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Probability density of the wavelet coefficients

of a noisy chaos

Matthieu Garcin∗ Dominique Guégan†

January 23, 2013

Abstract

We are interested in the random wavelet coefficients of a noisy signal when this signal
is the unidimensional or multidimensional attractor of a chaos. More precisely we give an
expression for the probability density of such coefficients. If the noise is a dynamic noise, then
our expression is exact. If we face a measurement noise, then we propose two approximations,
using Taylor expansion or Edgeworth expansion. We give some illustrations of these theoretical
results for the logistic map, the tent map and the Hénon map, perturbed by a Gaussian or a
Cauchy noise.

Keywords: wavelets, dynamical systems, chaos, noise, alpha-stable.

1 Introduction

Many methods have been proposed to recover a pure linear signal form noisy observations using
wavelets. However, when the signal is non-linear, no satisfying solution has been proposed for
the denoising problem. Because reality is often non-linear, we aim to propose a method to
denoise those signals, in particular when they are chaotic systems.

We model the attractor of a chaotic system (xt) by the relation:

xt = z (xt−1) , (1)

where z is a real function with a bounded support, denoted Supp(z). Moreover, we suppose
that this chaotic system is such that each small interval contained in its support is frequently
visited by its trajectory. Thanks to that assumption, interpolation is not mandatory when
integrating on a large quantity of observed data generated by the chaotic system.

Such a chaotic system may be perturbed by some noise: in that case, the observable data
is not xt but ut and the observed attractor is not z but a certain zε defined by:

ut = zε (ut−1) .

The observable data, ut, may be defined by different approaches. Indeed, there exists several
ways to model the noise influence. We will consider some kinds of noise, following [12]:

. Measurement noise is a set of independent identically distributed random variables (εt)
such that: {

ut = xt + εt
xt = z (xt−1) .

(2)
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This kind of noise is frequently used in the literature. It corresponds to a homoge-
neous perturbation of each observation of the chaotic system. Equation (2) can then be
rewritten as:

ut = z (ut−1 − εt−1) + εt.

. Dynamic noise is a set of independent identically distributed random variables (εt) such
that:

ut = z (ut−1) + εt. (3)

This kind of noise corresponds to a propagation of small errors. The noisy perception of
the image of z feeds the dynamical system.

In the present article, we consider that the noise can be described by a random variable
belonging to a wide family of random variables, the symmetric alpha-stable variables, because
it includes a lot of well-known random variables and forms a general framework. A symmetric
alpha-stable variable X of parameters 0 < α ≤ 2, γ > 0, µ ∈ R, is characterized by its
characteristic function:

E
[
eitX

]
= exp (iµt− γ|t|α) , (4)

where t ∈ R and i is the imaginary unit [23]1.
Since the observed attractor, zε, is different from z, we are interested in applying a trans-

formation on zε in order to get a good estimation of z. That crucial step of de-noising can be
achieved in different ways. One of them is based on the wavelet analysis and is largely used to
de-noise simple signals for which the noise has a linear influence. In the framework of chaotic
systems, this approach is more pioneering [13][14]. Let us now introduce the wavelet analysis
and some of its properties.

We suppose that zε is a squared-integrable function: zε ∈ L2(R). It is the input signal.
We want to decompose it in a discrete dyadic real wavelet basis. Such a wavelet basis is a
countable subset of the function space L2(R). Each wavelet functions is defined by:

ψj,k : t ∈ R 7→ 2j/2Ψ
(

2jt− k
)
,

where Ψ ∈ L2(R) is the real mother wavelet, j ∈ Z is the resolution level and k ∈ Z is the
translation parameter [20][22]. We give two simple examples of mother wavelet:

. the Haar wavelet, defined by:

ΨHaar : t ∈ R 7→ 1[0,1/2)(t)− 1[1/2,1)(t);

. the Daubechies wavelets extend the previous case and consist in families of wavelets
defined on a compact support [6]. In general, there is no short formula for such wavelet
functions, except for the Haar wavelet which is the simplest case of Daubechies wavelets.
However, a simple cascade algorithm allows the construction of the wavelet functions by
successive interpolations.

The discrete wavelet analysis consists in decomposing the function zε in the discrete wavelet
basis. For j, k ∈ Z, the projection of zε on the subspace generated by the vector basis ψj,k is
the wavelet coefficient ẑεj,k of resolution level j and translation parameter k:

ẑεj,k =

N∑
n=1

zε(un)ψj,k(un)(un − un−1), (5)

1 The alpha-stable distribution can be described by three parameters. If we add a fourth parameter, we can
obtain the whole family of alpha-stable random variables and not only the symmetric ones. We are then able to
describe a wide range of random variables. Some of them have a thin tail, others are heavy-tailed: it is therefore
a much richer class than the only Gaussian random variable which is usually chosen in the literature to describe a
noise. In another hand, we note that a rich class of random variables, in order to describe a noise, can be obtained
with generalized hyperbolic random variables, which are described by five parameters [1][2]. Some articles make the
same choice as us and they deal with a representation of the noise by alpha-stable random variables [10][16][17][18].
This family of random variables is convenient for the results that follow because, in the proofs, we use characteristic
functions. We do not know the probability density function of many alpha-stable random variable but we can
describe precisely at least two of them: the Gaussian variable and the Cauchy variable, which are respectively a
2-stable and a 1-stable random variable.
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where we have considered the discrete grid u1 < u2 < ... < uN of N observations and where

u0 = min(inf(Supp(zεψj,k)), u1) (6)

is an additional discretization point.
The wavelet inverse transform consists in reconstructing the observed signal, zε, according

to each translation and resolution level. The reconstructed signal for a given resolution level
j ∈ Z is called the detail signal:

Dj : t ∈ R 7→
∑
k∈Z

ẑεj,kψj,k(t).

The whole reconstructed signal is the sum of all the details:

zε =
∑
j∈Z

Dj .

As our goal is to find an approximation for the true chaotic signal z using wavelet decom-
position given by (5), we propose to filter the wavelet coefficients with a thresholding function,
following [14]. The aim of that thresholding function, Φ, consists in selecting the most sig-
nificant vectors ψj,k of the wavelet basis and to eliminate the too noisy terms of the wavelet
decomposition. Therefore, for a wavelet coefficient w ∈ R, Φ is defined by:

Φ(w) = w1{|w|≥λ},

like in [7], where we have set λ > 0 as the threshold. Then, we define z̃, the filtered wavelet
inverse transform of the noisy attractor, by:

z̃ : t ∈ R 7→
∑
j∈Z

∑
k∈Z

Φ
(
ẑεj,k
)
ψj,k(t). (7)

For a given λ > 0, the filtered function z̃, defined by equation (7), is an approximation
of z. The aim of the deconvolution with the wavelet method is to select the λ which allows
to get the optimal approximation z̃ of z, in the sense that the selected λ is the value which
minimizes d(z̃, z), where d is a function determining the error made by our approximation:

d(z̃, z) = E
[∫

R
(z̃(u)− z(u))2 du

]
. (8)

In [9], we propose such an optimal threshold. In order to calculate it rigorously, we need to
know the probability density function of each wavelet coefficient ẑεj,k of the noisy attractor.
Indeed, such probability density functions are fundamental when we calculate the expected
value d in (8).

Therefore, the present article aims to determine the probability density of each wavelet
coefficients ẑεj,k. The importance of such a study for signal processing already arose for simpler
frameworks. For example, in [24], Schoukens and Renneboog studied the probability density
of each Fourier coefficients of a linear noisy signal, where the noise is represented by Gaussian
random variables.

The article is divided into two parts, describing successively the theory (Section 2) and
some applications (Section 3).

2 Main results

In the present section we provide the probability density function of a wavelet coefficient
ẑεj,k defined in equation (5) in the presence of both kinds of noise defined respectively in
equations (3) and (2), namely a dynamic noise and a measurement noise. The proofs of the
following theorems and propositions are reported at the end of the article.

We consider a sequence of N ∈ N noisy observations: u1, u2, ..., uN , that we rank: u1:N ≤
u2:N , ... ≤ uN :N . For convenience, in the following, we note directly: u1 ≤ u2, ... ≤ uN .

We introduce now some assumptions cited in the following theorems and propositions:
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(A0) z is a real function with a bounded support and j, k ∈ Z.

(A1) u1 ≤ u2 ≤ ... ≤ uN ∈ R and u0 is such that u0 = min(inf(Supp(zεψj,k)), u1).

2.1 Dynamic noise

We begin with the case of a dynamic noise, introduced in equation (3). We introduce some
assumptions for this dynamic noise:

(A2) ε1, ε2, ..., εN are N independent identically distributed symmetric alpha-stable random
variables of parameters α, γ, µ, where 0 < α ≤ 2, γ > 0, µ ∈ R.

(A2g) ε1, ε2, ..., εN are N independent identically distributed centred Gaussian random variables
of variance σ2, with σ > 0.

(A2c) ε1, ε2, ..., εN are N independent identically distributed Cauchy random variables with scale
parameter γ and location parameter 0, with γ > 0.

(A3) The noisy and observed attractor is defined by:

∀n ∈ {1, ..., N}, zε(un) = z(un) + εn.

We present, in Theorem 1, a general expression of the random wavelet coefficient of a chaos
perturbed by alpha-stable dynamic noise. Then, we study two particular cases according to
the nature of the alpha-stable noise: the Gaussian case is studied in Proposition 1 and the
Cauchy noise in Proposition 2.

Theorem 1. Let assume (A0), (A1), (A2) and (A3). Then, the wavelet coefficient ẑεj,k of the
noisy and observed attractor, zε, is a symmetric alpha-stable random variable of parameters
α, γ′, µ′, where: {

γ′ = γ
∑N
n=1 |ψj,k(un)(un − un−1)|α

µ′ = ẑj,k + µ
∑N
n=1 ψj,k(un)(un − un−1).

If we are facing a centred Gaussian noise, then every wavelet coefficient of the noisy signal
is a Gaussian variable:

Proposition 1. Let assume (A0), (A1), (A2g) and (A3). The wavelet coefficient ẑεj,k of the
noisy observed attractor, zε(un), is a Gaussian random variable with mean ẑj,k and variance
(σ′)2, where:

σ′ = σ

√√√√ N∑
n=1

|ψj,k(un)(un − un−1)|2.

Moreover, if ψj,k is an orthonormal wavelet, then σ′ ≤ σ when N →∞.

If the noise is described by a Cauchy distribution, then the wavelet coefficients of the noisy
signal are also Cauchy variables. This kind of noise is interesting because its fat tail is a good
way to model the real perturbations of a signal. The Cauchy distribution example is developed
in Proposition 2. We call respectively location parameter and scale parameter the numbers
µ ∈ R and γ > 0 such that the Cauchy density function is:

δCauchy : x ∈ R 7→ 1

πγ

[
1 +

(
x−µ
γ

)2
] .

For simplicity, in this article, we only consider Cauchy variables for which µ = 0.

Proposition 2. Let assume (A0), (A1), (A2c) and (A3). The wavelet coefficient ẑεj,k of the
noisy observed attractor, zε(un), is a Cauchy random variable with location parameter ẑj,k and
scale parameter γ′, where:

γ′ = γ

N∑
n=1

|ψj,k(un)(un − un−1)|.
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Proposition 2 is a direct consequence of Theorem 1 since any Cauchy random variable with
scale parameter γ and location parameter 0 is also a symmetric 1-stable random variable with
parameters µ = 0 and γ.

One may be surprised by the simplicity of the results obtained for a dynamic noise. The
astonishment will grow when one will read in the next section that it is more complicated
to obtain de probability density function of the wavelet coefficients in a measurement noise
environment. Indeed, in the dynamic noise case, the noisy attractor and the pure one are
linked by an affine relation, whereas this link is much intricate in the measurement noise case.
Therefore, we remark in [9] that it is easier to approximate the attractor by wavelet shrinkage
when the noise is dynamic than when it is a measurement noise. On the contrary, it seems
obvious that it is more complicated to predict the trajectory of the pure chaos when we are
facing a dynamic noise than when we are facing a measurement one.

2.2 Measurement noise

We now assume that a measurement noise is perturbing the system, like in equation (2). We
complete our list of assumptions with the following ones, specific to a measurement noise:

(A2?) ε1, ε2, ..., εN , ε
?
1, ε

?
2, ..., ε

?
N are 2N independent identically distributed symmetric alpha-

stable random variables of parameters α, γ, µ, where 0 < α ≤ 2, γ > 0, µ ∈ R.

(A2?g) ε1, ε2, ..., εN , ε
?
1, ε

?
2, ..., ε

?
N are 2N independent identically distributed centred Gaussian

random variables of variance σ2, where σ > 0.

(A2?c) ε1, ε2, ..., εN , ε
?
1, ε

?
2, ..., ε

?
N are 2N independent identically distributed Cauchy random vari-

ables with scale parameter γ and location parameter 0, where γ > 0.

(A4) The noise is a measurement noise described by equation (3). More precisely, the noisy
and observed attractor is defined by:

∀n ∈ {1, ..., N}, zε(un) = z(un − ε?n) + εn. (9)

(A5) z is a continuous and piecewise continuously differentiable function on R: ∃M ∈ N, ∃χ0 <
... < χM ∈ R, such that Supp(z) ⊂ [χ0, χM ] and, ∀m ∈ {1, ...,M}, the restriction of z to
the interval (χm−1, χm) is differentiable with continuous derivative and z|′(χm−1,χm) has
a limit on its right in χm−1 and a limit on its left in χm. Moreover N is the set of the
non-differentiable points of z and u1, ..., uN ∈ R \ N .

(A6) We only observe states of the dynamical system separated by, at least, two time steps.

(A7) max
n∈{1,...,N}

|ε?n| is small2.

We have to pay attention to the fact that, for an observation time t, the observation ut
depends both on εt and εt−1, whereas at the next observation time, t + 1, the observation
ut+1 depends both on εt+1 and εt. Then, for the next observation time, t+ 2, the observation
ut+1 depends both on εt+2 and εt+1. Therefore, the independence of the noise implies the
independence between ut and ut+2, but consecutive observations, such as ut and ut+1, are not
independent. In order to avoid such a situation where some noises are correlated, we assume
that we do not observe two consecutive states of the system3. But, for convenience, we simply

2 Theoretically, the adjective small is clarified when we describe, in Theorem 3, the error of the approximation
of Theorem 2. More practically, the extreme value theory allows to link max

n∈{1,...,N}
|ε?n| to the scale parameter γ of

the noise. For instance, in the example about the logistic map, the error, expressed as the value of the integral of
the difference, in absolute value, between the empirical probability density function and the one obtained by the
application of Proposition 3, is simply 4.7% for σ = 5%. If σ = 10%, the error becomes about 10.9%.

3 Formally, for an initial observation u ∈ R, we only observe
(
zν(n)

)
1≤n≤N−1

, where zn(u) denotes zn−1(z(u))

and z1 = z and where ν is a function N→ N, such that:

∀n ∈ N, ν(n+ 1)− ν(n) ≥ 2.
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note u1 ≤ u2, ... ≤ uN these non-consecutive and ranked observations. That condition allows
us to assume that ε1, ε2, ..., εN , ε

?
1, ε

?
2, ..., ε

?
N are independent random variables.

We now present two different approximations of the probability density function of a wavelet
coefficient of a chaos with measurement noise. The first one is based on the study of the
sensitivity of such a coefficient to small noise. It is particularly suitable when the noise is
small. The second method is based on Edgeworth expansion and provides even better results
as the number of observation points increases.

2.2.1 Approximation of the noise influence

In this paragraph, we propose first an approximation of the wavelet coefficient distribution of
the noisy attractor. This approximation is detailed in Theorem 2 and Propositions 3 and 4.
Then, we give an estimation of the error of such an approximation in Theorem 3.

We consider that z is continuous and piecewise continuously differentiable on R, what is
the assumption (A5). In fact, such an assumption provides for z a derivative function with a
finite limit on the left and the right of each point. Therefore, a first-order Taylor expansion
can be achieved because the sensitivity of z(u) to a small variation on u is well defined. That
small variation is a consequence of the assumption (A7) made for the noise.

Theorem 2. Let assume (A0), (A1), (A2?), (A4), (A5), (A6) and (A7). Then, the wavelet
coefficient ẑεj,k of the noisy and observed attractor, zε, can be approximated by a symmetric
alpha-stable random variable of parameters α, γ′, µ′, where:{

γ′ = γ
∑N
n=1 (1 + |z′(un)|α)|ψj,k(un)(un − un−1)|α

µ′ = ẑj,k + µ
∑N
n=1 (1− z′(un))ψj,k(un)(un − un−1).

In a practical use, we can have a good approximation thanks to Theorem 2 when we replace
the condition u1, ..., uN ∈ R \ N by the condition: N is negligible for the Lebesgue measure,
N is big, z is the attractor of an ergodic chaos and its invariant measure has no accumulation
point inN . Indeed, the probability of observing a point un inN would be negligible. The same
remark can be done for both following propositions, namely Proposition 3 and Proposition 4.

We assume, that the noise is small (A7). In practice, the random noise is unknown since
we just observe the noisy data without viewing the clean signal. However, assuming we know
the probability density function of the noise, we can reasonably use the results of Theorem 2
as an approximation, when such a probability density function is much localized around zero.
It will be the case when the variance is small. But when the variance is not defined, other
parameters may be considered, still as an approximation, like the scale parameter for a Cauchy
distribution.

If we are facing a centred Gaussian noise, then the wavelet coefficient of the noisy signal is
approximated by a Gaussian variable. This is the object of Proposition 3.

Proposition 3. Let assume (A0), (A1), (A2?g), (A4), (A5), (A6) and (A7). Then, the limit
of the wavelet coefficient ẑεj,k of the noisy and observed attractor, zε, can be approximated by
a Gaussian random variable with mean ẑj,k and variance (σ′)2, where:

σ′ = σ

√√√√ N∑
n=1

(1 + |z′(un)|2) |ψj,k(un)(un − un−1)|2.

Proposition 3 is a direct consequence of Theorem 2 since any centred Gaussian random
variable of variance σ2 is also a symmetric 2-stable random variable with parameters µ = 0
and γ = σ2/2.

If the noise is described by a Cauchy distribution, then the wavelet coefficient of the noisy
signal is approximated by a Cauchy variable. This fat-tailed distribution case is the object of
Proposition 4.

Proposition 4. Let assume (A0), (A1), (A2?c), (A4), (A5), (A6) and (A7). Then, the limit
of the wavelet coefficient ẑεj,k of the noisy and observed attractor, zε, can be approximated by
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a Cauchy random variable with location parameter ẑj,k and scale parameter γ′, where:

γ′ = γ

N∑
n=1

(1 + |z′(un)|) |ψj,k(un)(un − un−1)|.

Proposition 4 is a direct consequence of Theorem 2 since any Cauchy random variable with
scale parameter γ and location parameter 0 is also a symmetric 1-stable random variable with
parameters µ = 0 and γ.

We see in Proposition 3 and Proposition 4 that the probability density functions of the
resulting wavelet coefficients are more spread than in Proposition 1 and Proposition 2 around
the wavelet coefficients of the signal without any perturbation by some noise. Indeed, a coef-
ficient |z′(un)|2 or |z′(un)| appears in the expression of the variance or of the scale parameter.
This is intuitive since the noise only linearly affects z in Proposition 1 and Proposition 2,
whereas, in addition to that linear effect, a non-linear noise influence is added in Proposition 3
and Proposition 4.

It can also be interesting to have an idea of the accuracy of the approximation presented
in Theorem 2. The error made achieving a Taylor expansion can be controlled. This is the
aim of the end of the present paragraph. In Theorem 3, we highlight an upper bound of any
quantile of the error made by the approximation suggested in Theorem 2. We restrict here a
little the framework to two times continuously differentiable attractors what allow us to have
an upper bound of the error thanks to Taylor expansion. Nevertheless, that error given by
Taylor expansion is a random variable. In order to get a deterministic upper bound of the
error, we will then use extreme value theory. Indeed, the distribution function of the random
variables considered is not bounded so that, theoretically, the error can be infinite. However,
an upper bound of high quantiles gives a good idea of the error and extreme value theory can
furnish such quantiles.

The error estimation, and more particularly the use of extreme value theory, incites us to
add two assumptions:

(A8) gN is the cumulative distribution function of
∑N
n=1 |ε

?
n|2.

(A9) The cumulative distribution function of

(
max

n∈{1,...,N}

(
|ε?n|2

))
when N is big exists and is

denoted hN .

Theorem 3. Let assume (A0), (A1), (A2?), (A4), (A5), (A6), (A7), (A8) and (A9). More-
over, z is assumed to be two times continuously differentiable and corresponding to the attractor
of an ergodic chaos. We assume that N is Lebesgue measure-zero. Let 0 ≤ p ≤ 1. Let ∆U be
the cumulative distribution function of the independent identically distributed observations (un)
and let δU be the corresponding probability density function. Let Ẑεj,k be the approximation4 of
the wavelet coefficient ẑj,k defined by:

Ẑεj,k = ẑj,k +

N∑
n=1

[
−z′(un)ε?n + εn

]
ψj,k(un)(un − un−1).

We define a random distance dj,k between Ẑεj,k and ẑεj,k by:

dj,k =
∣∣∣ẑεj,k − Ẑεj,k∣∣∣ .

We define Dj,k(p), the quantiles of dj,k, by P [dj,k ≤ Dj,k(p)] = p. Then, there exists ΩN ,Ω
∞
N :

[0, 1]→ R such that these quantiles Dj,k(p) have an upper bound:

Dj,k(p) ≤ min (ΩN (p),Ω∞N (p)) ,

4 It is the approximation appearing in equation (13) in the proof of Theorem 2

7

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2013.15



where
ΩN (p) =

[
1
2

max
x∈Supp(z)

(|z′′(x)|) max
x∈Supp(ψj,k)

(|ψj,k(x)|)
]
f−1
N (
√
p)g−1

N (
√
p)

Ω∞N (p)
N→∞∼

[
1
2

max
x∈Supp(z)

(|z′′(x)|)
∫
R |ψj,k(x)| dx

]
h−1
N (p)

and where

fN : v > 0 7→ max

{
0, 1−N

∫ sup(Supp(δU ))

inf(Supp(δU ))+v

δU (u) [∆U (u− v) + 1−∆U (u)]N−1 du

}
.

Theorem 3 gives an upper bound for every quantile of the error made in the approximation
of the wavelet coefficient of a chaos with a measurement noise as proposed in Theorem 2. It is
therefore a useful tool in order to have a wise and prudent estimation of the accuracy of our
approximation since it exaggerates the error. Indeed, the probability that dj,k is bellow ΩN (p)
or Ω∞N (p) is greater than p. Moreover, it introduces two kinds of upper bounds, one when the
number of observations N is finite and another one when that number tends towards infinity.
From a practical point of view, Theorem 3 may be more explicit about gN and hN if we are
facing a Gaussian noise. This is the aim of Proposition 5. We will further consider the case of
a Cauchy noise in Proposition 6.

Proposition 5. Let x ≥ 0. Let assume (A2?g), (A8) and (A9). Then: gN (x) =
γ

(
N
2
,σ

2x
2

)
Γ(N2 )

hN (x)
N→∞∼ exp

(
− exp

(
α(N)− x

2σ2

))
,

where α(N) is such that:

α(N)
1
2 eα(N) =

N√
π

and Γ and γ are respectively the Gamma function and the lower incomplete Gamma function5.

If the noise is a Cauchy random variable, then we can achieve the same work as in Propo-
sition 5 in order to make some functions of Theorem 3 more explicit. This is the aim of
Proposition 6. This result only highlights the case N → +∞.

Proposition 6. Let x ≥ 0. Let assume (A2?c) and (A9). Then:

hN (x)
N→∞∼ exp

(
−2γN

π
√
x

)
.

2.2.2 Expansion of the probability density

In the approximation of the noise influence in Theorem 2, we limit our analysis to a local
impact of the noise. Indeed, we perform a linear approximation of this influence at a given
point of the support of the attractor function. Implicitly, we restrict ourself to a small noise.
We could ameliorate our analysis by achieving a second order Taylor expansion, but such a
result would still consist on a local analysis of the noise influence. In order to have a global
view and to take into account a larger noise, we can realize an expansion of the probability
density function. With that approach, the convergence of our estimator is much less dependent
on the size of the noise but more on the size of the observation sample.

Then, we use the well-known Edgeworth expansion as in [3][5][19] with the notations
adapted to our framework. Let assume (A0), (A1), (A2?), (A4), (A5), (A6). We assume
moreover that all the moments of the 2N random variables representing the noise are well

5 For x, k ≥ 0: {
Γ (k) =

∫+∞
0 tk−1e−tdt

γ (k, x) =
∫ x
0 tk−1e−tdt.
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defined. Let φN be the probability density function of a random Gaussian variable with mean
µN and variance σ2

N , where:{
σ2
N = γ

∑N
n=1 (1 + |z′(un)|α)|ψj,k(un)(un − un−1)|α

µN = ẑj,k + µ
∑N
n=1 (1− z′(un))ψj,k(un)(un − un−1).

We note ΦN the corresponding cumulative distribution function. If σ2
N < 2, then the proba-

bility density function, δẑε
j,k

, of the wavelet coefficient ẑεj,k of the noisy and observed attractor
is such that, for x ∈ R:

δẑε
j,k

(x) = φN (x)

[
1 +

+∞∑
m=1

E
[
Hm

(
ẑεj,k − µN√

2σN

)]
Hm

(
x− µN√

2σN

)
σmN

(
√

2)mm!

]
, (10)

where (Hm)m∈N are Hermite polynomials6. The corresponding cumulative distribution func-
tion, ∆ẑε

j,k
, of the wavelet coefficient ẑεj,k is such that, for x ∈ R:

∆ẑε
j,k

(x) = ΦN (x)+

+∞∑
m=1

E
[
Hm

(
ẑεj,k − µN√

2σN

)][
Hm−1(0)√

2σN
− φN (x)Hm−1

(
x− µN√

2σN

)]
σm+1
N

(
√

2)m−1m!
.

(11)
In a practical use of equation (10), we restrict to truncations of the expansion. We have to

pay attention to the fact that such truncated expressions do not strictly define a probability
density function and a cumulative distribution function. Therefore, the result will be even
more reliable for high-order truncations. It is then recommended to set a stopping criterion
and to truncate the sum in equation (10) when new terms seem negligible.

In equation (10), because of the Hermite polynomials, we implicitly need the expression
of the moments of the wavelet coefficient of the noisy attractor. These moments cannot be
deducted directly from the moments of the attractor value in un, even though we get the
wavelet coefficient from a simple linear combination of zε(u1), ..., zε(uN ). Instead of that, we
propose to calculate jointly the moments and the cumulants. Indeed, cumulants seem to be
an appropriate tool7 and they incite us to propose the following algorithm in order to get the

value of E
[
Hm

(
ẑεj,k−µN√

2σN

)]
in equation (10) determining the probability density expansion of

the wavelet coefficients. More precisely, we are going to define two algorithms:

. in Algorithm 1, we define a procedure which allows to calculate E
[
Hm

(
ẑεj,k−µN√

2σN

)]
from

the cumulants of zε(un);

. considering that the cumulants of zε(un) are not necessarily easy to get, we define in
Algorithm 2 a way to get them from the cumulants of the noise in the case where z can
be written as a convergent power series.

The reading of these algorithms is somewhat laborious, but their implementation is very
easy.

6 ∀(m,x) ∈ N× R, Hm(x) = (−1)mex
2/2 dm

dxm
e−x

2/2.
7 Indeed, it is easy to get moments from cumulants and cumulants from moments thanks to the fact that

C1(X) = M1(X) and to the recursive formula, for r ∈ {1, 2, ...}:

Cr(X) = Mr(X)−
r−1∑
s=1

(r
s

)
Cs(X)Mr−s(X),

where C denotes any finite cumulant, M any finite moment and X a random variable for which cumulants and
moments are well defined. Moreover, two properties concerning cumulants are very interesting:

. The cumulant of any sum of independent random variables is the sum of the cumulants of each random
variable.

. The cumulants are homogeneous: the r-th cumulant of aX, for any a ∈ R, is arCr(X).

9
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Algorithm 1. For r ∈ {1, 2, ...}, Cr(X) and Mr(X) are respectively the r-th cumulant and the
r-th moment of the random variable X for which cumulants and moments are well defined. We
suppose that those cumulants are known for the random variables zε(un), where n ∈ {1, ..., N}.
Let M ∈ N and µ, σ ∈ R. Then, the following algorithm allows to calculate E

[
Hm

(
ẑεj,k−µ√

2σ

)]
for every m ∈ {1, ...,M}, where Hm is the m-th Hermite polynomial:

1. We begin with r = 1. At each iteration, we replace r by r + 1.

2. For each j and k indexing the considered wavelet coefficients, we calculate Cr
(
ẑεj,k
)

as:

Cr
(
ẑεj,k
)

=

N∑
n=1

[ψj,k(un)(un − un−1)]r Cr (zε(un)).

3. For each j and k indexing the considered wavelet coefficients, we calculate Cr
(
ẑεj,k−µ√

2σ

)
as:

Cr

(
ẑεj,k − µ√

2σ

)
=
Cr
(
ẑεj,k
)[√

2σ
]r − Cr (µ)[√

2σ
]r .

4. For each j and k indexing the considered wavelet coefficients, we calculate Mr

(
ẑεj,k−µ√

2σ

)
as: Mr

(
ẑεj,k−µ√

2σ

)
= Cr

(
ẑεj,k−µ√

2σ

)
if r = 1

Mr

(
ẑεj,k−µ√

2σ

)
= Cr

(
ẑεj,k−µ√

2σ

)
+
∑r−1
s=1

(
r
s

)
Cs
(
ẑεj,k−µ√

2σ

)
Mr−s

(
ẑεj,k−µ√

2σ

)
else.

5. We go back to the step 1 of the algorithm until r = M is reached.

6. For each m ∈ {0, ...,M}, we deduct E
[
Hm

(
ẑεj,k−µ√

2σ

)]
from the previously calculated

moments, say: 

E
[
H0

(
ẑεj,k−µ√

2σ

)]
= 1

E
[
H1

(
ẑεj,k−µ√

2σ

)]
= M1

(
ẑεj,k−µ√

2σ

)
E
[
H2

(
ẑεj,k−µ√

2σ

)]
= M2

(
ẑεj,k−µ√

2σ

)
− 1

E
[
H3

(
ẑεj,k−µ√

2σ

)]
= M3

(
ẑεj,k−µ√

2σ

)
− 3M1

(
ẑεj,k−µ√

2σ

)
and so on until the M-th polynomial.

The degree of the m-th order Hermite polynomial is precisely m. Therefore, we only need

the cumulants until the order m in order to calculate E
[
Hm

(
ẑεj,k−µ√

2σ

)]
. That consideration

justify the fifth step of Algorithm 1. We also note that the algorithmic complexity of Al-
gorithm 1, when the size of the sample grows towards infinity, is dominated8 by M (N + ξ),
where ξ is the number of wavelet coefficients considered, depending of course on the number
of observed data, N .

Algorithm 2 calculates the cumulants of zε(un) from the cumulants of the noise in the case
where z can be written as a convergent power series.

Algorithm 2. Let z be a function on R which can be written as a convergent power se-
ries around a center c on its support: for each x ∈ Supp(z), ∃(ak)k∈N such that z(x) =∑+∞
k=0 ak(x− c)k. Let K ∈ N be the truncation order retained in the computation of z:

z(x) ≈
∑K
k=0 ak(x− c)k. Let ε?1, ε

?
2, ..., ε

?
N , ε1, ε2, ..., εN be 2N independent identically dis-

tributed random variables with all their cumulants well defined. For r ∈ {1, 2, ...}, Cr(X)
and Mr(X) are respectively the r-th cumulant and the r-th moment of the random vari-
able X for which cumulants and moments are well defined. Let R ∈ N. Then, the follow-
ing algorithm allows to calculate the R first cumulants of zε(un), where n ∈ {1, ..., N} and
zε(un) = z(un − ε?n) + εn:

8 If M = 10, N = 1000 and ξ < N , the execution time is about 0.5 second for a classical interpreted language
running on an Intel Core 2 Duo 3GHz.

10

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2013.15



1. For each n ∈ {1, ..., N} and each r ∈ {1, ...,KR}, we calculate Mr (un − c− ε?n) as:

Mr (un − c− ε?n) = Cr (un − c)−Cr (ε?n)+

r−1∑
s=1

(
r

s

)
[Cs (un − c)− Cs (ε?n)]Mr−s (un − c− ε?n).

2. For each n ∈ {1, ..., N}, each r ∈ {1, ..., R} and each k ∈ {1, ...,K} we calculate
Cr
(
(un − c− ε?n)k

)
as:

Cr
(

(un − c− ε?n)k
)

= Mkr(un−c−ε?n)−
r−1∑
s=1

(
r

s

)
Cs((un − c− ε?n)k)Mk(r−s)(un − c− ε?n).

3. For each n ∈ {1, ..., N} and r ∈ {1, ..., R}, we calculate the cumulant of zε(un) as:

Cr (zε(un)) ≈ Cr (εn) +

K∑
k=0

arkCr
(

(un − c− ε?n)k
)
,

where the approximation stands for the truncation at the order K in the power series.

We can then use successively Algorithm 2 and Algorithm 1 in order to estimate E
[
Hm

(
ẑεj,k−µN√

2σN

)]
in the case of a convergent power series. The algorithmic complexity of Algorithm 2, when
the size of the sample grows towards infinity, is dominated9 by (KR)2 N . However, that algo-
rithmic cost may be strongly reduced when the noise is a Gaussian variable, while remaining
linear in N . Indeed, only two cumulants are then different from zero.

We note that such an approach does not work for every kind of symmetric stable noise
because cumulants have to be defined. This is the case, for example, for Gaussian noise but
not for Cauchy noise.

We also note that few maps are convergent power series. However, if z is simply a con-
tinuous function, then, according to Weierstrass Theorem, it can be uniformly approximated
by a polynomial function and therefore by a power series. In practice, one can sometimes
get an accurate polynomial function by Lagrange interpolation: the interpolated polynomial
is equal to z at pre-specified nodes. If those nodes are equally spaced, one can face Runge’s
phenomenon: the interpolation is not always better when the number of interpolation nodes
increases. To avoid such a polynomial wiggle, one may use Chebyshev nodes. Then, such
interpolation polynomials often converge towards the interpolated function when then num-
ber of nodes increases [11][21][25]. Therefore, Algorithm 1 and Algorithm 2 allow to apply
equation (10) and equation (11) in many practical cases, where z is simply continuous.

2.3 Extension to multidimensional chaos

Until this section, we have considered unidimensional chaos. We used therefore unidimensional
wavelet basis. In practice we can often face multidimensional chaos. This implies the use of
multidimensional wavelet functions. In this new framework, we denote an ergodic chaotic
system by the vector Xt = (x1,t, ..., xp,t), where p > 1 is the dimension of the chaos. The
attractor of X is a function Z : Rp → Rp with a bounded support, such that:

Xt = Z(Xt−1) = (z1(x1,t−1, ..., xp,t−1), ..., zp(x1,t−1, ..., xp,t−1)) .

Subsequently, we define the noisy attractor, Zε, of the noisy chaos, Ut:

Ut = Zε(Ut−1) =
(
zε1(u1,t−1, ..., up,t−1), ..., zεp(u1,t−1, ..., up,t−1)

)
.

After having described the multidimensional chaos, we have to define the multidimensional
wavelet function. We consider that φ is a scaling function and that Ψ is the corresponding
mother wavelet generating, by translation and dilatation, an orthonormal basis of the function

9 If K = 10, R = 10 and N = 1000, the execution time is about 45 seconds for a classical interpreted language
running on an Intel Core 2 Duo 3GHz.
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space L2(R). Let θ0 = φ and θ1 = Ψ. Then, for each integer η ∈ {1, ..., 2p − 1} written as a
binary expression η = η1...ηp, we define the family of 2p−1 multidimensional mother wavelets
by:

Ψη : T = (t1, ..., tp) ∈ Rp 7→ θη1(t1)× ...× θηp(tp).

By dilating and translating these mother wavelets, with all the parameters j ∈ Z, k =
(k1, ..., kp) ∈ Zp and η ∈ {1, ..., 2p − 1}, we get an orthonormal basis of L2(Rp) [20]. The
wavelet functions thus obtained are:

ψηj,k : T = (t1, ..., tp) ∈ Rp 7→ 2−pj/2Ψη
(

2jt1 − k1, ..., 2
jtp − kp

)
.

Finally, the discrete wavelet coefficient, of resolution level j ∈ Z and translation parameter
k ∈ Zp, of the multidimensional noisy attractor, Zε, is a vector of Rp:

Ẑεη,j,k =

(
N∑
n=1

zε1(Un)ψηj,k(Un)

∫
V (Un)

dx, ...,

N∑
n=1

zεp(Un)ψηj,k(Un)

∫
V (Un)

dx

)
,

where, for n ∈ {1, ..., N}, V (Un) = {X ∈ Supp(Z) |∀m 6= n, ‖X − Un‖Rp ≤ ‖X − Um‖Rp } is
the Voronoi region of one of the N ∈ N observations, ‖.‖Rp being the Euclidean norm in
Rp. The Voronoi region is a straight way to discretize the integral. Since we had another
simple expression for unidimensional chaos, we have not used Voronoi regions in dimension 1.
However, the chaos being ergodic, whenN tends towards infinity both discretization techniques
lead to the same result.

We can directly adapt the results developed in the unidimensional environment to multidi-
mensional chaos. Particularly, Theorem 1 and Theorem 2 are slightly transformed to become
Theorem 4 and Theorem 5.

Theorem 4. Let 0 < α ≤ 2, γ > 0, µ ∈ R, j ∈ Z, k ∈ Zp, η ∈ {1, ..., 2p − 1},
(U1, ..., UN ) ∈ RN . Let ε1,1, ε1,2, ..., ε1,N , ..., εp,1, εp,2, ..., εp,N be pN independent identically
distributed symmetric alpha-stable random variables of parameters α, γ, µ. The wavelet coef-
ficient Ẑεη,j,k of the noisy and observed attractor,

∀n ∈ {1, ..., N}, Zε(Un) = Z(Un) + (ε1,n, ..., εp,n),

is a vector whose coordinate indexed by m ∈ {1, ..., p} is a symmetric alpha-stable random
variable of parameters α, γm, µm, where:{

γm = γ
∑N
n=1 |ψ

η
j,k(Un)

∫
V (Un)

dx|α

µm =
(
Ẑη,j,k

)
m

+ µ
∑N
n=1 ψ

η
j,k(Un)

∫
V (Un)

dx.

Theorem 5. Let Z be a continuous and piecewise continuously differentiable function on Rp.
Let N be the set of the non-differentiable points of Z. Let 0 < α ≤ 2, γ > 0, µ ∈ R, j ∈ Z,
k ∈ Zp, η ∈ {1, ..., 2p − 1}, (U1, ..., UN ) ∈ RN \ N . Let ε1,1, ε1,2, ..., ε1,N , ..., εp,1, εp,2, ..., εp,N
and ε?1,1, ε

?
1,2, ..., ε

?
1,N , ..., ε

?
p,1, ε

?
p,2, ..., ε

?
p,N be 2pN independent identically distributed symmet-

ric alpha-stable random variables of parameters α, γ, µ. The wavelet coefficient Ẑεη,j,k of the
noisy and observed attractor,

∀n ∈ {1, ..., N}, Zε(Un) = Z(Un − (ε?1,n, ..., ε
?
p,n)) + (ε1,n, ..., εp,n),

when max
n∈{1,...,N},m∈{1,...,p}

|ε?m,n| is small, can be approximated by a vector whose coordinate

indexed by m ∈ {1, ..., p} is a symmetric alpha-stable random variable of parameters α, γm,
µm, where:{

γm = γ
∑N
n=1

(
1 +

∑p
l=1

∣∣(DlZ(Un))m
∣∣α) |ψηj,k(Un)

∫
V (Un)

dx|α

µm =
(
Ẑη,j,k

)
m

+ µ
∑N
n=1

(
1−

∑p
l=1 (DlZ(Un))m

)
ψηj,k(Un)

∫
V (Un)

dx,

where Dm is the differential on the m-th coordinate.
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3 Examples for diverse chaos and noises

The aim of this section is to present the different results for specific cases. We will consider
two simple chaos described by the logistic map and the tent map. For each case, we present
different approximations of the probability density function of a wavelet coefficient of the noisy
chaos and we estimate their accuracy.

3.1 The logistic map

The logistic map of parameter α is defined by the recurrence relation:

un+1 = z(un) = αun(1− un).

If α = 4, then (un)n∈N is a chaotic system. It is a popular example of chaos due to its simple
expression [4][12].

We begin with a Gaussian noise and we represent the results in the Figure 1. We have
chosen a Daubechies mother wavelet with 5 vanishing moments and the wavelet coefficient
ẑε3,4, whose wavelet function ψ3,4 has its support roughly contained in the support of z. For a
centred Gaussian noise with standard deviation σ = 5% and a sample size N = 129, we obtain
a negligible wavelet coefficient for the pure signal: ẑ3,4 = −3.75 × 10−13. The impact of the
noise on ẑε3,4 is therefore preponderant as we can observe in the Figure 1.

Figure 1: In grey, probability density function of the wavelet coefficient ẑε3,4 of the logistic map of parameter 4
for a centred Gaussian dynamic noise with standard deviation 0.05. If the dynamic noise is replaced by a centred
Gaussian measurement noise with standard deviation 0.05, we get the black lines. In both cases, the solid thick line
is the empirical density obtained by 1, 000 simulations and represented with a Gaussian kernel, the dotted line is the
exact density obtained by Proposition 1 for the dynamic noise and the approximation obtained by Proposition 3 for
the measurement noise. The solid thin black line is the approximation of the probability density function obtained
by expansion as in equation (10) truncated at the 10th order. The mother wavelet is a Daubechies wavelet with 5
vanishing moments. Moreover, the number of observations, N , is 129.

We can also see that both the proposed estimators are very good for the measurement
noise as they are close to the empirical distribution. Moreover, in that case, the approximation
obtained by Proposition 3, corresponding to the approximation of the noise influence, is also
close to the approximation of the probability density function obtained by expansion as in
equation (10). However, the second approximation is supposed to be more accurate than
the first one since it is an expansion from that first approximation. In fact, there is a slight
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difference between both densities, represented in Figure 2: in the first approximation, the tail
are slightly underestimated.

Figure 2: Difference between the approximations of the probability density functions for the measurement noise
framework represented in Figure 1: the one obtained by Proposition 3 minus the one obtained by equation (10).

We can also compare, in the Figure 1, the probability density functions for the measurement
noise and the dynamic noise. The first one has heavier tails than the second one, what is
consistent with the fact that the noise influence is greater in the measurement noise framework.

Gaussian noise has the disadvantage to present thin tails in its probability density function,
what is poorly realistic. However, the results developed in the present article allow us to deal
with many kinds of noise. In particular, we present in the Figure 3 the probability density
function of the wavelet coefficient ẑε3,4 when we face a Cauchy noise with scale parameter
γ = 1%.

In addition to the apparent consistency between theoretic and empirical results in the
Figure 3, it seems difficult to build an empirical probability density function in a small time
for Cauchy variables. Therefore, Proposition 2 and Proposition 4 provide efficient tools in order
to get the exact or an approximated probability density function of the wavelet coefficients of
a noisy chaos.

3.2 The tent map

The tent map of parameter α is defined by the recurrence relation:

un+1 = z(un) =


αun if 0 < un ≤ 1

2

α (1− un) if 1
2
< un ≤ 1

0 else.

We consider that α = 2. Then (un)n∈N is a chaotic system [12].
We consider a Gaussian noise and we represent the results in the Figure 4. We have

chosen the same Daubechies mother wavelet with 5 vanishing moments and the same wavelet
coefficient ẑε3,4 than for the logistic map. For a centred Gaussian noise with standard deviation
σ = 5% and a sample size N = 129, we obtain a non-negligible wavelet coefficient for the pure
signal: ẑ3,4 = −1.24 × 10−2. The impact of the noise on ẑε3,4 is nevertheless considerable as
we can observe in the Figure 1.

For the dynamic noise environment, we have a good fit between the empirical distribu-
tion of the wavelet coefficient ẑε3,4 and its exact distribution obtained by Proposition 1. The
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Figure 3: In grey, probability density function of the wavelet coefficient ẑε3,4 of the logistic map of parameter 4 for
a Cauchy dynamic noise with scale parameter 0.01 and location parameter 0. If the dynamic noise is replaced by
a Cauchy measurement noise with scale parameter 0.01 and location parameter 0, we get the black lines. In both
cases, the solid thick line is the empirical density obtained by 5, 000 simulations and represented with a Gaussian
kernel, the dotted line is the exact density obtained by Proposition 2 for the dynamic noise and the approximation
obtained by Proposition 4 for the measurement noise. The mother wavelet is a Daubechies wavelet with 5 vanishing
moments. Moreover, the number of observations, N , is 129.

measurement noise case is more complex. A translation appears between the approximation
obtained by Proposition 3 and the empirical distribution10. Thus, we must ameliorate that
approximation by proposing an other method. Can it be achieved by a density expansion?

For the expansion as in equation (10), we face the problem that the tent map is not a
polynomial. Unfortunately, the approximation with Chebyshev interpolation [21] seems to
fail as it gives unsatisfactory results11 strongly depending on the choice of parameters of the
interpolation. In particular, we observe in Figure 4 a translation of the wavelet coefficient
distribution in the measurement noise environment compared with the dynamic noise. This
effect (which may be different for other wavelet coefficients) is caused by the non-differentiable
point. Since the proposed polynomial interpolation does not approximate accurately z around
that point, the translation effect in the approximation of the wavelet coefficient does not
appear. We can therefore not use equation (10) in order to get the probability density function
of the wavelet coefficient ẑε3,4.

However, we are able, for the tent map, to calculate directly the mean of any wavelet
coefficient of the map with a measurement noise. Indeed, if the noise is a centred Gaussian
variable of variance σ2, then, for j, k ∈ Z, φσ the Gaussian density function with variance σ2

and Φσ the Gaussian cumulative distribution function with the same variance σ2:

E
[
ẑεj,k
]

= E
[∑N

n=1 [z(un − ε?n) + εn]ψj,k(un)(un − un−1)
]

=
∑N
n=1 E [z(un − ε?n)]ψj,k(un)(un − un−1)

=
∑N
n=1

(∫
R z(un − x)φσ(x)dx

)
ψj,k(un)(un − un−1)

=
∑N
n=1

(∫ un− 1
2

un−1
[2− 2(un − x)]φσ(x)dx+

∫ un
un− 1

2
2(un − x)φσ(x)dx

)
ψj,k(un)(un − un−1)

=
∑N
n=1

(
[2− 2un]

[
Φσ(un − 1

2
)− Φσ(un − 1)

]
+ 2un

[
Φσ(un)− Φσ(un − 1

2
)
]

+2σ2
[
φσ(un)− 2φσ(un − 1

2
) + φσ(un − 1)

])
ψj,k(un)(un − un−1).

10 We remark that the only observation of that empirical distribution, which is almost centred on 0, can lead to
the wrong intuition that the wavelet coefficient of the pure signal is negligible.

11 We get a polynomial written like a truncated power series. See appendix I
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Figure 4: In grey, probability density function of the wavelet coefficient ẑε3,4 of the tent map of parameter 2 for a
centred Gaussian dynamic noise with standard deviation 0.05. If the dynamic noise is replaced by a centred Gaussian
measurement noise with standard deviation 0.05, we get the black lines. In both cases, the solid thick line is the
empirical density obtained by 1, 000 simulations and represented with a Gaussian kernel, the dotted line is the exact
density obtained by Proposition 1 for the dynamic noise and the approximation obtained by Proposition 3 for the
measurement noise. That approximation is ameliorated by the approximation represented with the solid thin black
which is a Gaussian density with the same standard deviation as the one calculated thanks to Proposition 3 but

with the exact mean E
[
ẑεj,k

]
. The mother wavelet is a Daubechies wavelet with 5 vanishing moments. Moreover,

the number of observations, N , is 129.

That example of the tent map is a good illustration of the complexity of a chaotic signal
with measurement noise: its filtering is more complex than for a signal with a linear noise
influence. Therefore, a signal with non-linear noise influence has not to be filtered with the
same methods.

3.3 The Hénon map

In the following example, we propose a chaos in higher dimension, the Hénon map, which is
described by: {

xn+1 = yn + 1− ax2
n

yn+1 = bxn.

If a = 1.4 and b = 0.3, then (xn, yn)n∈N is a chaotic system [12], whose phase plot is represented
in the Figure 5.

We consider a Gaussian noise and we represent the results in the Figure 6. We have chosen
the two-dimensional Daubechies mother wavelet with 5 vanishing moments and the wavelet
coefficient j = 3, k = (4, 4) and η = 2: ẑε2,3,(4,4). For a centred Gaussian noise with standard
deviation σ = 5% and a sample size N = 200, we obtain the following wavelet coefficient for
the pure signal12: ẑ2,3,(4,4) = 2.00× 10−3. We can observe the impact of the noise on ẑ2,3,(4,4)

in the Figure 6.
For the dynamic or the measurement noise environment, we have a good fit between the

empirical distribution of the wavelet coefficient ẑε2,3,(4,4) and its exact distribution obtained
by Theorem 4 and Theorem 5. Thus the multidimensional case seems well handled by the
approximations we proposed.

12 This empirical value is obtained by taking arbitrarily the same Voronoi region size for all the observations.
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Figure 5: Phase plot of the chaotic Hénon map with a = 1.4 and b = 0.3.

Figure 6: In grey, probability density function of the wavelet coefficient ẑε
2,3,(4,4)

of the Hénon map of parameters

a = 1.4 and b = 0.3 for a centred Gaussian dynamic noise with standard deviation 0.05. If the dynamic noise is
replaced by a centred Gaussian measurement noise with standard deviation 0.05, we get the black lines. In both
cases, the solid thick line is the empirical density obtained by 1, 000 simulations and represented with a Gaussian
kernel, the dotted line is the exact density obtained by Theorem 4 for the dynamic noise and the approximation
obtained by Proposition 5 for the measurement noise. The mother wavelet is a Daubechies wavelet with 5 vanishing
moments. Moreover, the number of observations, N , is 200.
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4 Conclusion

We presented several methods to get the probability distribution of each wavelet coefficients
of a noisy chaos. If we face a dynamical noise, Theorem 1 provide an exact expression. For
measurement noise, two approximations are proposed in Theorem 2 and Algorithms 1 and 2.
Those approximations are of course more accurate when the noise is small and we are able
to quantify what small means: the variance of the wavelet coefficient, which depends on the
chaos, must be lower than 2. For au Gaussian noise, for the mother wavelet considered and the
resolution and translation parameters considered in the article, this corresponds approximately
to a variance of the noise equal to 48 for a tent map and equal to 155 for a logistic map.

Moreover, using the multidimensional wavelets, we generalize these results to multidimen-
sional chaos in Theorem 4 and Theorem 5. This allows us to present a quite wide set of
examples, from the logistic map to the Hénon map.

These results are very useful to determine the optimal threshold to use when filtering
a noisy chaotic attractor to recover the pure chaotic attractor. This is the aim of another
article [9].
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A Proof of Theorem 1

Proof. The wavelet coefficient ẑεj,k of zε is:

ẑεj,k =
∑N
n=1 z

ε(un)ψj,k(un)(un − un−1)

=
∑N
n=1 [z(un) + εn]ψj,k(un)(un − un−1)

= ẑj,k +
∑N
n=1 εnψj,k(un)(un − un−1).

Let t ∈ R. The characteristic function of ẑεj,k is then:

E
[
eitẑ

ε
j,k

]
= exp (itẑj,k)E

[∏N
n=1 exp (itεnψj,k(un)(un − un−1))

]
= exp (itẑj,k)

∏N
n=1 E [exp (itεnψj,k(un)(un − un−1))],

since the variables ε1, ε2, ..., εN are independent. Then, using the equation (4), we get:

E
[
eitẑ

ε
j,k

]
= exp (itẑj,k)

∏N
n=1 exp (iµtψj,k(un)(un − un−1)− γ|tψj,k(un)(un − un−1)|α)

= exp
(
itẑj,k +

∑N
n=1 iµtψj,k(un)(un − un−1)−

∑N
n=1 γ|tψj,k(un)(un − un−1)|α

)
= exp (iµ′t− γ′|t|α) ,
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where: {
γ′ = γ

∑N
n=1 |ψj,k(un)(un − un−1)|α

µ′ = ẑj,k + µ
∑N
n=1 ψj,k(un)(un − un−1).

We recognize the characteristic function of a symmetric alpha-stable random variable of pa-
rameters α, γ′, µ′, like in equation (4).

B Proof of Proposition 1

Proof. This is a direct consequence of Theorem 1 since any centred Gaussian random variable
of variance σ2 is also a symmetric 2-stable random variable with parameters µ = 0 and
γ = σ2/2. We also note that, when N →∞, the maximum discretization step size is decreasing
towards 0 because of the ergodic condition on the chaos whose attractor is z. A more precise
expression of that maximum step size may be found in [8]. Nevertheless, when N →∞:

σ′
N→∞−→ lim

N→∞
σ

√∑N
n=1

∣∣∣∫ unun−1
ψj,k(u)du

∣∣∣2
≤ lim

N→∞
σ
√∑N

n=1

∫ un
un−1

|ψj,k(u)|2 du

thanks to Jensen’s inequality. Then:

σ′ ≤ lim
N→∞

σ
√∫ uN

u0
|ψj,k(u)|2 du

≤ σ
√∫

R |ψj,k(u)|2 du = σ‖ψj,k‖L2(R).

Finally, if ψj,k is an orthonormal wavelet we simply get σ′ ≤ σ.

C Proof of Theorem 2

Proof. From the equation (9), we can achieve a first-order Taylor expansion on z, which is
continuous and is continuously differentiable on each segment included in R \ N and which is
therefore continuous and continuously differentiable in each un, because they are assumed to
be in R \ N :

∀n ∈ {1, ..., N}, zε(un)
ε?n→0
∼ z(un)− z′(un)ε?n + εn. (12)

In the equation (12), we used the notation a(x)
x→0∼ b(x), for functions a and b. This means

that, when lim
x→0

b(x) 6= 0, then lim
x→0

a(x)
b(x)

= 1. Using the equation (12), the wavelet coefficient

ẑεj,k of zε is:

ẑεj,k =
∑N
n=1 z

ε(un)ψj,k(un)(un − un−1)
max

n∈{1,...,N}
|ε?n|→0

∼
∑N
n=1 [z(un)− z′(un)ε?n + εn]ψj,k(un)(un − un−1)

max
n∈{1,...,N}

|ε?n|→0

∼ ẑj,k +
∑N
n=1 [−z′(un)ε?n + εn]ψj,k(un)(un − un−1).

Then, the limit of the random variable ẑεj,k when max
n∈{1,...,N}

|ε?n| → 0, denoted Ẑεj,k, is simply:

Ẑεj,k = ẑj,k +

N∑
n=1

[
−z′(un)ε?n + εn

]
ψj,k(un)(un − un−1). (13)

Let t ∈ R. The characteristic function of Ẑεj,k is then:

E
[
eitẐ

ε
j,k

]
= exp (itẑj,k)E

[∏N
n=1 exp (itεnψj,k(un)(un − un−1)) exp (−itz′(un)ε?nψj,k(un)(un − un−1))

]
= exp (itẑj,k)

∏N
n=1 E [exp (itεnψj,k(un)(un − un−1))]E [exp (−itz′(un)ε?nψj,k(un)(un − un−1))],

(14)
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since the variables ε1, ε2, ..., εN , ε
?
1, ε

?
2, ..., ε

?
N are independent. Then, using the equation (4) in

the equation (14), we get:

E
[
eitẐ

ε
j,k

]
= exp (itẑj,k)

∏N
n=1 exp (iµtψj,k(un)(un − un−1)− γ|tψj,k(un)(un − un−1)|α)∏N

n=1 exp (−iµtz′(un)ψj,k(un)(un − un−1)− γ|z′(un)|α|tψj,k(un)(un − un−1)|α)

= exp
(
itẑj,k +

∑N
n=1 iµt(1− z

′(un))ψj,k(un)(un − un−1)−
∑N
n=1 γ(1 + |z′(un)|α)|tψj,k(un)(un − un−1)|α

)
= exp (iµ′t− γ′|t|α) ,

where: {
γ′ = γ

∑N
n=1 (1 + |z′(un)|α)|ψj,k(un)(un − un−1)|α

µ′ = ẑj,k + µ
∑N
n=1 (1− z′(un))ψj,k(un)(un − un−1).

We recognize the characteristic function of a symmetric alpha-stable random variable of pa-
rameters α, γ′, µ′, like in equation (4).

D Proof of Theorem 3

Proof. Let r be the remainder of the Taylor-Lagrange expansion of zε:

∀n ∈ {1, ..., N}, z(un − ε?n) = z(un)− z′(un)ε?n + r(n),

where

|r(n)| ≤
|ε?n|2 max

x∈Supp(z)
(|z′′(x)|)

2
.

Then,
zε(un) = z(un)− z′(un)ε?n + εn + r(n)

and we get:

dj,k =
∣∣∣ẑεj,k − Ẑεj,k∣∣∣

=
∣∣∣∑N

n=1 r(n)ψj,k(un)(un − un−1)
∣∣∣

≤ 1
2

max
x∈Supp(z)

(|z′′(x)|)
∑N
n=1 |ε

?
n|2 |ψj,k(un)(un − un−1)|.

(15)

From the equation (15), two possible bounds arise. The first one leads to an approximation of
the distribution of the error when N tends towards infinity. The second one works particularly
well when the number of observations is limited.

1. We can keep the wavelet function in the sum in the equation (15) and extract the noise
from that sum:

dj,k ≤
1

2
max

x∈Supp(z)

(∣∣z′′(x)
∣∣) max
n∈{1,...,N}

(
|ε?n|

2
) N∑
n=1

|ψj,k(un)| (un − un−1). (16)

For an ergodic chaos, when N is big, the biggest step size (un − un−1) is small, so that
we can write:

N∑
n=1

|ψj,k(un)| (un − un−1)
N→∞−→

∫ uN

u0

|ψj,k(x)| dx ≤
∫
R
|ψj,k(x)| dx. (17)

Then, using together equation (16) and equation (17), we get: ∀ε > 0, ∃N ′ ∈ N such
that when N ≥ N ′

dj,k ≤
1

2
max

x∈Supp(z)

(∣∣z′′(x)
∣∣)M|ε?|2 ∫

R
|ψj,k(x)| dx+ ε, (18)

where

M|ε?|2 = lim
N→∞

(
max

n∈{1,...,N}

(
|ε?n|

2
))

is a random variable whose distribution may be explicitly known thanks to the extreme
value theory.
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2. On the contrary, we can keep the noise in the sum of the equation (15) and extract the
wavelet function from that sum:

dj,k ≤
1

2
max

x∈Supp(z)

(∣∣z′′(x)
∣∣) max
x∈Supp(ψj,k)

(|ψj,k(x)|) max
n∈{1,...,N}

(un − un−1)SN,|ε?|2 , (19)

where

SN,|ε?|2 =

N∑
n=1

|ε?n|
2
.

In equation (19), depending on the cumulative distribution function of the observations,
∆U , we can find the cumulative distribution function of max

n∈{1,...,N}
(un − un−1). In par-

ticular, even when N does not tends towards infinity, we can use the bound presented
in [8]:

∆ max
n∈{1,...,N}

(un−un−1) ≥ max

{
0, 1−N

∫ sup(Supp(δU ))

inf(Supp(δU ))+v

δU (u) [∆U (u− v) + 1−∆U (u)]N−1 du

}
,

(20)
where δU is the probability density function corresponding to the cumulative distribution
function ∆U . In addition to that, we note that if X and Y are positive independent
random variables, and x, y > 0, then

X ≤ x and Y ≤ y ⇒ XY ≤ xy

which leads to:

P(XY ≤ xy) ≥ P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y). (21)

In particular, in equation (19), using equation (21), we have:

∆ max
n∈{1,...,N}

(un−un−1)S
N,|ε?|2

(xy) ≥ ∆ max
n∈{1,...,N}

(un−un−1)(x)∆S
N,|ε?|2

(y). (22)

On one hand thanks to equation (18) where ε can be arbitrarily small and on the other hand
thanks to equations (19), (20) and (22), we can prove the result of Theorem 3, namely:{

Dj,k(p) ≤ Ω∞N (p)
Dj,k(p) ≤ ΩN (p).

E Proof of Proposition 5

Proof. gN is the cumulative distribution function of
∑N
n=1 |ε

?
n|2 and hN is the cumulative

distribution function of lim
N→∞

(
max

n∈{1,...,N}

(
|ε?n|2

))
.

1.
∑N
n=1

∣∣∣ ε?nσ ∣∣∣2 is a chi-squared random variable with N degrees of freedom. Thus:

gN : x ≥ 0 7→
γ
(
N
2
, σ

2x
2

)
Γ
(
N
2

) .

2. For a random variable X, we denote ∆X its cumulative distribution function and δX the
probability density function. Since ε?1 is Gaussian, then |ε?1/σ|2 is a chi-squared random
variable with only one degree of freedom. We denote Y a random variable with the same
probability density function than |ε?1|2. Let x > 0. Then:

δY (x) =
1

σ
√

2πx
exp

(
− x

2σ2

)
. (23)
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In order to apply some theorem from the extreme value theory, more particularly the
von Mises’ condition [15], we need to find the limit, when x → ∞, of the derivative of
the function D, defined by:

D(x) =
1−∆Y (x)

δY (x)
. (24)

Its derivative is:

D′(x) =
−δY (x)2 − (1−∆Y (x))δ′Y (x)

δY (x)2
. (25)

From the equation (23), we calculate that:

δ′Y (x) = − 1

2σ
√

2πx

(
1
x

+ 1
σ2

)
exp

(
− x

2σ2

)
x→∞∼ − 1

2σ3
√

2πx
exp

(
− x

2σ2

)
.

(26)

We now have to find an equivalent, when x → ∞, of 1 −∆Y (x). First, let y > x and I
the function defined by:

I(x, y) =

∫ y

x

δY (s)ds. (27)

Integrating the equation (27) by parts, we get:

I(x, y) = σ

√
2

πx
exp

(
− x

2σ2

)
− σ

√
2

πy
exp

(
− y

2σ2

)
−
∫ y

x

2σ2

2s

1

σ
√

2πs
exp

(
− s

2σ2

)
ds,

(28)
so that, making y →∞ in the equation (28):

1−∆Y (x) = σ

√
2

πx
exp

(
− x

2σ2

)
−
∫ ∞
x

σ2

s

1

σ
√

2πs
exp

(
− s

2σ2

)
ds. (29)

Since x, σ > 0, we note that:∣∣∣∣∫ ∞
x

σ2

s

1

σ
√

2πs
exp

(
− s

2σ2

)
ds

∣∣∣∣ ≤ σ2

x
(1−∆Y (x)), (30)

so that, using the equations (29) and (30), we get the equivalence relation:

1−∆Y (x)
x→∞∼ σ

√
2

πx
exp

(
− x

2σ2

)
. (31)

Finally, from the equations (23), (25), (26) and (31) we get:

D′(x)
x→∞∼ −1−

[
σ
√

2
πx

exp
(
− x

2σ2

)] [
− 1

2σ3
√

2πx
exp

(
− x

2σ2

)]
[

1

σ
√

2πx
exp

(
− x

2σ2

)]2 = 0. (32)

Then, using the equation (32) and von Mises’ condition, we can assert that ∆Y is in
the max-domain of attraction of a GEV of parameter 0, namely a Gumbel distribution:
there exists a real normalization series (aN , bN ) such that the distribution function of

the random variable b−1
N

(
max

n∈{1,...,N}

(
|ε?n|2

)
− aN

)
converges towards the distribution

function of an affine transformation of a Gumbel random variable, whose distribution
function is:

G0 : x −→ exp
(
−e−x

)
. (33)

The parameters of the affine transformation will be determined accurately next in this
proof. Moreover, von Mises’ condition allows us to write that:{

aN
N→∞∼ ∆−1

Y

(
1− 1

N

) N→∞−→ +∞
bN

N→∞∼ D(aN )
N→∞−→ 2σ2,

(34)

23

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2013.15



thanks to the equations (23), (24) and (31). Let α be a function defined by:

α(N)
1
2 eα(N) =

N√
π
.

One can numerically easily get α but also a proof of its existence and uniqueness, the

function t 7→ t
1
2 et being a bijection of [0,∞). Then, thanks to the equation (31), we

remark that:

1−∆Y

(
2σ2α(N)

) N→∞∼ 1

N
,

so that, ∆Y being an increasing function, we can choose to define aN by:

aN = 2σ2α(N). (35)

The limit of the translated and scaled maximum of the set of random variables can now
be written. Since bNx =

N→∞
o (aN ), then:

P

(
max

n∈{1,...,N}

(
|ε?n|2

)
−aN

bN
≤ x

)
= [∆Y (xbN + aN )]N

N→∞∼
[
1− (1−∆Y (aN )) exp

(
−xbN

2σ2

)]N
N→∞∼

[
1− 1

N
exp (−x)

]N
N→∞−→ G0(x).

(36)

Finally, using the equations (33), (34), (35) and (36), we get:

hN (x)
N→∞∼ G0

(
x−aN
bN

)
N→∞∼ exp

(
− exp

(
α(N)− x

2σ2

))
.

We remark that successive Taylor expansions using the equation (31) can lead to build α
as the limit of the sequence of functions (αk)k∈N, defined by:

α0(N) = log
(
N√
π

)
αk+1(N) = log

(
N√

παk(N)

)
.

(37)

Then α is the limit of αk, when k → ∞. Indeed, when we replace αk+1 and αk by α in the
equation (37), we find that α is such that:

α(N)
1
2 eα(N) =

N√
π
,

what is consistent with its definition in Proposition 5.

F Proof of Proposition 6

Proof. Let x ≥ 0. We denote Y a random variable with the same probability density function
than |ε?1|2. We remark that:

∆Y (x) = P (|ε?1| ≤
√
x)

= ∆ε?1
(
√
x)−∆ε?1

(−
√
x)

= 2
π

arctan
(√

x
γ

)
,

because the cumulative distribution function of a Cauchy random variable with scale parameter
γ is:

∆ε?1
(x) =

1

2
+

1

π
arctan

(
x

γ

)
.
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Therefore, the density probability function of Y is:

δY (x) =
∂∆ε?1

(
√
x)

∂x
−

∂∆ε?1
(−
√
x)

∂x

= ∂
∂x

[
2
π

arctan
(√

x
γ

)]
= 1

γπ
√
x

(
1+ x

γ2

)
x→∞∼ γ

πx3/2
,

(38)

Like for Proposition 5, we are going to use the von Mises’ condition: we look for the limit,
when x→∞, of the derivative of the function D, defined by:

D(x) =
1−∆Y (x)

δY (x)
.

Its derivative is:

D′(x) =
−δY (x)2 − (1−∆Y (x))δ′Y (x)

δY (x)2
. (39)

From the equation (38), we calculate that:

δ′Y (x) = − 3x+γ2

2πγ3x3/2
(

1+ x
γ2

)2

x→∞∼ − 3γ

2πx5/2
.

(40)

Moreover, integrating the equation (38), we have an other approximation:

1−∆Y (x)
x→∞∼

∫∞
x

γ

πy3/2
dy

x→∞∼ 2γ
π
√
x
.

(41)

From the equations (38), (39), (40) and (41) we get an equivalent of the derivative of D:

D′(x)
x→∞∼

−
[

γ

πx3/2

]2
−
[

2γ
π
√
x

] [
− 3γ

2πx5/2

]
[

γ

πx3/2

]2 = 2.

According to von Mises’ condition, we can assert that ∆Y is in the max-domain of attraction
of a GEV of parameter 2, namely a Fréchet distribution: there exists a real normalization series

(aN , bN ) such that the distribution function of the random variable b−1
N

(
max

n∈{1,...,N}

(
|ε?n|2

)
− aN

)
converges towards the distribution function of an affine transformation of a Fréchet random
variable of parameter 1/2, whose distribution function is:

G1/2 : x −→ exp
(
−x−1/2

)
. (42)

The parameters of the affine transformation will be determined accurately next in this proof.
Moreover, von Mises’ condition allows us to write that:{

aN
N→∞∼ ∆−1

Y

(
1− 1

N

)
bN

N→∞∼ D(aN ).
(43)

The equation (41) incites us to choose:

aN =
4γ2N2

π2
, (44)

from which we get, using the equations (38) and (43):

bN =
8γ2N2

π2
. (45)
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The limit of the translated and scaled maximum of the set of random variables can now be
written, using the equations (41), (44) and (45):

P

(
max

n∈{1,...,N}

(
|ε?n|2

)
−aN

bN
≤ x

)
= [∆Y (xbN + aN )]N

N→∞∼
[
1− 2γ

π
√
bNx+aN

]N
N→∞∼

[
1− (2x+1)−1/2

N

]N
N→∞−→ G1/2(2x+ 1).

(46)

Finally, using the equations (42), (44), (45) and (46), we get:

hN (x)
N→∞∼ G1/2

(
2
[
x−aN
bN

]
+ 1
)

N→∞∼ exp
(
− 2γN
π
√
x

)
.

G Proof of Theorem 4

Proof. The wavelet coefficient Ẑεη,j,k of Zε is:

Ẑεη,j,k =
∑N
n=1 Z

ε(Un)ψηj,k(Un)
∫
V (Un)

dx

=
∑N
n=1 [Z(Un) + (ε1,n, ..., εp,n)]ψηj,k(Un)

∫
V (Un)

dx

= Ẑη,j,k +
(∑N

n=1 ε1,nψ
η
j,k(Un)

∫
V (Un)

dx, ...,
∑N
n=1 ε1,nψ

η
j,k(Un)

∫
V (Un)

dx
)
.

Let t ∈ R. The characteristic function of the m-th coordinate of Ẑεη,j,k is then:

E
[
exp

(
it
(
Ẑεη,j,k

)
m

)]
= exp

(
it
(
Ẑη,j,k

)
m

)
E
[∏N

n=1 exp
(
itεm,nψ

η
j,k(Un)

∫
V (Un)

dx
)]

= exp
(
it
(
Ẑη,j,k

)
m

)∏N
n=1 E

[
exp

(
itεm,nψ

η
j,k(Un)

∫
V (Un)

dx
)]
,

since the variables εm,1, εm,2, ..., εm,N are independent. Then, using the equation (4), we get:

E
[
exp

(
it
(
Ẑεη,j,k

)
m

)]
= exp

(
it
(
Ẑη,j,k

)
m

)∏N
n=1 exp

(
iµtψηj,k(Un)

∫
V (Un)

dx− γ|tψηj,k(Un)
∫
V (Un)

dx|α
)

= exp
(
it
(
Ẑη,j,k

)
m

+
∑N
n=1 iµtψ

η
j,k(Un)

∫
V (Un)

dx−
∑N
n=1 γ|tψ

η
j,k(Un)

∫
V (Un)

dx|α
)

= exp (iµmt− γm|t|α) ,

where: {
γm = γ

∑N
n=1 |ψ

η
j,k(Un)

∫
V (Un)

dx|α

µm =
(
Ẑη,j,k

)
m

+ µ
∑N
n=1 ψ

η
j,k(Un)

∫
V (Un)

dx.

We recognize the characteristic function of a symmetric alpha-stable random variable of pa-
rameters α, γm, µm, like in equation (4).

H Proof of Theorem 5

Proof. Like in the proof of Theorem 2, we achieve a first-order Taylor expansion on Z:

∀n ∈ {1, ..., N}, Zε(Un)
ε?1,n,...,ε

?
p,n→0
∼ Z(Un)−

p∑
m=1

DmZ(Un)ε?m,n + (ε1,n, ..., εp,n) . (47)
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Using the equation (47), the wavelet coefficient Ẑεη,j,k of Zε is:

Ẑεη,j,k =
∑N
n=1 Z

ε(Un)ψηj,k(Un)
∫
V (Un)

dx
max

n∈{1,...,N}
|ε?1,n|+...+|ε

?
p,n|→0

∼
∑N
n=1

[
Z(Un)−

∑p
m=1 DmZ(Un)ε?m,n + (ε1,n, ..., εp,n)

]
ψηj,k(Un)

∫
V (Un)

dx
max

n∈{1,...,N}
|ε?1,n|+...+|ε

?
p,n|→0

∼ Ẑη,j,k +
∑N
n=1

[
−
∑p
m=1 DmZ(Un)ε?m,n + (ε1,n, ..., εp,n)

]
ψηj,k(Un)

∫
V (Un)

dx.

Then, the limit of the random variable Ẑεη,j,k when max
n∈{1,...,N}

|ε?1,n|+ ...+ |ε?p,n| → 0, denoted

Ẑε,limη,j,k , is simply:

Ẑε,limη,j,k = Ẑη,j,k +

N∑
n=1

[
−

p∑
l=1

DlZ(Un)ε?l,n + (ε1,n, ..., εp,n)

]
ψηj,k(Un)

∫
V (Un)

dx.

Let t ∈ R. The characteristic function of the m-th coordinate of Ẑε,limη,j,k is then:

E
[
exp

(
it
(
Ẑε,limη,j,k

)
m

)]
= exp

(
it
(
Ẑη,j,k

)
m

)∏N
n=1 E

[
exp

(
itεm,nψ

η
j,k(Un)

∫
V (Un)

dx
)]

∏N
n=1 E

[
exp

(
−it

∑p
l=1 (DlZ(Un))m ε

?
l,nψ

η
j,k(Un)

∫
V (Un)

dx
)]

= exp
(
it
(
Ẑη,j,k

)
m

)∏N
n=1 E

[
exp

(
itεm,nψ

η
j,k(Un)

∫
V (Un)

dx
)]

∏N
n=1

∏p
l=1 E

[
exp

(
−it (DlZ(Un))m ε

?
l,nψ

η
j,k(Un)

∫
V (Un)

dx
)]
,

(48)
since the variables ε?1,1, ε

?
1,2, ..., ε

?
1,N , ..., ε

?
p,1, ε

?
p,2, ..., ε

?
p,N , εm,1, εm,2, ..., εm,N are independent.

Then, using the equation (4) in the equation (48), we get:

E
[
exp

(
it
(
Ẑε,limη,j,k

)
m

)]
= exp

(
it
(
Ẑη,j,k

)
m

)∏N
n=1 exp

(
iµtψηj,k(Un)

∫
V (Un)

dx− γ|tψηj,k(Un)
∫
V (Un)

dx|α
)

∏N
n=1

∏p
l=1 exp

(
−iµt (DlZ(Un))m ψ

η
j,k(Un)

∫
V (Un)

dx
)

∏N
n=1

∏p
l=1 exp

(
−γ| (DlZ(Un))m |

α|tψηj,k(Un)
∫
V (Un)

dx|α
)

= exp
(
it
(
Ẑη,j,k

)
m

+
∑N
n=1 iµt

(
1−

∑p
l=1 (DlZ(Un))m

)
ψηj,k(Un)

∫
V (Un)

dx
)

exp
(
−
∑N
n=1 γ

(
1 +

∑p
l=1

∣∣(DlZ(Un))m
∣∣α) |tψηj,k(Un)

∫
V (Un)

dx|α
)

= exp (iµmt− γm|t|α) ,

where: {
γm = γ

∑N
n=1

(
1 +

∑p
l=1

∣∣(DlZ(Un))m
∣∣α) |ψηj,k(Un)

∫
V (Un)

dx|α

µm =
(
Ẑη,j,k

)
m

+ µ
∑N
n=1

(
1−

∑p
l=1 (DlZ(Un))m

)
ψηj,k(Un)

∫
V (Un)

dx.

We recognize the characteristic function of a symmetric alpha-stable random variable of pa-
rameters α, γm, µm, like in equation (4).

I Chebyshev interpolation polynomials

Chebyshev polynomials of the first kind are described by:

Tn(x) =

{
n
2

∑bn2 c
k=0 (−1)k (n−k−1)!

k!(n−2k)!
(2x)n−2k if n ≥ 1

1 else,

where x ∈ R. The roots of Tn+1 are noted x0, ..., xn and they are defined by:

xj = cos

((
j + 1

2

)
π

n+ 1

)
.
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We want to interpolate the function z, knowing its value at some nodes which are the x0, ..., xn
translated and scaled. More precisely, the nodes are taken on an interval (a, b) wider than the
support of z. We note them ζ(x0), ..., ζ(xn), where ζ : x 7→ 1

2
(a + b) + 1

2
(b − a)x is an affine

function. Because of the discrete orthogonality of the Chebyshev polynomials, [21], one gets
Pn, the Chebyshev interpolation polynomial of z:

Pn(x) =

n∑
k=0

ckδkTk(ζ−1(x)),

for x ∈ (a, b), with

δk =

{
1/2 if k = 0
1 else,

and

ck =
2

n+ 1

n∑
j=0

z(ζ(xj))Tk(xj).

Let

ak,j =

{
(−1)j2k−2j−1ckk

(k−j−1)!
j!(k−2j)!

if k ≥ 1
ck
2

else.

Then

Pn(x) =
∑n
k=0

∑b k
2
c

j=0 ak,j
(
ζ−1(x)

)k−2j

=
∑bn

2
c

k=0

∑k
j=0 a2k,j

(
ζ−1(x)

)2k−2j
+
∑bn−1

2
c

k=0

∑k
j=0 a2k+1,j

(
ζ−1(x)

)2k+1−2j

=
∑bn

2
c

k=0

∑k
j=0 a2k,k−j

(
ζ−1(x)

)2j
+
∑bn−1

2
c

k=0

∑k
j=0 a2k+1,k−j

(
ζ−1(x)

)2j+1

=
∑bn

2
c

j=0

∑bn
2
c

k=j a2k,k−j
(
ζ−1(x)

)2j
+
∑bn−1

2
c

j=0

∑bn−1
2
c

k=j a2k+1,k−j
(
ζ−1(x)

)2j+1
.

Therefore

Pn(x) = c0
2

+
∑bn

2
c

j=0

∑bn
2
c

k=j,k>0 (−1)k−j22jc2kk
(k+j−1)!

(k−j)!(2j)!

(
ζ−1(x)

)2j
+

∑bn−1
2
c

j=0

∑bn−1
2
c

k=j (−1)k−j22jc2k+1(2k + 1) (k+j)!
(k−j)!(2j+1)!

(
ζ−1(x)

)2j+1
,

what may also be written with the power series form with a center c = a+b
2

:

Pn(x) = c0
2

+
∑bn

2
c

j=0

∑bn
2
c

k=j,k>0 (−1)k−j 24j

(b−a)2j
c2kk

(k+j−1)!
(k−j)!(2j)! (x− c)

2j

+
∑bn−1

2
c

j=0

∑bn−1
2
c

k=j (−1)k−j 24j+1

(b−a)2j+1 c2k+1(2k + 1) (k+j)!
(k−j)!(2j+1)!

(x− c)2j+1.
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