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Abstract 

This paper reports on the optimization of electrodes design for sol-gel Pb(Zr0.52, Ti0.48)O3 (PZT) thin-film actuated-
membranes. PZT can be used in many actuator applications such as micro mirror, RF MEMS, inkjet or loudspeaker 
due to its strong piezoelectric properties. We aim to design membrane-based actuators with the optimum electrode 
dimensions allowing the largest membrane displacement under a given actuation voltage. We present in this paper 
measurement results, in good agreement with the finite element modeling, proving that an actuator area between 50 
and 60% of the membrane area exhibits the highest deflection. 

© 2012 Published by Elsevier Ltd. 
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1. Introduction 

Pb(Zr0.52, Ti0.48)O3 (PZT) is a good candidate for actuator applications such as micro mirror [1], RF 
MEMS [2], inkjet [3] or loudspeaker [4] due to its strong piezoelectric properties. Thus, we aim to design 
actuators with the highest efficiency. In particular, we want to determine the optimum electrode 
dimensions allowing the largest membrane displacement under a given actuation voltage. First, we present 
in this paper the actuation principle and the technological steps used to build PZT-actuated membranes. 
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Then we present measurement results on PZT-actuated membranes presenting various actuator area over 
membrane area ratios. These results are in good agreement with the finite element modeling, proving that 
an actuator area between 50 and 60% of the membrane area exhibits the highest deflection. 

2. Actuation principle and technological realization of demonstrators 

Our actuation principle consists in stacking the piezoelectric layer and electrodes together with an 
elastic layer clamped on its four sides (Figure 1). When an electric field is applied between the top and 
the bottom electrode the PZT layer shrinks in-plane, due to the d31 coefficient effect, while the elastic 
layer is not affected. A bending motion of the membrane is therefore induced by the bimorph effect. 

Fig. 1. PZT thin-film actuated membrane schematic view 

We built devices from 8’’ Silicon-on-Insulator (SOI) wafers with 5µm thick top silicon. After a 500nm 
thick silicon oxide layer deposition, we deposited and etched the piezoelectric stack as shown on the SEM 
cross section view in Figure 2 (a). It consists of a 2µm thick sol-gel PZT layer sandwiched between the 
100nm thick Pt bottom electrode and the 100nm thick Ru top electrode. Finally, we released the 
membrane by back side etching of the bulk silicon. Figure 2 (b) shows an optical view of an 8’’ wafer 
including various PZT-actuated membranes sizes and various Yact, namely the actuator area over 
membrane area. Note that the so-called actuator area corresponds to the top electrode area and that Yact = 
(la×La)/(lm×Lm) (Figure 1). 

(a)             (b) 
Fig. 2. (a) 2µm thick (100) sol-gel PZT actuated membrane schematic and SEM cross section view; (b) Optical view 
of various sizes PZT-actuated membranes realized using 8 inches facilities 
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3. PZT-actuated membranes characterization and FEM simulations comparison 

We measured the deflection of actuators for 300×600µm² membranes under a given bias voltage V for 
different values of Yact ranging from 40 to 80%. The net deflection at V is the membrane displacement at 
V minus the membrane displacement at 0V. This is performed in order to get rid of the initial deflection 
induced by the residual stress. We characterized these membranes with a white-light WYKO® 
interferometer. It gives the altitude of all the device points at the same time. Figure 3 gives an example of 
the interferometer profile measurement of a 300×600µm² membrane under -40V. Then we calculated the 
normalized net deflection, which is the net deflection normalized with respect to the maximum deflection 
value.  

  

Fig. 3. 300×600µm² PZT actuated membrane WYKO profilometer view under -40V 

We therefore compared each maximum experimental deflection for different Yact with finite element 
modeling using CoventorWare®. PZT d31 coefficient was extracted from measurements (150pm/V) and 
was used as an input data [5]. Moreover, we used PZT Young’s modulus extracted from picosecond 
ultrasonic measurements, namely 110GPa [6]. The 300×600µm² membrane normalized net deflection 
versus Yact variation is reported in Figure 4 (a). Yact = 51% exhibits the highest deflection. There is a very 
good agreement between measurements and modeling. 

(a)             (b) 

Fig. 4. (a) 300×600µm² and (b) 300×800µm² PZT actuated membrane normalized net deflection 
characterization and FEM modeling comparison 
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Besides, we investigated various membrane dimensions and shapes. As reported in Table 1, Yact varies 
slightly according to the dimensions of the membrane, or its nature – rectangular or circular [7]. For 
example, the 300×800µm² membrane normalized net deflection versus Yact variation is reported in Figure 
4 (b). Yact = 60% exhibits the highest deflection. In this configuration, the highest deflection is reached 
when Yact lies between 50 and 60%. 

Table 1. Optimum actuator area over membrane area (Yact) FEM modeling and measurement comparison 

4. Conclusion 

As a conclusion, we showed experimentally in this study that the maximum deflection of a 
piezoelectric micro-membrane is reached for a given voltage once the ratio between the actuation area 
and the whole membrane area lies between 50 and 60%. Simulation and measurement results indicate that 
this ratio is valid both for rectangular and circular membrane shapes and for various membrane 
dimensions. 
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Membrane shape and dimensions 
Yact, FEM simulation 
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Yact, Measurement 
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Discrepancy (%) 

Rectangular - 420×240µm² 55 50 9 

Rectangular - 600×300µm² 48 51 6 

Rectangular - 800×300µm² 57 60 5 

Circular – Diameter 200µm 50 - - 
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