigenvalue of the matrix. Using the result in equation 6 and the equivalency between the
norms, we have the following relation between the operator norm and the true risk:

R(h) ≤
√
K‖C‖ (7)

Both equation 6 and equation 7 imply that minimizing the norm of the confusion matrix can be a
good strategy in order to have a small risk.

3.2 Bounding the confusion matrix

The result given in equation 7 bounds the operator norm of the true confusion matrix, but it is difficult to
use in a practical case, since the underlying distribution D is unknown. In order to overcome this difficulty,
we make use of a particular case of Theorem 1 given in Ralaivola (2012). This particular case consist in
choosing the indicator function I as the loss function. The following corollary is the direct consequence of
this choice applied to the theorem.

Corollary 1. For any δ ∈ (0; 1], it holds with probability 1− δ over a sample S(x,y)∼D that :

‖C‖ ≤ ‖CS‖+

√

√

√

√2K

K
∑

k=1

1

mk
log

K

δ
,

where CS is the empirical confusion matrix computer for a classifier h over the training sample S.

Instead of minimizing the operator norm of the empirical confusion matrix CS , we propose to minimize
an upper bound of ‖CS‖.

‖CS‖ =
√

λmax(C∗
SCS)

≤
√

Tr(C∗
SCS)

The matrix C∗
SCS is positive semi-definite, hence all its eigenvalues are positives. The equality is

simply the rewrite of the operator norm of CS , while the inequality comes from the fact that the trace is
equal to the sum of the eigenvalues. We focus now on the value of Tr(C∗

SCS).

Tr(C∗
SCS) =

∑K
l=1 C

∗
SCS(l, l)

=
∑K

l=1

∑K
j=1 ĉl,j ĉj,l

=
∑K

l=1

∑

j 6=l ĉl,j ĉj,l

≤ ∑K
l=1

∑

j 6=l ĉl,j

=
K
∑

l=1

∑

j 6=l

1
ml

∑m
i=1 I[yi = l]I[H(i) = j]

The first and the second equality come from the definition of the trace and the confusion matrix, while
the third equality comes from the fact that the diagonal entries of the confusion matrix CS are 0.

As for the inequality, it is simply the consequence of the fact that all the entries of the confusion matrix
are smaller than 1. Finally, the last equality is obtained using the definition of the entries of CS .

Technical Report V 1.0 4



S. Koço, C. Capponi On multi-class learning through the minimization of the confusion matrix norm

In the next step, we make use of the boosting framework given in Mukherjee & Schapire (2011), and
more precisely of the definitions of fT and H . For readability reasons, fT (i, j) − fT (i, yi) is noted as
∆fT (i, j, yi).

Tr(C∗
SCS) =

K
∑

l=1

∑

j 6=l

1
ml

m
∑

i=1

I[yi = l]I[H(i) = j]

=
∑m

i=1

∑

j 6=yi

1
myi

I[H(i) = j]

≤
m
∑

i=1

∑

j 6=yi

1
myi

e∆fT (i,j,yi)I[H(i) = j]

≤
m
∑

i=1

∑

j 6=yi

1
myi

e∆fT (i,j,yi).

In order to obtain the first inequality, note that the term
∑

j 6=yi
I[H(i) = j] is non zero (and equal to

1) only for those examples on which the classifier H errs. That is to say that there exists at least one
j 6= yi such as fT (i, j) ≥ fT (i, yi). Hence the term

∑

j 6=yi

exp(fT (i, j)− fT (i, yi)) is at least equal to 1. The

last inequality follows quite naturally.
Taking a step back and looking at what we’ve obtained so far, gives:

‖C‖ ≤
√

Tr(C∗C) and Tr(C∗
SCS) ≤

m
∑

i=1

LT (i), (8)

where LT (i) =
∑

j 6=yi

1
myi

exp(fT,i,j − fT,i,yi
), is the loss computed for the example (xi, yi). The final step

consists in putting together these results.
The different losses LT (·) on the examples of the training sample are computed after round T . Since

all the different parameters, such as αt and ht (∀t), are known, we can redefine the score function fT as
follows:

fnorm
t (i, l) =

∑T
t=1 αtI[ht(i) = l]

∑T
t=1 αt

,

which is simply a normalized version of the original score function given in equation 2. The second result
obtained in equation 8 is still correct, since the new score function does not change the predictions returned
by H .

The term
∑m

i=1 LT (i) takes its minimal value when all the classifiers ht correctly classify all the

examples of S, that is ∀i, fT (i, yi) =
∑T

t=1 αt or, replacing fT by fnorm
T , ∀i, fT (i, yi) = 1. Rewriting the

loss with fnorm
T , we have:

∑m
i=1 LT (i) =

m
∑

i=1

∑

j 6=yi

1
myi

exp(fnorm
T,i,j − fnorm

T,i,yi
)

= 1
m1

∑

i∈S1

∑

j 6=1

exp(fnorm
T,i,j − fnorm

T,i,y1
) + · · ·

+ 1
mK

∑

i∈SK

∑

j 6=K

exp(fnorm
T,i,j − fnorm

T,i,yk
)

≥ 1
my1

∑

i∈S1

(K−1)
e + ...+ 1

mK

∑

i∈SK

(K−1)
e

= K(K−1)
e

This result shows that if K > 2 than the loss
∑m

i=1 LT (i) after iteration T is strictly greater than 1.
Since we are in a multiclass setting, K > 2 is not too much of a limitation. The direct consequence of this
result is the following inequality:

√

Tr(C∗
SCS) ≤

√

√

√

√

m
∑

i=1

LT (i) ≤
m
∑

i=1

LT (i). (9)
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Combining equation 9 and the first result of equation 8, we finally obtain:

‖CS‖ ≤
m
∑

i=1

LT (i). (10)

3.3 Choosing the confusion matrix

The result obtained in equation 10 gives an upper bound on the norm of the confusion matrix, which is
the general loss LT =

∑m
i=1 LT (i). Taking a closer look to this loss, one may notice that it is merely the

sum of simpler loss functions, each one defined on an example from the training set S, that is LT (i) =
∑

l 6=yi

1
myi

exp fT (i, l)− fT (i, yi).

In order to use the boosting framework presented in Mukherjee & Schapire (2011) we need to define a
cost matrix D so that ∀i, and ∀l 6= yi,D(i, l) ≤ D(i, yi). Moreover D should be such that the total loss
computed on D should be equal to LT =

∑m
i=1 LT (i).

Taking into account the fact that the different singular losses are fairly similar to the one used in
AdaBoost.MM, the most straightforward choice for D is the following :

DT (i, l)
def
=







1
myi

exp(fT,i,l − fT,i,yi
) if l 6= yi

− ∑

j 6=yi

1
myi

exp(fT,i,j − fT,i,yi
) otherwise, (11)

4 The core of CoMBo

In this section, we introduce a new boosting method based on the results obtained in the previous sections
and we show that the loss decreases after every step of the algorithm, similar to AdaBoost.MM.

4.1 The Confusion Matrix Boosting Algorithm

The pseudo-code of the proposed method is given in algorithm 1. The inputs for this algorithm are the
classical inputs for all boosting methods similar to the AdaBoost family, that is, a training sample S, the
total number of iterations T and a weak learner WL. During the initialization step, the score functions f
are set to zero and the cost matrix D is initialized accordingly.

The training phase consists of two steps: using the weak learner WL in order to build the set of weak
classifiers and using the predictions of ht to update the cost matrix Dt. At each round t, WL takes as
input the cost matrix Dt and returns a weak classifier ht. The cost matrix is then used to compute the
weight αt for ht, which can be seen as the importance given to ht. αt depends on the edge δt obtained by
ht over the cost matrix Dt. The underlying idea is that the better ht performs over Dt, the greater the
edge δt and the importance given to ht.

The update rule for the cost matrix is designed so that the misclassification cost is increased for the
examples misclassified by ht and is decreased for the correctly classified ones. This forces the weak learner
WL to focus on the most difficult examples. The main difference between our method and AdaBoost.MM
is the use of the term 1

myi

in the update rule, where myi
is the number of examples having the same class

yi. The direct consequence of this, is that the misclassification cost on an example (xi, yi) depends also
from the number of examples of S having the same class yi.

The output hypothesis is a simple weighted majority vote over the whole set of weak classifiers. So,
for a given example, the outputted prediction is the class that obtains the biggest score.

4.2 Bounding the loss

First off we recall the minimal weak learning condition as given in Mukherjee & Schapire (2011).

Definition 4. (Minimal weak learning condition) Let Deor be the space of all cost matrices D which put
the least cost on the correct label, that is ∀(xi, yi), l,D(i, yi) ≤ D(i, l). Let Beor

γ be the space of baselines
B which are γ more likely to predict the correct label for every example (xi, yi), i.e. ∀l 6= yi,B(i, yi) ≥
B(i, l) + γ. Then, the minimal weak learning condition is given by :

∀D ∈ Deor, ∃h ∈ H : D · 1h ≤ max
B∈Beor

D ·B, (12)

where H is a classifier space, and 1h is the prediction matrix defined as 1h(i, l) = I[h(i) = l].
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Algorithm 1 CoMBo : Confusion Matrix BOosting

Given

• S = {(x1, y1), ..., (xm, ym)} where xi ∈ X , yi ∈ {1, · · · ,K}

• T the number of iterations, WL a weak learner

• ∀i ∈ {1, · · · ,m}, ∀l ∈ {1, · · · ,K} f1(i, l) = 0

• D1(i, l) =

{

1
myi

if yi 6= l
−(K−1)

myi

if yi = l

for t = 1 to T do

Get ht with edge δt on Dt, where:

δt =
−
∑m

i=1 Dt(i, ht(xi))
∑m

i=1

∑

l 6=yi
Dt(i, l)

.

Compute αt as:

αt =
1

2
ln

1 + δt
1− δt

.

Update D:

Dt+1(i, l) =











1
myi

exp(ft+1(i, l)− ft+1(i, yi)) if l 6= yi

− 1
myi

k
∑

j 6=yi

exp(ft+1,i,j − ft+1,i,yi
) if l = yi

where ft+1(i, l) =
t
∑

z=1
I[hz(i) = l]αz.

end for

Output final hypothesis :
H(x) = argmax

l∈1,...,k
fT (x, l),

where fT (x, l) =
T
∑

t=1

I[ht(x) = l]αt

In the rest of this paper, we will consider a particular case of baselines, which are the closest to the
uniform. These baselines, noted Uγ , have weights (1− γ)/k on incorrect labels and (1− γ)/k + γ on the
correct ones. The weak learning condition is given by :

D · 1h ≤ D ·Uγ (13)

All of the weak classifiers returned by WL during the training phase verify this weak learner condition.
The following result shows that the general loss Lt decreases with each iteration, if the weak classifier

ht satisfies the weak learning condition. This result and its proof are fairly similar to the ones given for
AdaBoost.MM.

Lemma 1. Suppose the cost matrix Dt is chosen as in the algorithm 1, and the returned classifier ht,m

satisfies the edge condition for the baseline Uδt and cost matrix Dt, i.e. Dt · 1ht
≤ Dt ·Uδt .

Then choosing a weight αt > 0 for ht makes the loss
m
∑

i=1

∑

l 6=yi

exp(ft(i, l)− ft(i, yi)), at most a factor

1− 1

2
(eαt − e−αt)δt +

1

2

(

eαt + e−αt − 2)

of the loss before choosing αt, where δt = edge of ht.

Proof. Recall that the loss function Lt, and Lt(i) are defined as

Lt =
m
∑

i=1

∑

l 6=yi

Dt(i, l) =
m
∑

i=1

∑

l 6=yi

1

myi

exp(ft,i,l − ft,i,yi
)

Technical Report V 1.0 7
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Lt(i) =
∑

l 6=yi

Dt(i, l) =
∑

l 6=yi

1

myi

exp(ft(i, l)− ft(i, yi))

The weak classifier ht returned by WL satisfies the edge condition, that is:

Dt · 1ht
≤ Dt ·Uδt , (14)

with δt being the edge of ht on Dt.
Denote S+ (resp. S−) the set of examples of S correctly classified (resp. misclassified) by ht. Using

the different definitions of Dt, 1ht
and Uδt , the classification cost of ht (left side of 14) is given by:

Dt · 1ht
= − ∑

i∈S+

Lt−1(i)

+
∑

i∈S
−

1
myi

exp(ft−1,i,ht(i) − ft−1,i,yi
)

= −At
+ +At

−

while the cost of Uδt (right side of 14) is given by:

Dt ·Uδt,m = −δt

m
∑

i=1

Lt−1(i) = −δtLt−1

Injecting these two costs in 14, we have :

At
+ −At

− ≥ δtLt−1. (15)

If we take a closer look at the drop of the loss after choosing ht and its weight αt, we have:

Lt−1 − Lt =
∑

i∈S+

Lt−1(i)(1 − e−αt)

+
∑

i∈S
−

1
myi

exp(∆ft−1(i, ht, yi))(1− eαt)

= (1− e−αt)At
+ − (eαt − 1)At

−

=
(

eαt−e−αt

2

)

(At
+ −At

−)

−
(

eαt+e−αt−2
2

)

(At
+ +At

−)

where ∆ft−1(i, ht, yi)) = ft−1(i, ht(i))− ft−1(i, yi).
The result in 15 gives a lower bound for At

+ −At
−, while At

+ +At
− is upper-bounded by Lt−1. Hence,

Lt−1 − Lt =
∑

i∈S+

Lt−1(i)(1− e−αt)

≥
(

eαt−e−αt

2

)

δtLt−1 −
(

eαt+e−αt−2
2

)

Lt−1.

Therefore, the result of the lemma:

Lt ≤
(

1− ( e
αt−e−αt

2 )δt +
(

eαt+e−αt−2
2

))

Lt−1

=
(

1
2 ((1 − δt)e

αt + (1 + δt)e
−αt)

)

Lt−1.

(16)

The expression of the loss drop given in the Lemma 1 can be further simplified. Indeed, if we choose
the value of αt as given in the pseudo-code of Algorithm 1, than the loss drop is simply equal to

√

1− δ2t .

Since the value of δ2t is always positive,
√

1− δ2t is smaller than 1, thus the loss Lt is always smaller than
Lt−1. The following theorem resumes this result.

Theorem 1. Let δ1, · · · , δT be the edges of the classifiers h1, · · · , hT returned by WL at each round of the

learning phase. Then the error after T rounds is K(K−1)
∏T

t=1

√

1− δ2t ≤ K(K−1) exp
{

−(1/2)
∑T

t=1 δ
2
t

}

.

Moreover, if there exists a γ so that ∀t, δt ≥ γ, then the error after T rounds is exponentially small,
K(K − 1)e−Tγ2/2.
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dataset AdaBoost.MM CoMBo AdaBoost.MM CoMBo
‖C‖ ‖C‖ error error

Abalone 2.939 1.373 0.076 0.086
Car 0.328 0.055 0.002 0.005
Connect-4 1.066 0.437 0.024 0.036
Nursery 0.923 0.201 0.007 0.012
Poker 1.778 0.471 0.033 0.050
Pendigits 0.004 0.011 0.000 0.000
Im. Segm. 0.138 0.257 0.004 0.006
Letter 0.187 0.194 0.013 0.013

Table 1: Adaboost.MM vs. CoMBo on error and norm of the confusion matrix. The last three datasets
are balanced.

5 Experimental results

5.1 Datasets and experimental setup

8 datasets were used in the experiments, the same used in Mukherjee & Schapire (2011). They are all
from the UCI Machine Learning Repository Frank & Asuncion (2010), and are all related to multi-class
learning tasks, mainly classification. They exhibit various degrees of imbalanced data, as well as various
number of instances and attributes. Since the work is concerned with multi-class imbalanced datasets,
class distributions must be specified:

• datasets Pendigits (10 classes), Letter (26 classes) and Image segmentation (7 classes) are bal-
anced.

• Abalone is fairly imbalanced. It features 28 classes: 13 classes represent less than 1% of the total
number of instances each, while 4 classes represent more than 10% out of the total number of
instances each. Each of the 11 remaining classes represents between 1 and 10% of the dataset.

• The dataset Car features 4 classes, which contains respectively 70.023%, 22.222%, 3.993%, and
3.762% of the instances: the two last classes are much less represented than the two first ones.

• The dataset Connect-4 features 3 classes, which contains respectively 65.83%, 24.62%, and 9.55%
of the instances.

• The dataset Nursery has 5 classes, which contain respectively 33.333%, 0.015%, 2.531%, 32.917%,
and 31.204% of the population.

• The dataset PokerHand is the most imbalanced. It features 10 classes, where the four first contains
respectively around 50%, 42%, 5% and 2% of the dataset. Each of the six other classes represents
less than 0.5% of the dataset.

For each dataset, we performed 10-folds cross-validations and averaged the results. Two measures are
reported: estimations of the error and of the confusion matrix norm. CoMBo and Adaboost.MM ran for
200 iterations.

5.2 Results

Results are presented in table 1: the estimated confusion matrix norms are reported, together with the
estimated generalization errors.

The results on balanced datasets (Letter, Pendigits and Im. segmentation) are similar with Ad-
aboost.MM and CoMBo: estimated errors and norms of the confusion matrix are deeply close. These
preliminar results let us think that, in case of multi-class balanced datasets, there is no gain using CoMBo
instead of Adaboost.MM, but there is no loss either (the computational times are quite the same).

Concerning imbalanced datasets, CoMBo turns out challenging. The estimated real error with CoMBO
leans to be a bit worse than the one of Adaboost.MM. Meanwhile, as expected, the estimated norm of the
confusion matrix is much smaller with CoMBo. Having a closer look at results on the PokerHand fairly
imbalanced dataset, the decreasing of the norm is drastic. It confirms that using CoMBo, the accuracy
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







0.000 0.006 0.000 0.001
0.000 0.000 0.000 0.015
0.000 0.167 0.000 0.000
0.000 0.250 0.013 0.000

















0.000 0.045 0.004 0.007
0.000 0.000 0.021 0.010
0.000 0.000 0.000 0.013
0.000 0.000 0.000 0.000









Adaboost.MM on Car CoMBo on Car





0.000 0.000 0.048
0.890 0.000 0.110
0.582 0.000 0.000









0.000 0.232 0.137
0.181 0.000 0.212
0.079 0.266 0.000





Adaboost.MM on Connect CoMBo on Connect

Table 2: Confusion matrices obtained with Adaboost.MM and CoMBo, on datasets Car and Connect-4.

of the classifier on minority classes is improved, whereas it turns sour on majority classes. Somehow,
we could say that the performances of the classifier is smoothed among all the classes, whatever their
representation are within the dataset. That way, majority classes are not as promoted as usually in
multi-class approaches.

Let us illustrate on table 2 what actually occurs on the two smallest imbalanced datasets, where
the norm of the confusion matrix decreases with CoMBo: Car and Connect-4. Except for the diagonal
entries1, each (l, j) represents the probability that instances of class l are classified as j by the classifier.
Hence, the accuracy of class l is estimated as 1−∑

j 6=l C(l, j).
With CoMBo on the Car dataset, the errors on minority classes 3 and 4 get smaller, while the error

on the first (majority) class increases w.r.t. Adabost.MM. This the smoothing effect of CoMBo.
On the Connect-4 dataset, the misclassification rates on classes 2 (100%) and 3 (58.2%) are dramat-

ically high with Adaboost.MM which promotes the majority class. With CoMBo, classes 2 and 3 are as
well recognized as class 1, although class 1 is the majority class.

In both datasets, the estimated real error is higher with CoMBo: this is explained by the fact that
misclassified examples of the majority classes getting more numerous, it directly impacts the overall error.

Such a behavior of CoMBo points out that it equally considers each class during the learning process.
These experiments acknowledge the smoothed learning processed by CoMBo over imbalanced classes.
Then, the integration of cost-sensitive errors could be easily performed during the minimization process
on ‖C‖.

6 Discussion

The method proposed in this paper aims at minimizing the operator norm of the confusion matrix, which
is used as a performance measure, instead of the classical misclassification error. In order to do so, we
proposed in section 3 to minimize an upper-bound of the norm of the empirical confusion matrix. Indeed,
it is regrettable to make use of an upper-bound, since what we wish to minimize is the norm itself, in
the same fashion as the COPA algorithm Ralaivola (2012). The first natural follow up of this work is to
obtain a novel method which greedily minimizes the norm of the confusion matrix. We think that using
the same multi-class boosting framework as the one used here, is be the best way to tackle this problem.

In section 3.2 we mentioned that the confusion matrix used in this paper is just a particular case of
a larger family of confusion matrices. The matrices in this family are obtained by replacing the indicator
function in equations 4 and 5 by a loss function. Doing so allows us to consider special cases of matrices,
such as the fact that confusing class a with class b is worse than confusing a and c (think about automated
diagnosis system). The second perspective of this work is thus to extend the results obtained here, to
the more general family of loss-based confusion matrices. It then could easily integrate any prior on cost-
sensitive misclassifications, hopefully as a constant within the norm of the generalized confusion matrix.

Last but not least, we would like to mention another possible extension of the confusion matrix as a
performance measure framework. Confusion matrices are generally defined for learning samples, but they
can also be defined for an ensemble of classifiers. Hence future work will also be focused on using confusion
matrices for the estimation of the performances for ensembles of classifiers and, hopefully, obtaining new
bound for methods based on ensemble learning.

1Recall that the diagonal is set to zero for it must be as high as possible, thus it is not taken into account during the

norm minimization process.
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7 Conclusion

We proposed a novel method based on a multi-class boosting framework that uses the operator norm of
the confusion matrix as an alternate performance measure, taking advantages of the richer informations
embedded in this matrix. Our main contribution lies in the fact that, to the best of our knowledge, this is
the first boosting method based on the idea of minimizing the norm of the confusion matrix. We prowed
in section 3 how to obtain a loss function which upper-bounds the operator norm of the confusion matrix,
and how to obtain a boosting method that minimizes this loss function. Our method is given in section
4 and we showed in the same section that the loss decreases with each round. Finally, the experimental
results given in section 5 show that our method performs better than AdaBoost.MM when the norm of the
confusion matrix is considered as a performance measure. This method fairs better than AdaBoost.MM
in the case of imbalanced samples.
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