
HAL Id: hal-00800980
https://hal.science/hal-00800980v1

Submitted on 14 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling Dependent Periodic Tasks Without
Synchronization Mechanisms

Julien Forget, Frédéric Boniol, Emmanuel Grolleau, David Lesens, Claire
Pagetti

To cite this version:
Julien Forget, Frédéric Boniol, Emmanuel Grolleau, David Lesens, Claire Pagetti. Scheduling De-
pendent Periodic Tasks Without Synchronization Mechanisms. 16th IEEE Real-Time and Embedded
Technology and Applications Symposium, Apr 2010, Stockholm, Sweden. pp.301–310. �hal-00800980�

https://hal.science/hal-00800980v1
https://hal.archives-ouvertes.fr

Scheduling Dependent Periodic Tasks Without Synchronization Mechanisms

Julien Forget∗, Frédéric Boniol∗, Emmanuel Grolleau ‡, David Lesens† and Claire Pagetti∗§

∗ONERA, Toulouse, France, Email: firstname.lastname@onera.fr
†EADS Astrium Space Transportation, Les Mureaux, France

‡LISI/ENSMA, Université de Poitiers, France, Email: grolleau@ensma.fr
§ENSEEIHT, Toulouse, France

Abstract—This article studies the scheduling of critical
embedded systems, which consist of a set of communicating
periodic tasks with constrained deadlines. Currently, tasks
are usually sequenced manually, partly because available
scheduling policies do not ensure the determinism of task
communications. Ensuring this determinism requires schedul-
ing policies supporting task precedence constraints (which we
call dependent tasks), which are used to force the order in
which communicating tasks execute. We propose fixed priority
scheduling policies for different classes of dependent tasks:
with simultaneous or arbitrary release times, with simple
precedences (between tasks of the same period) or extended
precedences (between tasks of different periods). We only
consider policies that do not require synchronization mech-
anisms (like semaphores). This completely prevents deadlocks
or scheduling anomalies without requiring further proofs.

I. INTRODUCTION

This work was originally motivated by the programming

of highly critical embedded control systems, which consist of

control loops including sensors, control algorithms and ac-

tuators that regulate the state of a system in its environment.

The implementation of this kind of systems usually involves

several persons and teams working in parallel to develop the

different parts of the system. An integrator then assembles

these elements, let us say operations or tasks, to provide

the complete implementation of the system. This assembly

process currently often amounts to sequencing manually

the set of tasks offline to ensure that the execution of the

implementation is predictable and deterministic. Reliable

embedded real-time operating systems have emerged such

as OSEK [1] for automotive, RTEMS [2] for aerospace

or systems respecting the ARINC 653 standard [3] for

aeronautics ([4] for instance). They enable to replace the

manual task sequencing by a multi-task implementation,

where tasks are scheduled concurrently online (at system

execution) by the operating system. However, they do not di-

rectly provide scheduling policies for dependent tasks (tasks

related by data-dependencies), meaning that the determinism

of task communications is usually ensured manually by the

programmers. For instance, the dependent tasks can first be

ordered manually and the operating system then schedules

this partially “pre-scheduled” task set. This is unfortunately

tedious and time consuming. The purpose of this paper is to

investigate scheduling policies for critical embedded control

systems, which directly support dependent tasks.

A. General Characteristics

Spacecraft and aircraft flight control systems are good

examples of embedded control systems. Their objective is

to supervise the position, speed and attitude of the vehicle

thanks to physical devices, such as control surfaces for an

aircraft or thrusters for a spacecraft. Such a system must

respect a series of hard real-time constraints. First, it is

often multi-periodic since the devices have different physical

characteristics and must therefore be controlled at different

rates. Second, the system must respect deadline constraints,

which may correspond for instance to a maximum end-to-

end latency requirement between observations (inputs) and

the corresponding reactions (outputs).

A correct implementation must respect all the real-time

constraints and must also be functionally deterministic,

meaning that the outputs of the system are always the

same for a given sequence of inputs. Scheduling theory

already provides scheduling policies to respect the temporal

requirements. Ensuring the functional determinism requires

to control the order in which communicating tasks execute.

Indeed, when data produced by an operation is consumed by

other operations, the relative order of the producer and of the

consumers has a direct impact on the values produced by the

operations. From the scheduling point of view, controlling

this order amounts to adding precedence constraints between

operations, which ensure that the producer of the data

will be executed before the consumer of the data. Fully

ensuring functional determinism also requires a deterministic

communication protocol, but such a protocol is out of the

scope of this paper (see for instance [5], [6], [7]).

B. Case Study: The Flight Application Software

To motivate our work, we consider an adapted version

of the Flight Application Software (FAS) of the Automated

Transfer Vehicle (ATV) designed by EADS Astrium Space

Transportation for resupplying the International Space Sta-

tion (ISS).

1) General Presentation: The FAS handles all the soft-

ware functionalities of the system as long as no fault is

detected. Fig. 1 provides a simplified informal description of

its software architecture. Each operation is represented by a

box and arrows between boxes represent data-dependencies.

Arrows without sources represent system inputs and arrows

without destinations represent system outputs.

Figure 1. The Flight Application Software

The FAS first acquires data: the orientation and speed

from gyroscopic sensors (Gyro Acq), the position from

the GPS (GPS Acq) and from the star tracker (Str Acq)

and telecommands from the ground station (TM/TC). The

Guidance Navigation and Control function (divided into an

upstream part, GNC US, and a downstream part, GNC DS)

then computes the commands to apply while the Failure

Detection Isolation and Recovery function (FDIR) verifies

the state of the FAS and checks for possible failures. Finally,

commands are computed and sent to the control devices:

thruster orders for the Propulsion Drive Electronics (PDE),

power distribution orders for the Power System (PWS), solar

panel positioning orders for the Solar Generation System

(SGS) and telemetry towards the ground station (TM/TC).

Each operation has its own rate, ranging from 0.1Hz to

10Hz. An intermediate deadline constraint is imposed on

data produced by the GNC US (300ms while the period is

1s).

2) Deterministic Communications: The system contains

two different kinds of communications, which correspond to

two different kinds of precedences. When two tasks of the

same period are related by a data-dependency, we can simply

impose that the producer always executes before the con-

sumer. This corresponds to usual simple precedences. When

the producer and the consumer have different periods, there

are several possible communication patterns. For instance,

if the producer is 10 times faster than the consumer, the

specification can impose that the consumer takes data pro-

duced by the second instance out of 10 successive instances

of the producer. Such communication patterns correspond

to more complex extended precedences, which only relate

a subset of the instances of the communicating tasks. In

this paper, we will give two specifications of the FAS with

simple and extended precedences. We study the scheduling

problem of periodic tasks with these two kinds of precedence

constraints.

C. General Reminder and Notations

A system S consists of a set of tasks, where each task

τi has a set of real-time attributes (Ti, Ci, Oi, Di). τi is

instantiated periodically with period Ti, τi[p] denotes the pth

iteration of task τi. Ci is the worst case execution time (wcet)

of the task. Oi is the release time of the first instance of the

task (its offset with respect to the start time of the system).

Let oi[p] denote the release time of the instance p of τi, we

have oi[p] = Oi + pTi. Di is the relative deadline of the

task. Let di[p] denote the absolute deadline of the instance

p of τi, we have di[p] = oi[p] + Di. These definitions are

illustrated in Fig. 2.

Oi, oi[0]

Ci

di[0]Di

oi[1]

Ci

di[1]Di

oi[2]

0

Ti Ti

Figure 2. Real-time characteristics of task τi

Tasks contain no internal synchronization points, meaning

that a task cannot execute a blocking instruction (at least not

for longer than its wcet). A task can however be preempted

by the scheduler during its execution in order to execute

another task (it is temporally suspended and resumed later).

Periodic task scheduling can be solved efficiently by using

a priority-based scheduling approach. Task priorities can

either be static - the priority of a task remains the same

for the complete program execution - or dynamic - the

priority of a task can change during execution. Let ki[p]
be the starting time of τi[p] and fi[p] be the completion

time of τi[p] in the schedule produced by a given priority

assignment. We say that a task set is feasible under a

given priority assignment if the schedule produced by this

assignment respects all the constraints of the task set. More

formally:

Definition 1: Let S be a set of independent tasks. S is

feasible under a given priority assignment if and only if,

∀τi,∀p:

fi[p] ≤ di[p] ∧ ki[p] ≥ oi[p]

When we simply say that a task set is feasible (i.e. not

with respect to a given priority assignment), this means that

there exists a priority assignment under which the task set

is feasible.

For independent periodic tasks, that is to say without

precedence constraints, several optimal1 policies are avail-

able for different families of systems. Among these policies,

the fundamental work of [8] proposed the rate-monotonic

1If there exists a priority assignment that schedules the task set correctly,
then the task set is feasible under the optimal assignment.

(RM) static priority policy, where tasks with a shorter period

are assigned a higher priority and the earliest-deadline-first

(EDF) dynamic priority policy, where task instances with a

shorter absolute deadline are assigned a higher priority.

D. Related Works

We are interested in dependent periodic tasks. We need

optimal priority-based preemptive scheduling policies, and

associated schedulability tests, for tasks with simple or

extended precedences. There are mainly two different ap-

proaches available. The first approach relies on the use

of (binary) semaphore synchronizations: a semaphore is

allocated for each precedence and the destination task of the

precedence must wait for the source task of the precedence

to release the semaphore before it can start its execution. In

the second approach, the respect of precedence constraints

is simply ensured by the way priorities and release times are

assigned to tasks.

1) Dependent Periodic Tasks, simple precedences: Using

the first approach, [9] describes a schedulability test for

periodic tasks with predefined static priorities, simultaneous

release times (the same release time for every task), deadline

constraints and precedence constraints, but only considers

a special case of simple precedences: each periodic task

consists of a set of subtasks totally ordered by precedences

(i.e. each task consists of a sequence of subtasks). This

restriction is clearly not adapted to our context because

with this model the precedence relation between tasks can

only form a set of disjoint precedence chains, while we

want to enable the precedence relation to form an arbitrary

complex Directed Acyclic Graph. [10] gives a sufficient

schedulability test for simple precedences in general, tasks

can then be scheduled using the deadline-monotonic (DM)

policy and the respect of precedence constraints is ensured

by semaphores.

Using the second approach, [11] encodes precedences in

task real-time attributes by adjusting the release times and

the deadlines of the tasks and the adjusted task set is then

scheduled with the EDF policy. Tasks can have arbitrary

release times. This technique was originally only proposed

for aperiodic tasks with deadline and precedence constraints.

It is optimal in the sense that a valid schedule can be found

for the original task set if and only if a valid schedule can

be found for the adjusted task set. As a result, schedulability

can be tested by applying an EDF schedulability test on the

encoded task set. The encoding technique directly applies

to the case of periodic tasks with constrained deadlines

and simple precedences and remains optimal. However,

[11] neither considers static priority scheduling policies

nor extended precedences. We propose extensions for both

points.

2) Dependent Periodic Tasks, extended precedences: [12]

extended the technique of [11] to particular periodic ex-

tended precedences. When the consumer has a period greater

than or equal to the one of the producer, data consumed

is the last value produced in the period of the consumer.

This extension consists in unfolding the extended precedence

graph on the hyperperiod of the tasks (the hyperperiod HP
is equal to the least common multiple of the periods of the

tasks), replacing each task τi by HP/Ti duplicates of period

HP , and using [11] to encode the simple precedences of the

unfolded graph. The encoded task set can then be validated

with respect to EDF. If semaphore synchronizations are

allowed, the graph unfolding is only conceptual: real-time

attributes are modified only for the validation of the system,

not for its execution and at run-time precedences are ensured

by semaphore synchronizations. However, if semaphore

synchronizations are not allowed, the task graph must be

unfolded for the execution. Indeed, duplicates of the same

task cannot be merged into a single task, as they may have

different real-time attributes after precedence encoding. This

can lead to important computation overhead as the scheduler

needs to make its decisions according to a large task set.

This also implies high memory consumption as many tasks

are allocated. Our work avoids such costly duplications and

supports more general extended precedences.

E. Scheduling with/without Synchronization Mechanisms

On the one hand, allowing semaphore synchronizations

can lead to more powerful scheduling policies. Let us

for instance consider a system with simultaneous release

times and deadlines equal to periods, made up of three

tasks, τ1(T = 8, C = 3), τ2(T = 12, C = 5) and

τ3(T = 12, C = 2), and with a precedence from τ2 to

τ3. If we do not allow semaphore synchronizations, this

system is not schedulable with a static priority policy (it

is easy to check that each possible priority assignment

causes at least one task to miss its deadline). However, as

illustrated in Fig. 3, this problem is schedulable if we allow

semaphore synchronizations: we assign task priorities such

that prio(τ3) > prio(τ1) > prio(τ2) (ticks on the time axis

represent task periods). With dynamic priorities, allowing

semaphore synchronizations does not seem to produce more

powerful scheduling policies, though this remains to be

proved.

τ1 τ1 τ1

τ2 τ2 τ2

τ3 τ3

Figure 3. Static priority scheduling with semaphore synchronizations

On the other hand, policies without semaphore synchro-

nizations have significant advantages, which make them

better suited for highly critical systems. First, semaphore

synchronizations can lead to scheduling anomalies, where a

system is proved schedulable using schedulability tests, but

during the execution the system becomes unschedulable due

to a task that does not take its complete wcet to execute

[13], [10]. Second, known schedulability tests for schedul-

ing priorities with synchronization mechanisms ([9], [10])

only provide sufficient schedulability conditions, but not

necessary schedulability conditions. The complexity of the

schedulability problem actually remains an opened question.

Finally, highly critical systems must go through certification

processes, such as the DO-178B [14] for airborne systems or

the IEC 61508 for more general embedded systems. These

certification processes apply to any part of the embedded

system, including the Operating System. Therefore, relying

on policies without semaphore synchronizations leads to a

more compact Operating System, which is easier to certify.

For these reasons, this paper focuses on policies without

semaphore synchronizations.

F. Contribution

We propose fixed priority scheduling policies, without

semaphore synchronizations, and associated schedulability

tests for a set of periodic tasks with deadline and precedence

constraints. We successively consider periodic task sets

with simple precedences and simultaneous release times

in Sec. II, periodic task sets with simple precedences and

arbitrary release times in Sec. III and finally periodic task

sets with extended precedences and arbitrary release times

in Sec. IV. Some of the results presented here can quite

easily be derived from existing results, but to the best of our

knowledge these new results have neither been established

formally nor proved optimal before.

II. SIMPLE PRECEDENCES AND SIMULTANEOUS

RELEASE DATES

We first consider the problem of scheduling a set of

periodic tasks with simultaneous release times, constrained

deadlines and simple precedences. The policy proposed

below is derived from DM [15], where tasks are assigned

priorities according to their deadlines: the task with the

shortest deadline being assigned the highest priority. DM is

optimal in the class of static priority policies for scheduling

the considered family without precedences.

A set of simple precedences is formalized by a relation

→ which is a subset of S × S: τi → τj states that τi must

execute before τj . We assume that the graph of precedence

constraints is acyclic, otherwise the system is not causal (we

cannot find an execution order that respects all the prece-

dence constraints). Let preds(τi) = {τj |(τj , τi) ∈→} denote

the predecessors of τi and succs(τi) = {τj |(τi, τj) ∈→}
denote its successors.

Definition 2: Let S be a set of dependent tasks where

→⊆ S × S is the precedence relation on S. S is feasible

under a given priority assignment if and only if, ∀τi,∀p:

• fi[p] ≤ di[p] ∧ ki[p] ≥ oi[p];
• ∀τj ∈ preds(τi), fj [p] ≤ ki[p]

A. Scheduling Policy

The idea behind the precedence encoding technique of

[11] applies to the present scheduling problem: “the relative

urgency of a task depends both on its deadline and on the

deadlines of its successors”. Thus, the deadline of a task can

be adjusted as follows to encode precedence constraints:

D∗
i = min(Di, min

τj∈succs(τi)
(D∗

j − Cj)) (1)

The scheduling policy then consists in adjusting task dead-

lines and in applying the DM policy on the adjusted task

set. As explained in [11], adjusting the deadlines of a task

set can be performed using a topological sort: we start

by adjusting the deadlines of tasks without successors and

then progressively we adjust the deadlines of the tasks the

successors of which have already been adjusted.

B. Optimality and Complexity

We show that the theorem proved in [11], which assumes

the use of a dynamic priority scheduling policy, also holds

for static priority (for tasks with simultaneous release times

in our case).

Theorem 1: Let S = {τi(Ti, Ci, 0, Di)} be a set of de-

pendent tasks and→⊆ S×S. Let S∗ = {τ∗
i (Ti, Ci, 0, D∗

i)}
be a set of independent tasks such that D∗

i is given by

the formula (1). Considering only fixed priority scheduling

policies, we have:

S is feasible if and only if S∗ is feasible.

Proof: Easily adapted from [11].

(If part) Suppose S∗ is feasible. Then for all τi[p],
fi[p] ≤ d∗i [p]. As d∗i [p] ≤ di[p], then fi[p] ≤ di[p], so a

valid schedule for S∗ respects the deadline constraints of

S. Now for precedence constraints, for all task τi, τj , if

τi → τj then for all p, d∗i [p] < d∗j [p]. As DM is optimal for

scheduling independent tasks, it can be used to schedule S∗.

Then, τi will have a higher priority than τj , as it has a shorter

deadline. As oi[p] = Oj [p] (due to simultaneous release

times), we have kj [p] > fi[p] and thus the precedence

constraint is met.

(Only if part) Suppose S is feasible. Then for all τi[p],
fi[p] < d∗i [p], otherwise the successors of τi cannot respect

their deadlines. Thus S∗ is feasible.

As DM is optimal for scheduling S∗, the theorem implies

that the proposed scheduling policy is optimal for simple

precedences with simultaneous release times.

This policy has a complexity of O(n2), where n denotes

the number of tasks to schedule. Indeed, the encoding

requires to perform a topological sort, which can be achieved

with a complexity of O(n2). We can then use standard array

sorting algorithms to sort tasks by increasing deadlines, with

a complexity of O(nlog2(n)).

C. Feasibility Analysis

We can simply reuse a feasibility analysis defined for DM,

for instance [15] or [16]. We compute the schedule obtained

for our priority assignment until the longest first deadline

of the tasks and verify that deadlines are met (precedence

constraints are met by construction).

D. Example

We provide a specification of the FAS with simple prece-

dences, denoted V1. For now, we accept a certain degree

of non determinism in the communications between tasks

with different periods, we only impose an order between

operations of the same period. It is up to the designer to

choose this order. The system contains communication loops

(cycles), for instance between GNC US and GNC DS, thus

not all communications can imply precedence constraints.

We can for instance impose that GNC US is always ex-

ecuted before GNC DS, thus there is a precedence from

GNC US to GNC DS, but not from GNC DS to GNC US.

In this case, the communication from GNC DS to GNC US

is called a delayed communication and each instance of

GNC US consumes the value produced by the previous

instance of GNC US. The operations order is specified

by the following precedences (implicitly, communications

without precedences are all delayed communications):

10Hz Gyro Acq → FDIR, FDIR →PDE

1Hz GNC US → GNC DS, GPS Acq → GNC US,
GNC DS → SGS, GNC DS → PWS

If we implement the FAS according to the specification

V1 with this first scheduling policy, we obtain the following

system which is feasible. This is verified easily using the

CHEDDAR tool [17] for instance.

Name T in ms C D D⋆ Priority

PDE 100 5 100 100 3

SGS 1000 15 1000 1000 7

PWS 1000 20 1000 1000 8

FDIR 100 10 100 95 2

GNC US 1000 20 300 300 5

GNC DS 1000 20 1000 980 6

TM/TC 10000 200 10000 10000 10

Gyro Acq 100 15 100 85 1

GPS Acq 1000 10 1000 280 4

Str Acq 10000 100 10000 10000 9

As FDIR precedes PDE, its adjusted deadline is:

D⋆
FDIR = DPDE − CPDE = 100 − 5 = 95. Then, as

Gyro Acq precedes FDIR, we have: D⋆
GyroAcq = D⋆

FDIR−
CFDIR = 95 − 10 = 85. Notice that we must compute

D⋆
FDIR before computing D⋆

GyroAcq: this is ensured by the

fact that we adjust the deadlines of the task set following a

topological sort starting from the tasks without successors

(for instance starting from PDE here). We proceed similarly

for the other precedences of the task set. Once this encoding

is complete, priorities are simply assigned according to the

DM policy.

III. SIMPLE PRECEDENCES AND ARBITRARY RELEASE

TIMES

We now consider the problem of scheduling a set of

periodic tasks with arbitrary release times, constrained dead-

lines and simple precedences. The policy proposed below is

derived from the policy described by Audsley in [18], which

is optimal for this class of systems (in the class of fixed

priority policies) when there are no precedences.

A. Scheduling Policy

1) Adjusting Release Times: Let S be a task set made up

of two tasks, τi and τj , such that τi → τj and Oi > Oj .

Obviously, if we do not use semaphore synchronizations and

if we do not adjust task real-time attributes, then we cannot

respect the precedence constraint as τj will start before

τi, whatever priorities are assigned to the two tasks. This

suggests that we should adjust task release times as follows:

O∗
i = max(Oi, max

τj∈preds(τi)
(O∗

j)) (2)

Since we manipulate deadlines relative to release times, we

have to modify deadlines as follows:

D∗
i = Di + Oi −O∗

i (3)

Notice that if for any τi we have D∗
i < O∗

i , then S is

trivially not feasible (but this condition is not a sufficient

test).

Then, we have:

Lemma 1: Let S = {τi(Ti, Ci, Oi, Di)} and →⊆ S ×S.

Let S∗ = {τ ′
i(Ti, Ci, O

∗
i , D∗

i)} be a set of tasks such that

O∗
i and D∗

i are given by the formulas (2) and (3), and let

→′⊆ S∗ × S∗ be the transposition of → to S∗:

S is feasible if and only if S∗ is feasible.

Proof: Again, easily deduced from [11].

(If part) Suppose S∗ is feasible. Then for all instances

τi[p], ki[p] ≥ O∗
i [p] = O∗

i + lTi. As O∗
i ≥ Oi, then ki[p] ≥

Oi +pTi. We have also fi[p] ≤ d∗i [p] = O∗
i [p]+D∗

i = O∗
i +

pTi+D∗
i = O∗

i +pTi+Di+Oi−O∗
i = Oi+Di+pTi = di[p].

Thus S is feasible.

(Only if part) Suppose S is feasible. Then for all τi,

ki[p] ≥ Oi[p]. For any predecessor τj , we have ki[p] ≥
Oj [p] = Oj+pTj . Thus, ki[p] ≥ max(Oi+pTi, Oj+pTj) =
max(Oi, Oj) + pTi. By applying this reasoning on all the

predecessors, we obtain that ki[p] ≥ O∗
i [p]. Moreover,

fi[p] ≤ di[p] = Oi + pTi + Di = D∗
i + O∗

i + pTi. Thus

S∗ is feasible.

As for deadlines adjustment, release times adjustment can

be performed using a topological sort, this time starting from

tasks without predecessors. Notice that we did not encode

the precedence relation, we just adjusted release times to

fix the problem emphasized previously. Unfortunately, the

policy proposed in [18] does not assign task priorities based

on their deadlines, so adjusting task deadlines to encode

precedences, as we did for DM, will not work with this

policy.

2) Relative Priorities of Tasks Related by Precedence

Constraints: Let Φ : S → N denote an injective priority

assignment mapping priorities to tasks. Φ(τi) denotes the

priority of τi in assignment Φ and 1 denotes the highest

priority in the task set. Let τi
∗
→ τj denote a transitive

precedence from τi to τj (i.e. the relation
∗
→ is the tran-

sitive closure of the relation →). We make the following

observation:

Lemma 2: For any task set S, for any tasks τi and τj in

S such that Oi = Oj , Ti = Tj and τi
∗
→ τj :

A priority assignment Φ respects the precedence τi
∗
→ τj

if and only if Φ(τi) < Φ(τj).
Proof: For the precedence to be respected, we must

prove that kj ≥ fi.

(If part) Suppose Φ(τi) < Φ(τj). As Oi = Oj , then

obviously kj ≥ fi.

(Only if part) Suppose Φ(τi) > Φ(τj) (Φ is injective so

we do not consider the case Φ(τi) = Φ(τj)). As Oi =
Oj , then kj ≤ fi and thus the assignment does not respect

the precedence constraint. So the assignment respects the

precedence constraint only if Φ(τi) < Φ(τj).
3) Ordered Task Priorities Assignment: The key principle

of the scheduling policy proposed in [18] is that task

priorities can be assigned to tasks in order, starting from

the lowest priority and up to the highest priority. This can

directly be transposed to our scheduling problem.

Definition 3: Let S be a task set and let τi ∈ S. We say

that τi is feasible under priority k if and only if there exists

a feasible priority assignment Φ for S such that Φ(τi) = k.

Let Φi denote a partial priority assignment, where only

priorities [i, n], have been mapped to tasks in S. We have:

Theorem 2: Let S be a task set. Let Φi be a partial

priority assignment for S, such that tasks assigned priorities

[i, n], are feasible under those priorities. If there exists a

feasible priority assignment for S, then there exists a feasible

priority assignment that assigns priorities [i, n], as Φi.

Proof: The proof provided in [18] does not depend

on the way the feasibility test is actually performed. Thus

modifying this test to support precedences does not change

the proof of the theorem and the theorem holds in our

context.

To summarize, we prove that any feasible priority assign-

ment Φ can be modified so that priorities [i, n] are assigned

as in Φi. This is proved by induction. We prove that we

can successively move, in assignment Φ, tasks Φ−1
i (n),

Φ−1
i (n− 1), . . . , Φ−1

i (i), to priorities n, n− 1, . . . , i, and

that at each step the assignment remains feasible.

4) The policy: We adapt the policy of [18] based on

the previous observations to support precedence constraints.

The policy is described in Alg. 1. The first difference with

the algorithm of [18] is that we start by adjusting release

times and deadlines according to formulas (2) and (3) (see

Lemma 1). Priorities are then assigned starting from the

lowest priority and up to the highest priority. At each step,

the algorithm tries to find a task that is feasible if we assign

it this priority. The second difference with the algorithm of

[18] is that we consider that the priority lvl can be assigned

to a task only if priorities lower than lvl have previously

been assigned to all its successors (see Lemma 2). If this

test succeeds, we then test whether the task will respect

its deadline when affected the priority lvl. If so, the task

is assigned priority lvl, otherwise we look for another task

that can be assigned this priority. If no task can be assigned

this priority, then the task set is not feasible.

Algorithm 1 Scheduling policy for a task set S with simple

precedences and arbitrary release times

1: S∗ ← adjust(S)
2: for lvl = |S| to 1 do

3: assigned← false
4: for τi ∈ S

∗ do

5: if ∀τj ∈ succs(τi), Φ(τj) > lvl then

6: if respects deadline(τi, lvl) then

7: Φ(τi)← lvl
8: S∗ ← S∗ − τi; assigned← true
9: break the current loop

10: end if

11: end if

12: end for

13: if assigned=false then the system is not feasible

14: end if

15: end for

B. Feasibility Analysis

This scheduling policy directly includes a feasibility anal-

ysis, performed by the successive steps of the main loop, as

the algorithm assigns a priority to a task only if this task is

feasible with this priority. Thus, if the algorithm succeeds,

it provides a priority assignment for the task set and it also

ensures that the task set is feasible. Otherwise, the task

set is not feasible. Testing whether a task is feasible with

a given priority is done in two steps: first, verifying that

precedence constraints are met and second, verifying that

real-time constraints (periodicity, deadline) are met.

According to Lemma 2, a precedence constraint is met

if and only if the preceding task has a higher priority than

the preceded task. Thus, if a task is assigned priority lvl in

assignment Φ, it will meet its precedence constraints if and

only if ∀τj ∈ succs(τi), Φ(τj) > lvl. This is checked in our

algorithm by the test: if ∀τj ∈ succs(τi), Φ(τj) > lvl.
Then, to check that the real-time constraints of a task are

met when it is assigned a given priority, we can simply reuse

the feasibility test proposed in [18].

C. Optimality and complexity

The optimality of the policy directly derives from the

optimality of the policy of [18] and from Lemma 1.

Our policy requires to compute the transitive closure

of the precedence relation, which can be achieved with a

complexity of O(n3) (where n denotes the number of tasks).

This does not increase the complexity of the policy of [18],

which is exponential.

D. Example

We now refine the specification V1 of the FAS by spec-

ifying task release times. The external inputs of the FAS

arrive on a MIL-1553 bus. This bus is time triggered and

data arrives at some predefined time steps. This means that

acquisition tasks Gyro Acq, GPS Acq and Str Acq do not

start simultaneously. If we implement the FAS with the spec-

ification V1 and taking release dates into account with this

second scheduling policy, we obtain the following system

which is feasible. This is again verified using CHEDDAR.

Name T C D D⋆ O O⋆ P

PDE 100 5 100 100 0 0 3

SGS 1000 20 1000 990 0 10 7

PWS 1000 20 1000 990 0 10 8

FDIR 100 10 100 100 0 0 2

GNC US 1000 20 300 290 0 10 5

GNC DS 1000 20 1000 990 0 10 6

TM/TC 10000 200 10000 10000 30 30 10

Gyro Acq 100 15 100 100 0 0 1

GPS Acq 1000 10 1000 1000 10 10 4

Str Acq 10000 100 10000 10000 20 20 9

As GPS Acq precedes GNC US, we must adjust the

real time attributes of GNC US as follows: O⋆
GNC US =

OGPSAcq = 10 and D⋆
GNC US = DGNC US +OGNC US−

O⋆
GNC US = 300 + 0 − 10 = 290. Then we have:

O⋆
GNC DS = O⋆

GNC US = 10 and D⋆
GNC DS =

DGNC DS+OGNC DS−O⋆
GNC DS = 1000+0−10 = 990.

We proceed similarly for the other precedences of the

task set and we adjust the release times of the task set

following a topological sort, starting from the tasks without

predecessors.

Once this adjustment is complete, we can assign task

priorities. There are 10 tasks in the task set, so we first try to

find a task which is feasible when assigned priority 10. This

priority can only be assigned to tasks without successors,

as a task can be assigned priority 10 only if its successors

have already been assigned a priority higher than 10. So

there are only five candidates: PDE, SGS, PWS, TM/TC

and Gyro Acq (the outgoing dependencies of TM/TC and

Gyro Acq are all delayed). We try to assign priority 10

to each one. According to the feasability test of [18], task

TM/TC is feasible when assigned this priority, thus it is

assigned priority 10. Then we try to assign priority 9. It

can only be assigned to tasks the successors of which have

already been assigned a priority, thus it can only be assigned

to either PDE, SGS, PWS or Gyro Acq. Task Gyro Acq

is feasible with this priority and is assigned priority 9.

Likewise, we assign priority 8 to PWS and priority 7 to

SGS. Then, for priority 6, the only candidate is GNC DS,

as it is the only remaining task the successors of which have

been assigned a priority. It is feasible with this priority and

is assigned priority 6. Then, GNC US becomes the only

candidate for priority 5. We proceed similarly until every

task of the task set has been assigned a priority. If at some

point no task among the ”unassigned” tasks can be assigned

the current priority, then the task set is not feasible (which

is not the case in this example).

IV. EXTENDED PRECEDENCES

We now consider the problem of scheduling a set of peri-

odic tasks with arbitrary release times, constrained deadlines

and periodic extended precedences.

A. Multi-rate Communications

We now consider communications between operations

with different periods. Describing such communications

precisely requires to detail which instances of the two tasks

communicate. For instance, let us consider the communi-

cation loop between FDIR and GNC US. Since FDIR is

10 times faster than GNC US, there are several possible

communication scenarios:

• Each instance of GNC US executes before 10 succes-

sive instances of FDIR and the 10 instances all consume

data produced by the same instance of GNC US.

Each instance of GNC US consumes data produced

by the last previous value produced by FDIR (delayed

communication);

• Each instance of GNC US consumes data produced

by the first out of 10 successive instances of FDIR

(i.e. executes after this first instance of FDIR). All

the 10 instances of FDIR consume the previous values

produced by GNC US (delayed communication);

• The first instance of GNC US consumes data produced

by the second instance of FDIR, the second instance

consumes data produced by the twelfth instance of

FDIR, . . .

There is actually an infinite number of possible determin-

istic communication schemes between these tasks. Since

the tasks are periodic, we only consider periodic extended

precedences, that is to say precedences between operations

of different rates that can be described as repetitive patterns.

This is defined more formally in the next section.

B. Definition

An extended precedence between two tasks τi and τj

corresponds to a set of precedences between the instances

of the tasks. Let τi[n] → τj [n
′] denote a precedence from

the instance n of τi to the instance n′ of τj .

Definition 4 (Extended Precedence): Let τi, τj be two

tasks, let Mi,j ⊆ N
2, we define the extended precedence

τi
Mi,j

→ τj as the following set of task instance precedences:

∀(n, n′) ∈Mi,j , τi[n]→ τi[n
′]

A simple precedence τi → τj is actually a particular case

of extended precedences where Mi,j = {(n, n)|n ∈ N} and

Ti = Tj . Indeed, we have: ∀n ∈ N, τi[n]→ τj [n].
This general definition is not very practical as task

precedences are represented as infinite sets of task instance

precedences. Therefore, we only consider task precedences

which can be represented as repetitive patterns of task

instance precedences, in other words we want the set Mi,j

to be finite (and to represent repetitive constraints). For any

n ∈ N, let In denote the set of integers of the interval [0, n[.
Let lcm(n, n′) denote the least common multiple of n and

n′.

Definition 5 (Periodic Extended Precedence): Let τi and

τj be two tasks, p = lcm(Ti, Tj) and Mi,j ⊆ Ip/Ti
×Ip/Tj

(notice that Mi,j is a finite set). The periodic extended

precedence τi
Mi,j

→ τj is defined as the extended precedence

τi

M ′

i,j

→ τj such that:

M ′
i,j = {(n, n′)|

∃k ∈ N, (m, m′) ∈Mi,j ,
(n, n′) = (m, m′) + (k p

Ti
, k p

Tj
) }

A simple precedence τi → τj is actually a particular case

of periodic extended precedences where Mi,j = {(0, 0)}.
This definition is illustrated in Fig. 4, where we give

a possible schedule respecting different periodic extended

precedences. For instance, in Fig.4(a) we have τi[0]→ τj [0],
τi[1] → τj [3], τi[2] → τj [6], ... In Fig.4(d), we have

τi[2] → τj [0], τi[5] → τj [1], τi[8] → τj [2], ... In Fig.4(e),

we have τi[0] → τj [0], τi[2] → τj [1], τi[3] → τj [2],
τi[5]→ τj [3], τi[7]→ τj [4], τi[8]→ τj [5], ...

Definition 6 (Periodic Extended Precedence Relation):

For a set of tasks S = {τi(Ti, Ci, Oi, Di)}, we

define the periodic extended precedence relation as

a finite set M = {Mi1,j1 , . . . ,Mil,jl
} of subsets

Mik,jk
⊆ Ilcm(Tik

,Tjk
)/Tik

× Ilcm(Tik
,Tjk

)/Tjk
, where

each Mik,jk
defines the periodic extended precedence

τik

Mik,jk→ τjk
(∀k = 1, . . . , l).

Though periodic extended precedences are only a special

case of extended precedences, they seem to cover a large

class of applications. Furthermore, this definition can easily

be extended to patterns longer than the tasks hyperperiod

and the results of the following sections still hold.

We are now able to give a specification V2 of the FAS

with extended precedences. For the tasks with same period,

we keep the specification V1. Implicitly, the communications

for which we do not specify precedences are delayed com-

munications. We have the following extended precedences:

Tasks Mi,j

FDIR → TM/TC {(2, 0)}
FDIR → GNC US {(0, 0)}
GNC DS → PDE {(0, 9)}

C. On Semaphore Synchronizations

Before presenting our scheduling policy, we emphasize

that handling extended precedences through explicit syn-

τi τi

τj τj τj τj τj τj

(a) Ti = 3Tj , Mi,j = {(0, 0)}

τi τi

τj τj τj τj τj τj

(b) Ti = 3Tj , Mi,j = {(0, 2)}

τi τi τi τi τi τi

τj τj

(c) Ti = Tj/3, Mi,j = {(0, 0)}

τi τi τi τi τi τi

τj τj

(d) Ti = Tj/3, Mi,j = {(2, 0)}

τi τi τi τi τi

τj τj τj

(e) Ti = Tj ∗ 3
5

, M =i,j

{(0, 0), (2, 1), (3, 2)}

Figure 4. Periodic extended precedence τi
Mi,j
→ τj

chronization mechanisms requires more complex primitives

than simple binary semaphores. As an example, we consider

the system of Fig. 4(a). Synchronizations can be imple-

mented in two different ways:

• Using binary semaphores: each instance of τi signals

the semaphore release, but only the first out of three

successive instances of τj waits for the semaphore

release.

• Using n−ary semaphores: each instance of τi signals

3 semaphore releases and each instance of τj waits for

a semaphore release.

While such modifications allow to execute tasks correctly

(i.e. tasks respect precedence constraints), they do not solve

the schedulability test problem.

D. Scheduling Policy

In this section we extend the results of Sect. III to

periodic extended precedences. As for simple precedences,

we need to adjust the release times of tasks related by

precedence constraints but this time we need to consider

in detail which instances of the tasks are related: for each

precedence τi[n]→ τj [n
′] we must adjust release times such

that oj [n
′] ≥ oi[n]. However, as we consider static priority

policies, we cannot adjust the release times of different

instances of the same task separately, we can only adjust the

initial release times of the tasks. Therefore, we must adjust

the initial release time of the tasks in a way that respects

the previous property for all task instances.

Property 1: Let τi, τj be two tasks such that τi
Mi,j

→ τj .

Let O∗
j = max(Oj ,max(n,n′)∈Mi,j

(Oj+(O∗
i +nTi)−(Oj+

n′Tj))). Let o∗j [n] = O∗
j + nTj , that is to say, o∗j [n] is the

adjusted release time of τj [n]. Then:

∀(n, n′) ∈M ′
i,j , o∗i [n] ≤ o∗j [n

′]

Proof: First we have by definition M ′
i,j =

{(n, n′)|∃k ∈ N, (m, m′) ∈ Mi,j , (n, n′) = (m, m′) +
(k p

Ti
, k p

Tj
)}.

If O∗
j = Oj , it means that for all (m, m′) ∈Mi,j , o∗i [m] ≤

o∗j [m
′]. Thus, for all (n, n′) ∈M ′

i,j , with n = m + k p
Ti

and

n′ = m′+k p
Tj

, we have: o∗j [n
′] = Oj +n′Tj = Oj +m′Tj +

kp ≥ O∗
i + nTi + kp = o∗i [n].

Otherwise, O∗
j = max(n,n′)∈Mi,j

(Oj+(O∗
i +nTi)−(Oj+

n′Tj)). We have ∀n′,

o∗j [n
′] = O∗

j + n′Tj

= Oj + max(l,l′)∈Mi,j

((O∗
i + l′Ti)− (Oj + lTj)) + n′Tj

Then, let n = m+k p
Ti

and n′ = m′+k p
Tj

with (m, m′) ∈
Mi,j , we have:

o∗j [n
′] ≥ Oj + (O∗

i + mTj)− (Oj + m′Tj) + n′Tj

≥ O∗
i + mTi + k

p

Tj
Tj

≥ O∗
i + mTi + kp = O∗

i + (m′ + k
p

Ti
)Ti

≥ o∗i [n]

This property enables us to compute the adjusted release
time of a task for a single precedence. Taking all the
precedences into account, we have:

O
∗
i = Oi +max(0, max

Mi,j

(max
(n,n′)∈Mi,j

((O∗
j +nTj)−(Oi +n

′
Ti))))

Since we manipulate deadlines relative to the release times,

we have to modify deadlines as follows:

D∗
i = Di + Oi −O∗

i (4)

Then, as a straightforward generalization of Lemma 1, we

have:

Lemma 3: Let S = {τi(Ti, Ci, Oi, Di)} and M =
{Mi1,j1 , . . . ,Mil,jl

} be a set of periodic extended prece-

dences. Let S∗ = {τ ′
i(Ti, Ci, O

∗
i , D∗

i)} be a set of tasks

such that O∗
i and D∗

i are modified as explained above and

let →= {(τik
, τjk

)|k = 1, . . . , l}, we have:

S is feasible if and only if S∗ is feasible.

As a result, the scheduling policy and feasibility test

proposed for simple precedences in Sect. III-A4 can also be

used for periodic extended precedences, using the formula

for release times adjustment provided above. The optimality

of the method also holds for periodic extended precedences.

E. Example

Using this scheduling policy, we obtain the following

system which is feasible. This is again verified using CHED-

DAR.

Name T C D D⋆ O O⋆ P

PDE 100 5 100 100 0 0 6

SGS 1000 20 1000 990 0 10 7

PWS 1000 20 1000 990 0 10 8

FDIR 100 10 100 100 0 0 2

GNC US 1000 20 300 290 0 10 4

GNC DS 1000 20 1000 990 0 10 5

TM/TC 10000 200 10000 9860 30 170 10

Gyro Acq 100 15 100 100 0 0 1

GPS Acq 1000 10 1000 1000 10 10 3

Str Acq 10000 100 10000 10000 20 20 9

We have FDIR
{(2,0)}
→ TM/TC so we must adjust the

release time of TM/TC as follows:

O
⋆
TM/TC = max(OTM/TC , max

(n,n′)∈{(2,0)}
(OTM/TC+

(O⋆
FDIR + nTFDIR) − (OTM/TC + n

′
TTM/TC)))

= max(30, (0 + (0 + 2 ∗ 100) − (30 + 0 ∗ 10000)))

= 170

And then: D⋆
TM/TC = DTM/TC +OTM/TC−O∗

TM/TC =
10000 + 30− 170 = 9860.

The adjustment due to the other extended precedences

has no impact on the real-time attributes of the task set. The

priority assignment then works exactly as described in the

example of Sect. III-D.

V. CONCLUSION

We studied static priority based scheduling policies with-

out synchronization mechanisms for dependent periodic

tasks. We chose policies without synchronization mecha-

nisms because they are well suited for critical systems.

We gave scheduling policies and sufficient and necessary

schedulability tests for different classes of systems. In the

future, we will study dynamic priority policies for extended

precedences and the optimality of the encoding approach

compared to the use of synchronization mechanisms for

dynamic priorities. We will also propose a deterministic

communication protocol which will extend existing ones.

REFERENCES

[1] OSEK, OSEX/VDX Operating System Specification 2.2.1,
OSEK Group, 2003, www.osek-vdx.org.

[2] RTEMS, RTEMS C user’s guide, Edition 4.9.2, for RTEMS
4.9.2, OAR Corporation, 2009.

[3] ARINC, ARINC Specification 653: Avionics Application Soft-
ware Standard Interface, Aeronautical Radio INC, 2005.

[4] VxWorks, VxWorks 653 - DO-178B Certified ARINC 653
Real-Time Operating System, Wind River, 2006.

[5] C. Sofronis, S. Tripakis, and P. Caspi, “A memory-optimal
buffering protocol for preservation of synchronous semantics
under preemptive scheduling,” in Sixth International Con-
ference on Embedded Software (EMSOFT’06), Seoul, South
Korea, Oct. 2006.

[6] F. Boniol, M. Cordovilla, J. Forget, and C. Pagetti, “Implanta-
tion multitâche de programmes synchrones multipériodiques,”
in 7iéme colloque francophone sur la Modelisation des Sys-
temes Réactifs (MSR’09), Nov. 2009.

[7] J. Forget, “A synchronous language for critical embedded sys-
tems with multiple real-time constraints,” Ph.D. dissertation,
Université de Toulouse - ISAE/ONERA, Toulouse, France,
Nov. 2009.

[8] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” Journal
of the ACM, vol. 20, no. 1, 1973.

[9] M. G. Harbour, M. H. Klein, and J. P. Lehoczky, “Fixed
priority scheduling of periodic tasks with varying execution
priority,” in Real-Time Systems Symposium (RTSS’91), Dec.
1991.

[10] M. Richard, P. Richard, E. Grolleau, and F. Cottet, “Con-
traintes de précédences et ordonnancement mono-processeur,”
in Real-time and embedded systems (RTS’02), 2002.

[11] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic schedul-
ing of real-time tasks under precedence constraints,” Real-
Time Systems, vol. 2, 1990.

[12] P. Richard, F. Cottet, and C. Kaiser, “Validation temporelle
d’un logiciel temps réel : application un laminoir industriel,”
Journal Européen des Systèmes Automatisés, vol. 35, no. 9,
2001.

[13] R. L. Graham, “Bounds on multiprocessing timing anoma-
lies,” SIAM Journal on Applied Mathematics, vol. 17, no. 2,
Mar. 1969.

[14] Software Considerations in Airborne systems and Equipment
Certification, RTCA, 1992.

[15] J. Y. T. Leung and J. Whitehead, “On the complexity of fixed-
priority scheduling of periodic, real-time tasks,” Performance
Evaluation, vol. 2, no. 4, 1982.

[16] M. Joseph and P. Pandya, “Finding response times in real-
time system,” The Computer Journal, vol. 29(5), pp. 390–395,
1986.

[17] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar:
a flexible real time scheduling framework,” Ada Lett., vol.
XXIV, no. 4, 2004.

[18] N. C. Audsley, “Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times,” Dept. Computer
Science, University of York, Tech. Rep. YCS 164, Dec. 1991.

