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SIGN CHANGES IN SHORT INTERVALS OF COEFFICIENTS OF SPINOR ZETA

FUNCTION OF A SIEGEL CUSP FORM OF GENUS 2

EMMANUEL ROYER, JYOTI SENGUPTA, AND JIE WU

Abstract. In this paper, we establish a Voronoi formula for the spinor zeta function of
a Siegel cusp form of genus 2. We deduce from this formula quantitative results on the
number of its positive (resp. negative) coefficients in some short intervals.
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1. Introduction

Let Sk be the space of Siegel cusp forms of integral weight k on the group Sp4(� ) ⊂
GL4(�) and let F ∈ Sk be an eigenfunction of all the Hecke operators. Let

ZF(s) :=
∏

p∈P
ZF,p(p

−s) (Res > 1)

be the spinor zeta function of F. Here P is the set of prime numbers and if α0,p ,α1,p ,α2,p
are the Satake p-parameters attached to F then

ZF,p(t)
−1 := (1−α0,pt)(1−α0,pα1,pt)(1−α0,pα2,pt)(1−α0,pα1,pα2,pt).

They satisfy

α2
0,pα1,pα2,p = 1

for all p. A Siegel form is in the Maass subspace SMk of Sk if it is a linear combination
of Siegel forms F that are eigenvectors of all the Hecke operators and for which there
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2 E. ROYER, J. SENGUPTA, AND J. WU

exists a primitive modular form, f , of weight 2k − 2 such that

ZF(s) = ζ
(

s − 1
2

)

ζ
(

s +
1
2

)

L(f , s).

Here L(f , s) is the L-function of f (note that we normalise all the L-functions so that the
critical strip is 0 6 Res 6 1 and the functional equation relates the value at s to the value
at 1−s). This happens only if k is even. The bijective linear application between SMk and
the space of modular forms of weight 2k−2 is called the Saito-Kurokawa lifting [Zag81].
The Ramanujan-Petersson conjecture says that

(1) |αj ,p | = 1 for j = 0,1,2 and all primes p.

It is not true for Siegel Hecke-eigenforms in SMk . But, if k is odd or, if k is even and
the form is in the orthogonal complement of SMk , then it has been established by Weis-
sauer [Wei09]. We denote by H∗k the set of Siegel cuspidal Hecke-eigenforms of weight
k and genus 2 that, if k is even, are in the orthogonal complement of SMk . The forms
we consider in this paper all belong to H∗k . According to Breulmann [Bre99], a Siegel
Hecke-eigenform is in SMk if and only if all its Hecke eigenvalues are positive.

According to [And74, Evd80], the function

ΛF(s) := (2π)−sΓ
(

s + k − 3
2

)

Γ
(

s + 1
2

)

ZF(s)

has an entire continuation to � since F ∈ H∗k . Further it satisfies the functional equation

(2) ΛF(s) = (−1)kΛF(1− s)
on � . The spinor zeta function of F has the Dirichlet expansion:

ZF(s) =
∑

n>1

aF(n)n
−s

for Res > 1. By using (1), one sees that

(3) |aF(n)| 6 d4(n)

for all n > 1, where d4(n) is the number of solutions in positive integers a,b,c,d of
n = abcd.

In this paper, we investigate the problem of sign changes for the sequence (aF(n))n>1
in short intervals. Define

N
+
F (x) :=

∑

n6x
aF(n)>0

1 and N
−
F (x) :=

∑

n6x
aF(n)<0

1.

We apply a method due to Lau & Tsang [LT02] to establish the following Theorem.
Convergence issues however appear and we have to deal with them.

Theorem– Let F be inH∗k and ε > 0. There are constants c > 0 absolute and x0(F) depending
only on F such that for all x > x0(F), we have

N
+
F (x + cx3/4)−N +

F (x)≫ x3/8−ε,
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and

N
−
F (x + cx3/4)−N −F (x)≫ x3/8−ε,

where the implied constants in≫ depends only on ε.

Remark- An ingredient of our proof is the inequality

(4)
∑

n6x

aF(n)≪F,ε x
3/5+ε (x > 2).

(see Lemma 1). We also prove, and use an Omega-result:
∑

n6x

aF(n) =Ω±(x
3/8)

(see Lemma 2).

Two related problems have already been studied. Denote by λF(n) the n-th nor-
malised Hecke eigenvalue of F. Then we have

(5)
∞
∑

n=1

λF(n)
ns

=
ZF(s)

ζ(2s+1)
(Res > 1).

In [Koh07], Kohnen proved that

#{n 6 x : λF(n) > 0} →∞ (x→∞).

and

#{n 6 x : λF(n) < 0} →∞ (x→∞).

Then, Das [Das13] proved that, as x tends to +∞, the quantities
1

#{p ∈ P : p 6 x}#{p ∈ P ∩ [1,x] : λF(p) > 0}

and
1

#{p ∈ P : p 6 x}#{p ∈ P ∩ [1,x] : λF(p) < 0}

are bounded from below (and naturally also bounded from above). In [KS07], Kohnen
& Sengupta proved that under the same assumption there is an integer n≪ k2(logk)20

such that λF(n) < 0. Their result has been generalised to higher levels by Brown [Bro10].
An interesting study of sign changes is also due to Pitale & Schmidt [PS08]. They prove
that if F is not in the Maass subspace, there exists an infinite set of prime numbers p
not dividing the level so that there are infinitely many r with λF(pr) > 0 and infinitely
many r with λF(pr) < 0.

Remark- Das’ result is on the counting function of the Hecke eigenvalues. It implies
that, as x tends to +∞, the quantities

1
#{p ∈ P : p 6 x}#{p ∈ P ∩ [1,x] : aF(p) > 0}

and
1

#{p ∈ P : p 6 x}#{p ∈ P ∩ [1,x] : aF(p) < 0}
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are bounded from below. The reason is that (5) implies

aF(n) =
∑

(d,m)∈� 2

d2m=n

λF(m)
d

.

Thus aF(n) = λF(n) for n squarefree and in particular for n a prime. Moreover, the proof
of Kohnen & Sengupta can be adapted to prove that there is an integer n≪ k2(logk)20

such that aF(n) < 0.

To end this introduction, we give a very short amount on what is known in the case
of classical modular forms, referring to [LLW13] for a more complete survey. Let f
be a primitive modular form of weight k on the congruence subgroup Γ0(N). Lau &
Wu [LW09] proved that, as x tends to +∞, the quantities

(6)
1

#{n ∈ � ∗ : n 6 x}#{n ∈ � ∩ [1,x] : λf (n) > 0}

and

1
#{n ∈ � ∗ : n 6 x}#{n ∈ � ∩ [1,x] : λf (n) < 0}

are bounded from below. Even though we know by the Sato-Tate Theorem [BLGHT11]
that

lim
x→∞

1
#{p ∈ P : p 6 x}#

{

p ∈ P ∩ [1,x] : λf (p) > 0
}

=
1
2

it does not seem easy to deduce a similar limit for (6). Lau & Wu proved also the
following result on intervals. There exists C > 0 such that, for any ε > 0, there exists
K > 0 such that for any even integer k > 4, for any integer N > 1 we have

#
{

n ∈ [x,x +CENx
1/2] : λf (n) > 0

}

> K(Nx)1/4−ε

as soon as x > N2x0(k) where x0(k) is a positive real number only depending on k. Here,

EN = N1/2

















∑

d|N
d−1/2 log(2d)

















3

.

An important ingredient used by Lau & Wu is the following result by Serre [Ser81].
Let f be a primitive modular form of weight k on the congruence subgroup Γ0(N). Let

δ <
1
2
, there exists C > 0 such that, for any x > 2, we have

1
#{p ∈ P : p 6 x}#

{

p ∈ P ∩ [1,x] : λf (p) = 0
}

6
C

log(x)δ
.

Such an inequality is missing in the case of Siegel modular forms.
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2. Truncated Voronoi formula

The aim of this section is to establish the following truncated Voronoi formula, which
will be needed in the proof of the Theorem.

Lemma 1– Let F be in H∗k . Then for any A > 0 and ε > 0, we have

(7)
∑

n6x

aF(n) =
x3/8

(2π)3/4

∑

n6M

aF(n)
n5/8

cos
(

4
√
2π(nx)1/4 +

π

4

)

+OA,F,ε

(

(x3M−1)1/4+ε + (xM)1/4+ε
)

uniformly for x > 2 and 1 6M 6 xA, where the implied constant depends on A, F and ε only.
In particular

(8)
∑

n6x

aF(n)≪F,ε x
3/5+ε (x > 2).

Proof. Without loss of generality, we assume that M ∈ � . Let κ := 1 + ε and

(9) T4 = 4π2(M+ 1
2 )x.

By the Perron formula (see [Ten95, Corollary II.2.4]) we have

(10)
∑

n6x

aF(n) =
1
2πi

∫ κ+iT

κ−iT
ZF(s)

xs

s
ds +OF,ε

(

x3/4+εM−1/4 + xε
)

.

We shift the line of integration horizontally to Res = −ε, the main term gives

1
2πi

∫ κ+iT

κ−iT
ZF(s)

xs

s
ds = ZF(0) +

1
2πi

∫

L

ZF(s)
xs

s
ds,

where L is the contour joining the points κ ± iT and −ε ± iT. Using the convexity
bound [Mic07, §1.3]

ZF(σ + it)≪F,ε (|t|+1)max{2(1−σ),0}+ε (−ε 6 σ 6 κ),

the integrals over the horizontal segments and the term ZF(0) can be absorbed in OF,ε

(

(Tx)ε(T + T−1x)
)

=

OF,ε

(

x1/4+εM1/4 + x3/4+εM−1/4
)

.
To handle the integral over the vertical segmentLv := [−ε− iT,−ε+iT], we invoke the

functional equation (2). We deduce that

(11)
1
2πi

∫

Lv

ZF(s)
xs

s
ds = (−1)k

∑

n>1

aF(n)
n

ILv
(nx),

where

ILv
(y) :=

1
2πi

∫

Lv

(2π)2s−1
Γ(k − 1

2 − s)Γ(
3
2 − s)

Γ(s+ k − 3
2 )Γ(s +

1
2 )

ys

s
ds.

By using the Stirling formula

Γ(σ + it) =
√
2π|t|σ−1/2e−π|t|/2+i(t log|t|−t)+isgn(t)(π/2)(σ−1/2)

{

1+O
(

t−1
)}
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uniformly for σ1 6 σ 6 σ2 and |t| > 1, the quotient of the four gamma factors is

(12) |t|2−4σe−4i(t log|t|−t)+isgn(t)π(1−k)
{

1+O
(

t−1
) }

for bounded σ and any |t| > 1, where the implied constant depends on σ and k. Together
with the second mean value theorem for integrals [Ten95, Theorem I.0.3], we obtain

(13)

ILv
(nx)≪ (nx)−ε

(
∣

∣

∣

∣

∣

∣

∫ T

1
t1+4εe−ig(t)dt

∣

∣

∣

∣

∣

∣

+T1+4ε
)

≪ T

(

T4

nx

)ε (∣
∣

∣

∣

∣

∣

∫ T

a
e−ig(t)dt

∣

∣

∣

∣

∣

∣

+1

)

for some 1 6 a 6 T, where g(t) := t log
(

t4/(4π2nx)
)

− 4t. In view of (9), we have

g ′(t) = − log(4π2nx/t4) < 0 and |g ′(t)| > |log(n/(M+ 1
2 ))|

for n >M+1 and 1 6 t 6 T. Using (3) and [Ten95, Theorem I.6.2], we infer that

(14)

∑

n>M

aF(n)
n

ILv
(nx)≪ T

(

T4

x

)ε
∑

n>M

d4(n)
n1+ε













∣

∣

∣

∣

∣

∣

log
n

M+ 1
2

∣

∣

∣

∣

∣

∣

−1
+1















≪ T

(

T4

x

)ε














∑

M<n62M

d4(n)(M+ 1
2 )

n1+ε |n−M − 1
2 |

+
1

Mε/2















≪ T

(

T4
√
Mx

)ε

≪ Txε.

For n 6 M, we extend the segment of integration Lv to an infinite line L ∗v in order
to apply Lemma 1 in [CN63]. Write

L
±
v := [12 + ε ± iT, 12 + ε ± i∞), L

±
h := [−ε ± iT, 12 + ε ± iT]

and define L ∗v to be the positively oriented contour consisting of Lv, L ±v and L ±h . In
view of (12), the contribution over the horizontal segmentsL ±h is

IL ±h (nx)≪
∫ 1/2−ε

−ε
(2π)2σ−1T2−4σ (nx)

σ

T
dσ

≪ T
∫ 1/2−ε

−ε

(

nx

T4

)σ

dσ

≪ Txε.
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As in (13), for n 6M we get that

IL ±v (nx)≪ (nx)1/2+ε
(∫ ∞

T
t−1−4εe−ig(t)dt +

1
T1+4ε

)

≪ T
(

nx

T4

)1/2+ε














∣

∣

∣

∣

∣

∣

log
M+ 1

2

n

∣

∣

∣

∣

∣

∣

−1
+1















≪ T















∣

∣

∣

∣

∣

∣

log
M+ 1

2

n

∣

∣

∣

∣

∣

∣

−1
+1















.

So

(15)

∑

n6M

aF(n)
n

(

IL ±v (nx) + IL ±h (nx)
)

≪ Txε/2
∑

n6M

d4(n)
n













|log
M+ 1

2

n
|−1 +1













≪ Txε/2
∑

n6M

d4(n)(M+ 1
2 )

n|n−M − 1
2 |

+Txε

≪ Txε.

Define

IL ∗v (y) =
1

4π2i

∫

L ∗v

Γ(k − 1
2 − s)Γ(

3
2 − s)Γ(s)

Γ(s + k − 3
2 )Γ(s +

1
2 )Γ(1 + s)

(4π2y)s ds.

After a change of variable s into 1− s, we see that

IL ∗v (y) =
I0(4π2y)

2π
,

with

I0(t) :=
1
2πi

∫

Lε

Γ(s + k − 3
2 )Γ(s +

1
2 )Γ(1− s)

Γ(k − 1
2 − s)Γ(

3
2 − s)Γ(2− s)

t1−sds.

Here Lε consists of the line s = 1
2 − ε + iτ with |τ| > T, together with three sides of the

rectangle whose vertices are 1
2 − ε − iT, 1 + ε − iT, 1 + ε + iT and 1

2 − ε + iT. Note that all
the poles of the integrand in I0(t) lie on the left of the lineLε.

Using a result due to Chandrasekharan and Narasimhan [CN63, Lemma 1] gener-
alised by Lau & Tsang [LT02, Lemma 2.2] we obtain (note that a factor

√
2 is missing

for the definition of e0 in both references)

I0(t) =
(−1)k√
2π

t3/8 cos
(

4t1/4 +
π

4

)

+O
(

t1/8
)

.

It hence follows that

(16) IL ∗v (nx) = (−1)k (nx)
3/8

(2i)3/4
cos

(

4
√
2π(nx)1/4 +

π

4

)

+O
(

(nx)1/8
)

.

We conclude

(17)
∑

n6M

aF(n)
n

ILv
(nx) =

(−1)k
(2π)3/4

x3/8
∑

n6M

aF(n)
n5/8

cos
(

4
√
2π(nx)1/4 +

π

4

)

+O
(

x1/4+εM1/4
)
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from (15) and (16). Finally the asymptotic formula (7) by (10)-(11), (14) and (17).
Since

x3/8
∑

n6M

aF(n)
n5/8

cos
(

4
√
2π(nx)1/4 +

π

4

)

≪ (xM)3/8+ε,

the choice of M = x3/5 in (7) gives (8). �

3. Proof of the Theorem

We establish a lemma that has a similar statement as a one due to Lau & Wu [LW09,
Lemma 3.2]. However, due to convergence issue, the proof is more delicate.

Lemma 2– Let F be in H∗k . Define

SF(x) :=
∑

n6x

aF(n).

There exist positive absolute constants C, c1, c2 and X0(F) depending only on F such that for
all X > X0(F), we can find x1,x2 ∈ [X,X+CX3/4] for which

SF(x1) > c1X
3/8 and SF(x2) < −c2X3/8.

Proof. We begin the proof with Theorem C of Hafner [Haf81]. In order to use this re-
sult, it is more convenient to introduce the notion of (C, ℓ)-summability and to present
related simple facts (see [Moo66] for more details). Let {gn(t)}n>0 be a sequence of func-
tions. We write

s(g;n) :=
∑

06ν6n

gν (t), σ(g;n) :=
1

C(ℓ+1)
n

n
∑

ν=0

C(ℓ)
n−νs(g;ν),

where C
(ℓ)
n :=

(ℓ+n−1
n

)

. We say that the series of general term gn(t) is uniformly (C, ℓ)-
summable to the sum G(t) if σ(g;n) converges uniformly to G(t) as n → ∞. We have

C(ℓ)
0 + · · ·+C(ℓ)

n = C(ℓ+1)
n and if the series

∑

n

∫

gn(t)dt converges then the series of general
term

∫

gn(t)dt is also (C, ℓ)-summable and their limits are the same.
As in [Haf81, page 151], for ρ > −1 and x < 2π� , define

Aρ(x) :=
1

Γ(ρ+1)

∑

2πn6x

aF(n)(x − 2πn)ρ.

Now let C be the rectangle with vertices c ± iR and 1 − b ± iR (taken in the counter-
clockwise direction), where b > c >max

{

1, |k − 3
2 |
}

and R >
∣

∣

∣k − 3
2

∣

∣

∣ are real numbers. Let

Qρ(x) :=
1
2πi

∫

C

Γ(s)(2π)−sZF(s)
Γ(s + ρ+1)

xρ+sds.

Denote by C0,b the oriented polygonal path with vertices −i∞, −iR, b− iR, b+iR, iR and
+i∞. Let

fρ(x) :=
1
2πi

∫

C0,b

Γ(1− s)∆(s)
Γ(2 + ρ− s)∆(1− s)x

1+ρ−sds

where
∆(s) = Γ(s + k − 3

2 )Γ(s +
1
2 ).
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By [Haf81, Theorem C], the series of general term (−1)k(2πn)−1−ρaF(n)fρ(2πnx) is uni-
formly (C, ℓ)-summable for ℓ >max{12 − ρ,0} on any finite closed interval in (0,∞) only
under the condition ρ > −1 and the sum is Aρ(x)−Qρ(x). In particular, we can fix ℓ = 1
and ρ = 0. We shall say C-summable for (C,1)-summable.

The only pole of the integrand of Q0(x) is 0, it is encircled by C hence

Q0(x)≪F 1 (x > 1).

To estimate f0(x), we use again the result by Lau & Tsang [LT02, Lemma 2.2] already
used to establish Voronoi formula. We get

(18) f0(y) =
(−1)k√
2π

y3/8 cos
(

4y1/4 +
π

4

)

+ (−1)ke1y1/8 cos
(

4y1/4 +
3π
4

)

+O

(

1
y1/8

)

,

where e1 is a absolute constant.
Let

Φ(v) := (2π)3/4
A0(2πv4)

v3/2
,

gn(v) :=
aF(n)
n5/8

cos
(

4
√
2πn1/4v +

π

4

)

,

g∗n(v) :=
e1
v

aF(n)
n7/8

sin
(

4
√
2πn1/4v +

π

4

)

.

Then the series of general term gn(v) − g∗n(v) is uniformly C-summable on any finite
closed interval in (0,∞) and the sum is Φ(v) + O(v−3/2) (here the term O(v−3/2) comes
from Q0(2πv4) and the O-term of (18)). In view of (4), a simple partial integration
shows that the series of general term g∗n(v) converges to the sum

∑

n g
∗
n(v) uniformly on

any finite closed interval in (0,∞). Thus the series of general term gn(v) is uniformly C-
summable on any finite closed interval in (0,∞) and the sum isΦ(v)+

∑

n g
∗
n(v)+O(v−3/2).

Let t be any large natural number, κ > 1 a large parameter that will be fixed later.
Write

Kτ(u) = (1− |u|)(1 + τ cos(4
√
2πκu))

with τ = ±1. We consider the integral

Jτ =
∫ 1

−1
Φ(t + κu)Kτ(u)du.

We have
∫ 1

−1
gn(t + κu)Kτ(u)du = rβ

aF(n)
n5/8

,

∫ 1

−1
g∗n(t + κu)Kτ(u)du = sβe1

aF(n)
n7/8

,
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where

rβ :=
∫ 1

−1
Kτ(u)cos

(

4
√
2πβ(t + κu) +

π

4

)

du,

sβ :=
∫ 1

−1

Kτ(u)
t + κu

sin
(

4
√
2πβ(t + κu) +

π

4

)

du.

As in [LW09, (3.13)], we have

rβ = δβ=1
τ

2
+O

(

1
κ2β2

+ δβ,1
1

κ2(β − 1)2

)

and

sβ ≪ (tβκ)−1.

It follows that
∫ 1

−1
g1(t + κu)Kτ(u)du =

τ

2
+O

( 1
κ2

)

,

∫ 1

−1
gn(t + κu)Kτ(u)du≪

d4(n)
κ2n9/8

(n > 2),

∫ 1

−1
g∗n(t + κu)Kτ(u)du≪

d4(n)
κtn9/8

,

where all the implied constants are absolute. These estimates show that
∑

n>1

∫ 1

−1
gn(t + κu)Kτ(u)du =

τ

2
+O

( 1
κ2

)

,

∑

n>1

∫ 1

−1
g∗n(t + κu)Kτ(u)du≪

1
κt

.

In view of the remark about C-summability, we obtain

Jτ =
τ

2
+O

( 1
κt

+
1
t3/2

)

.

Wefix κ large enough. When X > κ4, we take t =
⌊

X1/4
⌋

. So t > 2κ and the O-term in Jτ
is≪ κ−2, so the main term dominates if κ has been chosen sufficiently large. Therefore

J−1 < −
1
4

and J1 >
1
4
.

Since SF(x) = A0(2πx), we rewrite this as
∫ 1

−1

SF(t + κu)
(t + κu)3/2

K−1(u)du < − 1
4(2π)3/4

and
∫ 1

−1

SF(t + κu)
(t + κu)3/2

K1(u)du >
1

4(2π)3/4
.

The kernel function Kτ(u) is nonnegative and satisfies

1− (3πκ)−2 6
∫ 1

−1
Kτ(u)du 6 2 (τ = ±1).
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As a consequence, we have

SF((t + κη+)4)

(t + κη+)3/2
>

1
2(2π)3/4

and
SF((t + κη−)4)

(t + κη−)3/2
6 − 1

4(1− (3πκ)−2) (2π)3/4

for some η± ∈ [−1,1]. These two points deviate from X by a distance≪ X3/4, since the
difference between (t ± κ)4 is≪ κt3 ≍ X3/4.

This implies the result of Lemma 2. �

Now we are ready to prove the Theorem.
By Lemma 2, for any x > X0(F) we can pick three points x < x1 < x2 < x3 < x +3Cx3/4

such that SF(xi) < −cx3/8 (i = 1,3) and SF(x2) > cx3/8 for some absolute constant c > 0.
(Note that y +Cy3/4 6 x +3Cx3/4 for y = x +Cx3/4.) Hence we deduce that

∑

x1<n<x2
aF(n)>0

aF(n) > SF(x2)− SF(x1) > 2cx3/8

and
∑

x2<n<x3
aF(n)<0

(−aF(n)) > − (SF(x3)− SF(x2)) > 2cx3/8.

Thus, the Theorem follows as each term in the two sums are positive and≪ε n
ε.
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