
HAL Id: hal-00801025
https://hal.science/hal-00801025v1

Submitted on 14 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using SoaML Models and Event-B Specifications for
Modeling SOA Design Patterns

Imen Tounsi, Hrichi Zied, Mohamed Hadj Kacem, Ahmed Hadj Kacem, Khalil
Drira

To cite this version:
Imen Tounsi, Hrichi Zied, Mohamed Hadj Kacem, Ahmed Hadj Kacem, Khalil Drira. Using SoaML
Models and Event-B Specifications for Modeling SOA Design Patterns. International Conference on
Enterprise Information Systems (ICEIS), Jul 2013, Angers, France. 11p. �hal-00801025�

https://hal.science/hal-00801025v1
https://hal.archives-ouvertes.fr

Using SoaML Models and Event-B Specifications for

Modeling SOA Design Patterns

Imen Tounsi1, Zied Hrichi1, Mohamed Hadj Kacem1, Ahmed Hadj Kacem1, and Khalil Drira2,3

1 ReDCAD-Research unit, University of Sfax, Sfax, Tunisia,
2 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

3 Univ de Toulouse, LAAS, F-31400 Toulouse, France,
{imen.tounsi,mohamed.hadjkacem}@redcad.org,

dsi.zied.hrichi@gmail.com,ahmed.hadjkacem@fsegs.rnu.tn, khalil@lass.fr

Abstract. Although design patterns have become increasingly popular, most of them are pre-
sented in an informal way. Patterns, proposed by the SOA design pattern community, are de-
scribed with a proprietary informal notation, which can raise ambiguity and may lead to their
incorrect usage. Modeling SOA design patterns with a standard formal notation avoids misun-
derstanding by software architects and helps endow design methods. In this paper, we present an
approach that aims, first, to model message-oriented SOA design patterns with the SoaML lan-
guage, and second to transform them to Event-B specifications. These two steps are performed
before undertaking the effective coding of a design pattern providing correct by construction
pattern-based software architectures. Our approach is enhanced with a tool supporting it. Speci-
fication results are imported under the Rodin platform which we use to prove model consistency.

Keywords: SOA Design patterns: SoaML modeling: Formal methods: Event-B method: Tool
support

1 INTRODUCTION

The dominant architectural style for many systems is the Service-oriented architecture (SOA), a style
that is essentially based on the message exchange. This architecture offers a model and an opportu-
nity to solve problems related to the communication and the integration between heterogeneous and
distributed applications [Erl, 2009]. However these architectures are subject to some quality attribute
failures (e.g., availability, reliability, and performance problems). Design patterns, as tested solutions
to common design problems within a context, have been widely used to solve these weaknesses.

Patterns, proposed by the SOA design pattern community, are described with a proprietary infor-
mal notation [Erl, 2009], which can raise ambiguity and may lead to their incorrect usage. So they
require modeling with a standard notation and then formalization. The intent of our approach is to
model and formalize message-oriented SOA design patterns. These steps are performed before un-
dertaking the effective coding of a design pattern, so that the pattern in question will be correct by
construction. Our approach allows to reuse correct SOA design patterns, hence we can save effort on
proving pattern correctness.

In this paper, we propose an approach for modeling and transforming message oriented SOA
design patterns. The key idea is to model these patterns with the semi-formal Service oriented archi-
tecture Modeling Language (SoaML) and to transform them into Event-B specifications. We proceed
by proposing the SOA design patterns metamodel conformed to the SoaML language. This modeling
step is proposed in order to attribute a standard notation to SOA design patterns. Then we propose
the transformation of design pattern models, according to transformation rules, into Event-B spec-
ifications. We import the generated specifications under the Rodin platform which we use to prove
model consistency. We provide structural features of SOA design patterns in the modeling phase as
well as in the specification phase. Structural features of a design pattern are generally specified by
assertions on the existence of types of components in the pattern. The configuration of the elements is
also described, in terms of the static relationships between them. We illustrate our approach through
a pattern example “Event-Driven Messaging”, proposed by the SOA design pattern community. We
also present a tool supporting our approach.

The paper is structured as follows. Section 2 gives background information of some concepts used
in this paper. Section 3 gives an overview of our approach. Section 4 describes our tool supporting
our approach. Section 5 discusses related work. Section 6 concludes and gives future works.

2 Imen Tounsi, Zied Hrichi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, and Khalil Drira

2 BACKGROUND

In this section, we provide some background information on patterns, SoaML modeling language and
Event-B method.

2.1 Design Patterns

In the field of information systems, a pattern is defined as a model that provides a proven solution
to a common problem individually documented in a consistent format and usually as part of a larger
collection [Erl, 2009]. Patterns can be classified relatively to their level of abstraction into three cat-
egories: architectural patterns (or architectural styles) that provide the skeleton or template for the
overall shape and the structure of software applications at a high-level design [Gomaa, 2004], design

patterns that encode a proven solution to a recurring design common problem of automated systems
[Ramirez and Cheng, 2009], and implementation patterns that provide a solution to a given problem
in programming [Beck, 2007]. It is used to generate code.

2.2 SoaML

SoaML 4 (Service oriented architecture Modeling Language) [OMG, 2012] is a specification developed
by the OMG that provides a standard way to architect and model SOA solutions. It consists of a
UML profile and a metamodel that extends the UML 2.0 (Unified Modeling Language).

2.3 XSLT

XSLT 5(eXtensible Styles Language Transformation) is a W3C standard that supports the XML
standard. The objective of this specification is to transform XML documents into another document
format. XSL is decomposed into two languages, a transformation language and a formatting language.
The first one can transform an XML document into another document, while the second one can use
predefined tags to represent the visual aspect of an XML document. XSLT apply the transformation
written by XSL stylesheet to an XML document. In our approach, we use the XSLT language to
transform SoaML diagrams into Event-B specifications.

2.4 Event-B

Event-B [Abrial, 2010] is a formal method for developing systems via stepwise refinement, based
on first-order logic. The method is enhanced by its supporting Rodin Platform [Abrial et al., 2010]
for analyzing and reasoning rigorously about Event-B models. The basic concept in the Event-B
development is the model which is made of two types of components: contexts and machines. A
context describes the static part of a model, whereas a machine describes the dynamic behavior of
a model. Each context has a name and other clauses like ”Constants” to declare constants, ”Sets”
to declare a new data type and ”Axioms” that denotes the type of the constants and the various
predicates which the constants obey. It is a predicate that is assumed to be true in the rest of the
model.

3 APPROACH OVERVIEW

The main goal of our approach is the modeling of message-oriented SOA design patterns with the
semi-formal SoaML standard language, the automatic transformation of pattern diagrams to Event-B
specifications and the formal verification of their correctness. Figure 3 depicts the overall approach.

After modeling design patterns, the graphical editor generates an XML file. The plug-in transforms
this XML file, according to transformation rules expressed with the XSLT language, into Event-
B specifications. These specifications will then be imported under the Rodin theorem prover that
supports the generation of Proof Obligations belonging to Event-B models. The Rodin Platform is
also used in order to check the syntax of SOA design pattern specifications as well as their correctness.

4 http ://www.omg.org/spec/SoaML/
5 http ://www.w3.org/TR/xslt

Lecture Notes in Computer Science: Authors’ Instructions 3

EVENT Sending_Req
Where

CONSTANTS
RequestMessage
ResponseMessage

AXIOMS
Message_partition :

partition(MessageType,

EVENT Receiving_Resp
Where

CONSTANTS
RequestMessage
ResponseMessage

AXIOMS
Message_partition :

partition(MessageType,

Transformation
Rules

2.Transformation

Graphical editor 3.Generate Event-B specifications

SETS
MessageType.

CONSTANTS
RequestMessage
ResponseMessage

AXIOMS
Message_partition : partition(MessageType,

RequestMessage},{ResponseMessage})1.Edit models

XML documents

����� ����� � 	
�� ��
����������	����������
�
���� ����
�
���� ��	�������
��������� ������
������ ��	��� � ����
�� ��� ��� ���� ��� ����
�
���� ������
�
���� ����
�
���� ��	�������
������	��������� �������� ���� ��	��� � �����
�� ��� ��� ���� ��� ����
�
���� ������
�
���� ����
�
���� ��	������ !���� ���������� ������ ����� � 	
�� ��
����������	����������
�
���� ����
�
���� ��	�������
��������� ������
������ ��	��� � ����
�� ��� ��� ���� ��� ����
�
���� ������
�
���� ����
�
���� ��	�������
������	��������� �������� ���� ��	��� � �����
�� ��� ��� ���� ��� ����
�
���� ������
�
���� ����
�
���� ��	������ !����� � 4. Proof Obligations

�"#$%
User

Fig. 1. The overall approach

3.1 SOA Design Patterns Modeling

We provide a modeling solution for describing SOA design patterns using a visual notation based
on the graphical SoaML language. Three main reasons lead to use SoaML. First, it is a standard
modeling language defined by OMG. Second, it is used to describe service oriented architectures.
Third, diagrams used in SoaML, allow to represent structural features as well as behavioral features
of design patterns.

The SoaML metamodel extends the UML metamodel to support an explicit service modeling in
distributed environments. This extension is perfectly applied to SOA design patterns modeling. We
model structural features of design patterns with Participant diagram, ServiceInterface diagram,
MessageType diagram. To model these diagrams, we use the part of the SoaML metamodel presented
in Figure 2. Gray classes represent abstract metaclasses and white classes represent stereotypes. In
follows, we only present the base concepts that we use in the pattern modeling.

Entities, that make up the architecture of an SOA design pattern, can be either Participants or
Agents . A Participant represents a subclass of Component that provides and/or consumes services.
Agents extend Participants with the ability to be active (their needs and capabilities may change
over time). Entities can have Ports that constitute interaction points with their environment. These
Ports are related to one or more provided or required Interfaces and their types can be either
Service or Request . ServiceInterfaces are used to describe provided and required operations to
complete services functionality, they can be used as protocols for a service port or a request port. The
communication path between Services and Requests within an architecture is called ServiceChannel ,
it extends the metaclass Connector.

The MessageType is used to specify information exchanged between services, it extends the
metaclass DataType. An Attachment is a part of a message that is attached to it, it extends the
metaclass Property. The stereotype Property extends the metaclass Property with the ability to be
distinguished as an identifying property (“primary key” for messages).

A Capability is the ability to act and produce an outcome that achieves a result, it extends the
metaclass Class. A Participant can realize zero or several capabilities with the link CapabilityRe-
alization .

In some SOA design patterns entities are organized in various ways across many orthogonal dimen-
sions, for example they can be organized by service layers or by physical boundaries. Catalogs pro-
vide a means of classifying and organizing elements by Categories for any purpose, they extends the
metaclass Package and specializes the stereotype NodeDescriptor . Categories are related to Cat-
alogs with the relation Belons to . A collection of related entities are characterized by a Category .
Applying a Category to an entity by using a Categorization places that entity in the Catalog .

In this paper, we model as example the Event Driven Messaging pattern 6 [Erl, 2009]. It is an
SOA design pattern for inter-service message exchange. It resolves the problem of inefficient polling-
based interactions for service consumer, generated in order to obtain information about events occur-
rence. The solution proposed by this pattern is to introduce an event manager allowing the service

6 http ://soapatterns.org/patterns/event driven messaging

4 Imen Tounsi, Zied Hrichi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, and Khalil Drira

«Participant»

«S
er

vi
ce

»

«R
eq

ue
st

»

Port

Component

Connector

1..*

Interface

0..* 0..*+
/p

ro
vi

de
d

+
/r

eq
ui

re
d

12

ConnectorKind

ha
s

DelegationAssembly

enumeration

«A
ge

nt
»

«Port»
ConnectorRequired : Boolean=True

de
fi

ne
s

ty
pe

}*

*

Participants and Service Interfaces

*

1

Realization Property

«ServiceChannel»

PackageArtifact

«ServiceInterface»

0..1{R
ed

e

0..1
{Redefines type} Class

Capabilities MessagesClass Descriptions

0..*

«Capability»

«CapabilityRealization»

*

1
*

«MessageType»

DataType

«Attachment»

«Categorization»

Dependency

«Category» «Catalog»

«Belongs_To»

ToCatalogFromCategory

F
ro

m
P

ar
ti

ci
pa

nt

To
C

at
eg

or
y

«Property»
isID : Boolean

«NodeDescriptor»
0..*

1

0..*

Fig. 2. SOA design patterns Metamodel

consumer to set itself up as a subscriber to events associated with a service that assumes the role of
publisher. So that service consumers are automatically notified of runtime service events.

We specify entities of the pattern and their dependencies (connections) in the Participant diagram
(Figure 3) and we specify their interfaces and exchanged messages in the ServiceInterface and
MessageType diagrams respectively (Figure 4).

The Subscriber, the Publisher and the Event-Manager are defined as participants because
they provide and use services. As shown in Figure 3, the Publisher provides an event used by the
Subscriber. When the event occurs, the Publisher automatically sends the event details to the Event-
Manager, which then broadcasts the event notification to the Subscriber. Both the Publisher and
the Subscriber have a port typed with “Event”. the Publisher is the provider of the service and has
a Service port. The Subscriber is a consumer of the service and uses a Request port. In this dia-
gram, ServiceChannels are explicitly represented, they enables communication between the different
participants.

« Participant »

Publisher

« Participant »

Event_Manager «ServiceChannel»

PushEM_P

« Participant »

Subscriber «ServiceChannel»

PushS_EM

« Service »

: Event_Notif

«ServiceChannel»

« Service » :

Event

« Request »

: ~ Event

«ServiceChannel»
PushP_EM

«ServiceChannel»

PushEM_S

Fig. 3. Participant diagram

In the MessageType diagram (Figure 4) three MessageTypes are used to define informa-
tion exchanged between the Publisher, the Subscriber and the Event-Manager. These messages
are “SubsReq”, “SubsResp” and “EventInfo”, they are used as types for operation parameters
of the service interfaces. As shown in Figure 4, the Publisher’s port type is the UML interface
“ProviderEvent” that has the operation “publishEvent”. This operation has a message style pa-
rameter typed “EventInfo”. The Subscriber expresses its request for the “Event” using its request
port. The type of this request port is the UML interface “SubscriberEvent”. This interface has an

Lecture Notes in Computer Science: Authors’ Instructions 5

operation “subscribeEvent” with a parameter typed “SubsReq”. The type of the Event-Manager’s
port is the UML interface “Notification” that has two operations “eventNotif” and “subsNotif”.
These operations have two message style parameters where the type of the parameters are the Mes-
sageTypes “SubsResp” and “EventInfo”.

«MessageType»

SubsReq

«MessageType»

EventInfo

«MessageType»

SubsResp

« Interface »

Notification

+ subsNotif (snotif: SubsResp)

« Interface »

SubscriberEvent «use»

+ eventNotif (enotif: EventInfo)

«use»

« Interface »

ProviderEvent

+ subscribeEvent (rq:SubsReq)
«ServiceInterface»

~ Event

«ServiceInterface»

Event

«ServiceInterface»

Event_Notif

+ publishEvent(rs:EventInfo)

«Participant» «Participant»

«use»

Type

Type

«Participant»

Notification

Type

«Participant»

Subscriber
SubscriberEvent

«Participant»

Publisher ProviderEvent
«Participant»

Event_Manager

«Request»

: ~ Event+

subscribeEvent

«Service»

: Event

bli hE t

+

b N tif

+

«Service»

: Event_Notif

tN tif

+

subscribeEvent publishEvent subsNotifeventNotif

Fig. 4. ServiceInterface and MessageType diagrams

3.2 SOA Design Patterns Transformation

In the SOA design patterns transformation step, we present the transformation process of SoaML
diagrams to Event-B language.

Participant Diagram Mapping This diagram constitute the static part of the defined pattern. It
is specified in the Context part. The transformation of the Participant diagram is based on four major
rules allowing the transformation of a graphical model into an Event-B specification.

R1. Architecture Entities Transformation Rule

This rule transforms entity types into new Event-B entity types. Participant names and agent
names are transformed to constants. The set Entity is composed of the set of all Participants and
the set of all Agents. This is specified by using a partition in the AXIOMS clause (Entity partition).
The following algorithm shows how to transform the architecture entities.

Algorithm Architecture entities transformation rule
1: begin
2: Write (” SETS ”)
3: Write (‘Entity’)
4: Write (” CONSTANTS ”)
5: if exist Participant then

6: Write (‘Participant’)
7: for each Participant do

8: Write (Participant.Name)
9: end for

10: end if

11: if exist Agent then

12: Write (‘Agent’)
13: for each Agent do

14: Write (Agent.Name)
15: end for

16: end if

17: Write (” AXIOMS ”)
18: Write (‘Entity partition:partition(Entity’)
19: if exist Participant then

20: Write(‘,Participant’)
21: end if

22: if exist Agent then

23: Write(‘,Agent’)
24: end if

25: if exist Participant then

26: Write(‘Participant partition (Participant,’)

6 Imen Tounsi, Zied Hrichi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, and Khalil Drira

27: for each Participant do

28: Write (Participant.Name)
29: end for

30: end if

31: if exist Agent then

32: Write(‘Agent partition (Agent,’)
33: for each Agent do

34: Write (Agent.Name)
35: end for

36: end if

37: end

R2. Connections Transformation Rule

In the SoaML modeling, a ServiceChannel is a connection between two architecture entities. This
rule define the graphical connection with an Event-B relation between two entities (ServiceChan-
nel) and transforms ServiceChannels name into constants in the CONSTANTS clause. The set of Ser-
viceChannels is composed of all ServiceChannel’s name. This is transformed formally to a partition
(ServiceChannel partition). This rule also generates Domain and Range axioms for each service
channel to define its source and its target. The following algorithm shows how to transform a service
channel.

Algorithm Connections transformation rule
1: begin
2: Write (” CONSTANTS ”)
3: if exist ServiceChannel then

4: Write (’ServiceChannel’)
5: for each ServiceChannel do

6: Write (ServiceChannel.Name)
7: end for

8: end if

9: Write (” AXIOMS ”)
10: if exist ServiceChannel then

11: Write(’ServiceChannel partition:partition(ServiceChannel’)
12: for each ServiceChannel do

13: Write (ServiceChannel.Name)
14: end for

15: Write(’ServiceChannel Relation : ServiceChannel ∈ Entity ↔ Entity’)
16: for each ProviderInterface do

17: Write (ProviderInterface.Origine)
18: Write(’ Domain:dom’)
19: Write (({ProviderInterface.Origine}))
20: Write(’=’)
21: Write ({ProviderInterface.Destinataire})
22: end for

23: for each RequireInterface do

24: Write (RequireInterface.Destinataire)
25: Write(’ Range:ran’)
26: Write (({RequireInterface.Destinataire}))
27: Write(’=’)
28: Write ({RequireInterface.Origine})
29: end for

30: end if

31: end

R3. Class Descriptions Transformation Rule

This rule transforms catalog type to a new Event-B catalog type and catalogs name into constants
in the CONSTANTS clause. The set of Catalogs is composed of all catalogs name. This is transformed
formally to a partition (Catalog partition). This rule also transforms category type to a new Event-B
category type and categories name into constants in the CONSTANTS clause. The set of Categories is
composed of all Categories name. This is transformed formally to a partition (Category partition).
The relation of containment of a Catalog with Categories is transformed to the relation Belongs to.
The link of Categorization is transformed to a relation between a Category and an Entity. The fol-
lowing algorithm shows how to transform class descriptions.

Algorithm Class descriptions transformation rule
1: begin
2: Write (” SETS ”)
3: if exist Catalog then

4: Write (’Catalog’)
5: end if

6: if exist Category then

7: Write (’Category’)

Lecture Notes in Computer Science: Authors’ Instructions 7

8: end if

9: Write (” CONSTANTS ”)
10: if exist Catalog then

11: for each Catalog do

12: Write (Catalog.Name)
13: end for

14: end if

15: if exist Category then

16: for each Category do

17: Write (Category.Name)
18: end for

19: end if

20: if exist Category and exist Catalog then

21: Write (’Belongs To’)
22: Write (’Categorization’)
23: end if

24: Write (” AXIOMS ”)
25: if exist Catalog then

26: Write(’Catalog partition:partition(Catalog,’)
27: for each Catalog do

28: Write (Catalog.Name)
29: end for

30: end if

31: if exist Category then

32: Write(’Category partition:partition(Category,’)
33: for each Category do

34: Write (Category.Name)
35: end for

36: Write(’Belongs to Relation : Belongs to ∈ Catalog ↔ Category’)
37: Write(’Categorization : Categorization ∈ Category ↔ Entity’)
38: Write (’Belongs to init:Belongs to = {’)
39: for each Category do

40: for each Catalog do

41: Write (Catalog.Name)
42: Write(’ 7→’)
43: Write (Category.Name)
44: end for

45: end for

46: Write (’}’)
47: Write (’Categorization init:Categorization = {’)
48: for each Categorization do

49: Write (Categorization.TransitionToNoeud)
50: Write(’ 7→’)
51: Write (Categorization.TransitionFromNoeud)
52: end for

53: Write (’}’)
54: end if

55: end

R4. Capabilities Transformation Rule

This rule transforms capability type to a new Event-B capability type and capability name into
constants in the CONSTANTS clause. The set of Capabilities is composed of all capabilities name. This
is transformed formally into a partition (Capability partition). The link between a Participant and
a capability is transformed to a relation Provide. The following algorithm shows how to transform
capabilities.

Algorithm Capabilities transformation rule
1: begin
2: Write (” SETS ”)
3: if exist Capability then

4: Write (’Capability’)
5: end if

6: Write (” CONSTANTS ”)
7: if exist Capability then

8: for each Capability do

9: Write (Capability.Name)
10: Write (’Provide’)
11: end for

12: end if

13: Write (” AXIOMS ”)
14: if exist Capability then

15: Write(’Capability partition:partition(Capability,’)
16: for each Capability do

17: Write (Capability.Name)
18: end for

19: Write(’Provide Relation : Provide ∈ Participant ↔ Capability’)
20: Write(’Capability init:Capability={’)
21: for each Realization do

22: Write (Realization.TransitionFromProperty)
23: Write(’ 7→’)

8 Imen Tounsi, Zied Hrichi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, and Khalil Drira

24: Write (Realization.TransitionToCapability)
25: end for

26: Write (’}’)
27: end if

28: end

MessageType Diagram Mapping This diagram is also specified in the Context part. The trans-
formation of this diagram is based on a single rule that allows to transform the graphical model into
an Event-B specification. This rule transforms MessageType to a new Event-B message type and
messages name into constants in the CONSTANTS clause. The set of MessageType is composed of all
messages name. This is transformed formally to a partition (Message partition). The following algo-
rithm shows how to transform MessageTypes.

Algorithm MessageType transformation rule
1: begin
2: Write (” SETS ”)
3: if exist Message then

4: Write (’MessageType’)
5: end if

6: Write (” CONSTANTS ”)
7: if exist Message then

8: for each MessageType do

9: Write(MessageType.Name)
10: end for

11: end if

12: Write (” AXIOMS ”)
13: if exist Message then

14: Write(’Message partition:partition(MessageType’)
15: for each MessageType do

16: Write (,{ MessageType.Name})
17: end for

18: end if

19: end

Service Interface Diagram Mapping This diagram is specified in the same Context. The trans-
formation rule of this diagram define the relation Can Send, which is the link between an Entity and
a MessageType. The following algorithm shows how to transform Service Interfaces.

Algorithm Service Interface transformation rule
1: begin
2: Write (” CONSTANTS ”)
3: if exist Participant then

4: Write (’Can Send’)
5: end if

6: Write (” AXIOMS ”)
7: Write(’Can Send Relation : Can Send ∈ Entity ↔ MessageType’)
8: Write(’Can Send init:Can send = {’)
9: V ar1 ← Participant.RequestPort.Name

10: V ar2 ← ServiceInterface.Name
11: V ar3 ← AssociationUse.Origine
12: for each Participant do

13: Write(Participant.Name)
14: Write(’ 7→’)
15: if V ar1 = V ar2 and V ar1 = V ar3 then

16: Select(AssociationUse.Destinataire)
17: Write(Interface.OperationInterface.Name)
18: end if

19: end for

20: Write (’}’)
21: end

4 TOOL SUPPORT

Our approach is enhanced by an Eclipse plug-in based on its development on the Frameworks;
GMF (Graphical Modeling Framework) [Eclipse, 2010b], EMF (Eclipse Modeling Framework)
[Steinberg et al., 2009] and GEF (Graphical Editing Framework) [Eclipse, 2010a]. It is a graphical
modeling tool that ensures an easy and efficient modeling way of SOA design patterns. Several dia-
grams are available in the plug-in; we can model Participant diagram, Service Interface diagram,
and Message Type diagram.

Lecture Notes in Computer Science: Authors’ Instructions 9

Fig. 5. SOA design patterns plug-in

The SOA design patterns diagram editor is a tool where diagrams can be created to model patterns.
Figure 5 shows the diagram editor of the SOA design patterns with an illustration of the pattern
example “Event-Driven Messaging”. After modeling a design pattern, the plug-in generates an XML
specification describing it. The generated XML specification corresponding to the participant diagram
presented in Figure 3, is depicted in follows.

<!-- =======Entities======= -->
<Participant ParticipantName="Subscriber">

<Port>
<RequestPort Name=": ~ Event"/>

</Port>
</Participant>
...

<!-- =======Connexions======= -->
<RequireInterface Origine="..." Destinataire="//@Assemblage.0"/>
<RequireInterface Origine=".../@Port.0" Destinataire="..."/>
...

The plug-in transforms the generated XML file, according to transformation rules expressed with
the XSLT language, into Event-B specifications. These specifications can be imported under the
Rodin platform to verify their correctness. Transformation rules described in section 3.2 are expressed
with the XSLT language. For reasons of space, we only present the following XSLT fragment for
transforming the architecture entities.

<!-- =======CONTEXT======= -->
<org.eventb.core.contextFile
org.eventb.core.configuration="org.eventb.core.fwd"version="3">

<!-- ========SETS========= -->
<org.eventb.core.carrierSet name=")"
org.eventb.core.identifier="Entity"/>
<xsl:if test="document(’MessageDiagram.xml’)">
<org.eventb.core.carrierSet
name="("org.eventb.core.identifier="MessageType"/>
</xsl:if>
...

<!-- ======CONSTANTS======-->
<xsl:if test="//Participant"> <org.eventb.core.constant
name="00"org.eventb.core.identifier="Participant"/>
</xsl:if>
...

<!-- =======AXIOMS======= -->
<xsl:if test="//Participant"> <org.eventb.core.axiom
name="002"org.eventb.core.label="Participant_partition"
org.eventb.core.predicate="partition(Participant,
<xsl:for-each select="Part:Root/Participant">
{<xsl:value-of select="@ParticipantName"/>}
</xsl:if>
</xsl:for-each>)
"/>
</xsl:if>
...

10 Imen Tounsi, Zied Hrichi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, and Khalil Drira

By applying transformations rules on the generated XML specifications, we obtain Event-B spec-
ifications presented in Figure 6.

CONTEXT
EventDrivenM

SETS
Entity
MessageType

CONSTANTS
Participant
ServiceChannel

AXIOMS
Entity_partition: partition(Entity, Participant)
Participant_partition: partition(Participant, {Subscriber},
{Event_Manager}, {Publisher})
Message_partition: partition(MessageType, {SubsReq}, {SubsResp},
{EventInfo})
ServiceChannel_Relation: ServiceChannel Entity↔ Entity
ServiceChannel_partition: partition(ServiceChannel, {PushS_EM},
{PushEM_S}, {PushEM_P}, {PushP_EM})ServiceChannel

Subscriber
Event_Manager
Publisher
SubsReq
EventInfo
PushS_EM
Can_Send
. . .

{PushEM_S}, {PushEM_P}, {PushP_EM})
PushS_EM_Domain: dom({PushS_EM}) = {Subscriber}
. . .
PushEM_S_Range: ran({PushEM_S}) = {Subscriber}
. . .
Can_Send_Relation: Can_Send Entity↔ MessageType
Can_Send_init: Can_Send = {Subscriber SubsReq, Publisher
EventInfo, Event_Manager SubsResp, Event_Manager EventInfo}

END

Fig. 6. Excerpt of Event-B specification results

5 RELATED WORK

In the literature most proposed patterns are described with a combination of textual description and a
graphical presentation [Gamma et al., 1995], some times using proprietary notations [Gregor Hohpe, 2003,Erl, 2009],
in order to make them easy to read and understand. However, using these descriptions makes pat-
terns ambiguous and may lack details. There have been many research that specify patterns using
formal techniques [Zhu and Bayley, 2010,Blazy et al., 2003] but research that model design patterns
with semi-formal languages are few [Mapelsden et al., 2002].

In our research work we are interested in SOA design patterns defined by Erl [Erl, 2009]. For
these patterns, there are no work that model or formally specify them. Erl presents his patterns with
an informal proprietary notation because there is no standard modeling notation for SOA, but now
OMG announces the publication of the SoaML language [OMG, 2012], it is a specification for the UML
profile and a metamodel for services. So, in our work, we propose to model SOA design patterns with
the SoaML standard language. After the modeling step, we propose to specify these patterns formally.
Similar to [Zhu and Bayley, 2010,Kim and Carrington, 2009] we specify design patterns using First
Order Logic, but we use a different formal method which is Event-B.

After the OMG publication of the SoaML language, some works that provide SoaML support ap-
peared. Delegado et al. [Delgado et al., 2011] developed an Eclipse plug-in based on EMF and GMF
that implements the SoaML standard. Modeling with this plug-in is quite heavy and we can not model
a provided/required connection with SoaML. Other tools that allow modeling service oriented archi-
tectures according to the OMG standard exists like Modeliosoft [Modeliosoft, 2011] and modelDriven
[ModelDriven, 2009] however, these tools do not use transformation techniques for generating formal
specifications.

In this context, we proposed a tool for modeling SOA design patterns, that is not only easy to use,
specific for our diagrams, and adaptable with Rodin environment but also it allows importing and
exporting XML files of model that will be subsequently converted to Event-B specifications. Moreover,
we use the XSLT language for the automatic transformation of our model to Event-B language.

6 CONCLUSIONS

In this paper, we presented an architecture-centric approach supporting the modeling and the transfor-
mation of message-oriented SOA design patterns to formal specifications. The modeling phase allows
to describe SOA design patterns with a graphical standard notation using the SoaML language. The
transformation phase allows to formally specify structural features of these patterns at a high level
of abstraction. We proposed an Eclipse plug-in that supports our approach. More precisely, it allows
the modeling of SOA design patterns and then generating the corresponding XML file. Each XML
file is transformed according to transformation rules expressed with the XSLT language into Event-
B specifications. These specifications are then imported under the Rodin platform. We illustrated

Lecture Notes in Computer Science: Authors’ Instructions 11

our approach through a pattern example (“Event Driven Messaging”). In this paper, we presented
structural features of design patterns, behavioral features are presented in the modeling phase with
sequence diagram which are then transformed to machines in the Event-B method. Currently, we are
working on defining transformation rules in order to automate this phase.

References

[Abrial, 2010] Abrial, J.-R. (2010). Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edition.

[Abrial et al., 2010] Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T. S., Mehta, F., and Voisin, L. (2010).
Rodin: An Open Toolset for Modelling and Reasoning in Event-B. Int. J. Softw. Tools Technol. Transf.,
12(6):447–466.

[Beck, 2007] Beck, K. (2007). Implementation Patterns. Addison Wesley; 1 edition (23 Oct 2007).
[Blazy et al., 2003] Blazy, S., Gervais, F., and Laleau, R. (2003). Reuse of specification patterns with the

b method. In Bert, D., Bowen, J., King, S., and Waldn, M., editors, ZB 2003: Formal Specification and
Development in Z and B, volume 2651 of Lecture Notes in Computer Science, pages 626–626. Springer Berlin
/ Heidelberg.

[Delgado et al., 2011] Delgado, A., Laura, G., Sofia, L., Andrs, P., FranciscoRuiz, I., and Garcia, R. (2011).
SoaML Eclipse plug-in para modelado de servicios. Technical report, Technical report.

[Eclipse, 2010a] Eclipse (2010a). Graphical Editing Framework. http://www.eclipse.org/gef/.
[Eclipse, 2010b] Eclipse (2010b). Graphical Modeling Framework. http://www.eclipse.org/modeling/gmf/.
[Erl, 2009] Erl, T. w. a. c. (2009). SOA Design Patterns (The Prentice Hall Service-Oriented Computing

Series from Thomas Erl). Prentice Hall PTR, 1 edition.
[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R. E., and Vlissides, J. (1995). Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA.
[Gomaa, 2004] Gomaa, H. (2004). Designing Software Product Lines with UML: From Use Cases to Pattern-

Based Software Architectures (The Addison-Wesley Object Technology Series). Addison-Wesley Professional.
[Gregor Hohpe, 2003] Gregor Hohpe, B. W. (2003). Enterprise Integration Patterns - Designing, Building,

and Deploying Messaging Solutions. Addison Wesley.
[Kim and Carrington, 2009] Kim, S.-K. and Carrington, D. A. (2009). A formalism to describe design patterns

based on role concepts. Formal Asp. Comput., 21(5):397–420.
[Mapelsden et al., 2002] Mapelsden, D., Hosking, J., and Grundy, J. (2002). Design pattern modelling and

instantiation using DPML. In Proceedings of the 40th International Conference on Tools Pacific: Objects
for internet, mobile and embedded applications, CRPIT’02, pages 3–11. Australian Computer Society, Inc.

[ModelDriven, 2009] ModelDriven, C. (2009). ModelDriven. http://portal.modeldriven.org/.
[Modeliosoft, 2011] Modeliosoft (2011). Modelio: The open source modeling environement.

http://modeliosoft.org/.
[OMG, 2012] OMG (2012). Service oriented architecture Modeling Language (SoaML) Specification. Technical

report.
[Ramirez and Cheng, 2009] Ramirez, A. J. and Cheng, B. H. (2009). Developing and applying design patterns

for dynamically adaptive systems. Technical Report MSU-CSE-09-8, Department of Computer Science,
Michigan State University, East Lansing, Michigan.

[Steinberg et al., 2009] Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. (2009). EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition.

[Zhu and Bayley, 2010] Zhu, H. and Bayley, I. (2010). Laws of pattern composition. In Proceedings of the
12th international conference on Formal engineering methods and software engineering, ICFEM’10, pages
630–645, Berlin, Heidelberg. Springer-Verlag.

