
HAL Id: hal-00800998
https://hal.science/hal-00800998

Submitted on 14 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A formal support for incremental behavior specification
in agile development

Anne-Lise Courbis, Thomas Lambolais, Hong-Viet Luong, Thanh-Liem Phan,
Christelle Urtado, Sylvain Vauttier

To cite this version:
Anne-Lise Courbis, Thomas Lambolais, Hong-Viet Luong, Thanh-Liem Phan, Christelle Urtado, et al..
A formal support for incremental behavior specification in agile development. Software Engineering
and Knowledge Engineering (SEKE), 2012, United States. 6 p. �hal-00800998�

https://hal.science/hal-00800998
https://hal.archives-ouvertes.fr

A formal support for incremental behavior specification in agile development

Anne-Lise Courbis1, Thomas Lambolais1, Hong-Viet Luong2, Thanh-Liem Phan1, Christelle Urtado1,
and Sylvain Vauttier1

1LGI2P, école des mines d’Alès, Nı̂mes, France,First.Last@mines-ales.fr
2Laboratoire Ampère, UMR 5005, INSA-Lyon, Lyon, France,Hong-Viet.Luong@insa-lyon.fr

Abstract

Incremental development is now state of the practice. In-
deed, it is promoted from the rational unified process to ag-
ile development methods. Few methods however guide soft-
ware developers and architects in doing so. For instance,
no tool is proposed to verify the non-regression of function-
alities, modeled as behavior specifications, between incre-
ments. This work helps to incrementally specify software
functionalities using UML state machines. It provides an
on-the-fly evaluation of a specified behavior as compared
to that of previous increments. The proposed contribution
is based on two formally specified relations that are proved
to preserve refinement when composed. Architects and de-
velopers are free to choose their preferred behavior speci-
fication strategy by iteratively applying them, so as to de-
velop the required functionalities, having at each step the
benefit of a formal non-regression checking to guide the
global specification process. Our proposal is implemented
in a proof-of-concept tool and illustrated by a didactic case-
study.

Keywords: UML state machines, incremental develop-
ment, agile methods, state machine verification, confor-
mance relations, refinement.

1. Introduction

The evolution of software system development processes
follows currently two apparently contradictory main trends.
Agile and extreme programmingpromote fast development
of small increments that will altogether constitute the ex-
pected complete software [3]. These development meth-
ods are very popular as they are concrete, foster the sense
of achievement among development teams and best satisfy
clients as well as stakeholders by early, fast and regular de-

liveries of usable and valuable software that incrementally
integrates all the required functionalities. However, thelack
of a big picture to guide the development process towards
well defined goals may lead to harmful inconsistencies such
as regressions or substitution mismatches.Model driven en-
gineering(MDE) promotes models as the main artifacts to
capture both requirements and the designed solution. They
are used, via automated or assisted transformations, to cre-
ate the implementation of the system. MDE concentrates
developers’ efforts on the early development steps, tryingto
specify once and then generate implementations to various
target technologies or execution frameworks, skipping, as
much as possible, tedious repetitive design or coding tasks.
MDE provides an effective support to capture the big pic-
ture of a specification and reason about design decisions.
However, MDE does not yet fully support disciplined incre-
mental development. Indeed, non regression is often con-
ducted by the means of tests [7]. MDE lacks formal tools to
perform behavioral model verifications.

This paper advocates that it is possible to combine the
advantages of both trends by providing tools to compare the
behavior specifications of increments and evaluate the exis-
tence of refinement relations in order to verify the global
consistency of the development process. This enables in-
cremental but disciplined development processes, supported
by tools that provide guidance to enforce consistency. UML
state machines are used as a uniform means to model behav-
iors throughout the development process, from initial, par-
tial and abstract specifications, that interpret requirements
as functionalities, to detailed designs, that fully define sys-
tem dynamics. This way, incremental behavior specification
and design schemes can be proposed thanks to three rela-
tions, that we have adapted from process algebra literature
to state machines in previous work [18]:

• the behaviorextensionrelation (notedext) captures
the fact that a machine adds behaviors to another one,

without impeding existing mandatory behaviors.

• the behaviorrestricted reductionrelation (notedredr)
captures the fact that a machine does not add extra ob-
servable behaviors and that mandatory behaviors are
preserved: non observable behaviors may be detailed
and optional behaviors may be removed.

• the behaviorrefinementrelation (notedrefines) in-
cludes extension and reduction. It links an abstract ma-
chine to a more concrete one and enforces that all the
mandatory behaviors specified in the abstract machine
are preserved in the refined one. Some optional behav-
iors may be removed, while new observable ones may
be added, provided they do not conflict with existing
ones.

These relations are going to serve as a basis for the in-
cremental development of behavior models. The idea of the
paper is that they altogether form a formal yet not constrain-
ing means to evaluate the consistency of artifacts produced
when using agile development processes.

Whichever relations are composed, the latter machines
are guaranteed to be conform implementations of the for-
mer. When none of theses relations can be asserted be-
tween two successive machines, a rupture is detected in the
refinement process. This paper advocates for a guided re-
vision mechanism that helps analyze the cause of the in-
consistency and decide which machine should be modified:
the proposed implementation may be erroneous but the ab-
stract machine may be over-specified and impossible to be
properly implemented. Once this ambiguity is resolved, the
system might also help designers propagate involved cor-
rections to other machines so as to establish the required
relations. These two cases show how composing the re-
stricted reductions and extensions might constitute an ag-
ile but disciplined method for specifying the behavior of
systems. The remainder of the paper is structured as fol-
lows. Section 2 describes a didactic motivating example
that is used as an illustration throughout the paper. Sec-
tion 3 presents our proposal. It describes the three proposed
relations we choose to support state machine development
and then presents how they can be used to support an ag-
ile development scenario. Section 4 discusses our approach
against state of the art before concluding in Section 5 with
some perspectives.

2. Motivating example

Informal specification of a Vending Machine. Let us
consider the behavior of a Vending Machine (Figure 1).

This specification contains mandatory parts (refund the
customer unless goods are obtained), as well as optional
parts (maintenance, cookies).

The system delivers goods after the customer inserts the
proper credit into the machine. Goods are drinks, but could
also be cookies. Optionally, a technician can shutdown the
machine with a special code. When used by a customer (not
a technician), the system runs continuously. An important
feature is that the system must not steal the user: if the cus-
tomer has not inserted enough money, changes his mind or
if the system is empty, the system refunds the user.

Figure 1: Informal specification

Successive UML state machines. In order to progres-
sively design the behavior of this vending machine, the de-
signer produces several intermediate state machines (Fig-
ure 2). He starts from mandatory behaviors, considering
coin andcancel signals only. Hence, theMinimal Machine

is a rather stupid machine, which specifies that after any
amount of coins, the user can be refunded and that is the
only thing he can ask for. Thedrink signal is always ig-
nored. In the secondNeverEmpty Machine, the designer
adds the ability to react to thedrink signal, insome cases
after thecoin signal. At that time, the user can still be re-
funded. If he chooses a drink, the machine will eventually
distribute it and gives him his money back. Note that this
machine isnondeterministic1.

The thirdRealistic Machine considers the fact that the
machine may be empty which should leave solely thecancel

action to the user. This machine describes everymandatory
parts of the above informal specification. Other features
(cookies and maintenance) are options. Hence, it can lead
to the concrete state machine (Realistic Realization) which
fixes the nondeterministic points and can be used as a basis
for a first implementation. This concrete machine can then
be extended in (Multi-choice Realization) to add the second
choice of goods with thecookies signal. Alternatively, from
the thirdRealistic Machine, we could also extend the behav-
iors and consider thegetOpCode signal in the Ready state.
An interest of these development sequences is that concrete
machines can be derived from intermediate abstract mod-
els, which only describe the most important features. In that
sense, it sticks to agile methods where simplified products
are quickly produced. Machines 4 and 5 are called “real-
izations” since they are concrete, deterministic machines,
which describe all the mandatory behaviors of the informal
requirements of Figure 1.

Verification needs. Having such development scenarios
in mind, we focus on the following properties:

r1 : Implementation.At any step of a development process,
the resulting machine has to fulfill the requirements ex-

1Although nondeterminism is not allowed in UML, we consider that fi-
nal models have to be deterministic, but that initial and intermediate mod-
els may be nondeterministic.

2

1. Minimal Machine

3. Realistic Machine

do / giveChange

MoneyBack

do / giveDrink

DrinkDelivery

cancel
Choose

drink

coin

cancel

2. NeverEmpty Machine

coin

Ready

do / giveChange

MoneyBack

do / giveDrink

DrinkDelivery

drink

OutOfStock

cancel

when(exhausted)

cancel

Choose

coin

cancel

coin

do / verifyStock

coin

Ready

do / giveChange

MoneyBack

cancel

coin Ready
coin

5. Multi-choice Realization

do / giveGoods

GoodsDelivery

cookies

Ready

do / giveChange

MoneyBack

drink

OutOfStock

cancel

when(exhausted)

cancel

Choose

coin [enoughMoney]

cancel

coin [else]

do / verifyStock

coin

4. Realistic Realization

Ready

do / giveChange

MoneyBack
do / giveDrink

DrinkDelivery

drink

OutOfStock

cancel

when(exhausted)

cancel

Choose

coin [enoughMoney]

cancel

coin [else]

do / verifyStock

coin

4’. Maintainable Machine

do / shutdown

Maintenance

Ready

do / giveChange

MoneyBack

do / giveDrink

DrinkDelivery

drink

OutOfStock

cancel

when(exhausted)

cancel

Choose

coin

cancel

coin

do / verifyStock

getOpCode

coin

Figure 2: Incremental development proposing several UML
state machines

pressed by the first specification model.

r2 : Liveness preservation. Liveness properties state a sys-
tem has to react to some signals after precise signal se-
quences. On the example, at any time, it must react to
the cancel button and refund the user; after a given se-
quence ofcoin signals and if the machine is not empty,
it must react to thedrink button.

r3 : Progress. During the development process, when a
machineM ′ is supposed to bean extensionof a ma-
chineM , we want to be able to verify that any behav-
ior offered byM are also offered byM ′ in the same
conditions.

r4 : Safety preservation. Safety properties state that some
actions are forbidden. When a machineI is a realiza-
tion of a machineM , we need to guarantee thatI does
not implement behaviors not described byM . On the
example, actions that the company doesn’t want are for
example: delivering a product that has not been paid
for or delivering two products instead of one.

r5 : Composability. When chaining extensions, we want
the result to be an extension of the initial machine, and
similarly for realizations. When combining extensions
and realizations, we need to know the relation between
the resulting machine and the initial one.

3. Relations to support incremental develop-
ment processes

The verification technique we choose to satisfy these
properties is to compare models between them. This ex-
cludes the developer to separately describe liveness and
safety properties in an another language, as in [11]. At first,
we focus mainly on propertiesr1, r2, r3 andr4.

3.1. Behavior conformance relation

Conformance testing methodologies proposed by
ISO [14] are conceived to compare an implementation
to a standard specification. Recommendations define
mandatory and optional parts. An implementation is in
conformance to a specification if it has properly imple-
mented all themandatory partsof that specification [20].
We consider the conformance relation as ourreference
implementationrelation.

The formalization of the conformance relation [5] con-
sists in comparing the event sets thatmust be acceptedby
the compared models, after any trace of the specification
model. A trace is a partialobservablesequence of events
and/or actions that the machine may perform. The set of
traces of a machineM is notedTr(M). An implementation
model conforms to a specification model if, after any trace
of the specification, any set of events that the specification
mustaccept,mustalso be accepted by the implementation
model. We refer to [15] for a study of this relation on La-
beled Transition Systems (LTS), and to our works [18] for
an implementation technique and a translation from UML
state machines to LTSs.

In the example of Figure 2, the set of traces
of Minimal Machine is Tr(Minimal Machine) =
{coin∗, (coin∗.cancel)∗}. Minimal Machine must
accept coin and cancel events after any trace
σ ∈ Tr(Minimal Machine). This property is satisfied
by the NeverEmpty Machine, which is consequently in
conformance withMinimal Machine.

NeverEmpty Machine conf Minimal Machine

The conformance relation is suited for implementation
(propertyr1) and liveness (propertyr2). However, it is too
weak to guarantee progress and safety properties (r3, r4),
and, since it is not transitive, it cannot answer propertyr5.
It cannot thus be considered as a refinement relation.

3.2. Behavior refinement relation

Consideringconf as an implementation relation, the re-
finement relation (refines) is defined as the largest relation
satisfying the followingrefinementproperty: For all ma-
chinesM1 andM2,

M2 refines M1 =⇒ ∀I, I conf M2 ⇒ I conf M1. (1)

3

redr

ext
1. Minimal Machine

4’. Maintainable Machine

4. Realistic Realization 5. Multi-choice Realization

2. NeverEmpty Machine

3. Realistic Machine
ext

not refine

A

B

A

B

B
specializes
A

B
realizes
A

refines

ext

redr

A

B

B
conflicts
with A

UML notations

Figure 3: Synthesis of relations

Therefines relation has the following properties:

• refines⊆ conf: it can be used like an implementation
relation (propertyr1) and inherits properties of the
conf relation: it preserves liveness (propertyr2);

• it is transitive;

• If M2 refines M1, for any traceσ of M2 which is not
a trace ofM1, M2 must refuse everything afterσ.

This definition of refinement is large enough to encom-
pass both notions of classical refinement (reduction) and in-
cremental constructions (extension).

3.3. Specialized beahvior refinement relations

Extension. Theextensionrelation is defined byext =def

refines ∩ ⊇Tr, where, for two machinesM1 and M2,
M2 ⊇Tr M1 =def Tr(M2) ⊇ Tr(M1). Theext relation
inherits implementation and liveness property preservation
from refines (propertiesr1, r2). It is moreover defined to
satisfy the progress propertyr3. Theext relation is a refine-
ment relation that reduces partiality and nondeterminism.
In Figure 2, theNeverEmpty Machine offers the possibility
to ask for adrink, without preventing the user from doing
something he could do with theMinimal Machine:

NeverEmpty Machine ext Minimal Machine (2)

Restricted reduction. To overcome the fact thatext
does not preserve safety properties (one cannot know
whether thedrink action, which is new, is safe or not),
the restricted reduction is defined byredr =def refines

∩ ⊆Tr. redr inherits properties fromrefines and adds
safety preservation propertyr4. redr is very similar to
classical refinement (it reduces abstraction and nondeter-
minism). In Figure 2, theRealisticRealization is a reduc-
tion of theMaintainable Machine: the getOpCode signal
can be refused byMaintainable Machine after any trace in
{ε, coin∗};

RealisticRealization redr Maintainable Machine (3)

To summarize, we keep three refinement relations which
are transitive and preserve liveness properties:refines is the
largest one,ext is the subset ofrefines ensuring progress and

redr is the subsetrefines ensuring safety preservation. The
goal is now to study the composition (propertyr5) between
these three relations.

Analysis on the example. It appears that:

not(Realistic Machine refines NeverEmpty Machine) (4)

TheRealistic Machinemay refusecoin after the empty trace
ε, whereasNeverEmpty Machine must always acceptcoin.
Considering the development process proposed in Figure 2,
this result 4 gives some information to the designer. He has
to answer the property whether the coin event must always
be accepted initially or may be refused, by forcing him to
ask for the cancel event. This point is not clear in the infor-
mal requirements (Figure 1). If the developer considers the
coin action is mandatory, he must correctRealistic Machine

and add for instance a self-transition triggered bycoin on
stateOutOfStock. Otherwise, if thecoin can be refused
when the machine is empty,Realistic Machine is to be con-
sidered as the new reference specification.

Figure 3 sums up relationsext, redr, andrefines on the
six proposed machines. In an agile development process,
having proposedRealistic Realization model, the designer
can come back toMaintainable Machine, checking that the
following property (5) is satisfied. Then, knowing prop-
erty (3), he can proposeMulti-choice Realization and verify
property (6):

Maintainable Machine ext Realistic Machine (5)

Multi-choice Realization ext Realistic Realization (6)

3.4. Composing relations to support agile develop-
ment processes

We call strategy the successive steps that a designer
chooses to achieve a development. With our disciplined
framework, this amounts to choose to add behaviors (hor-
izontal refinement) or details (vertical refinement) to the
current behavior model, producing a new behavior model
that must verify anext or a redr relation. Figure 4 shows
how an Agile development process can be managed as an
instantiation of such a strategy. From partial and abstract
requirements (S0), a specification of the first increment to
implement is defined (S1). This specification is detailed

4

through several design steps to produce eventually an im-
plementation model (S3). Then, a new increment is defined
(S4), extending the previous, and so on, until all require-
ments are implemented. Thereafter, an evolution of the
software, based on revised requirements (S7), can be de-
veloped as a new development process. A crucial issue is to
guarantee that the development process leads to conformant
implementations (for instanceS3 as compared toS1 or S0)
whereas only local consistency is stated by the refinement
relations that are built between successive models. This im-
plies to verify that refinement relations can be composed
into implementation relations.

Local composition. Locally, two ext and redr relations
commutatively composerefines relations:

redr ◦ ext = ext ◦ redr = refines (7)
This result comes from the definition ofredr and the

properties ofconf (see 3.2 and 3.3). Asredr and ext re-
lations are easier to check, it is interesting to deducerefines

relations from them.

Global composition. Globally,ext, redr andrefines rela-
tions compose transitivelyrefines relations:

refines ◦ ext = ext ◦ refines= refines (8)

refines ◦ redr = redr ◦ refines= refines (9)
These two properties derive from the fact that for any

preorderA and any relationX ⊆ A, we have:A ◦ X =
X ◦A = A.

iterations

co
nc

re
tiz

at
io

n
le

ve
ls

S0

S1

S2

S3

S4

S5

S6

S8

S9

S10

S7

realization
(redr)

specialization
(ext)

Figure 4: Instantiation of an Agile development process

Applied to the example, the property (10) is inferred
from computed relations (3), (6) and by property (7):
Multi-choice Realization refines Maintainable Machine

(10)
With transitivity property (9), we also conclude that:
Multi-choice Realization refines Realistic Machine (11)

Such calculations provide an effective support to agile de-
velopment. At any step, designers can freely choose their
preferred strategy and leverage inferred relations to carry
on development.

4. Discussion and related works

Process algebra implementation and refinement rela-
tions. In order to satisfy propertyr1, we find a large num-
ber of behavior model comparison relations in the context
of process algebras and Labeled Transition Systems. Mil-
ner’s observational equivalence and congruence, based on
bisimulations [19], are well known relations to compare a
detailed implementation model to an abstract specification
model. Observational congruence can be considered as an
implementation relation in a strong sense, where mandatory
as well as optional behaviors must be present in the imple-
mentation model. They have been implemented in several
toolboxes such as [11]. Milner’s observational congruence
preserves safety and liveness. However, it does not satisfy
propertyr3: observational congruence cannot be used in an
incremental process.

An interesting result is that conformance is weaker
than Milner’s observational congruence: any observationaly
congruent models are also conformant. Hence, therefines

relation keeps the distinction between dangerous livelocks
and harmless livelocks done in Milner’s theory, which is not
the case of Hoare’s CSP refinement relations [13].

Incremental construction versus refinement. The con-
cept ofrefinementhas to be discussed since it has various
interpretations. It is a well-known and old concept [23] used
in some reference works about state machine refinement [1]
or specification refinement [2], where it is considered as a
relation for comparing two models in order to reduce non
determinism and abstraction. This relation corresponds to
a reduction: it consists in introducing details into models
in order to get an implementation model. It has been im-
plemented in languages such as B [2] and Z [9]. From our
point of view, founding a development process on such a
relation is restrictive. We prefer the definition given by [4],
in accordance with definition 1 in section 3.2. Note that this
relation is calledconsistencyin [15] and some researchers
of the UML community prefer this term rather thanrefine-
ment. This definition is interesting because it includes the
conventional refinement based on reduction but does not ex-
clude the extension of initial specifications. The benefits of
our approach compared to the conventional refinement pro-
cesses are manifold. It is close to the way of reasoning and
to the practice of designers to finalize complex models. It is
close to agile allowing rapid delivery of high-quality soft-
ware meeting first requirements of customers. It attests the
feasibility of a first implementation model before enhanc-
ing it to get the final one. Finally, it might help the support
evolution because “systems, and consequently their design,
are in perpetual evolution before they die” [16].

Related approaches for analyzing state machine consis-
tency. Few works deal with incremental development of

5

state machines. [6] addresses the problem at architecture
level (state machine assembly). [10] does alike and guides
assembling with rules.

Works about verification of state machines have to be
mentioned despite their different objectives, as they focus
on consistency between a software and its specification.
Many works are based on techniques of model checking.
UML is thus transformed into the modeling language of the
model checking tool: it can be PROMELA to use SPIN as it
is done in [17] or LTSs to use JACK as in [12]. Some works
analyze consistency using pre and post-conditions as it is
done in [4] using Z formalism. Lastly, consistency can be
expressed through transformations as it is done for refactor-
ing in [22]. Such techniques can be adapted to incremental
development but require explicitly expressed properties.

5. Conclusions and future works

In this paper, we address the issue of incremental con-
struction of state machines to support agile development
processes. It implies a composition of successive vertical
and horizontal refinements that must globally achieve a con-
sistent implementation of the initial software specification.
The study of existing works points out that these two aspects
of refinements are never considered as a whole, despite that
they are key points to define development strategies.

We demonstrated the computational feasibility of this
framework by developing a JAVA tool named IDCM (In-
cremental Development of Conforming Models). It imple-
ments the verification ofconf, ext, redr and refines rela-
tions [18] by transforming UML state machines into LTS
and analyzing their associated acceptance [8]. Analysis pro-
vides designers with feedback about detected warnings or
errors.

Beyond the several experimented case studies, we plan to
evaluate our proposal and our tool on full size projects. As a
perspective, we currently study the adaptation of this work
to component-based architectures, in other words to coarse-
grained, reuse-centered development approach, to address
complexity and scalability issues.

References

[1] M. Abadi and L. Lamport. The existence of refinement map-
pings. InLogic in Computer Science, pages 165–175, 1988.

[2] J. Abrial. The B-Book : Assigning Programs to Meanings.
Cambridge University Press, 1996.

[3] S. W. Ambler.The Object Primer: Agile Model-Driven De-
velopment with UML 2.0. 3rd edition, 2004.

[4] E. Boiten and M. Bujorianu. Exploring UML refinement
through unification. InCritical Systems Development with
UML. Proc. of the UML’03 workshop, LNCS, page 47—62.
Tech. Univ. München, 2003.

[5] E. Brinksma and G. Scollo. Formal notions of implementa-
tion and conformance in LOTOS. Technical Report INF-86-
13, Twente University of Technology, Department of Infor-
matics, Enschede, Netherlands, Dec. 1986.

[6] S. Burmester, H. Giese, M. Hirsch, and D. Schilling. Incre-
mental design and formal verification with UML/RT in the
FUJABA Real-Time tool suite. InSVERTS2004, 2004.

[7] A. Cicchetti, D. D. Ruscio, D. S. Kolovos, and A. Pieran-
tonio. A test-driven approach for metamodel development,
pages 319–342. IGI Global, 2012.

[8] R. Cleaveland and M. Hennessy. Testing equivalence as a
bisimulation equivalence.Formal Aspects of Computing,
5:1–20, 1993.

[9] J. Derrick and E. Boiten.Refinement in Z and object-Z: foun-
dations and advanced applications. Springer-Verlag, 2001.

[10] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Testing
the consistency of dynamic UML diagrams. InProc. 6th Int.
Conf. on Integrated Design and Process Technology, 2002.

[11] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. Cadp
2010: A toolbox for the construction and analysis of dis-
tributed processes. In P. Abdulla and K. Leino, editors,
Tools and Algorithms for the Construction and Analysis of
Systems, volume 6605 ofLNCS, pages 372–387. Springer
Berlin / Heidelberg, 2011.

[12] S. Gnesi, D. Latella, and M. Massink. Modular semantics
for a UML statechart diagrams kernel and its extension to
multicharts and branching time model-checking.Journal of
Logic and Algebraic Programming, 51(1):43–75, Apr. 2001.

[13] C. A. R. Hoare.Communicating sequential processes. Pren-
tice Hall International., June 2004.

[14] ISO/IEC 9646-1. Information technology – Open Systems
Interconnection – Conformance testing methodology and
framework – Part 1: General concepts, 1991.

[15] G. Leduc. A framework based on implementation relations
for implementing LOTOS specifications.Computer Net-
works and ISDN Systems, 25(1):23—41, 1992.

[16] M. Lehman. On understanding laws, evolution, and conser-
vation in the large-program life cycle.Journal of Systems
and Software, 1:213–221, 1980.

[17] J. Lilius and I. Paltor. Formalising UML state machinesfor
model checking. InUML 99 — The Unified Modeling Lan-
guage, 1999.

[18] H. Luong, T. Lambolais, and A. Courbis. Implementationof
the Conformance Relation for Incremental Development of
Behavioural Models.Models 2008, LNCS, 5301:356–370,
2008.

[19] R. Milner. Communication and concurrency. Prentice-Hall,
Inc., 1989.

[20] S. Moseley, S. Randall, and A. Wiles. In Pursuit of Interop-
erability. In K. Jakobs, editor,Advanced Topics in Informa-
tion Technology Standards and Standardization Research,
chapter 17, pages 321–323. Hershey, 2006.

[21] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture.ACM SIGSOFT Software Engineering
Notes, 17(4):40–52, 1992.

[22] G. Sunyé, D. Pollet, Y. L. Traon, and J. Jézéquel. Refactor-
ing UML models. InUML 2001, pages 134–148, 2001.

[23] N. Wirth. Program development by stepwise refinement.
Communications of the ACM, 14(4):221–227, 1971.

6

	. Introduction
	. Motivating example
	. Relations to support incremental development processes
	. Behavior conformance relation
	. Behavior refinement relation
	. Specialized beahvior refinement relations
	. Composing relations to support agile development processes

	. Discussion and related works
	. Conclusions and future works

