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Abstract—With the amount of available multimedia data 

increasing world-wide and with the expanding need for rapid 

access to this data, efficient data delivery has become a significant 

problem for which no fully satisfactory solutions have been 

provided, yet. A major issue is the concurrent usage of the same 

bottleneck network resources by multiple communication flows. 

In the case of multimedia streams, which consist of large volumes 

of data being transferred over usually long periods of time, and 

which require strict quality of service guarantees, this problem is 

even more acute. In this paper we present several decision support 

and optimization techniques for one of the most common types of 

solutions employed nowadays – advance resource reservations. 

I. INTRODUCTION 

The amount of data which is globally available and accessible 

has been increasing quickly during the past few years. Out of it, 

multimedia data (e.g. audio-video and static visual data) 

represents a large percentage. Since the quantity and quality of 

the network resources has also been increasing (e.g. higher 

bandwidth network links, more and faster network devices), 

efficient access and transfer of remote multimedia streams has 

become a reality for many users. This brought about unexpected 

increases in world-wide (multimedia) traffic, which, in order to 

respond to the user’s expectations, must adhere to some strict 

quality of service guarantees (e.g. constant latency and a 

minimum level of guaranteed bandwidth). However, this is in 

contrast with the best effort model of the Internet (and of most 

local or regional area networks), which cannot provide any kind 

of guarantees. A solution to some of these problems, which can 

be applied on local, regional or Internet Service Provider (ISP) 

level, consists of (advance) resource reservations (the most 

common and most important resource is bandwidth). The (local) 

owner of the network links uses a resource broker (or data 

transfer scheduler) which receives data transfer requests. These 

requests can specify several constraints, like start time, finish 

time, minimum required bandwidth, maximum admissible 

latency, jitter, and so on. A request can be granted, in which 

case the requested resources (most commonly, network 

bandwidth) are reserved for the duration of the data transfer, or 

can be rejected. In this paper we focus on the process of 

decision optimization on the resource owner’s side. In Section II 

we present new algorithmic methods for implementing profit 

maximizing heuristics, by choosing which requests to accept 

and which to reject, under certain constraints. In Section III we 

present several algorithmic techniques for analyzing traffic 

(self-) similarity over time. In Section IV we present efficient 

techniques for answering restricted range selection queries. In 

Section V we discuss related work and we conclude. 

II. IMPROVING HEURISTICS BASED ON CONFLICT GRAPHS 

Quite often, multiple pairs of data transfer requests are in 

conflict, because they require exclusive access to the same 

network resources, during overlapping time intervals. In such 

cases, a common technique [4] is to construct the conflict 

graph of the requests, in which every vertex corresponds to a 

request and an edge between two vertices i and j means that the 

requests i and j are in conflict. In order to maximize the profit 

of the accepted requests and avoid conflicts, we should 

compute a maximum weight independent set (MWIS) in this 

graph, where the weight of each vertex is the profit of the 

corresponding request. Computing a MWIS is an NP-hard 

problem for general conflict graphs, and, thus, heuristics are 

usually employed. Many of these heuristics are based on 

repeatedly extracting a vertex from the graph and either adding 

it to the MWIS or ignoring it from now on. In this section we 

present improved algorithmic techniques for the repeated 

vertex extraction problem. We will consider 4 vertex extraction 

rules. Let’s assume that X is the set of all the vertices which 

have already been extracted from the graph and Y is the set of 

the vertices which have not been extracted, yet. At every step 

we will extract a node (vertex) v from Y which has the 

property: (1) v has a minimum number of neighbors in X; (2) v 

has a minimum number of neighbors in Y; (3) v has a 

maximum number of neighbors in X; (4) v has a maximum 

number of neighbors in Y. At first, X={} and Y={1,2,...,N} 

(N=the number of vertices of the graph). We will assign to each 

node u a value val(u), representing the criterion used during the 

selection process. For the cases 1 and 3, we will initially have 

val(u)=0 (1�u�N); for the cases 2 and 4, val(u)=the number of 

neighbors u has in the graph (1�u�N). The first type of 

algorithms we will describe make use of a heap data structure 

(for the cases 1 and 2 it will be a min-heap, and for the cases 3 

and 4 it will be a max-heap). At first, we will introduce in the 

heap all the pairs (val(u), u) (the elements in the heap will be 

compared against each other using the key val(u)). At every 

step, we will extract from the heap the pair (val(v), v) which is 

at the root of the heap (the one with the smallest value val(v), 

for the cases 1 and 2, or the one with the largest value val(v), 

for the cases 3 and 4). We will maintain a value set(z) for every 

node z, denoting the set to which z currently belongs (i.e. 

set(z)=X or set(z)=Y); initially, set(z)=Y for all 1�z�N. We will 
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set set(v)=X and then we will traverse all the neighbors u of the 

newly extracted vertex v, which have the property that 

set(u)=Y. For each such neighbor, we will update the value 

val(u): (1) at first, we remove the pair (val(u),u) from the heap; 

(2) then, for the cases 1 and 3, we increment val(u) by 1; for 

the cases 2 and 4, we decrement val(u) by 1; (3) we insert back 

into the heap the pair (val(u), u) (with the updated value 

val(u)). After extracting every node v, we process the node (we 

may select its corresponding request or reject it). The time 

complexities of these approaches are O((N+M)·log(N)) (M is 

the number of edges of the graph).  

We will now present O(N+M) algorithms for each of the 4 

cases. We first notice that the values val(u) are integer numbers 

between 0 and N-1. Thus, we will replace the heap(s) with an 

array VL which contains N lists. VL(x) will contain a list with 

all the nodes u from Y having val(u)=x. After the initial 

computation of the values val(u), we will introduce node u into 

the list VL(val(u)) (1�u�N). For the cases 1 and 2, we will 

maintain an index valmin (initially 0), and for the cases 3 and 

4, we will maintain an index valmax (initially equal to N-1). At 

each of the N steps (corresponding to a vertex extraction), we 

perform the following actions. For the cases 1 and 2, as long as 

VL(valmin) contains no element, we increment valmin by 1. 

For the cases 3 and 4, as long as VL(valmax) contains no 

element, we decrement valmax by 1. When the list VL(valmin) 

(VL(valmax)) contains at least one element, we choose one of 

the elements of the list (e.g. the first one). Let this element be 

v. We will proceed next the same way as in the case of the 

heap-based algorithms: we remove v from VL(valmin) 

(VL(valmax)); we set set(v)=X; then, we traverse all the 

neighbors u of v, with the property that set(u)=Y. For each such 

neighbor, we first remove it from the list VL(val(u)), then we 

update the value val(u) accordingly (we either increment it or 

decrement it by 1, depending on the case), and then we insert u 

into VL(val(u)) (where we consider the updated value val(u)). 

After traversing all the neighbors u of the newly extracted 

vertex v, we will need to update the value valmin (valmax). In 

case 1, node v had the smallest number of neighbors in X. At 

the next step, the extracted node will have at least the same 

number of neighbors in X (since X has one extra element); thus, 

valmin remains unchanged. In case 2, node v had the smallest 

number of neighbors in Y. In the worst case, there may be other 

nodes w∈Y with the same number of neighbors in Y as v, and 

which are neighbors of v. After removing v, val(w) decreases 

by 1. Thus, we will have to decrement valmin by 1, because the 

next minimum value may be smaller than the current minimum 

value by 1. In case 3, we will have to increment valmax by 1, 

because it is possible for a node w∈Y to have one extra 

neighbor in X than the currently extracted vertex v (e.g. a node 

w∈Y which is a neighbor of v and had val(w)=val(v) at the 

moment when v was extracted). In case 4, the maximum 

number of neighbors in Y of a node in Y decreases or stays the 

same; thus, we do not have to change valmax. The time 

complexities of these solutions are O(N+M), because every 

insertion and removal is performed in O(1) time, and the total 

number of increase and decrease operations of the values 

valmin or valmax is O(N). For deletions of the vertices u 

(before updating a value val(u)), we can use the lazy deletion 

technique: in this case, whenever we want to delete a vertex 

from a list, we only mark it as being deleted (or perhaps not 

even that). Then, in order to check if VL(x) contains any node v 

which has not been previously deleted, we traverse the 

elements v in VL(x); if v was previously marked for deletion, or 

val(v)�x, only now will we (physically) remove v from VL(x). 

In this case, the total number of elements in all the lists can 

reach O(N+M), but the time complexity remains the same. 

Case 3 corresponds to the well-known Maximum Cardinality 

Search algorithm, which is used for identifying chordal graphs. 

Case 2 is used for computing the largest clique in a planar 

graph. A planar graph with N vertices has at most 3·N-6 edges. 

Thus, the sum of the degrees of all of its vertices is at most 

6·N-12, meaning that there is at least one vertex with degree at 

most 5. By repeatedly extracting the node v with the minimum 

degree (in Y), we know that this node always has at most 5 

neighbors (in Y). Thus, we can consider all the subsets formed 

by v and its neighbors (in Y) and verify for each of them if it 

forms a clique. We will maintain the largest clique found this 

way. If the nodes have weights (node i has weight w(i)), we can 

maintain the clique with the largest sum of its nodes’ weights 

found like this. Thus, we can compute the largest clique of a 

planar graph in O(N) time. Case 2 also has applications to 

finding a subgraph in which the minimum degree of a node is 

as large as possible: we repeatedly extract the vertex with the 

smallest degree (in Y); the result is equal with the maximum 

value among the degrees of the extracted nodes, at the moment 

when they are extracted. Case 4 is used in heuristic algorithms 

for computing the minimum vertex cover of a graph. 

III. ONLINE ANALYSIS OF TRAFFIC (SELF-) SIMILARITY 

An important part in efficient data transfer scheduling (i.e. 

acceptance and rejection of data transfer requests) is the 

identification of traffic patterns and (self-) similarities. Patterns 

make the traffic behaviour more predictable and, thus, more 

efficient decisions can be made. In this section we consider a 

time slot-based model, in which the time horizon is divided 

into T time slots. For each time slot t (1�t�T), traf(t) denotes 

the amount of traffic during the time slot. We leave the 

problem at this more general level, in order to be able to use it 

in multiple places (e.g. we can have the traffic of a single data 

transfer, the overall traffic on a network link, and so on). For 

any two traffic values a and b, we have a function eval(a, b), 

which computes information about their similarity in O(1) 

time. For instance, we can have eval(x,y)=|x-y| or eval(x,y)=if 

(|x-y|<threshold) then 0 else 1, or many other functions, 

depending on the application. In this section we are interested 

in answering efficiently aggregate traffic (self-) similarity 

queries. In order to make the presented solution as general as 

possible, we will consider that we have two arrays of T time 

slots, tr(1) and tr(2), for which we want to answer similarity 

queries. Self-similarity queries are answered when tr(1)=tr(2). 

A query has three parameters: Q(a, b, len) (a�b) and returns the 

aggregate of the values: eval(tr(1)(a+i), tr(2)(b+i)) (0�i�len-

1). The aggregate function aggf can be, for instance, +, max, or 

any other function. Occasionally, updates can occur: U(t, v, h) 
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changes the value of tr(h)(t) to v. The easiest solution is to do 

nothing special: we answer each query in time proportional to 

the len parameter and update a value tr(h)(t) in O(1) time (we 

simply set tr(h)(t)=v). However, since we expect queries to be 

much more frequent than updates, we need a more efficient 

approach. We will present three such approaches in this 

section. For the first approach we will divide the T time slots 

into T/k groups of k consecutive slots each (the last group may 

contain fewer than k slots). We number the groups from 1 to 

ng=O(T/k), the total number of groups. For each group j we 

define left(j) and right(j), the first and last time slots in group j. 

We also define nslots(j)=right(j)-left(j)+1. Moreover, for each 

time slot t we store group(t)=j if left(j)�t�right(j). Then, we 

compute a table Tagg(i,j)=the aggregate of the values 

eval(tr(1)(i+q), tr(2)(left(j)+q)) (0�q�nslots(j)-1; 1�i�T-

nslots(j)+1). This table will be computed in the beginning in 

O(T
2
) time. A query Q(a, b, len) can be answered as follows. 

We initialize qagg to a neutral value (which depends on the 

aggregate function we use: e.g. 0 for +; 1 for *; -� for max). 

Then, we initialize a counter idx to 0. As long as 

group(b+idx)=group(b) and idx<len, we set qagg=aggf(qagg, 

eval(tr(1)(a+idx), tr(2)(b+idx))) and then idx=idx+1. After this 

stage, if idx<len, then b+idx is the first slot of the group 

j=group(b+idx). While (idx+nslots(j)-1<len) we set qagg= 

aggf(qagg, Tagg(a+idx, j)) and then we set idx=idx+nslots(j). 

In the final part, if idx<len, we will perform the same actions 

as in the first part, i.e. while (idx<len) we set qagg=aggf(qagg, 

eval(tr(1)(a+idx), tr(2)(b+idx))) and then we increment idx by 

1. The time complexity of a query operation is O(k+T/k). An 

update U(t, v, h) is handled as follows. We modify tr(h)(t). 

Then, if h=2, we need to modify the values Tagg(i, j), with 

j=group(t). If h=1, we need to modify the values Tagg(i, j), for 

which t-nslots(j)+1�i�t. We can recompute from scratch all 

these O(T) values in O(k) time per value, obtaining a time 

complexity of O(T·k). However, if the function aggf is 

invertible (e.g. +, xor), we can recompute each value Tagg(i,j) 

in O(1) time as follows. We do not modify tr(h)(t) at the 

beginning. If h=2, we set Tagg(i,j)=aggf(aggf
-1

(Tagg(i,j), eval( 

tr(1)(i+t-left(j)), tr(2)(t))), eval(tr(1)(i+t-left(j)), v)). If h=1, we 

set Tagg(i,j)=aggf(aggf
-1

(Tagg(i,j), eval(tr(1)(t), tr(2)(left(j)+t-

i))), eval(v, tr(2)(left(j)+t-i)). After modifying all the values 

Tagg(i,j) which need to be modified, we can set tr(h)(t)=v. 

aggf
-1

(a,b) is equivalent to aggf(a,b
-1

), where b
-1

 is b’s inverse 

value relative to the aggf function (e.g. b
-1

=-b, for aggf=+, or 

1/b, for aggf=*). Thus, a query is answered in O(k+T/k) time, 

an update takes O(T·k) (or O(T)) time and the amount of 

occupied memory is O(T·k). If we choose k=T
1/2

, we obtain a 

query time of O(T
1/2

) and the amount of memory is O(T
3/2

). 

For the second approach we will maintain 2·T-1 segment 

trees. We will extend tr(2) with T-1 time slots to the left 

(numbered from –(T-2) to 0), having arbitrary values. Segment 

tree i (ST(i)) is built over the time slots [i,min{i+T-1,T}] of 

tr(2) (-(T-2)�i�T). Every leaf j�1 in ST(i) corresponds to time 

slot i+j-1 from tr(2). Every node q of ST(i) whose subtree 

contains the leaves in the interval [left(q),right(q)] maintains 

the aggregate of the values eval(tr(1)(j), tr(2)(i+j-1)) (1� 

left(q)�j�right(q)�min{T,T-i+1}). A query Q(a,b,len) consists 

of a range aggregate query in ST(b-a+1), for the interval of 

leaves [a, a+len-1], which can be answered in O(log(T)) time. 

An update U(s,v,h) with h=2 updates all the segment trees 

ST(i) with max{–(T-2),s-T+1}�i�s. We modify the value of the 

leaf j corresponding to slot s in ST(i), eval(tr(1)(j), tr(2)(i+j-

1)), (j=s-i+1) and then we traverse the ancestors of the leaf j, 

starting from leaf j’s parent and ending at the root of ST(i). For 

each visited ancestor anc, we recompute the aggregate value 

stored at the ancestor, by aggregating the values stored at its 

left and right sons. For h=1, we update the value assigned to 

the leaf j=s of every segment tree ST(i) (-(T-2)�i�T-s+1) and 

then, like before, we update the values assigned to the 

ancestors of these leaves in the corresponding trees. Thus, an 

update takes O(T·log(T)) time. The total memory is O(T
2
). 

We also mention a third approach, which is of interest only 

because it is easy to implement. It is similar to the first approach 

we presented. We will compute a table Tagg2(i,j)=the aggregate 

of the values eval(tr(1)(i+q), tr(2)(j+q)) (0�q�k-1). A query 

Q(a,b,len) is answered as follows. We maintain an index idx=0 

and a partial aggregate value qagg. While idx+k-1<len, we set 

qagg=aggf(qagg, Tagg2(a+idx, b+idx)) and then idx=idx+k. 

After this part, while idx<len, we set qagg=aggf(qagg, 

eval(tr(1)(a+idx), tr(2)(b+idx))) and then we increment idx by 

1. The time complexity of a query is O(k+T/k). An update 

U(t,v,h) modifies tr(h)(t) and then recomputes the values 

Tagg2(i,j) with t-k+1�i�t (if h=1) or t-k+1�j�t (if h=2) (O(T·k) 

pairs (i,j)). We can recompute each pair in O(k) time, or, if aggf 

is invertible, in O(1) time, just like we did in the first approach 

(by removing from Tagg2(i,j) the contribution determined by 

tr(h)(t) and replacing it by the contribution of the new value v; 

for instance, for h=1, Tagg2(i,j)=aggf(aggf
-1

(Tagg2(i,j), eval( 

tr(1)(t), tr(2)(j+t-i))), eval(v, tr(2)(j+t-i)); for h=2, the equation 

is the same if we swap the indices i and j and the order of the 

arguments of the table Tagg2 and of the function eval). 

IV. RANGE SELECTION QUERIES (AND UPDATES) 

We are given n points in d�1 dimensions (e.g. n resources, 

like network links, each of them having d features, like latency 

or available bandwidth). Each point i has coordinates (x(i,1), ..., 

x(i,d)) and a weight w(i). We want to be able to answer 

selection queries of the following type: find the k
th

 smallest 

weight among the set of weights of the points contained in a 

given d-dimensional range [xa(1),xb(1)] x ... x [xa(d),xb(d)]. A 

point i is contained in the given range if xa(j)�x(i,j)�xb(j) for 

every dimension 1�j�d. We propose the following solution. 

We will construct for each point i a point p(i) in (d+1) 

dimensions, with coordinates (x(i,1), ..., x(i,d), w(i)). Then, we 

insert all the p(i) points in a (d+1)-dimensional range tree RT. 

Such a range tree is capable of answering the following type of 

range count query in O(log
d+1

(n)) time (or O(log
d
(n)) time by 

using fractional cascading, if the set of points is static): 

compute the number of points in the tree which are located in a 

given (d+1)-dimensional range [xa(1),xb(1)] x ... x 

[xa(d+1),xb(d+1)]. RT can be constructed in O(n·log
d
(n)) time 

and takes O(n·log
d
(n)) space. We can now answer a selection 

query (find the k
th

 smallest weight in a range) by binary 

searching the k
th

 smallest weight wk. We sort the weights of the 
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points as a preprocessing step and then binary search wk using 

the sorted array of point weights, where every position of the 

array can be accessed in O(1) time; if the set of points is 

dynamic, we can store all the weights in a balanced tree, which 

can be interpreted as a sorted array, except that the value of the 

p
th

 position (1�p�n) is accessed in O(log(n)) time. In the binary 

search procedure we need to perform a feasibility test which, 

given a parameter wt, decides if wt�wk or wt<wk. The 

feasibility test consists of querying RT with the (d+1)-

dimensional range [xa(1),xb(1)] x ... x [xa(d),xb(d)] x (-�,wt]. 

If the number p of points contained in this range is �k, then 

wt�wk; otherwise, wt<wk. With this feasibility test, the binary 

search computes the smallest weight wk such that there are at 

least k points i with w(i)�wk in the given d-dimensional range, 

i.e. exactly the k
th

 smallest weight in that range. The time 

complexity of a selection query is O(log(n))·O(log
d+1

(n))= 

O(log
d+2

(n)) (or O(log
d+1

(n)), if the point set is static and we 

use fractional cascading). If the set of points is dynamic, i.e. we 

can insert a new point, delete an old point or change the weight 

of an existing point, we need to make the range tree dynamic as 

well. In this case, the time complexity of an insertion, deletion 

or change of weight is O(log
d+1

(n)) for the (d+1)-dimensional 

range tree RT. We should notice that insertion/deletion and 

change of weight are partially equivalent. Changing the weight 

of a point is equivalent to deleting the point and reinserting it 

with the new weight. Selection queries arise whenever we do 

not want to reserve the „best” resource, but the k
th

 best one. 

In another application we have n network links (with 0 

reservations initially) on a path, in order, from 1 to n. We can 

perform two types of operations. An update operation with 

parameters (o, v, i, j) adds o reservations with the same priority 

v (VMIN�v�VMAX) to each link in the range [i,j]. A query with 

parameters (k, i, j) asks for the k
th

 smallest priority of a 

reservation among all the reservations contained in a given 

range of links [i,j]. We will maintain a segment tree over the n 

links. Each node q of the segment tree stores its leftmost and 

rightmost leaf index (left(q) and right(q)), and two balanced 

trees, T1(q) and T2(q) (initially empty). During an update, we 

compute a canonical decomposition of O(log(n)) tree nodes of 

the update interval [i,j]. For each tree node q in the 

decomposition we search a pair (v,*) in T1(q). If we cannot find 

such a pair, then we add the pair (v,o) to T1(q). If we find a pair 

(v,x), we remove it from T1(q) and add the pair (v,x+o) back to 

T1(q). For each node a which is an ancestor of a node q in the 

decomposition (there are O(log(n)) ancestor nodes), we search 

for a pair (v,*) in T2(a). If we find such a pair (v,x), we remove 

it from T2(a) and add (v,x+o·ilen(a,i,j)) back to T2(a); 

otherwise, we just add (v,o·ilen(a,i,j)) to T2(a). ilen(a,i,j) is the 

number of links in the intersection of the intervals 

[left(a),right(a)] and [i,j]. Every search, delete and insert 

operation on T1(q) (T2(a)) takes O(log(m)) time; m=the number 

of update operations which modified T1(q) (T2(a)). T1(*) and 

T2(*) are augmented binary search trees, i.e. each node of T1(*) 

(T2(*)) maintains the sum of the second argument and the 

minimum and maximum v value of all the pairs (v,x) in its 

subtree. Thus, we will be able to compute the sum of all the 

values x of the pairs (v,x) with a�v�b in logarithmic 

(O(log(m))) time. For a query we binary search the k
th

 smallest 

priority vk inside the interval of links [i,j], between VMIN and 

VMAX. For every candidate priority v, we compute the number p 

of reservations with priorities v’�v. If p�k, we have v�vk; 

otherwise, v<vk. We initialize p to 0 and then we compute the 

canonical decomposition of the query interval [i,j]. For each 

tree node q in the decomposition, we compute in logarithmic 

time the value S(q,v)=the sum of the parameters x of the pairs 

(v’,x) in T1(q) with -��v’�v. Then, we increase p by 

S(q,v)·(right(q)-left(q)+1), i.e. by the product between S(q,v) 

and the number of links contained in the range corresponding 

to the node q. We also compute R(q,v)=the sum of the 

parameters x of the pairs (v’,x) in T2(q), with -��v’�v and 

increase p by R(q,v). For every ancestor tree node a of a tree 

node q in the canonical decomposition, we compute S(a,v), 

having the same meaning for node a, as S(q,v) for node q; then, 

we increase p by S(a,v)·ilen(a,i,j). An update (query) takes 

O(log
2
(n)) (O(log(VMAX-VMIN+1)·log

2
(n))) time. 

V. RELATED WORK AND CONCLUSIONS 

In [1], the authors analyze the offline scheduling of unit 

duration calls in trees, rings and meshes. In [2], the authors 

present efficient algorithms for offline and online scheduling of 

unit capacity multicast data transfers in trees and meshes. In [3], 

we present an algorithmic framework for several efficient data 

structures which can be used for data transfer scheduling on 

single-link and path networks. In [4], the authors introduce a 

wide range of algorithmic techniques for scheduling data 

transfers in tree networks. Several heuristic methods for data 

request scheduling were presented in [5]. A scheduling model 

based on bandwidth reservations for critical data transfers was 

introduced in [6]. In this paper we presented several novel 

algorithmic techniques for the optimization of the decision 

process regarding multimedia data transfer request scheduling, 

in the context of a centralized resource manager. The techniques 

were developed in order to improve both the execution time and 

the accuracy of the decision algorithms. Their efficiency has 

been thoroughly examined from a theoretical point of view. 
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