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ABSTRACT
This paper deals with the identification of hybrid systems
switching between nonlinear subsystems of unknown struc-
ture and focuses on the connections with a family of machine
learning algorithms known as support vector machines. In
particular, we consider a recent approach to nonlinear hy-
brid system identification based on a convex relaxation of a
sparse optimization problem. In this approach, the submod-
els are iteratively estimated one by one by maximizing the
sparsity of the corresponding error vector. We extend this
approach in several ways. First, we relax the sparsity condi-
tion by introducing robust sparsity, which can be optimized
through the minimization of a modified ℓ1-norm or, equiva-
lently, of the ε-insensitive loss function. Then, we show that,
depending on the choice of regularizer, the method is equiv-
alent to different forms of support vector regression. More
precisely, the submodels can be estimated by iteratively solv-
ing a classical support vector regression problem, in which
the sparsity of support vectors relates to the sparsity of the
error vector in the considered hybrid system identification
framework. This allows us to extend theoretical results as
well as efficient optimization algorithms from the field of
machine learning to the hybrid system framework.

Categories and Subject Descriptors
G.1 [Mathematics of Computing]: Numerical Analy-
sis—Approximation, Optimization; I.2.6 [Artificial Intel-
ligence]: Learning
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1. INTRODUCTION
This paper deals with the identification of hybrid dynam-

ical systems and in particular with the connections between
this problem and the fields of sparse optimization and ma-
chine learning. More precisely, we consider switched nonlin-
ear systems that can be written in input–output Nonlinear
ARX (NARX) form as

yi = fqi(xi) + vi, (1)

where vi is a noise term, qi ∈ {1, . . . , s} and, at time step i,
the output yi is given by the qith function of the collection
of submodels {fj}sj=1 and the vector of regressors

xi = [yi−1, . . . , yi−na , ui−nk
, . . . , ui−nk−nb+1]

T

built from past inputs ui−k and outputs yi−k. In this set-
ting, we call qi the mode of xi. The goal of the identification
is to estimate the submodels {fj}sj=1 from a training set of

input–output data, {(xi, yi)}Ni=1, without knowledge of the
corresponding sequence of modes {qi}Ni=1. The paper fur-
ther focuses on the case where the submodels are nonlinear
functions of arbitrary and unknown structure.

Related work. Many approaches have been proposed
over the last decade for the case where the submodels fj are
linear (or affine) [24]. These include the algebraic approach
[36] and various convex [22, 1, 23, 18] and nonconvex [9,
26, 4, 13, 17, 15] optimization-based approaches, to name a
few. But far fewer works have considered the nonlinear case,
since the problem was formally stated more recently in [16]
with a preliminary solution suffering from strong limitations,
particularly regarding the number of data that could be pro-
cessed by the identification algorithm. In [19], the approach
of [17] for linear hybrid systems is extended to estimate the
s nonlinear submodels at once via the solution of a contin-
uous, but nonconvex, optimization problem. The quality
of the estimates thus obtained rely on the capabilities of
global optimization solvers, and thus cannot be guaranteed



for models with many parameters. On the other hand, the
approach of [2], which extends the method of [1], relies on a
sequence of convex optimizations to estimate the submod-
els one by one, and thus does not suffer from local minima
issues. More precisely, the method relies on the formulation
of the identification as a sparse optimization problem and
its convex relaxation. However, the analysis of the method
provided in [2] is only valid for noiseless data. This is all
the more unsatisfactory in the nonlinear setting, since the
uncertainty on the model structure can be interpreted as a
form of noise.
Contribution. The present work considers the sparse

optimization framework of [1, 2], which we extend in several
ways. First, we introduce the notion of robust sparsity to
relax the conditions on the noise under which the method
can yield optimal estimates. Then, a convex relaxation is
proposed to allow for the optimization of the robust spar-
sity through the minimization of a modified ℓ1-norm. Fi-
nally, we show that the resulting convex optimization pro-
grams can be equivalently formulated as the minimization
of the ε-insensitive loss function proposed in the machine
learning community for Support Vector Regression (SVR)
[32], a particular instance of the Support Vector Machine
(SVM) [35]. Depending on the choice of regularizer, a for-
mal equivalence between sparse optimization based hybrid
system identification and SVR can be obtained, in which
the sparsity of support vectors relates to the sparsity of the
error vector in the considered identification framework. Al-
gorithmically, the submodels can be estimated by iteratively
solving a classical SVR learning problem, which allows the
method to benefit from the numerous advances on SVMs
for machine learning, for instance regarding the tuning of
the hyperparameters. In addition, efficient optimization al-
gorithms dedicated to SVMs can be applied as off-the-shelf
solvers to nonlinear hybrid system identification with very
large data sets, which typically cannot be handled by general
purpose convex optimization solvers.
Notations. All vectors and matrices are written with

bold symbols. In particular, 1 denotes a vector of appropri-
ate dimension filled with ones and I is the identity matrix.
Inequality symbols applied to vectors are to be understood
entry-wise. The notation 〈·, ·〉E stands for the inner product
in E, while |I| denotes the cardinality of I whenever I is a
set.
Paper organization. The rest of the paper starts in

Sect. 2 with some background in nonlinear model estimation
by focusing more particularly on recent machine learning
approaches. Then, Section 3 recalls the sparse optimization
approach to hybrid system identification and its extension to
the case of nonlinear submodels (Sect. 3.2), including a dis-
cussion on the choice of the regularizer (Sect. 3.3). Robust
sparsity is introduced in Sect. 4, where the connection with
SVMs is explicitly stated (Sect. 4.1–4.3) and its benefits dis-
cussed (Sect. 4.4 and 4.6). The paper ends with numerical
examples in Sect. 5 and conclusions in Sect. 6.

2. LEARNING NONLINEAR MODELS
In this section we provide the necessary background on

nonlinear model estimation. In particular, we consider the
case of arbitrary and unknown nonlinearities and focus on
the estimation of a single (non-hybrid) nonlinear model. In
such a setting, both the structure and the parameters of
the model must be estimated from the data. While this

clearly constitutes a difficulty, recent approaches developed
in machine learning allow both subproblems to be solved
simultaneously through convex optimization.

One issue which must be considered with care in non-
linear regression compared to the linear case is overfitting.
While linear models are constrained within a restricted func-
tion class of low capacity, nonlinear function classes can in-
clude very complex functions. The typical functions classes
provide sufficient flexibility for the model to yield a per-
fect fit of the data. Thus, if we were to minimize the error
on a data set, the model would learn the noise as well as
the target function, i.e., overfit the training data. Hence,
most approaches to nonlinear modeling include a regular-
ization scheme to control the complexity (or flexibility) of
the model.

Formally, the considered approach to nonlinear modeling
can be stated as follows. Assume we are given a training set
D of N pairs (xi, yi) ∈ (X ⊂ R

d) × (Y ⊂ R), i = 1, . . . , N ,
with the general goal of learning a function f ∈ H such
that this function minimizes, over some function class H, a
regularized functional representing a trade-off between the
fit to the data and some regularity conditions of f :

min
f∈H

N
∑

i=1

ℓ(f(xi), yi) + λR(f), (2)

where the data term is defined through a loss function ℓ of
R

2 to R
+, R(f) is a general regularization term and λ ≥ 0

tunes the trade-off between the two terms.
Though searching for f within a specific function class

H can be related in some cases to a particular choice of
structure for the nonlinear model f , this can also be more
general. In particular, by assuming that f is an expansion
over some functional basis, a single function f ∈ H can have
multiple representations (and parametrizations) depending
on the choice of the basis. In addition, we will see below
that H can be an infinite dimensional function space with
the universal approximation capacity while still allowing for
learning from a finite set of data. As a practical consequence,
arbitrary nonlinearities can be learned without introducing a
bias due to an arbitrary choice of unsuitable or insufficiently
flexible structure for f .1

2.1 Learning in RKHS
We start with some formal definitions. Let K be a real-

valued positive type (or positive definite) function [5] on X 2

and (H, 〈·, ·〉H) the corresponding reproducing kernel Hilbert
space (RKHS), i.e., K is the reproducing kernel of H with
the reproducing property: ∀x ∈ X , ∀f ∈ H, 〈f,K(x, ·)〉H =
f(x), and in particular

〈K(x, ·),K(x′, ·)〉H = K(x,x′).

In this case, the class of functions H can be written as

H =

{

f : f =
∞
∑

i=1

αiK(xi, ·), αi ∈ R,xi ∈ X , ‖f‖H < +∞
}

,

(3)
where the norm ‖·‖H is the norm in H induced by the inner

1Note that, due to the bias-variance dilemma, this does not
imply the optimal recovery of the target function.



product defined as

‖f‖2H = 〈f, f〉H =
∞
∑

i=1

∞
∑

j=1

αiαjK(xi,xj). (4)

Typical examples of kernel functions include the Gaussian
Radial Basis Function (Gaussian RBF) kernel, K(x,x′) =
exp(−‖x − x′‖22/2σ2), the polynomial kernel, K(x,x′) =
(xTx′+1)γ , and the linear kernel, K(x,x′) = xTx′. For the
Gaussian RBF kernel, the space H consists of all infinitely
differentiable functions of X and thus enjoys the so-called
universal approximation capacity, i.e., an arbitrary function
can be arbitrarily well approximated by a function in H.
When learning in an RKHS, a natural choice for R(f) is

based on the RKHS norm:

R(f) =
1

2
‖f‖2H. (5)

Such a regularizer is a measure of the function smoothness2

and is particularly suitable for cases without prior informa-
tion on the shape of the target function. In addition, with
(5), the representer theorem [27] provides an explicit struc-
ture for the solution to (2). This theorem is recalled below,
where Dx denotes the set of all points xi in the training set
D (a sketch of the proof is given in Appendix A).

Theorem 2.1 (Representer Theorem, [27]). The
solution f∗ to (2), with H defined as in (3), R(f) = g(‖f‖H)
and a monotonically increasing function g : R+ → R

+, is
a kernel expansion over the training set, i.e., f∗ is in the
span of {K(xi, ·) : xi ∈ Dx}.

This result shows that minimizing any regularized func-
tional of the form (2) over an RKHS leads to finite linear
combinations of kernel functions computed at the training
points:

f(x) =

N
∑

i=1

αiK(xi,x). (6)

Note that a semiparametric version of Theorem 2.1 is also
provided in [27] to allow for a bias term in the model. This

is obtained by considering a model f̃ = f + b, with f ∈ H
and b ∈ R, regularized only in f . In most of the paper, we
omit this straightforward substitution and focus on models
in the form of f in (6).
Finally, given the structure of the model (6), solving (2)

with a convex loss function ℓ amounts to a finite-dimensional
and convex optimization problem.

2.2 ℓ1-norm regularization
Another typical regularization scheme for models based

on kernel functions is to penalize the ℓ1-norm of the param-
eters, i.e., to penalize ‖α‖1, with α = [α1 . . . αN ]T , in (6).
However, this scheme cannot apply to (2) with H defined
as in (3), since α depends on the particular choice of basis
functions through {xi}∞i=1 and need not be uniquely defined.
Therefore, this scheme is usually applied with the structure

2For smooth kernel functions K, all f ∈ H are smooth func-
tions with infinite order of differentiability. However, here, a
large measure of smoothness refers to functions with deriva-
tives of small magnitude rather than a high order of differ-
entiability. The RKHS norm in (5) provides an upper bound
on these magnitudes (see, e.g., Corollary 4.36 in [33]).

of f fixed a priori. With f chosen as in (6), this leads to

min
α∈RN

N
∑

i=1

ℓ(f(xi), yi) + λ‖α‖1 (7)

s.t. f(x) =
N
∑

i=1

αiK(xi,x).

While this learning strategy also provides control over the
complexity of the model, as detailed in Appendix B, it is
often chosen in order to favor sparse solutions with few
nonzero αi. Indeed, the sparsity of α directly defines the
number of operations required to compute the output of the
model (6) for a given x.

3. SPARSE OPTIMIZATION FOR HYBRID
SYSTEM IDENTIFICATION

We now recall the sparse optimization framework of [1] in
the case of switched linear systems, while its extension to
the case of switched nonlinear systems will be detailed in
Sect. 3.2.

Consider a switched linear system, i.e., of the form (1)
with linear submodels, fj(xi) = xT

i θj . As proposed in
[1], switched linear systems can be identified via sparse
optimization. In this approach, a single parameter vector
θ is first estimated by maximizing the sparsity of the er-
ror vector, e = y − Xθ, where X = [x1 . . . xN ]T and
y = [y1 . . . yN ]T . In the noiseless case, each entry ei in e

can be zero by choosing θ as the vector of parameters θqi

that generated the corresponding data point. Therefore, by
searching for the pair (θ, e) leading to the sparsest vector
e, we recover the parameters of the submodel that gener-
ated the largest percentage of data. Formally, the sparsity
is measured through the ℓ0-pseudo norm,

‖e‖0 = |{i : ei 6= 0}| ,
where a vector e with small norm ‖e‖0 is said to be sparse,
and one solves

min
θ,e

‖e‖0 (8)

s.t. e = y −Xθ

to obtain the first parameter vector. Then, the data points
with corresponding ei = 0 are removed from the data set,
and (8) is solved again to obtain the second parameter vec-
tor. Applying this procedure iteratively until all data are
correctly approximated and removed from the training set
yields all the submodels.

3.1 Convex relaxation
Since (8) is a nonconvex optimization problem, we instead

consider a convex relaxation based on the best convex ap-
proximation to the ℓ0-pseudo norm, i.e., the ℓ1-norm. In
order to improve the sparsity of the solution, an iteratively
reweighted scheme is employed, as proposed by [7]. Thus,
each parameter vector is recovered by iteratively solving

min
θ

‖W k(y −Xθ)‖1, (9)

where W 0 = I and W k is a diagonal matrix of entries
(W k)ii = 1/(|yi − xT

i θ
k−1| + δ), with δ a small positive

number, and θk−1 the solution at iteration k − 1.
In [1], the following sparse recovery conditions are stated.



Theorem 3.1 (Theorem 11 in [1]). If there is a vec-
tor θ such that

‖y −Xθ‖0 <
1

2

(

1 +
1

m(X)

)

,

with

m(X) = max
1≤t,k≤N,t 6=k

|Mtk|
√

(1−Mtt)(1−Mkk)
,

where M = X(XTX)−1XT and Mtk is the (t, k)th entry
of M , then θ is the unique solution to both (8) and (9) with
W k = I.

Note that this result directly applies only to the first iter-
ation of the reweighted scheme. However, it provides suffi-
cient ground for the method, while the convergence analysis
of the reweighted scheme remains a difficult open issue.

3.2 Extension to nonlinear submodels
When the submodels fj are nonlinear, the procedure

above can be extended to estimate nonlinear submodels.
The basic idea is to replace xT

i θ by an expansion over a
set of basis functions, e.g., a kernel expansion as in (6). As
discussed in Sect. 2, depending on the regularizer R(f), this
either corresponds to an arbitrary choice of nonlinear struc-
ture for the model or to the explicit form of the solution. We
first describe the complete procedure for a general regular-
izer and nonlinear model before detailing the typical choices.
For a given function class H, the nonlinear submodel f of

a single mode is estimated by solving

min
f∈H

N
∑

i=1

wi|yi − f(xi)|+ λR(f), (10)

with wi = (W k)ii > 0. By defining the error vector e ∈ R
N

with components ei = yi − f(xi), we see that the first term
in (10) is merely ‖W ke‖1.

3.3 Choice of the regularizer
In machine learning, it is a well-known fact that one can-

not learn without a minimal set of assumptions on the target
function. In the most general case, where no prior knowl-
edge is available, the less informative assumption concerns
the smoothness of the target function. Indeed, without as-
suming that function values should be close for two points
that are close in the regression space X , one cannot learn
from a finite set of points and generalize to others. In prac-
tice, the smoothness assumption is typically implemented
by regularization as in (2). We now discuss two particular
choices for the regularizer R(f).

3.3.1 Sparsity inducing regularization
In [2], a regularization term based on the ℓ0-norm of the

parameter vectorα is introduced, before being relaxed to the
convex ℓ1-norm. While the ℓ1-norm is a typical choice for
regularization, which is also known for its sparsity inducing
feature, ℓ0-norm regularization is more ambiguous regarding
the resulting smoothness of f . Therefore, in this case, the
aim of minimizing the ℓ1-norm is not to recover the smallest
ℓ0-norm solution through a convex relaxation, and we will
not delve into theoretical guarantees of convergence of the
ℓ1-solution to the ℓ0-solution.
Let K be the so-called Gram matrix of the kernel K with

respect to the sample Dx, i.e., with all components given by

(K)ij = K(xi,xj). Then, with ℓ1-norm regularization, the
submodels are estimated by solving

min
α∈RN

‖W k(y −Kα)‖1 + λ‖α‖1, (11)

where the classical reweighting scheme applies.

3.3.2 Capacity control regularization
The typical approach used in machine learning to estimate

nonlinear functions is to control the capacity of the model by
penalizing the nonsmoothness of f . This can be measured
through a norm of f .

Using the natural RKHS squared norm defined in (4),
R(f) = 1

2
‖f‖2H, the nonlinear submodels are estimated by

solving the convex optimization problem

min
f∈H

N
∑

i=1

wi|yi − f(xi)|+
λ

2
‖f‖2H, (12)

whose solution is in the form of (6) by application of The-
orem 2.1 with the convex loss function3 ℓ(f(xi), yi) = |yi −
f(xi)| in (2).

4. ROBUST SPARSITY
A preliminary condition to the sparse recovery conditions

derived in Sect. 3.1 (see Theorem 3.1) is that the data must
be noiseless. Indeed, with noisy data, no (or very few) en-
tries of the error vector can be zero4, hence breaking the
sparsity of the optimal solution.

In order to circumvent the issue of the lack of zeros in the
error vector, we introduce robust sparsity as defined through
the pseudo-norm

‖e‖0,ε = |{i : |ei| > ε}| .

Under a bounded noise assumption of the type ‖v‖∞ =
maxi∈{1,...,N} |vi| ≤ ε, the error vector, e = [y1 −
f(x1), . . . , yN − f(xN )]T , can be robustly sparse, i.e., with
a small value of ‖e‖0,ε, if f is a sufficiently good approxima-
tion of one of the target submodels fj .

Instead of the nonconvex pseudo-norm above, we consider
the following convex relaxation based on a modified ℓ1-norm:

‖e‖1,ε =
∑

i

(|ei| − ε)+ =
∑

i

max{0, |ei| − ε},

which is defined as a sum of pointwise maximum of con-
vex functions of ei and hence is convex with respect to all
components ei. In the following, we will refer to the pseudo
norm above as the ℓ1,ε-norm.

With these definitions, the procedure to estimate the sub-
models under noisy conditions is similar to the one presented
in Sect. 3 for the noiseless case, with the ℓ1,ε-norm substi-
tuted for the ℓ1-norm. Similarly, after the estimation of a
submodel f , the data points correctly approximated by f
are removed, where “correctly approximated” is now imple-
mented by the test |yi − f(xi)| ≤ ε.

3For the sake of brevity, we omitted the weights wi in (2),
but Theorem 2.1 in its original version found in [27] equiv-
alently applies to a weighted sum of losses.
4With nonlinear models of sufficient capacity, the error vec-
tor can actually be zero. But, as already discussed, this is
not a desirable case, since this would clearly indicate over-
fitting. Here, we focus on sufficiently regularized (and desir-
able) solutions, for which the error vector cannot be sparse.



4.1 ℓ1-norm regularization
By assuming submodels in the form of (6), estimating one

of the nonlinear submodels by maximizing the robust spar-
sity of the error vector can be set as the convex optimization
problem:

min
α∈RN

‖y −Kα‖1,ε + λ‖α‖1, (13)

where the convexity of the first term is due to the convexity
of the ℓ1,ε-norm and the linearity of f wrt. the parameters
α. Note that robust sparsity is only considered for the error
vector, and that the standard ℓ1-norm is used for regular-
ization.

Connection with Support Vector Machines.
Problem (13) can be written as the linear program

min
(α,a,ξ)∈R3N

1T
a+ C1T

ξ (14)

s.t. − ξ − ε1 ≤ y −Kα ≤ ε1+ ξ

− a ≤ α ≤ a,

with C = 1/λ. Here, the objective function has been divided
by λ in order to emphasize the equivalence with the train-
ing algorithm of the so-called Linear Programming Support
Vector Regression (LP-SVR) proposed in [21] for nonlinear
function approximation.

4.2 RKHS norm regularization
Introducing robust sparsity in (12) yields

min
f∈H

1

2
‖f‖2H + C

N
∑

i=1

ℓε(yi, f(xi)), (15)

with C = 1/λ and the ε-insensitive loss function defined as
in [35] by

ℓε(yi, f(xi)) = max {0, |yi − f(xi)| − ε} .
With these definitions, the connection with Support Vector
Regression (SVR) [32] becomes apparent, as detailed below.

Connection with Support Vector Machines and explicit
solution.
It is known (see, e.g., [32]) that a kernel functionK implic-

itly defines a (nonlinear) feature map, Φ : X → F , mapping
the regressors x into a feature space F , where the model f
becomes linear, i.e.,

f(x) = 〈w,Φ(x)〉F , (16)

with parameters w ∈ F . In order to emphasize the relation-
ship with SVMs below, we further consider the affine model
f̃ = f + b, with b ∈ R. With these notations, and a sim-
ple substitution of f̃ for f in the computation of the loss,
problem (15) can be written as

min
w,b,ξi,ξ

′

i

1

2
‖w‖2 + C

N
∑

i=1

(ξi + ξ′i) (17)

s.t. yi − 〈w,Φ(xi)〉F − b ≤ ε+ ξi

yi − 〈w,Φ(xi)〉F − b ≥ −ε− ξ′i

ξi ≥ 0, ξ′i ≥ 0,

which is the primal form of the training algorithm of a sup-
port vector machine for nonlinear regression (SVR) [32].

Note that, Φ and F are only implicit and need not be known
nor finite-dimensional, and so does w. What is known how-
ever is that, by construction, 〈Φ(x),Φ(x′)〉F = K(x,x′).
Thus, by Lagrangian duality, this problem can be reformu-
lated as the finite-dimensional quadratic program

max
β∈RN ,β′∈RN

− 1

2
(β − β

′)TK(β − β
′)− ε1T (β + β

′)

+ y
T (β − β

′) (18)

s.t. 1T (β − β
′) = 0

0 ≤ β ≤ C, 0 ≤ β
′ ≤ C,

which involves Φ only through the (computable) matrix
K. Then, the solution of the primal is given by w =
∑N

i=1 αiΦ(xi), where αi = βi − β′
i. The reader is referred

to [32] for more details on the derivation of (18) and on the
computation of b.

From these results, the connection with RKHS theory
(Sect. 2.1) can readily be seen by choosing Φ as the most nat-
ural feature map for a kernel function, i.e., the one that maps
X to the corresponding RKHS: Φ(x) = K(x, ·) and F = H.
Indeed, this yields f = w and f(x) = 〈f,K(x, ·)〉H =

〈w,Φ(x)〉F =
∑N

i=1 αi〈Φ(xi),Φ(x)〉F =
∑N

i=1 αiK(xi,x).

4.3 Sparsity, support vectors and outliers
We now detail the connections between nonlinear hybrid

system identification and support vector regression at the
sparsity level.

In the robust sparsity optimization framework, the error
vector, e, is (robustly) sparse and the data points with large
errors, i.e., |yi−f(xi)| > ε, are considered as outliers. In the
SVR framework, these points are known as support vectors
(SVs) and the model f is said to be sparse in the sense that
the vector of parameters α is sparse. Formally, a SV is a
regression vector xi from the training set which is retained
in the model f after training, i.e., the set of SVs is the set
of points xi for which αi 6= 0. Sparsity of the model is an
advantageous feature of SVR which leads to faster compu-
tations of outputs f(x) by reducing the number of terms
in the sum (6). The connection between the two forms of
sparsity, measured by ‖α‖0 for the model and by ‖e‖0,ε for
the error, is given by the following classical result (see, e.g.,
[32]):

‖α‖0 = ‖e‖0,ε + (N − ‖e− ε1‖0) + (N − ‖e+ ε1‖0) .
In words, the set of SVs coincides with the set of points that
are not inside the ε-tube of insensitivity, i.e., points with
|yi−f(xi)| ≥ ε. This set differs from the set of outliers only
by the points that lie exactly on the boundary of the ε-tube.

4.4 Tuning of the threshold ε

Regarding the tuning of the threshold ε, the following
different cases must be considered.

4.4.1 Bounded-error approach
In [4], a bounded-error approach is proposed for linear hy-

brid system identification, in which the number of submodels
is estimated in order to satisfy, for a predefined threshold δ,
a bound of the form |yi − f(xi)| < δ, for all data points.
Such a bound is optimal in the bounded noise case, with
δ = ‖v‖∞, where v is the concatenation of all noise terms.
But it is also more general in the sense that it does not re-
quire a noise model. Indeed, the aim is to obtain a set of



submodels which approximate the data with a given toler-
ance. Thus, the parameter δ allows one to tune the trade-off
between the model complexity (measured as the number of
submodels) and the fit to the data. The original sparse op-
timization approach of [1] is of a similar flavor, but uses a
data-dependent threshold δ(xi, yi, f). In addition, its anal-
ysis focuses on the noiseless case, in which the true number
of modes can be recovered.
Following these works, a similar strategy applies to the

proposed method, where ε plays a similar role as δ.

4.4.2 With assumptions on the noise model
Optimal values for ε have been investigated in the con-

text of SVR under various noise models by different authors,
where “optimal” is to be understood with respect to the pre-
cise setting of each author’s analysis. A common result of
these works shows a linear dependency between the optimal
value of ε and the noise standard deviation, σv. While this is
rather intuitive for a uniform noise model, in which case the
optimum is ε = σv, this is more intricate for Gaussian noise.
In particular, [30] obtained a first estimate at ε = 0.621σv,
in a maximum likelihood estimation framework. More pre-
cisely, they considered the asymptotically optimal ε as the
maximizer of the statistical efficiency of the estimator of
a single location parameter, which is an oversimplification
of the regression setting. A better estimate of the optimal
value of ε for Gaussian noise (also in better accordance with
experimental observations) was obtained in [14] by consid-
ering the complete regression problem in the maximum a
posteriori setting. In this case, they estimated the optimal
value of ε with a type 2 maximum likelihood method from
Bayesian statistics. Another intuitive result developed in
[14] concerns Laplacian noise, for which ε = 0 is the optimal
choice. Indeed, with ε = 0, the ℓ1,ε-norm coincides with the
ℓ1-norm, and the ε-insensitive loss with the absolute loss
which is known to yield a maximum likelihood estimator
for Laplacian noise in linear regression. These results are
summarized in Table 1.

Table 1: Optimal values of ε with a noise model of
standard deviation equal to σv.

Noise model Uniform Laplacian Gaussian
Optimal ε σv 0 1.0043σv

An additional difficulty with Gaussian or Laplacian noise
is that the criterion, |yi − f(xi)| ≤ ε, used to remove data
points after the estimation of a submodel becomes subopti-
mal: data points with larger noise terms are not removed.
In this case, the complete procedure must be stopped when
a sufficiently small, but not too small, number of data points
remain in the data set. The rationale here is that points with
a low noise magnitude are used to estimate the submodels,
while the others are considered as outliers. We further as-
sume that these outliers represent a small fraction of the
data set. Since at each iteration of the sparse optimization
approach, a submodel is estimated from a set of points repre-
senting a large fraction of the remaining data, it is expected
that outliers are left unused until the end of the procedure.

4.4.3 Automatic tuning
In the SVM literature, problem (17) is sometimes referred

to as ε-SVR to distinguish it from the alternative ν-SVR [28]

which allows for the automatic tuning of ε. In the derivation
of ν-SVR, the trick is to add a term in the objective function
of (17) in order to minimize ε while learning the model. This
leads to

min
f∈H,ε∈R+

1

2
‖f‖2H +

C

N

N
∑

i=1

ℓε(yi, f(xi)) + Cνε, (19)

where ν ≥ 0 is a new hyperparameter tuning the trade-
off between the minimization of ε and the minimization of
the errors larger than ε. As for the ε-SVR, the solution
to this new fomulation is obtained in the form of (6) by
solving the dual. However, in this case, the hyperparameter
ν enjoys a number of properties which can ease its tuning
when compared to ε in (17). In particular, it is shown in
[28] that ν > 1 yields ε = 0 and that, if ε > 0, ν ∈ [0, 1] can
be interpreted as the fraction of data points outside of the
ε-tube of insensitivity, i.e., ν ≈ ‖e‖0,ε.

A similar approach can be followed in the case of ℓ1-norm
regularization. This leads to a formulation of the LP-SVR
allowing for the automatic tuning of ε via linear program-
ming as proposed in [31] or [21].

4.5 Iteratively reweighted scheme
As in the classical case for sparse optimization, a

reweighted scheme can be used to improve the recovery of
robustly sparse solutions with low sparsity. This leads for
instance to

min
f∈H

1

2
‖f‖2H + C

N
∑

i=1

wi ℓε(yi, f(xi)),

with wi defined as in (10). Such a formulation corresponds
to a Weighted-SVR, which has been proposed (with fixed
weights) by [34] and others in order to deal with a varying
confidence in the data points or to introduce various forms
of prior knowledge.

4.6 Algorithmic and implementation issues
The theoretical equivalence between nonlinear hybrid sys-

tem identification via sparse optimization and support vec-
tor regression also yields direct algorithmic benefits. In par-
ticular, this means that the problem can be solved efficiently
even for large data sets (e.g., with more than ten thousand
points).

First, note that all the considered convex formulations,
e.g., (11) or (13), are theoretically simple optimization prob-
lems due to their convexity. However, despite the possibility
to write them as linear programs, e.g., as in (14), solving
large-scale instances of such problems requires much more
care in practice. In particular, a major issue concerns the
memory requirements: the data of the problem, including
the (typically dense) N -by-N Gram matrix K, simply can-
not be stored in the memory of most computers. This basic
limitation prevents any subsequent call to a general purpose
optimization solver in many cases.

On the other hand, dedicated optimization algorithms
have been proposed to train SVMs and benefit from nu-
merous advances in this active field of research, see, e.g.,
[6]. SVM algorithms typically use decomposition techniques
such as sequential minimal optimization (SMO) [25, 29] to
avoid the storage of the matrixK in memory. With a proper
working set selection strategy, the solution can even be found
without having to compute all the elements of the matrix



K, thus reducing both the memory and computing load.
Good SVM solvers implementing these ideas are for instance
SVMlight [12] or LibSVM [8]. The latter also implements the
Weighted-SVR and can be used in the iteratively reweighted
version of the procedure for hybrid system identification, as
discussed in Sect. 4.5. For ℓ1-norm regularization, efficient
algorithms are developed in [21]. Finally, these solvers also
apply to the original sparse optimization approach of [2]
(without robust sparsity) simply by setting ε = 0.
Thus, by showing the equivalence between the robust

sparsity optimization approach and support vector regres-
sion, we also make the problem tractable for off-the-shelf
(and usually freely available) solvers.

5. NUMERICAL SIMULATIONS
We now turn to illustrative examples of application with

static functions (Sect. 5.1) and with switching dynamical
systems (Sect. 5.2).

5.1 Static example
The first illustrative example considers the approxima-

tion of two overlapping nonlinear functions (a sinusoid and
a quadratic) from a set of 3000 data points with Gaussian
noise of standard deviation σv = 0.5. The submodels are es-
timated by solving (18) with LibSVM for a Gaussian RBF
kernel (σ = 0.5), C = 100 and ε set as in Table 1 for the
Gaussian noise model (ε = 0.50215). The first row of Fig-
ure 1 shows the first submodel obtained when either one of
the two functions dominates the other in terms of the frac-
tion of data points. In both cases, the method correctly esti-
mates the submodel corresponding to the dominating mode.
Then, after removing the points close to this submodel, a
second submodel is estimated. By thresholding the absolute
error, |yi − f(xi)|, at either 3ε (2nd row of Fig. 1) or ε (last
row) in the test for removing points, a sufficient fraction of
data are eliminated to allow for the recovery of the second
submodel. However, with a threshold of ε, a significant frac-
tion (a bit less than 1/3) of the data remains at the end of
the procedure. Then, either the number of submodels is as-
sumed fixed to 2 and the algorithm returns the 2 submodels,
or the bounded-error approach is applied and the algorithm
continues to estimate additional submodels until all the data
are removed.
In this example, we observed that the reweighted scheme

of Sect. 4.5 slightly improves the submodels, while the first
iteration already yields a satisfactory discrimination be-
tween the two modes due to the large fraction of points asso-
ciated to the dominating one (about 66%). Figure 2 shows
the influence of reweighting when this fraction is closer to
50%. For 50.25%, the first iteration is not very accurate,
but 10 iterations of the reweighted scheme provide a good
approximation of the target submodel. For exactly 50% of
data of each mode, the estimated model switches between
the two target submodels and cannot discriminate between
the modes.

5.2 Switched nonlinear system examples
We now consider the switched nonlinear system example

from [19], where the aim is to identify a dynamical system
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3ε of the first submodel:
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Second submodel estimated after removing points within ε
of the first submodel:
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Figure 1: Illustration of the procedure depending
on which one of the quadratic (left column) or the
sinusoidal (right column) mode dominates the data
set.
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Figure 2: Iterations of the reweighting process
for N1/N = 50.25% (left) and N1/N = 50% (right),
where N1 is the number of points generated by the
quadratic.



arbitrarily switching between two modes as

yi =



















0.9yi−1 + 0.2yi−2 + vi, if qi = 1,

(0.8− 0.5 exp(−y2
i−1))yi−1 −

(0.3 + 0.9 exp(−y2
i−1))yi−2 + if qi = 2.

0.4 sin(2πyi−1) + 0.4 sin(2πyi−2) + vi,

(20)
A training set of N = 3000 points is generated by (20) with
a random sequence of qi (P (qi = 1) = 2/3 and P (qi = 2) =
1/3), initial conditions y0 = y−1 = 0.1, and an additive
zero-mean Gaussian noise vi of standard deviation σv = 0.1.
In this example, the linearity of the first mode is assumed

to be known. Thus, a first submodel, f1, is estimated with
a linear kernel and ε = 1.0043σv, yielding the parameter
estimates5 reported in Table 2 (first column). Then, the
points with i ∈ IR = {i : |yi − f1(xi)| ≤ 3ε} are removed
and a nonlinear submodel with a Gaussian RBF kernel (σ =
0.5) is estimated.
Similar experiments with the reversed order (nonlinear

submodel estimated first) are also conducted on a data set
with P (qi = 1) = 1/3 (results in Table 2, second column).
The quality of the estimation is evaluated for each mode j

in terms of the FIT criterion computed on a test set of 2000
data (generated without noise from the initial conditions
y0 = 0.4, y−1 = −0.3) as

FITj =



1−

√

∑

i∈Ij
(yi − fqi(xi))2

√

∑

i∈Ij
(yi −mj)2



 ,

where Ij = {i : qi = j} and mj is the mean of yi over
all i ∈ Ij . Two additional performance indexes are used to
evaluate the ability of the method to discriminate between
the two modes during training: the fraction of data that
must be removed and have been,

D1 =
|I1 ∩ IR|

|I1|
,

and the fraction of data that must be removed among those
that have been,

D2 =
|I1 ∩ IR|

|IR|
.

Note that these numbers are computed on the training data.
The results, shown in Table 2, emphasize the accuracy of
the estimated submodels and the fact that the proposed
method correctly discriminates between the two modes, in-
dependently of the dominating mode.
Table 3 shows similar results for a switched NARX system

with two nonlinear modes given by

yi =



















0.4y2
i−1 + 0.2yi−2, if qi = 1,

(0.8− 0.5 exp(−y2
i−1))yi−1 −

(0.3 + 0.9 exp(−y2
i−1))yi−2 + if qi = 2.

0.4 sin(2πyi−1) + 0.4 sin(2πyi−2),

(21)
For this example, training trajectories of N = 16000 points
are generated with 6000 points for mode 1 and 10000 points
for mode 2 (P (qi = 1) = 0.375). On these large-scale data
sets, the average computing time was about one minute for

5With a linear kernel, the parameters of a linear sub-
model (6) are recovered by θ =

∑N

i=1 αixi.

Table 2: Estimation of the system (20) switching be-
tween a linear mode (with parameters θ1, θ2) and
a nonlinear mode. Numbers are averages and stan-
dard deviations over 100 trials with different noise,
vi, and mode, qi, sequences.

P (qi = 1) 2/3 1/3
θ1 (= 0.9) 0.9008± 0.0092 0.9000± 0.0070
θ2 (= 0.2) 0.1824± 0.0111 0.2019± 0.0068
FIT1 (%) 97.9148± 0.8136 99.1472± 0.3261
FIT2 (%) 83.7052± 5.3668 84.8237± 6.2603
D1 (%) 99.6840± 0.1383 98.7180± 0.4904
D2 (%) 88.4713± 0.6781 85.7150± 0.7850

each SVR training by LibSVM, i.e., for each iteration of the
reweighted scheme.

Table 3: Estimation of the system (21). Numbers
are averages and standard deviations over 100 trials
with different noise, vi, and mode, qi, sequences.

FIT1 (%) 73.2515± 4.2561
FIT2 (%) 88.6945± 1.0960
D1 (%) 99.1160± 0.1618
D2 (%) 78.6506± 0.2756

6. CONCLUSIONS
This paper discussed the identification of hybrid systems

involving arbitrary and unknown nonlinearities in the sub-
models, particularly focusing on the sparse optimization ap-
proach. Conditions of application of this approach were re-
laxed with the introduction of robust sparsity as a means
to deal with noise in the data. We then emphasized the
connections between this approach and the support vector
machines developed in the field of machine learning. In par-
ticular, we have shown that nonlinear hybrid systems can
be identified efficiently from large data sets by a sequence of
SVM trainings. In addition, this formal equivalence allowed
for the derivation of a modified algorithm for the automatic
determination of the main hyperparameter (the threshold
ε) in the robust sparsity approach. This modified algorithm
introduces a new parameter, ν, which can be interpreted as
the fraction of data considered as outliers for the model. The
precise relationship between this parameter and the fraction
of data generated by each mode, which is also involved in the
sparse recovery conditions, is the subject of ongoing investi-
gations. In particular, the characterization of the influence
of the reweighting scheme on the choice of ν remains an open
issue.

An alternative direction of future research concerns the
computation of the full solution paths with respect to the
regularization constant (λ) and the hyperparameters ε or ν.
Here, the aim is to obtain the models for all possible values
of the hyperparameters at a low computational cost. In this
respect, we should once again take advantage of the equiva-
lence with support vector regression and the large collection
of results on this topic [11, 10, 37, 20].

The paper focused on systems with arbitrary switching
mechanisms. While this provides an algorithm for a very
general class of hybrid systems, this also implies that the
active mode can only be predicted a posteriori (after the



observation of the actual output), which limits the applica-
bility of the model for predictive purposes. In this respect,
the proposed approach should be adapted to deal with piece-
wise smooth (PWS) systems, where the mode depends on a
partition of the regression space. Meanwhile, the classical
approach to this issue is to use a classification algorithm in a
postprocessing step to recover the partition from the train-
ing points grouped into modes, as explained, e.g., in [24].
Note that SVMs were originally developed for classification
and provide state-of-the-art solutions to such problems.
Finally, the concept of robust sparsity has also been in-

troduced in the context of switched linear systems and more
particularly for multi-input multi-output (MIMO) systems
in state-space form [3].
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APPENDIX

A. SKETCH OF PROOF OF THEOREM 1
Any function f ∈ H can be decomposed into a part in

the span of {K(xi, ·) : xi ∈ Dx} and a part which is
orthogonal to it, i.e., f = u + v, with, for all xi ∈ Dx,
〈K(xi, ·), v〉H = 0. Thus, and by the reproducing prop-
erty of K, for all xi ∈ Dx, f(xi) = 〈K(xi, ·), u + v〉H =
〈K(xi, ·), u〉H = u(xi). As a consequence, the first term in
(2), which computes the error over the training set, does
not depend on v. On the other hand, we have ‖f‖H =

‖u + v‖H =
√

‖u‖2H + ‖v‖2H + 2〈u, v〉H. Since u ⊥ v,
〈u, v〉H = 0. Thus, for any f with v 6= 0, there is a func-
tion u ∈ Span{K(xi, ·) : xi ∈ Dx} with smaller norm and
which, in the conditions of Theorem 2.1, leads to a lower
value of the objective function. A more detailed proof can
be found in [27].

B. COMPLEXITY CONTROL VIA ℓ1-
NORM REGULARIZATION

Here, we show why the ℓ1-norm regularization can be used
in (7) instead of the RKHS norm to penalize the nonsmooth-
ness of the model (i.e., the magnitude of the derivatives of
f) and control its complexity. This can be seen from the
fact that any f in the form used in (7) belongs to the RKHS
(H, 〈·, ·〉H) and that its norm in this RKHS, given by (4),
can be bounded by

‖f‖H =
√
αTKα ≤

√

λmax‖α‖22 ≤
√
λmax‖α‖1,

where λmax is the largest eigenvalue of the Gram matrix

K (as defined in Sect. 3.3.1). Thus, minimizing ‖α‖1 also
provides control over ‖f‖H and the complexity of f .


