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Abstract

The Nelder-Mead downhill Simplex optimization method is employed for multipa-
rameter retrieval in connection with a transient acoustic wave canonical inverse problem
in both the inverse crime and non-inverse crime settings. In the inverse crime setting,
it is shown that the Simplex scheme may require a large number of iterations and
function calls to converge to the (unique) target solution, defined by a simple zeroth-
order (i.e., min min cost) regularization. In the non-inverse crime situation, in which
a fixed prior employed in the retrieval model is different from its true counterpart,
three types of regularization strategies: zeroth-order, first-order (i.e., a retrieved ge-
ometrical parameter must be non-negative, followed by min min cost), second-order
(i.e., all retrieved parameters must be within their respective initial-brackets, followed
by min min cost), are employed to obtain a unique solution. Only the second-order
regularization scheme is found to be suitable to obtain stable results. Retrieval errors
are computed, and found to be large, for various non-inverse crime scenarios.
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1 Introduction

The ultimate goal of the majority of the applications of inverse scattering is to obtain a
quantitative image [21] of a corrupted (such as by a crack: [1],[2], [39]), diseased (such as
affected by a tumor: [34], [48], [33], [16], [46], [19]), or otherwise inhomogeneous ([32], [24],
[14], [9], [25]) body. To do this in optimal manner (e.g., via a domain integral approach: [14],
[48]) requires the previous knowledge of the (termed ’specific’ in [43], ’macro model’ in [11],
[13], [41], ’background’ in [8]) Green’s function of the corresponding uncorrupted, healthy
([27], [14]), or homogeneous body. The determination of this Green’s function requires
quantitative information about the size, shape and constitutive parameters of the healthy
body, which must be determined by solving another inverse (scattering or vibration) problem
[28]. If the diseased body is a cylinder with a tumor, then the healthy body is the same
cylinder without the tumor; this cylinder is the object we wish to characterize herein.

We revisit an oft-studied acoustically-solicited (analogous to the electromagnetic wave:
[24], [25]) configuration involving a canonical object (simple circular shape, homogeneous
viscous fluid (analogous to lossy dielectric [12], [19]) composition), thereby:

- enabling the direct-scattering problem to be solved in a quasi-analytic manner (e.g., [31],
[43]), and
- enabling nonlinear full (transient)- wave inversions (e.g., [38], [41], [37], [29]) to be carried
out in a reasonable amount of time.

Numerous numerical tests of the multiparameter retrieval (such as in [28],[35] (there is a
sign error on c[1]i in this paper)) are made herein in the hope of shedding light on the crucial
aspects, notably concerning regularization strategies and retrieval error, of more-complicated
(i.e., involving objects with non-canonical shapes and/or that are inhomogeneous) transient-
wave inverse problems.

In particular, we address the following questions, implicitly or explicitly raised in two
recent publications [5], [22]:

1- if we employ the same theoretical/numerical model to simulate and invert the data (the
inverse crime situation), are we sure to be able to retrieve the target solution?
2- how sensitive is this inverse crime solution (if it exists) to the choice of brackets of starting
values of the to-be-retrieved parameters in the cost functional minimization scheme?
3- how sensitive is this inverse crime solution to parameters (e.g., number of function evalu-
ations, number of iterations) inherent in the cost functional minimization scheme?
4- if we employ a retrieval model that differs from the data simulation model by the value
of one of the priors, what is the best regularization strategy for generating a single solution
to the inverse problem, and how close is this solution to the target solution?
5- how sensitive is this non-inverse crime solution (if it exists) to the choice of range of
starting values of the to-be-retrieved parameters?
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2 Ingredients of multiparameter inversion of time- do-

main data

2.1 The two models

Any successful inversion of a data set (of physical origin) first requires a model of the physical
process which accurately mimics the data [44]. We term this model, the retrieval model, or
M. M is characterized by its mathematical ingredients M and numerical ingredients N.

When, as in the present study, the (true) data is not the result of a measurement, it
must be generated (simulated), again with the help of a model of the underlying physical
process which is thought to be able to mimic the true data. We term this model, the data
simulation model, or m. m is characterized by its mathematical ingredients m and numerical
ingredient(s) n.

Each model involves a certain number of physical/geometric parameters: those of m and
M are p and P respectively, i.e., lower-case letters apply to the (true) data (simulated or
experimental) and upper-case letters to the retrieval model.

2.2 Basic retrieval scheme

Let r := {rj ; j = 1, 2, ..., Nr} be the set of to-be-retrieved parameters, q := {qj ; j =
1, 2, ...Nq} the set of priors (whose nature will be made more precise further on), X :=
{xj ; j = 1, 2, .., Nx} the set of sensor locations and t := {tl ; l = 1, 2, .., Nt} the set of
instants of the sampled signal. Herein, Nr = 4 and Nq = 9.

The basic scheme is to replace the true (fixed) parameter set r by the trial (variable)
parameter set R := {R1, R2, ..., RNr} and the true (fixed) set of priors q by another fixed set
Q := {Q1, Q2, ..., QNq}, and search, in iterative manner, for the set R = r̃ that minimizes
the discrepancy (the measure of which is a cost or objective functional) between trial signals
(resulting from trial parameters) S(X, t,Q,R) and the true signal s(X, t,q, r) (resulting
from the true parameters).

Note that if, as will be assumed in some of the examples presented hereafter, there exists
some uncertainty in the priors, Q will not be identical to q. In fact, this possible discordance
will affect the precision of the retrieval and it is of considerable interest to quantify this effect.

2.3 The inverse crime

The inverse crime is something one should be concerned with when the two models m and
M are identical (however, the values of the parameters R will differ from those of r during
the inversion).

If a single parameter is to be retrieved, the condition for, and result of, committing the
inverse crime can be stated [44] as follows: when the values of all the parameters except
PJ of the set P are strictly equal to their counterparts in the set p and the values of all
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the parameters of the set N are strictly equal to their counterparts in the set n, then the
inversion will give rise to at least one solution, PJ = pJ , i.e., the true solution.

If, as in the present case, more-than-one parameter is to be retrieved at one time, then it
can be conjectured that the condition for, and result of, committing the inverse crime are:
when the values of all the priors forming the subset Q of the set P are strictly equal to their
counterparts in the subset q of the set p, and the values of all the parameters of the set N
are strictly equal to their counterparts in the set n, then the inversion will give rise to at
least one solution, R = r, i.e., the true solution.

This statement is only a conjecture because inverting for more than one parameter at a
time usually requires the intervention of an optimization algorithm that may get stuck, or
just appear to get stuck, in a local minimum of the objective (cost) functional (see further on
how we define this functional), thereby giving rise to what appears to be a solution, which,
in fact, is not the true solution r of the parameter retrieval problem. We shall give examples
of this type of situation and of how it can be dealt with.

The eventuality of committing the inverse crime is highly improbable in real-life, in that
the data is usually acquired physically (i.e., is not simulated), or the data is simulated but
one has only a vague idea a priori of the value of at least one of the parameters of the sets
r and/or q. This is the reason why, in the present study, we take explicitly in account these
uncertainties, with the added benefit of being able to avoid the inverse crime.

2.4 Minimization of the cost functional

The discrepancy between S and s is the cost functional K. We choose this as:

K(r,R,q,Q,X, t) =

∑Nx

j=1

∑Nt

k=1[s(xj, tk,q, r)−S(xj, tk,Q,R)]2∑Nx

j=1

∑Nt

k=1[s(xj, tk,q, r)]2dt
. (1)

The inverse problem is solved herein, at each stage, by minimization of the cost functional via
the Nelder-Mead Simplex scheme [30]. The minimum of the cost functional (in the parameter
space explored by the Simplex scheme, anchored at the user-defined starting values of the
to-be-retrieved parameters, is found for R = r̃, i.e.,

r̃ = argmin
R⊂S

K(r,R,q,Q,X, t) , (2)

wherein S designates the parameter search space during a given stage of the search of a
minimum, a stage being defined as a specific choice of the initial value set (since fminsearch
requests such a set to get started). We call the initial value set R := {Rj ; j = 1, 2, 3, Nr =
4}. Note that R takes on different values (from this initial value) as the minimization
proceeds.

2.5 The Simplex algorithm

The simplex algorithm [26] is a geometrical rather than gradient-based optimization manner
of simultaneously finding the Nr parameters corresponding to the minimum of a (cost)
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function.
Few theoretical results have been proved explicitly concerning this algorithm, and then

essentially in 1 and 2D dimensions [20]. Moreover, the method can fail to converge or
converge to non-stationary solutions in certain classes of problems [23], [7]. Nevertheless,
the Simplex algorithm has been frequently employed, particularly in parameter estimation
problems [10], [18], [36], [5], [47], and even in problems involving noisy data [42], [40].

Although Byatt et al. [7] have reported on a supposedly-improved version (less function
calls for a given value of the minimum of the cost function), we preferred herein to employ the
off-the-shelf standard Simplex algorithm embodied in the MATLAB function fminsearch.

Like other optimization schemes, the Simplex algorithm is iterative by nature, with each
iteration requiring a certain number of (cost) function computations. The number of it-
erations and function computations increases with: a) the precision with which one wants
to locate the minimum of the (cost) function, b) the distance of the initial values of the
parameters to their target values, and c) the topological nature of the cost function (see [7]
for an illustration of this fact).

In fminsearch, the maximum number of function evaluations and maximum number of
iterations can be chosen, via the parameters MFE and MI respectively, by the user. This
appears to us to be a better strategy than choosing the precision, because aiming at a high
precision may require a prohibitive amount of function evaluations and/or iterations.

2.6 Parameter retrieval schemes

The schemes considered herein actually solve for all members of the set r at each stage.
Often, a priori information, concerning the solutions of the inverse problem, is of the

form: ’the sought-for parameter rj lies between Rbj and Rej’, which fact suggests that one
should try to carry out the retrieval for a variety of starting values lying between Rbj and
Rej.

More precisely, we shall carry out the inversion for the set of starting values R :=
{Rjk ; j = 1, 2, 3, Nr = 4 ; k = 1, 2, ..., NRj

}, with

Rjk := Rbj + (k − 1)dRj
; j = 1, 2, 3, 4 ; k = 1, 2, ..., NRj

, (3)

and

dRj
:=

Rej −Rbj

NRj
− 1

. (4)

Thus, supposing NR1 = NR2 = NR3 = NR4 := NR, the number of stages, and the number of
retrieved solutions, will be N4

R, a number that increases rapidly with NR since 24 = 16, 31
34 = 81, 44 = 256, 54 = 625,...

The question is then how to select the most appropriate (i.e., ’best’) solution among this
multitude of retrievals.

Let r̃jk designate the j-th retrieved parameter at the k-th stage and let minKk be the
value of the minimum of the cost function found by the Simplex scheme at the k-th stage.
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A zeroth-order (so-called min min cost) regularization proceeds as follows: the final
retrieved value of rj (after completing all the NRj

stages) is designated by r̃j and is chosen
amongst all the r̃jk, to be the one corresponding to the minimum of the set {minKk ; k =
1, 2, ..., N}.

A first-order regularization consists in rejecting solutions for which one or more retrieved
parameters are not physical (e.g., a positve quantity that turns out to be negative) and then
applying the min min cost rule to the remaining solutions.

The result of an inversion scheme can lead to (one or more) rj that are not within the
initial search interval [Rbj, Rej], but a logical option (i.e., the second-order regularization
scheme) is to reject such retrievals (otherwise, why impose initial search intervals other than
to constrain the retrievals?) and then apply the min min cost rule to the remaining solutions.

In the sequel, we shall apply, and attempt to evaluate, these regularization schemes to
our canonical inverse problem.

2.7 The retrieval error generated by prior uncertainty

Nonlinear inversion usually leads to error-ridden retrievals of the j−th parameter (recall that
the true value of this parameter is rj). Our aim herein will be to evaluate the relative error
of the final retrieved parameter r̃j (j = 1, 2, ..., Nr = 4)

εj :=
r̃j − rj

rj
, (5)

as a function of the prior uncertainties, which, for the k-th prior, is

δk :=
Qk − qk

qk
. (6)

We shall also evaluate the cumulative relative error of the retrieved parameters, defined as

κ =
Nr∑
j=1

|εj| . (7)

3 The models for computing the signals s(xj, tk,q, r) and

S(xj, tk,Q,R)

3.1 Model description

An infinitely-long (in the z-direction of an Oxyz cartesian reference system) lossy fluid-like
cylinder, (known to be) centered at the origin O and of radius a, is immersed in another
(host, non-lossy) fluid and is submitted to an acoustic plane wave whose wavevector ki lies
in the x−y (sagittal) plane. Consequently, the incident and diffracted fields are independent
of z, i.e., the problem is 2D, with z the ignorable ooordinate.
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The plane wave carries a pulse, and the purpose of this excitation field is to produce a
pulse-like diffracted field constituting the data, which by means of an inversion scheme, is
analyzed to enable the retrieval of the radius of the cylinder and constitutive parameters of
the fluid enclosed therein.

The constitutive parameters of the host medium, as well as the excitation parameters,
may, or may not, be precisely known beforehand.

The analysis takes place in the sagittal plane wherein Ω0 denotes the domain exterior to
the cylinder, Γ the circular bounding curve of the cylinder, and Ω1 the domain within Γ.

The homogeneous fluids in Ωl are M [l], l = 0, 1. The acoustic bulk phase velocities in
these media are c[l] = ℜc[l] + ℑc[l], with ℑc[1] ≤ 0 and ℑc[0] = 0. The densities in M [l],
l = 0, 1 are ρ[l]. The corresponding wavenumbers are k[l] := ω/c[l], with ω = 2πf the angular
frequency and f the frequency.

The bandwidth of the incident pulse is, for all practical purposes, finite, and within this
band the phase velocities of the two fluids are assumed to be constant with respect to the
frequency f .

The (incident) angle between ki and the x axis is θi. This angle may, or may not, be
precisely known.

The diffracted field is sensed at various (Nx) points X on a circle of radius b > a enclosing
the cylinder and having the common origin O. The polar angle at which a generic point-like
sensor is located is θj (with respect to the positive x axis). X is assumed to be precisely
known.

The objective is to retrieve the four parameters c[1]r := ℜc[1], c[1]i := ℑc[1], ρ[1] and a from
data relating to the diffracted (scattered) field signals recorded at one or more sensors.

The term ”diffracted field signals recorded...” is actually improper. In reality, two record-
ings are carried out: the first in the absence of the cylinder so as to obtain the incident field
signal at the various sensors, and the second in the presence of the cylinder so as to obtain
the total field signal at the various sensors, with the diffracted field signal at a given sensor
being the total field signal minus the incident field signal.

Recall that in this study, the experiment for obtaining the diffracted field data signal(s),
rather than being carried out physically in the laboratory or field, is simulated by com-
putational means via the data simulation model, whereas the inversion requires another
model, termed the retrieval model. We assume the mathematical and numerical ingredi-
ents of these two models to be identical; the two models differ only by the values of various
physical/geometrical parameters entering therein.

Each model is employed to solve a direct scattering problem, once as concerns the
generation of the synthetic data, and as many times as necessary during the inversion process.

3.2 Acoustic field solutions

The total frequency-domain pressure fields are:

u[0](x, ω) = u[0]i(x, ω) + u[0]d(x, ω) ; x ∈ Ω0 , (8)
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u[1](x, ω) = u[1]d(x, ω) ; x ∈ Ω1 . (9)

with x denoting a vector joining O to a generic point in the sagittal plane and r, θ the polar
coordinates of this generic point.

The incident plane-wave field is:

u[0]i(x, ω) = S(ω)e−ikr cos(θ−θi) = S(ω)
∑
m∈Z

γmJm(k
[0]r)eimθ , (10)

wherein S(ω) (such that S(−ω) = S∗(ω) , ∗ designating the complex conjugate) is the
spectrum of the pulse associated with the incident wave, and

γm = e−im(θi+π
2 ) . (11)

We choose a pseudo-Ricker type of pulse excitation whose spectrum is

S(ω) =
ω2

4α3
√
π
exp

(
iβω − ω2

4α2

)
. (12)

The diffracted fields are (Wirgin, 1999):

u[0]d(x, ω) = S(ω)
∑
m∈Z

AmH
(1)
m (k[0]r)eimθ , (13)

u[1]d(x, ω) = S(ω)
∑
m∈Z

BmJm(k
[1]r)eimθ . (14)

wherein
Am = γmAm , (15)

Am =
Jm(k

[0]a)J̇m(k
[1]a)− ηJ̇m(k

[0]a)Jm(k
[1]a)

ηḢ
(1)
m (k[0]a)Jm(k[1]a)−H

(1)
m (k[0]a)J̇m(k[1]a)

, (16)

η :=
k[0]ρ[1]

k[1]ρ[0]
, (17)

Żm(z) :=
d

dz
Zm(z) = −Zm+1(z) +

m

z
Zm(z) , (18)

with Zm(z) = Jm(z) (Bessel function) or Zm(z) = H
(1)
m (z) (Hankel function).

Due to the fact that γ−m = γ∗
m and

Z−m(z) = (−1)mZm(z) , (19)

we find that A−m = Am, whence

u[0]d(x, ω) =
∞∑

m=0

Amϵm(−i)mH(1)
m (k[0]r) cos

(
m(θ − θi)

)
, (20)
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with ϵ0 = 1 , ϵm>0 = 2.
The time-domain diffracted field outside the cylinder is

U [0]d(x, t) =

∫ ∞

−∞
u[0]d(x, ω)e−iωtdω , (21)

and since (as can be shown) u[0]d(x,−ω) =
(
u[0]d(x, ω)

)∗
, it follows that

U [0]d(x, t) = 2ℜ
∫ ∞

0

u[0]d(x, ω)e−iωtdω . (22)

4 Numerical issues

We truncate the series in u[0]d(x, ω) in the following manner

u[0]d(x, ω) ≈ u[0]d Nf (x, ω) =

Nf∑
m=0

Amϵm(−i)mH(1)
m (k[0]r) cos

(
m(θ − θi)

)
, (23)

wherein
Nf = fk[0]b+ 3 , (24)

with f a user-chosen factor that is usually equal to 2 or 3.
We carry out the Fourier transform as follows

U [0]d(x, t) ≈ 2ℜ
∫ 2πff

2πfd

u[0]d Nf (x, ω)e−iωtdω , (25)

with fd a very small number, ff chosen large enough to prevent aliasing, and the finite
integral evaluated by the Simpson scheme.
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5 The parameters involved in the simulated data and

retrieval data

5.1 The parameters involved in the (simulated) data

Our simulated data involves fourteen physical/geometric parameters (PGP) and two nu-
merical parameter (NP) sets, both designated by lower-case characters. The PGP consist

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14

r1 r2 r3 r4 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

c[1]r c[1]i ρ[1] a c[0] ρ[0] θi α β b θb θe Nθ P

Table 1: Correspondences between the different (lower case) symbols relating to the simu-
lated/experimental (fixed during the retrieval) parameters. The entries of a given column
represent the same parameter.

of: the four to-be-retrieved parameters of the cylinder p1, p2, p3, p4, the two background
medium priors p5, p6, the three excitation priors p7, p8, p9 and the five receiver priors
p10, p11, p12, p13, p14.

The polar angle of the j-th receiver (the total number of receivers being Nθ) is

θj = θb + (j − 1)dθ , (26)

and

dθ =
θe − θb
Nθ − 1

, (27)

it being understood that

s(xj, tk,q, r) = U [0]d(b, θj, tk,q, r) , (28)

is the (simulated) data signal at the j-th receiver and instant tk, and that

S(xj, tk,Q,R) = U [0]d(b, θj, tk,Q,R) , (29)

is the retrieval signal at the same receiver and instant.
In practice, the retrieved signal is affected by noise whose amplitude is accounted-for by

the parameter P , but in the sequel we consider only noiseless data so that P = 0.
The two NP sets are: n1 = (fd, ff , Nf , f), n2 = (td, tf , Nt). We stress the fact that the

first two NP employed in the retrieval model are identical to those in the data simulation
model, i.e., Nl = nl ; l = 1, 2.
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5.2 The parameters involved in the retrieval data

Our retrieval data involves fourteen physical/geometric (PGP) parameter sets and two nu-
merical parameter (NP) sets, both designated by upper-case characters.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

R1 R2 R3 R4 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

(C
[1]r
b , (C

[1]i
b , (R[1]

b , (Ab, C [0] R[0] Θi A B B Θb Θe NΘ P
C

[1]r
e , C

[1]i
e , R[1]

e , Ae,
NC[1]r) NC[1]i) NR[1]) NA)

Table 2: Correspondences between the different (upper case) symbols relating to the retrieval
parameters. The entries of a given column represent the same parameter or vector.

The PGP consist of: the four parameter sets relative to the cylinder P1, P2, P3, P4,
the two background priors P5, P6, the three excitation priors P7, P8 P9, and the five receiver
priors P10, P11 P12, P13, P14, it being understood that

Pj = Rj = (Rbj, Rej, NRj
) ; j = 1, 2, 3, 4 , (30)

and that we choose: Pj = pj ; j = 10, 12, 13, 14.
Furthermore,

S(xj, tk,Q,R) = U [0]d(b, θj, tk,Q,R) , (31)

is the retrieval signal at the j-th receiver and instant tk.
The three numerical parameter sets are: N1 = (Fd, Ff , NF ,F), n2 = (td, tf , Nt), n3 =

(MFE) , wherein MFE is the maximum number of function evaluations per stage in each
call to the Simplex function.

We always chose Nl = nl ; l = 1, 2.
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6 Numerical results for the inverse crime situation

6.1 Parameters and conventions common to the figures

The true (target) parameters are: c[1]r = 1700 m/s , c[1]i = −210 m/s, ρ[1] = 1300 kg/m3 ,
a = .1 m.

The priors are as follows: C [0] = c[0] = 1500 m/s, ρ[0] = R[0] = ρ[0] = 1000 kg/m3, Θi =
θi = 0◦, A = α = 2000 Hz, B = β = .1 s, B = b = 1 m.

The numerical parameters are: f =(.003 Hz,2000 Hz,201), t = (.098 s, .103 s,181).
Unless specified otherwise, we take θ = (0◦, 180◦, 5).

As stated earlier, we do possess some knowledge at the outset of the values of the pa-
rameters we wish to retrieve. This knowledge takes the form of intervals which are used to
initialize the Simplex optimization algorithm.

To parametrize this degree of knowledge, we employ the variable dRj
= d ; j = 1, 2, 3, 4,

which gives a measure of the width of the initial parameter intervals [C
[1]r
b = c[1]r(1 −

d), C
[1]r
e = c[1]r(1 + d)], [C

[1]i
b = c[1]i(1 − d), C

[1]i
e = c[1]i(1 + d)], [R[1]

b = ρ[1](1 − d), R[1]
e =

ρ[1](1 + d)], [Ab = a(1− d), Ae = a(1 + d)].
In all the numerical examples of this study, only the endpoints of these intervals will be

used as initial values in the Simplex multistage scheme, so that each of the following figures
will be the result of a 16 (= 24) stage computation (see table 3).

d R1 R2 R3 R4

.1 (1530,1870,2) (-231,-189,2) (1170,1430,2) (.09,.11,2)

.2 (1360,2040,2) (-252,-168,2) (1040,1560,2) (.08,.12,2)

.3 (1190,2210,2) (-273,-147,2) (910,1670,2) (.07,.13,2)

.4 (1020,2380,2) (-294,-126,2) (780,1820,2) (.06,.14,2)

.5 (850,2550,2) (-315,-105,2) (650,1950,2) (.05,.15,2)

.6 (680,2720,2) (-336,-84,2) (520,2080,2) (.04,.16,2)

.7 (510,2890,2) (-357,-63,2) (390,2210,2) (.03,.17,2)

.8 (340,3060,2) (-378,-42,2) (260,2340,2) (.02,.18,2)

.9 (170,3230,2) (-399,-21,2) (130,2470,2) (.01,.19,2)

target 1700 -210 1300 .1

Table 3: Correspondences between dRj
= d ; j = 1, 2, 3, 4 and Rj in the initial search inter-

vals. The last row indicates the target (true) values of the four to-be-retrieved parameters.
The larger is d the more imprecise is the knowledge one has of the values of the sought-for
parameters at the beginning of the retrieval procedure. Most of our numerical examples will
be carried out for d = .9.
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6.1.1 A rule for spotting admissible solutions

Each of the following three figures (i.e., figs. 1-6), and many of the subsequent figures,
contain four panels within which appear 16 points resulting from the multistage inversion
procedure.

The abscissas of the graphs in each panel represent the value of the minimum of the cost
function Kk found by the Simplex scheme at the k-th stage of the inversion procedure.

The ordinates of the graphs in these panels represent the four to-be-retrieved parameters:
c[1]r (first panel from the left), c[1]i (second panel from the left), ρ[1] (third panel from the
left), and a (fourth panel from the left).

The horizontal (blue) segments designate the true values of these four parameters, so
that the closer one of the 16 points is to this segment, the closer the retrieved parameter is
to its true value.

Since, in practice, we do not know the true values of the sought-for parameters, we must
take a decision as to which of these multiple solutions (each one corresponding to a point
on the graphs) are admissible. Often, the solutions generated by the minimization scheme
separate into two groups: to the first correspond rather small values of the minimum of the
cost functional K, and to the second correspond rather large (usually, at least one order of
magnitude larger than the minK of the first group) values of the minimum of K.

It is the set of points furthest to the left in each panel which correspond to admissible
solutions. Hopefully, the points associated with small minKk also correspond to those that
are closest to the horizontal segments.

6.2 A first result analogous to those of Buchanan et al. [5]

6.2.1 The Buchanan et al. procedure

The publication of Buchanan et al. [5], although applying to a different canonical scattering
body (their’s is a poroelastic panel), is of interest here because:

1- the context is that of the inverse crime as is ours in the six figures which follow;
2- Buchanan et al. also deal with a multiparameter nonlinear full-wave inversion of time
domain data,
3- their retrieval is done via the same Simplex algorithm as our’s;
4- they adopt the same 16 stage procedure as our’s to retrieve four constitutive parameters.

Their figs. 6-8 each show the combined result of three 16-stage inversions corresponding
to choosing d = .1, .2, .3, so that 48 points are present in each figure. They write: ”As
no noise or modeling error was present, a nearly exact recovery was possible, but this hap-
pened in only one, sample M1F04, of the six attempts. Figures 6-8 illustrate the presence of
numerous local minima of the objective function...”.
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6.2.2 Our procedure

We separated the three cases d = .1, .2, .3 into three separate figures 1-3, but the result is
qualitatively the same as that in [5] if we imagine our three figures to be superimposed onto
a single figure. Our separation procedure has the advantage of showing that the result is
clearly worse (in the sense of the previously-cited phrase of [5]) for larger initial parameter
interval widths (as measured by d).
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Figure 1: Case 270213-1529. d = .1. MFE = 100.
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Figure 2: Case 270213-1529. d = .2. MFE = 100.
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Figure 3: Case 270213-1529. d = .3. MFE = 100.
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6.2.3 Comments on the Buchanan et al. procedure

It is not clear how Buchanan et al. tuned their Simplex routine, notably as concerns the
choice of the parameterMFE (maximum function evaluations) (and perhapsMI (maximum
number of iterations)), but it may be that MFE was relatively-small (as in our figs. 1-3).

The Simplex algorithm actually exits whenever the function evaluation counter (and/or
the iteration counter, if the MI is specified) attains MFE (and/or MI), and if MFE is
too small, the algorithm yields a ’solution’ (a set of 16 points) to which corresponds a value
of the cost function that can be far from its actual minimum. Thus, it may be, that these
points, rather than those corresponding to local minima, are simply false solutions due to
the inversion procedure having being stopped too early.

6.3 Subsequent results that go beyond the one analogous to those
of Buchanan, 2011

This hypothesis drove us to increase MFE, thereby leading to the results in figs. 4-6 wherein
we observe that the distribution of points is no longer haphazard. In fact, most of the points
seem to converge to a single location which happens to be the target value for which the
cost function is minimal (and in fact very small).

This implies that if we let the Simplex scheme do its work to completion (actually this
could go on even longer, and the tendency of convergence be accentuated, until machine
roundoff errors destroy the result), it will generate a single solution which happens to coincide
with the exact solution. This finding seems to be true whatever the initial parameter interval
width, but the convergence rate is observed to be slower, and the computation requires larger
MFE, the larger the initial parameter interval width.
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Figure 4: Case 270213-1554. d = .1. MFE = 500. Note the greatly magnified scale, so that
this cloud of points appears as a single point at the scale of the next two figures.
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Figure 5: Case 270213-1554. d = .2. MFE = 500.
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Figure 6: Case 270213-1554. d = .3. MFE = 500.
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6.4 Effect of the variation of MFE for a large initial parameter
interval dRj

= d = .9 ; j = 1, 2, 3, 4.

The results of the previous section show that the choice of the Simplex parameter MFE
determines to a large extent the success of the parameter retrieval, all the more so the larger is
the initial parameter intervals. This was found for relatively-small initial parameter intervals
(i.e., d = .1, .2, .3) to conform to what was done in Buchanan et al., 2011. At present, we
want to determine whether it is possible to retrieve what looks like a unique solution, and
how close the latter is to the target, when the initial parameter interval is large.

The following set of figures corresponds to increasing values of MFE and is again pre-
sented in the form borrowed from Buchanan et al., 2011.
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Figure 7: Case 250213-0726. MFE = 500.
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Figure 8: Case 250213-0830. MFE = 900.
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Figure 9: Case 250213-1318. MFE = 2000.

26



6.4.1 Comments on figs. 7-9

Figs. 7-9 show that the convergence, as a function of MFE, is much slower for d = .9 than
for the small initial parameter intervals. Note that in these figures, two groups of points
are visible: the first group comprises points which are on the target line, and the second
group comprises the remaining points which are scattered at other locations corresponding
to cost function minima that are orders of magnitude larger than those corresponding to
the first group. Thus, it seems reasonable to say that the first group reflects the admissible
solution(s) of the inverse problem, and using this definition, we see that even for very wide
initial parameter intervals, the simplex scheme hones in on the target solution provided MFE
is chosen to be sufficiently large.

These results show that it is reasonable, at least in an inverse crime situation, to apply
the min min cost rule for deciding which solution to retain as the final retrieved solution.

6.5 Indications of the manner in which the retrievals depend on
the choice of excitation and sensor parameters

Each of the following figures contains five panels within which appear as many points as
the number of starting value intervals in the multistage inversion procedure. The abscissas
of the graphs in each panel represent the value of an excitation or sensor parameter. The
ordinates of the first four panels are as previously, whereas those of the fifth panel represent
the value of the minimum of the minima of the cost functions Kk ; k = 1, 2, ..., N = 16 found
by the multistage Simplex scheme to obtain each point on the graph. The horizontal (blue)
segments designate, as before, the true values of the four to-be-retrieved parameters. All the
fixed parameters are as previously.

6.5.1 Effect of the variation of the excitation parameter α = A
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Figure 10: Case 180213-1618. The abscissas x represent α = A. MFE = 2000, C[1]r =
(170, 3230, 2), C[1]i = (−399,−21, 2), R[1] = (130, 2470, 2), A = (.01, .19, 2), β = B = .1,
θ = (0, 180, 5), b = B = 1. x = 1000 is computed with f = (.003, 1000, 101), x = 1500 is
computed with f = (.003, 1500, 151),...., x = 3000 is computed with f = (.003, 3000, 301).
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We see that the precision of the retrievals of all five parameters is high, and insensitive
to α = A.

6.5.2 Effect of the variation of sensor parameter b = B
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Figure 11: Case 160213-1448. The abscissas x represent b = B. MFE = 1000, f =
(.003, 2000, 201), C[1]r = (500, 4000, 2), C[1]i = (−1000,−100, 2), R[1] = (500, 3000, 2), A =
(.01, .2, 2), θi = Θi = 0, α = A = 2000, β = B = .1, θ = (0, 180, 5).
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We see that the precision of the retrievals of all five parameters is high, and insensitive
to b = B.

6.5.3 Effect of the variation of sensor parameter Nθ
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Figure 12: Case 190213-1520. The abscissas x represent Nθ. MFE = 2000. C[1]r =
(170, 3230, 2), C[1]i = (−399,−21, 2), R[1] = (130, 2470, 2), A = (.01, .19, 2). θ =
(0, 180, Nθ).
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This figure indicates that the precision of the retrievals of all five parameters is high and
insensitive to Nθ.

6.6 Final comments on the numerical results for the inverse crime
situation

We have shown that, in the inverse crime situation, it is possible, by applying the zeroth-
order (min min cost) regularization, to generate a unique solution to the parameter retrieval
problem, provided the cost functional minimization scheme (here, the Nelder-Mead algo-
rithm) is allowed to do its work to completion (i.e., by taking MFE (in the Matlab version)
to be sufficiently-large).

The retrieved parameters comprising this solution turn out to be, for all practical pur-
poses, the true parameters, i.e., the inverse crime enables an error-free retrieval (i.e., the
value of the corresponding cost functional can be of the order of 10−18, and the cumulative
retrieval error of the order of 10−9) of the sought-for parameters.

Naturally, the amount of computations necessary to attain this result is all the larger,
the less knowledge one has at the outset of the true values of the parameters, but however
small be this knowledge, one succeeds in finding the true solution after a sufficient amount
of computations. This is true, whatever: the characteristics of the excitation pulse, and the
number of sensors as well as their distance from the scattering body.

It is important to realize that these conclusions hold only in the very specific, unrealistic,
situation in which the assumed values of the priors (Q) are the same as their true values
(q). Therefore, in what follows, we address the question of how the the precision, of the
retrievals is affected by discordances between Q and q. We shall encounter cost functions
with authentic local minima which constitute sources of confusion in the selection process
of the ’best’ solution, and obtain the latter in a natural, systematic manner via first- and
second-order regularization schemes.

7 Numerical results for the non-inverse crime situation

in which there is an uncertainty on the prior relative

to the wavespeed in the host medium

All the parameters (except those mentioned specifically) are the same as in sect. 6. Here we
examine the situation in which C [0] ̸= c[0].

7.1 Effect of the variation of MFE

We consider, in figs. 13-16, a case of mild discordance of the wavespeed in the host medium,
c[0] = 1500, C [0] = 1515, corresponding to a relative prior uncertainty of 1%. The variation of
the retrievals with respect to the Simplex parameter MFE is of primary concern here, but
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the successive figures also account for increasing initial to-be-retrieved parameter interval
widths. The ordinates are relative to the four to-be-retrieved parameters. The abscissas are
the values of the minimum of the cost functional K (designated by K).

7.1.1 Initial parameter intervals corresponding to dRj
= d = .5 ; j = 1, 2, 3, 4.
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Figure 13: Case 250213-1503. MFE = 100.
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Figure 14: Case 250213-1619. MFE = 1000.
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7.1.2 Initial parameter intervals corresponding to dRj
= d = .9 ; j = 1, 2, 3, 4.
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Figure 15: Case 250213-1953. MFE = 900.
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Figure 16: Case 250213-2317. MFE = 2000.
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7.1.3 Comments on figs. 13-16

Figs. 13-16 show, in the case in which the prior C [0] is different by 1% from the true value c[0],
that provided MFE is taken large enough, the simplex algorithm gives rise to convergence
towards a small number of apparently-admissible solutions, all the faster, the narrower is the
initial parameter interval. However, some of these solutions are of suspicious validity since
they correspond to negative radii a, probably caused by the Simplex algorithm getting stuck
in local minima.

In practice, one doesn’t know where the targets are in the search space, but he does know
that the radius a of the cylinder should be a positive number. This suggests that the zeroth-
order regularization rule should be replaced by the first order regularization rule: to select
the ’best’ solution, reject clearly-unrealistic solutions (such as those for which a is negative)
if they exist, and finally select, among the remaining solutions, the one corresponding to
minminK.

We find, by applying this first-order regularization rule, that in both cases d = .5, .9,
the relative retrieval errors are: εc[1]r = −.0039, εc[1]i = −.276, ερ[1] = −.029, εa = .076
and κ = .3849. Thus, a relative prior error of only 1% gives rise to a per cent cumulative
retrieval error of 38% which is quite large. Similar effects of prior uncertainty were reported
in [22], albeit for single-parameter retrieval and a different canonical scattering body.

7.2 Variation of d for larger discordances between C [0] and c[0]

Fig. 17, which was obtained by invoking zeroth-order regularization, shows, in the case in
which the prior C [0] is different by 3% from the true value c[0], that the Simplex algorithm
gives rise to what appears to be a form of bistability of the retrievals as a function of initial
parameter uncertainty d.

The application of first-order regularization (i.e., elimination of the points for which a is
negative) enables the elimination of this apparent bistability.

36



0.2 0.4 0.6 0.8

1630

1640

1650

1660

1670

1680

1690

1700

x

c[1
]r

0.2 0.4 0.6 0.8

−220

−200

−180

−160

−140

−120

−100

−80

−60

x

c[1
]i

0.2 0.4 0.6 0.8

1150

1200

1250

1300

x

ρ[1
]

0.2 0.4 0.6 0.8

−0.15

−0.1

−0.05

0

0.05

0.1

x

a

0.2 0.4 0.6 0.8

10
−2.6

10
−2.5

x

m
in

co
st

Figure 17: Case 140213-1115. The abscissas x represent dRj
= d ; j = 1, 2, 3, 4. MFE =

2000, c[0] = 1500, C [0] = 1545, ρ[0] = R[0] = 1000, θi = Θi = 0, α = A = 2000, β = B = .1,
b = B = 1, θ = (0, 180, 2).
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7.3 Effect of C [0] prior uncertainty on retrieval error

We now vary the discordance between c[0] = 1500 and C [0] in order to observe the effect on
the precision of the retrievals.

Fig. 18, which was obtained by the min min cost (zeroth-order) rule, tells us that
the increasing C [0] prior discordance has a nonlinear effect on the outcome of the various
parameter retrievals, accompanied by the appearance of what seems to be a bifurcation of
solutions between C [0] = 1530 and C [0] = 1545.

The appearance of the second branch in this figure once again raises the question of
whether or not we are in the presence of an authentic instability.

It is generally admitted that nonlinear inverse problems are ill posed (Hadamard, 1923;
Banks & Kunisch, 1989; Bui, 1993; Isakov, 2009) which means that the solution either does
not exist, or is not unique and is unstable in the case of existence. Instability is usually
defined (Banks & Bihari, 2001) by retrievals not being continuously-dependent on variations
of the data. Herein (since the data is fixed), instability is characterized by the retrievals
not being continuously-dependent on variations of model uncertainties (i.e., those of the
priors). The question is now whether first-order regularization is adequate to deal with this
instability, as was done in sect. 7.2.
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Figure 18: Case 170213-1153. The abscissas x represent C [0]. dRj
= d = .9 ; j = 1, 2, 3, 4.

MFE = 2000, c[0] = 1500, ρ[0] = R[0] = 1000, θi = Θi = 0, α = A = 2000, β = B = .1,
b = B = 1, θ = (0, 180, 5).
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To answer this question requires a microscopic analysis of the solutions generated by the
Simplex algorithm, for the values C [0] = 1530 on the first branch, and C [0] = 1545 on the
second branch in fig. 18. Figs. 19-20 enable this analysis.
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Figure 19: Case 050313-1007. The abscissas x represent minKk. dRj
= d = .9 ; j = 1, 2, 3, 4.

MFE = 2000. c[0] = 1500. C [0] = 1530. ρ[0] = R[0] = 1000. θi = Θi = 0. α = A = 2000.
β = B = .1. b = B = 1. θ = (0, 180, 5).
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Figure 20: Case 040313-1001. The abscissas x represent minKk. dRj
= d = .9 ; j = 1, 2, 3, 4.

MFE = 2000. c[0] = 1500. C [0] = 1545. ρ[0] = R[0] = 1000. θi = Θi = 0. α = A = 2000.
β = B = .1. b = B = 1. θ = (0, 180, 5).
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In each of these figures, we observe that the Simplex algorithm generates two sets of
solutions corresponding to two sets of minK that are separated from one another by at least
one order of magnitude. After eliminating the solutions associated with the larger minK we
have to contend with three points in figs. 19-20.

[Rb,Re] r r̃ at point 1 r̃ at point 2 r̃ at point 3

[170, 3230] 1700 1693 1613 88.45
[−399,−21] -210 -114.9 -83.97 −419.6
[130, 2470] 1300 1236 1165 6784
[.01, .19] .1 .1141 −.1372 .04075

minK .002542 .002701 .003337

Table 4: Three admissible retrievals of c[1] for C [0] = 1530. The boldfaced numbers corre-
spond to a retrieved parameter that is not within the corresponding initial parameter interval
(first column of the table).

In table 4 we now adopt the second-order regularization rule briefly alluded-to in sect.
2.6: any solution r̃, a member of which is outside the corresponding member of [Rb,Re],
must be rejected, and if more than one solution persists after this rejection procedure, then
the one corresponding to minminK is chosen to be the final (supposedly-correct) solution.

The application of this rule enables us to eliminate the solutions associated with points
2 and 3. Thus, the retained solution is the one at point 1, which happens to correspond to
the smallest value of minK.

Note that the manner of selecting the correct solution by the first-order regularization
rule (i.e., elimination of the retrievals for which a is negative) is not sufficiently discriminative
since it does not enable to exclude the solution in the last column of table 4.
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[Rb,Re] r r̃ at point 1 r̃ at point 2 r̃ at point 3

[170, 3230] 1700 1629 1697 59.45
[−399,−21] -210 -73.28 -88.89 -337
[130, 2470] 1300 1158 1217 9459
[.01, .19] .1 −.141 .1196 .03926

minK .002542 .002701 .003337

Table 5: Three admissible retrievals of c[1] for C [0] = 1545. The boldfaced numbers corre-
spond to a retrieved parameter that is not within the corresponding initial parameter interval
(first column of the table).

In table 5 we once again adopt the second-order regularization strategy. This enables us
to eliminate the solutions at points 1 and 3. Thus, the retained solution is the one at point
2, even though (contrary to the case in table 4) it does not correspond to the smallest value
of minK.

Note that, once again, the manner (first-order regularization) of selecting the correct
solution solely by elimination of the retrievals for which a is negative is not sufficiently
discriminative since it does not enable to exclude the solution in the last column of table 5.

Thus, it appears that what, in fig. 18, distinguishes the ’solutions’ of the two branches
is that the first (left-hand) branch corresponds to solutions associated with minminKk,
whereas the second (right-hand) branch corresponds to solutions for which minKk is not
minimal.

The selection of the correct solution solely on the basis of minminKk is not in contra-
diction with the present manner since, in applications of the minminKk rule, no ’solution’
corresponded to one or several retrieved parameters being outside of the corresponding initial
parameter search intervals, which is the situation that prevails either when one commits the
inverse crime or when the discordance between assumed prior(s) Q and the corresponding
true prior(s) q is (are) small.

Otherwise (case of relatively-large discordance between Q and q), we are no longer in the
(inverse crime) situation characterized by a cost functional with a single (global) minimum,
but rather in one marked by the appearance of more-than-one (local) minima which are a
source of non-uniqueness and instability in the inversion procedure. We have shown, that
even in such cases, it is possible, by adopting the second-order regularization procedure to
eliminate, in algorithmic manner, all but one solution.

7.3.1 The revised graph of retrieved parameters versus C[0]

From the results of tables 4-5 it is now clear that the second branch in fig. 18 is anomalous
due to the fact that the retrievals to which they correspond are not correct (in the sense of
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the second-order regularization rule). By replacing the points on this branch by the correct
points (found e.g., in table 5), we obtain the new, revised, graph of fig. 21 and notice that
all signs of instability have disappeared. From this graph we find that a prior uncertainty
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Figure 21: Case 040313-1242. Revised graph of fig. 18 after application of the second-order
regularization. The abscissas x represent C [0]. dRj

= d = .9 ; j = 1, 2, 3, 4. MFE = 2000,

c[0] = 1500, ρ[0] = R[0] = 1000, θi = Θi = 0, α = A = 2000, β = B = .1, b = B = 1,
θ = (0, 180, 5).

δC[0] = −3% generates a cumulative retrieval error of κ = 28.5%, whereas a prior uncertainty
δC[0] = +3% generates a cumulative retrieval error of κ = 84.2%. These errors, particularly
the second one, are very large compared to the prior uncertainties to which they give rise.
Similar effects of prior uncertainty were reported in [22], albeit for single-parameter retrieval
and a different canonical body.
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8 Numerical results concerning the effect of the other

prior uncertainties on retrieval error

8.1 Effect of R[0] prior uncertainty
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Figure 22: Case 140213-1006. The abscissas x represent R[0]. dRj
= d = .9 ; j = 1, 2, 3, 4.

MFE = 2000, c[0] = C [0] = 1500, ρ[0] = 1000, θi = Θi = 0, α = A = 2000, β = B = .1,
b = B = 1, θ = (0, 180, 5).

Fig. 22, which was obtained using the second-order regularization, reveals that R[0] prior
uncertainty provokes negligible error in the retrievals of c[1]r, c[1]i, and a, and linearly-varying
error of ρ[1].
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8.2 Effect of A prior uncertainty on retrieval error
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Figure 23: Case 140213-0947. The abscissas x represent A. dRj
= d = .9 ; j = 1, 2, 3, 4.

MFE = 2000, c[0] = C [0] = 1500, ρ[0] = R[0] = 1000, θi = Θi = 0, α = 2000, β = B = .1,
b = B = 1, θ = (0, 180, 5).

Fig. 23, which was obtained using the second-order regularization, reveals a weakly-
nonlinear dependence of retrieval error on A prior uncertainty. For a relative prior uncer-
tainty δA = −.01, the relative retrieval errors are εc[1]r = .0888, εc[1]i = 2.424, ερ[1] = .193,
εa = −.230, and for δA = +.025, the relative retrieval errors are εc[1]r = −.0794, εc[1]i =
−.7095, ερ[1] = .1931, εa = 0.5000. Thus, a prior uncertainty δA = −1% provokes a cu-
mulative parameter retrieval error κ = 293.6% and δA = 2.5% gives rise to a cumulative
parameter retrieval error κ = 148.2%. Both of these errors are extremely large compared to
the corresponding prior uncertainties δA.
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8.3 Effect of B prior uncertainty
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Figure 24: Case 050313-1601. The abscissas x represent B. dRj
= d = .9 ; j = 1, 2, 3, 4.

MFE = 2000, α = A = 2000, β = .1, b = B = 1, θ = (0, 180, 5). x = −4 corresponds to
B = .09996, x = −3 corresponds to B = .09997,....., x = 0 corresponds to B = .1,....., x = 3
corresponds to B = .10003, x = 4 corresponds to B = .10004.

Fig. 24, which was obtained using the second-order regularization, reveals that for a
very small negative prior uncertainty δB = −.0004, the retrieval errors are: εc[1]r = −.0388,
εc[1]i = .8286, ερ[1] = −.0838, εa = .24, and for a very small positive prior uncertainty
δB = +.0001, the retrieval errors are: εc[1]r = .0212, εc[1]i = −.8190, ερ[1] = .0708, εa = −.12.
Thus, the prior uncertainty δB = −.04% provokes a cumulative retrieval error κ = 119.12%
and the prior uncertainty δB = +.01% provokes a cumulative retrieval error κ = 103.1%.
These errors are enormous compared to the corresponding prior uncertainties.
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8.4 Effect of Θi prior uncertainty
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Figure 25: Case 170213-1808. The abscissa x represents Θi. dRj
= d = .9 ; j = 1, 2, 3, 4.

MFE = 2000, c[0] = C [0]1500, ρ[0] = R[0] = 1000, θi = 0, α = A = 2000, β = B = .1,
b = B = 1, θ = (0, 180, 5).

Fig. 25, which was obtained using the second-order regularization, manifests a quasilinear
variation of error in the retrieval of the four parameters. We find for a difference of 2◦ of the
prior from its true value that the individual retrieval errors are εc[1]r = .0082, εc[1]i = .1213,
ερ[1 = .0177, εa = −.04, and the cumulative retrieval error is κ = .1872. All these errors are
rather small in comparison with what was found previously for the other types of priors.
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9 Conclusions

The inverse problem studied herein was based on a number of choices:

a- the object to be characterized was of canonical nature (homogeneous, isotropic, sim-
ple circular cylindrical form);
b- the identification of this lossy-fluid object meant retrieving its one geometrical parameter
(the radius) and three mechanical constitutive parameters: real and imaginary parts of the
phase velocity, density;
c- this was achieved by processing the scattered field time-domain data obtained by soliciting
the object with a plane, transient acoustic wave;
d- the processing aspect comprised two components: 1) nonlinear least squares minimization
of a cost functional translating the discrepancy between synthetic signal data and trial signal
data, and 2) a posteriori regularization;
e- this processing was carried out in numerical manner with the help of the Nelder-Mead
downhill Simplex optimization algorithm for the first component, and a simple, automatic
zeroth-, first- or second-order regularization algorithm for the second component;
f - the retrievals were done both in the inverse crime and non-inverse crime contexts;
g- the inverse crime context was defined as the one in which the data simulation model was
identical to the retrieval model and all the priors (such as phase velocity of the host fluid)
incorporated in the retrieval model are identical to their counterparts in the data simulation
model;
h- a non-inverse crime context was defined as one in which the data simulation model was
identical to the retrieval model and one or several of the priors incorporated in the retrieval
model are different from their counterparts in the data simulation model.

The reasons why these choices were made were;

A- choice a) enabled the direct problem of predicting the response of the object to an inci-
dent wave to be solved in quasi-analytic manner, thereby making the inversions (involving
the resolution of a large number of direct problems) tractable on a laptop computer;
B- choice b) derived from the requirement of multiparameter retrieval , with four to-be-
retrieved parameters (of heterogeneous nature) being a favorable compromise between a
single to-be-retrieved parameter [22] and many to-be-retrieved parameters as for a multi-
layer elastic half space [41]. However, the methods and conclusions of our study should also
apply to more complex, more realistic physical configurations;
C- choice c) was made because time domain data is closer than frequency domain data to
what is usuallly generated in experimental and field conditions, in addition to being the
source of much information. The choice of plane-wave solicitation was arbitrary, so that any
other kind (such as source-wave) solicitation could have been employed and would probably
lead to the same conclusions as those of the present study;
D- the choice of L2 norms is traditional in inverse problem solving. Doing this without
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linearization (e.g., linearization being implemented by the Born approximation) is becoming
more and more feasible as the power of computers is increasing. Doing the inversion with
regularization is necessary to obtain a unique, stable solution;
E- choice e) of the Simplex algorithm was dictated by the requirement of comparison with
many previous inversion studies employing this algorithm, and in particular with the recent
study of Buchanan et al. [5]. The Simplex scheme is not optimal in terms of the required
number of iterations and function calls, but it is notoriously robust. A gradient-based method
would probably lead to the same principal conclusions as those of our study;
F −H- the inverse crime context was chosen to conform with [5] and to illustrate the correct
manner of tuning the Simplex algorithm. Non-inverse crime contexts were chosen to better
conform to real-world situations in which the values of priors employed in the retrieval model
are more-or-less far-removed from their real counterparts. Moreover, the non-inverse crime
context leads to cost functions with local minima, instability and severe non-uniqueness
which must be dealt-with by various regularization strategies whose efficiencies were evalu-
ated herein.

The answers we obtained to the five questions raised in the sect. 1 are:

1- in the inverse crime situation, it is possible, by applying the zeroth-order (min min cost)
regularization, to generate a unique solution to the parameter retrieval problem, provided
the cost functional minimization scheme is allowed to do its work to completion (i.e., by
permitting the number of function evaluations to be sufficiently-large). The parameters
comprising this solution turn out to be, for all practical purposes, the true parameters, i.e.,
the inverse crime enables an error-free retrieval (i.e., the value of the corresponding cost
functional can be of the order of 10−18, and the cumulative retrieval error of the order of
10−9) of the sought-for parameters;
2- Naturally, the amount of computations necessary to attain this result is all the larger,
the less knowledge one has at the outset of the true values of the parameters, but however
small be this knowledge, we succeeded in finding the true solution after a sufficient amount
of computations, this being true, whatever: the characteristics of the excitation pulse, and
the number of sensors as well as their distance from the scattering body;
3- the inverse crime solution turned out to be very sensitive to the permitted number of
maximum function evaluations (MFE). When MFE was of the order of 100, the inversions
did not enable to distinguish a clear-cut set of admissible solutions whereas the choice of
MFE of the order of 1000 clearly revealed this set, which tended to be a cluster of points
in the parameter space compactly situated around the true target, this being all the more
true, the narrower were the starting intervals of the to-be-retrieved parameters;
4- three regularization strategies were employed. The zeroth-order rule, of the min min cost
variety and successfully employed in the inverse crime context, turned out to be unsuitable
in the non-inverse crime situation. The first-order rule, based on elimination of non-physical
retrievals followed by min min cost selection, turned out to be unsuitable for relatively-large
discordance between the assumed prior in the the retrieval model and its true counterpart in
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the data simulation model. The second-order rule, based on elimination of retrieved parame-
ters that are outside of their respective starting intervals followed by min min cost selection,
led to a unique, stable solution, even for relatively-severe prior discordance. The cumulative
error of this solution turned out to be enormously-large (compared to the uncertainty of the
prior) for certain prior discordances, in agreement with what was found in [22] (the latter
study being concerned with single-parameter retrieval);
5- The non-inverse crime situation was found to be similar to the inverse crime situation by
the fact of requiring larger MFE for larger initial uncertainty of the to-be-retrieved param-
eters, so that to be sure of finding a meaningful retrieval, for large such initial uncertainty,
required MFE of the order of 2000. This number is dependent also on the prior uncer-
tainty, so that relatively- severe prior uncertainty requires wider initial parameter intervals
and consequently larger MFE.

Further questions that will require answers in subsequent studies:

i- our study (like the one in [22]) presents a grim picture of the possibility of identifying
objects (even ones as simple as the homogeneous, circular cylinder considered herein) with
an acceptable degree of precision if prior uncertainty is taken into account, so that a natural
question is whether there exists a means (e.g., by a different choice of to-be-retrieved param-
eters to characterize a sample, and/or by including the priors amongst the to-be-retrieved
parameters) of reducing the error caused by prior discordance;
ii- our study did not include noise in the synthetic data, so the question is how this noise
will affect the quality of the retrievals;
iii- our study employed synthetic data and certain strong hypotheses (notably concerning
the location and shape of the object), so the question is how relaxation of these hypotheses
and/or the employment of real/experimental data will affect the precision of the retrievals.
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