
HAL Id: hal-00801248
https://hal.science/hal-00801248

Submitted on 15 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decision Optimization Techniques for Efficient Delivery
of Multimedia Streams

Mugurel Ionut Andreica, Nicolae Tapus

To cite this version:
Mugurel Ionut Andreica, Nicolae Tapus. Decision Optimization Techniques for Efficient Delivery of
Multimedia Streams. Proceedings of the IEEE International Symposium on Signals, Circuits and Sys-
tems (ISSCS) (E-ISBN: 978-1-4244-3786-3 ; Print ISBN: 978-1-4244-3785-6), Jul 2009, Iasi, Romania.
pp.333-336, �10.1109/ISSCS.2009.5206110�. �hal-00801248�

https://hal.science/hal-00801248
https://hal.archives-ouvertes.fr

�������������	
��
������
�
����������
���������
�����
���	
������
����
�������������
�
�����
���
������
��
����
��������������
���
�������
��
����������������
����������
����������������
���
������
�����
��������
����
�
��
��������
�
�����
�������
 ��
��
����
�
�!����
���
���
�
���
����������
���
��
��
���
���������
���
��
�
�������
�������
���
��
�
���
�������
�!����
��
��

�!���

Decision Optimization Techniques for Efficient

Delivery of Multimedia Streams

Mugurel Ionu� Andreica
1
, Nicolae ��pu�

1

1
Computer Science and Engineering Department, Politehnica University of Bucharest, Bucharest, Romania

{mugurel.andreica, nicolae.tapus}@cs.pub.ro

Abstract—With the amount of available multimedia data

increasing world-wide and with the expanding need for rapid

access to this data, efficient data delivery has become a significant

problem for which no fully satisfactory solutions have been

provided, yet. A major issue is the concurrent usage of the same

bottleneck network resources by multiple communication flows.

In the case of multimedia streams, which consist of large volumes

of data being transferred over usually long periods of time, and

which require strict quality of service guarantees, this problem is

even more acute. In this paper we present several decision support

and optimization techniques for one of the most common types of

solutions employed nowadays – advance resource reservations.

I. INTRODUCTION

The amount of data which is globally available and accessible

has been increasing quickly during the past few years. Out of it,

multimedia data (e.g. audio-video and static visual data)

represents a large percentage. Since the quantity and quality of

the network resources has also been increasing (e.g. higher

bandwidth network links, more and faster network devices),

efficient access and transfer of remote multimedia streams has

become a reality for many users. This brought about unexpected

increases in world-wide (multimedia) traffic, which, in order to

respond to the user’s expectations, must adhere to some strict

quality of service guarantees (e.g. constant latency and a

minimum level of guaranteed bandwidth). However, this is in

contrast with the best effort model of the Internet (and of most

local or regional area networks), which cannot provide any kind

of guarantees. A solution to some of these problems, which can

be applied on local, regional or Internet Service Provider (ISP)

level, consists of (advance) resource reservations (the most

common and most important resource is bandwidth). The (local)

owner of the network links uses a resource broker (or data

transfer scheduler) which receives data transfer requests. These

requests can specify several constraints, like start time, finish

time, minimum required bandwidth, maximum admissible

latency, jitter, and so on. A request can be granted, in which

case the requested resources (most commonly, network

bandwidth) are reserved for the duration of the data transfer, or

can be rejected. In this paper we focus on the process of

decision optimization on the resource owner’s side. In Section II

we present new algorithmic methods for implementing profit

maximizing heuristics, by choosing which requests to accept

and which to reject, under certain constraints. In Section III we

present several algorithmic techniques for analyzing traffic

(self-) similarity over time. In Section IV we present efficient

techniques for answering restricted range selection queries. In

Section V we discuss related work and we conclude.

II. IMPROVING HEURISTICS BASED ON CONFLICT GRAPHS

Quite often, multiple pairs of data transfer requests are in

conflict, because they require exclusive access to the same

network resources, during overlapping time intervals. In such

cases, a common technique [4] is to construct the conflict

graph of the requests, in which every vertex corresponds to a

request and an edge between two vertices i and j means that the

requests i and j are in conflict. In order to maximize the profit

of the accepted requests and avoid conflicts, we should

compute a maximum weight independent set (MWIS) in this

graph, where the weight of each vertex is the profit of the

corresponding request. Computing a MWIS is an NP-hard

problem for general conflict graphs, and, thus, heuristics are

usually employed. Many of these heuristics are based on

repeatedly extracting a vertex from the graph and either adding

it to the MWIS or ignoring it from now on. In this section we

present improved algorithmic techniques for the repeated

vertex extraction problem. We will consider 4 vertex extraction

rules. Let’s assume that X is the set of all the vertices which

have already been extracted from the graph and Y is the set of

the vertices which have not been extracted, yet. At every step

we will extract a node (vertex) v from Y which has the

property: (1) v has a minimum number of neighbors in X; (2) v

has a minimum number of neighbors in Y; (3) v has a

maximum number of neighbors in X; (4) v has a maximum

number of neighbors in Y. At first, X={} and Y={1,2,...,N}

(N=the number of vertices of the graph). We will assign to each

node u a value val(u), representing the criterion used during the

selection process. For the cases 1 and 3, we will initially have

val(u)=0 (1�u�N); for the cases 2 and 4, val(u)=the number of

neighbors u has in the graph (1�u�N). The first type of

algorithms we will describe make use of a heap data structure

(for the cases 1 and 2 it will be a min-heap, and for the cases 3

and 4 it will be a max-heap). At first, we will introduce in the

heap all the pairs (val(u), u) (the elements in the heap will be

compared against each other using the key val(u)). At every

step, we will extract from the heap the pair (val(v), v) which is

at the root of the heap (the one with the smallest value val(v),

for the cases 1 and 2, or the one with the largest value val(v),

for the cases 3 and 4). We will maintain a value set(z) for every

node z, denoting the set to which z currently belongs (i.e.

set(z)=X or set(z)=Y); initially, set(z)=Y for all 1�z�N. We will

�������������	
��
������
�
����������
���������
�����
���	
������
����
�������������
�
�����
���
������
��
����
��������������
���
�������
��
����������������
����������
����������������
���
������
�����
��������
����
�
��
��������
�
�����
�������
 ��
��
����
�
�!����
���
���
�
���
����������
���
��
��
���
���������
���
��
�
�������
�������
���
��
�
���
�������
�!����
��
��

�!���

set set(v)=X and then we will traverse all the neighbors u of the

newly extracted vertex v, which have the property that

set(u)=Y. For each such neighbor, we will update the value

val(u): (1) at first, we remove the pair (val(u),u) from the heap;

(2) then, for the cases 1 and 3, we increment val(u) by 1; for

the cases 2 and 4, we decrement val(u) by 1; (3) we insert back

into the heap the pair (val(u), u) (with the updated value

val(u)). After extracting every node v, we process the node (we

may select its corresponding request or reject it). The time

complexities of these approaches are O((N+M)·log(N)) (M is

the number of edges of the graph).

We will now present O(N+M) algorithms for each of the 4

cases. We first notice that the values val(u) are integer numbers

between 0 and N-1. Thus, we will replace the heap(s) with an

array VL which contains N lists. VL(x) will contain a list with

all the nodes u from Y having val(u)=x. After the initial

computation of the values val(u), we will introduce node u into

the list VL(val(u)) (1�u�N). For the cases 1 and 2, we will

maintain an index valmin (initially 0), and for the cases 3 and

4, we will maintain an index valmax (initially equal to N-1). At

each of the N steps (corresponding to a vertex extraction), we

perform the following actions. For the cases 1 and 2, as long as

VL(valmin) contains no element, we increment valmin by 1.

For the cases 3 and 4, as long as VL(valmax) contains no

element, we decrement valmax by 1. When the list VL(valmin)

(VL(valmax)) contains at least one element, we choose one of

the elements of the list (e.g. the first one). Let this element be

v. We will proceed next the same way as in the case of the

heap-based algorithms: we remove v from VL(valmin)

(VL(valmax)); we set set(v)=X; then, we traverse all the

neighbors u of v, with the property that set(u)=Y. For each such

neighbor, we first remove it from the list VL(val(u)), then we

update the value val(u) accordingly (we either increment it or

decrement it by 1, depending on the case), and then we insert u

into VL(val(u)) (where we consider the updated value val(u)).

After traversing all the neighbors u of the newly extracted

vertex v, we will need to update the value valmin (valmax). In

case 1, node v had the smallest number of neighbors in X. At

the next step, the extracted node will have at least the same

number of neighbors in X (since X has one extra element); thus,

valmin remains unchanged. In case 2, node v had the smallest

number of neighbors in Y. In the worst case, there may be other

nodes w∈Y with the same number of neighbors in Y as v, and

which are neighbors of v. After removing v, val(w) decreases

by 1. Thus, we will have to decrement valmin by 1, because the

next minimum value may be smaller than the current minimum

value by 1. In case 3, we will have to increment valmax by 1,

because it is possible for a node w∈Y to have one extra

neighbor in X than the currently extracted vertex v (e.g. a node

w∈Y which is a neighbor of v and had val(w)=val(v) at the

moment when v was extracted). In case 4, the maximum

number of neighbors in Y of a node in Y decreases or stays the

same; thus, we do not have to change valmax. The time

complexities of these solutions are O(N+M), because every

insertion and removal is performed in O(1) time, and the total

number of increase and decrease operations of the values

valmin or valmax is O(N). For deletions of the vertices u

(before updating a value val(u)), we can use the lazy deletion

technique: in this case, whenever we want to delete a vertex

from a list, we only mark it as being deleted (or perhaps not

even that). Then, in order to check if VL(x) contains any node v

which has not been previously deleted, we traverse the

elements v in VL(x); if v was previously marked for deletion, or

val(v)�x, only now will we (physically) remove v from VL(x).

In this case, the total number of elements in all the lists can

reach O(N+M), but the time complexity remains the same.

Case 3 corresponds to the well-known Maximum Cardinality

Search algorithm, which is used for identifying chordal graphs.

Case 2 is used for computing the largest clique in a planar

graph. A planar graph with N vertices has at most 3·N-6 edges.

Thus, the sum of the degrees of all of its vertices is at most

6·N-12, meaning that there is at least one vertex with degree at

most 5. By repeatedly extracting the node v with the minimum

degree (in Y), we know that this node always has at most 5

neighbors (in Y). Thus, we can consider all the subsets formed

by v and its neighbors (in Y) and verify for each of them if it

forms a clique. We will maintain the largest clique found this

way. If the nodes have weights (node i has weight w(i)), we can

maintain the clique with the largest sum of its nodes’ weights

found like this. Thus, we can compute the largest clique of a

planar graph in O(N) time. Case 2 also has applications to

finding a subgraph in which the minimum degree of a node is

as large as possible: we repeatedly extract the vertex with the

smallest degree (in Y); the result is equal with the maximum

value among the degrees of the extracted nodes, at the moment

when they are extracted. Case 4 is used in heuristic algorithms

for computing the minimum vertex cover of a graph.

III. ONLINE ANALYSIS OF TRAFFIC (SELF-) SIMILARITY

An important part in efficient data transfer scheduling (i.e.

acceptance and rejection of data transfer requests) is the

identification of traffic patterns and (self-) similarities. Patterns

make the traffic behaviour more predictable and, thus, more

efficient decisions can be made. In this section we consider a

time slot-based model, in which the time horizon is divided

into T time slots. For each time slot t (1�t�T), traf(t) denotes

the amount of traffic during the time slot. We leave the

problem at this more general level, in order to be able to use it

in multiple places (e.g. we can have the traffic of a single data

transfer, the overall traffic on a network link, and so on). For

any two traffic values a and b, we have a function eval(a, b),

which computes information about their similarity in O(1)

time. For instance, we can have eval(x,y)=|x-y| or eval(x,y)=if

(|x-y|<threshold) then 0 else 1, or many other functions,

depending on the application. In this section we are interested

in answering efficiently aggregate traffic (self-) similarity

queries. In order to make the presented solution as general as

possible, we will consider that we have two arrays of T time

slots, tr(1) and tr(2), for which we want to answer similarity

queries. Self-similarity queries are answered when tr(1)=tr(2).

A query has three parameters: Q(a, b, len) (a�b) and returns the

aggregate of the values: eval(tr(1)(a+i), tr(2)(b+i)) (0�i�len-

1). The aggregate function aggf can be, for instance, +, max, or

any other function. Occasionally, updates can occur: U(t, v, h)

�������������	
��
������
�
����������
���������
�����
���	
������
����
�������������
�
�����
���
������
��
����
��������������
���
�������
��
����������������
����������
����������������
���
������
�����
��������
����
�
��
��������
�
�����
�������
 ��
��
����
�
�!����
���
���
�
���
����������
���
��
��
���
���������
���
��
�
�������
�������
���
��
�
���
�������
�!����
��
��

�!���

changes the value of tr(h)(t) to v. The easiest solution is to do

nothing special: we answer each query in time proportional to

the len parameter and update a value tr(h)(t) in O(1) time (we

simply set tr(h)(t)=v). However, since we expect queries to be

much more frequent than updates, we need a more efficient

approach. We will present three such approaches in this

section. For the first approach we will divide the T time slots

into T/k groups of k consecutive slots each (the last group may

contain fewer than k slots). We number the groups from 1 to

ng=O(T/k), the total number of groups. For each group j we

define left(j) and right(j), the first and last time slots in group j.

We also define nslots(j)=right(j)-left(j)+1. Moreover, for each

time slot t we store group(t)=j if left(j)�t�right(j). Then, we

compute a table Tagg(i,j)=the aggregate of the values

eval(tr(1)(i+q), tr(2)(left(j)+q)) (0�q�nslots(j)-1; 1�i�T-

nslots(j)+1). This table will be computed in the beginning in

O(T
2
) time. A query Q(a, b, len) can be answered as follows.

We initialize qagg to a neutral value (which depends on the

aggregate function we use: e.g. 0 for +; 1 for *; -� for max).

Then, we initialize a counter idx to 0. As long as

group(b+idx)=group(b) and idx<len, we set qagg=aggf(qagg,

eval(tr(1)(a+idx), tr(2)(b+idx))) and then idx=idx+1. After this

stage, if idx<len, then b+idx is the first slot of the group

j=group(b+idx). While (idx+nslots(j)-1<len) we set qagg=

aggf(qagg, Tagg(a+idx, j)) and then we set idx=idx+nslots(j).

In the final part, if idx<len, we will perform the same actions

as in the first part, i.e. while (idx<len) we set qagg=aggf(qagg,

eval(tr(1)(a+idx), tr(2)(b+idx))) and then we increment idx by

1. The time complexity of a query operation is O(k+T/k). An

update U(t, v, h) is handled as follows. We modify tr(h)(t).

Then, if h=2, we need to modify the values Tagg(i, j), with

j=group(t). If h=1, we need to modify the values Tagg(i, j), for

which t-nslots(j)+1�i�t. We can recompute from scratch all

these O(T) values in O(k) time per value, obtaining a time

complexity of O(T·k). However, if the function aggf is

invertible (e.g. +, xor), we can recompute each value Tagg(i,j)

in O(1) time as follows. We do not modify tr(h)(t) at the

beginning. If h=2, we set Tagg(i,j)=aggf(aggf
-1

(Tagg(i,j), eval(

tr(1)(i+t-left(j)), tr(2)(t))), eval(tr(1)(i+t-left(j)), v)). If h=1, we

set Tagg(i,j)=aggf(aggf
-1

(Tagg(i,j), eval(tr(1)(t), tr(2)(left(j)+t-

i))), eval(v, tr(2)(left(j)+t-i)). After modifying all the values

Tagg(i,j) which need to be modified, we can set tr(h)(t)=v.

aggf
-1

(a,b) is equivalent to aggf(a,b
-1

), where b
-1

 is b’s inverse

value relative to the aggf function (e.g. b
-1

=-b, for aggf=+, or

1/b, for aggf=*). Thus, a query is answered in O(k+T/k) time,

an update takes O(T·k) (or O(T)) time and the amount of

occupied memory is O(T·k). If we choose k=T
1/2

, we obtain a

query time of O(T
1/2

) and the amount of memory is O(T
3/2

).

For the second approach we will maintain 2·T-1 segment

trees. We will extend tr(2) with T-1 time slots to the left

(numbered from –(T-2) to 0), having arbitrary values. Segment

tree i (ST(i)) is built over the time slots [i,min{i+T-1,T}] of

tr(2) (-(T-2)�i�T). Every leaf j�1 in ST(i) corresponds to time

slot i+j-1 from tr(2). Every node q of ST(i) whose subtree

contains the leaves in the interval [left(q),right(q)] maintains

the aggregate of the values eval(tr(1)(j), tr(2)(i+j-1)) (1�

left(q)�j�right(q)�min{T,T-i+1}). A query Q(a,b,len) consists

of a range aggregate query in ST(b-a+1), for the interval of

leaves [a, a+len-1], which can be answered in O(log(T)) time.

An update U(s,v,h) with h=2 updates all the segment trees

ST(i) with max{–(T-2),s-T+1}�i�s. We modify the value of the

leaf j corresponding to slot s in ST(i), eval(tr(1)(j), tr(2)(i+j-

1)), (j=s-i+1) and then we traverse the ancestors of the leaf j,

starting from leaf j’s parent and ending at the root of ST(i). For

each visited ancestor anc, we recompute the aggregate value

stored at the ancestor, by aggregating the values stored at its

left and right sons. For h=1, we update the value assigned to

the leaf j=s of every segment tree ST(i) (-(T-2)�i�T-s+1) and

then, like before, we update the values assigned to the

ancestors of these leaves in the corresponding trees. Thus, an

update takes O(T·log(T)) time. The total memory is O(T
2
).

We also mention a third approach, which is of interest only

because it is easy to implement. It is similar to the first approach

we presented. We will compute a table Tagg2(i,j)=the aggregate

of the values eval(tr(1)(i+q), tr(2)(j+q)) (0�q�k-1). A query

Q(a,b,len) is answered as follows. We maintain an index idx=0

and a partial aggregate value qagg. While idx+k-1<len, we set

qagg=aggf(qagg, Tagg2(a+idx, b+idx)) and then idx=idx+k.

After this part, while idx<len, we set qagg=aggf(qagg,

eval(tr(1)(a+idx), tr(2)(b+idx))) and then we increment idx by

1. The time complexity of a query is O(k+T/k). An update

U(t,v,h) modifies tr(h)(t) and then recomputes the values

Tagg2(i,j) with t-k+1�i�t (if h=1) or t-k+1�j�t (if h=2) (O(T·k)

pairs (i,j)). We can recompute each pair in O(k) time, or, if aggf

is invertible, in O(1) time, just like we did in the first approach

(by removing from Tagg2(i,j) the contribution determined by

tr(h)(t) and replacing it by the contribution of the new value v;

for instance, for h=1, Tagg2(i,j)=aggf(aggf
-1

(Tagg2(i,j), eval(

tr(1)(t), tr(2)(j+t-i))), eval(v, tr(2)(j+t-i)); for h=2, the equation

is the same if we swap the indices i and j and the order of the

arguments of the table Tagg2 and of the function eval).

IV. RANGE SELECTION QUERIES (AND UPDATES)

We are given n points in d�1 dimensions (e.g. n resources,

like network links, each of them having d features, like latency

or available bandwidth). Each point i has coordinates (x(i,1), ...,

x(i,d)) and a weight w(i). We want to be able to answer

selection queries of the following type: find the k
th

 smallest

weight among the set of weights of the points contained in a

given d-dimensional range [xa(1),xb(1)] x ... x [xa(d),xb(d)]. A

point i is contained in the given range if xa(j)�x(i,j)�xb(j) for

every dimension 1�j�d. We propose the following solution.

We will construct for each point i a point p(i) in (d+1)

dimensions, with coordinates (x(i,1), ..., x(i,d), w(i)). Then, we

insert all the p(i) points in a (d+1)-dimensional range tree RT.

Such a range tree is capable of answering the following type of

range count query in O(log
d+1

(n)) time (or O(log
d
(n)) time by

using fractional cascading, if the set of points is static):

compute the number of points in the tree which are located in a

given (d+1)-dimensional range [xa(1),xb(1)] x ... x

[xa(d+1),xb(d+1)]. RT can be constructed in O(n·log
d
(n)) time

and takes O(n·log
d
(n)) space. We can now answer a selection

query (find the k
th

 smallest weight in a range) by binary

searching the k
th

 smallest weight wk. We sort the weights of the

�������������	
��
������
�
����������
���������
�����
���	
������
����
�������������
�
�����
���
������
��
����
��������������
���
�������
��
����������������
����������
����������������
���
������
�����
��������
����
�
��
��������
�
�����
�������
 ��
��
����
�
�!����
���
���
�
���
����������
���
��
��
���
���������
���
��
�
�������
�������
���
��
�
���
�������
�!����
��
��

�!���

points as a preprocessing step and then binary search wk using

the sorted array of point weights, where every position of the

array can be accessed in O(1) time; if the set of points is

dynamic, we can store all the weights in a balanced tree, which

can be interpreted as a sorted array, except that the value of the

p
th

 position (1�p�n) is accessed in O(log(n)) time. In the binary

search procedure we need to perform a feasibility test which,

given a parameter wt, decides if wt�wk or wt<wk. The

feasibility test consists of querying RT with the (d+1)-

dimensional range [xa(1),xb(1)] x ... x [xa(d),xb(d)] x (-�,wt].

If the number p of points contained in this range is �k, then

wt�wk; otherwise, wt<wk. With this feasibility test, the binary

search computes the smallest weight wk such that there are at

least k points i with w(i)�wk in the given d-dimensional range,

i.e. exactly the k
th

 smallest weight in that range. The time

complexity of a selection query is O(log(n))·O(log
d+1

(n))=

O(log
d+2

(n)) (or O(log
d+1

(n)), if the point set is static and we

use fractional cascading). If the set of points is dynamic, i.e. we

can insert a new point, delete an old point or change the weight

of an existing point, we need to make the range tree dynamic as

well. In this case, the time complexity of an insertion, deletion

or change of weight is O(log
d+1

(n)) for the (d+1)-dimensional

range tree RT. We should notice that insertion/deletion and

change of weight are partially equivalent. Changing the weight

of a point is equivalent to deleting the point and reinserting it

with the new weight. Selection queries arise whenever we do

not want to reserve the „best” resource, but the k
th

 best one.

In another application we have n network links (with 0

reservations initially) on a path, in order, from 1 to n. We can

perform two types of operations. An update operation with

parameters (o, v, i, j) adds o reservations with the same priority

v (VMIN�v�VMAX) to each link in the range [i,j]. A query with

parameters (k, i, j) asks for the k
th

 smallest priority of a

reservation among all the reservations contained in a given

range of links [i,j]. We will maintain a segment tree over the n

links. Each node q of the segment tree stores its leftmost and

rightmost leaf index (left(q) and right(q)), and two balanced

trees, T1(q) and T2(q) (initially empty). During an update, we

compute a canonical decomposition of O(log(n)) tree nodes of

the update interval [i,j]. For each tree node q in the

decomposition we search a pair (v,*) in T1(q). If we cannot find

such a pair, then we add the pair (v,o) to T1(q). If we find a pair

(v,x), we remove it from T1(q) and add the pair (v,x+o) back to

T1(q). For each node a which is an ancestor of a node q in the

decomposition (there are O(log(n)) ancestor nodes), we search

for a pair (v,*) in T2(a). If we find such a pair (v,x), we remove

it from T2(a) and add (v,x+o·ilen(a,i,j)) back to T2(a);

otherwise, we just add (v,o·ilen(a,i,j)) to T2(a). ilen(a,i,j) is the

number of links in the intersection of the intervals

[left(a),right(a)] and [i,j]. Every search, delete and insert

operation on T1(q) (T2(a)) takes O(log(m)) time; m=the number

of update operations which modified T1(q) (T2(a)). T1(*) and

T2(*) are augmented binary search trees, i.e. each node of T1(*)

(T2(*)) maintains the sum of the second argument and the

minimum and maximum v value of all the pairs (v,x) in its

subtree. Thus, we will be able to compute the sum of all the

values x of the pairs (v,x) with a�v�b in logarithmic

(O(log(m))) time. For a query we binary search the k
th

 smallest

priority vk inside the interval of links [i,j], between VMIN and

VMAX. For every candidate priority v, we compute the number p

of reservations with priorities v’�v. If p�k, we have v�vk;

otherwise, v<vk. We initialize p to 0 and then we compute the

canonical decomposition of the query interval [i,j]. For each

tree node q in the decomposition, we compute in logarithmic

time the value S(q,v)=the sum of the parameters x of the pairs

(v’,x) in T1(q) with -��v’�v. Then, we increase p by

S(q,v)·(right(q)-left(q)+1), i.e. by the product between S(q,v)

and the number of links contained in the range corresponding

to the node q. We also compute R(q,v)=the sum of the

parameters x of the pairs (v’,x) in T2(q), with -��v’�v and

increase p by R(q,v). For every ancestor tree node a of a tree

node q in the canonical decomposition, we compute S(a,v),

having the same meaning for node a, as S(q,v) for node q; then,

we increase p by S(a,v)·ilen(a,i,j). An update (query) takes

O(log
2
(n)) (O(log(VMAX-VMIN+1)·log

2
(n))) time.

V. RELATED WORK AND CONCLUSIONS

In [1], the authors analyze the offline scheduling of unit

duration calls in trees, rings and meshes. In [2], the authors

present efficient algorithms for offline and online scheduling of

unit capacity multicast data transfers in trees and meshes. In [3],

we present an algorithmic framework for several efficient data

structures which can be used for data transfer scheduling on

single-link and path networks. In [4], the authors introduce a

wide range of algorithmic techniques for scheduling data

transfers in tree networks. Several heuristic methods for data

request scheduling were presented in [5]. A scheduling model

based on bandwidth reservations for critical data transfers was

introduced in [6]. In this paper we presented several novel

algorithmic techniques for the optimization of the decision

process regarding multimedia data transfer request scheduling,

in the context of a centralized resource manager. The techniques

were developed in order to improve both the execution time and

the accuracy of the decision algorithms. Their efficiency has

been thoroughly examined from a theoretical point of view.

REFERENCES

[1] T. Erlebach and K. Jansen, “Call Scheduling in Trees, Rings and
Meshes”, Proc. of the 30th Hawaii Intl. Conf. on System Sci., Soft. Tech.
and Architecture, pp. 221-222, 1997.

[2] M. R. Henzinger and S. Leonardi, “Scheduling Multicasts on Unit-
Capacity Trees and Meshes”, J. of Comp. and Syst. Sci., vol. 66, pp. 567-
611, 2003.

[3] M. I. Andreica and N. ��pu�, “Efficient Data Structures for Online QoS-
Constrained Data Transfer Scheduling”, Proc. of the 7th IEEE Intl. Symp.
on Parallel and Distributed Computing, pp. 285-292, 2008.

[4] M. I. Andreica and E.-D. Tîr�a, “Towards a Real-Time Scheduling
Framework for Data Transfers in Tree Networks”, Proc. of the 10th IEEE
Intl. Symp. on Symbolic and Numeric Algorithms for Scientific
Computing, pp. 467-474, 2008.

[5] M. D. Theys, H. J. Siegel, and E. K. P. Chong, “Heuristics for Scheduling
Data Requests using Collective Communications in a Distributed
Communication Network”, J. of Parallel and Distributed Computing, vol.
61, pp. 1337-1366, 2001.

[6] A. Hangan, R. Marfievici, and G. Sebestyen, “Reservation-Based Data
Flow Scheduling in Distributed Control Applications”, Proc. of the 3rd
Intl. Conf. on Networking and Services, p. 10, 2007.

