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Bistable travelling waves for nonlocal reaction diffusion

equations

Matthieu Alfaro 1, Jérôme Coville 2 and Gaël Raoul 3.

Abstract

We are concerned with travelling wave solutions arising in a reaction diffusion equation

with bistable and nonlocal nonlinearity, for which the comparison principle does not hold.

Stability of the equilibrium u ≡ 1 is not assumed. We construct a travelling wave solution

connecting 0 to an unknown steady state, which is “above and away” from the intermediate

equilibrium. For focusing kernels we prove that, as expected, the wave connects 0 to 1. Our

results also apply readily to the nonlocal ignition case.

Key Words: travelling waves, nonlocal reaction-diffusion equation, bistable case, ignition case.

AMS Subject Classifications: 45K05, 35C07.

1 Introduction

We consider the nonlocal bistable reaction diffusion equation

∂tu = ∂xxu+ u(u− θ)(1− φ ∗ u) in (0,∞)× R, (1)

where 0 < θ < 1. Here φ ∗ u(x) :=
∫

R

u(x− y)φ(y) dy, with φ a given bounded kernel such that

φ ≥ 0, φ(0) > 0,

∫

R

φ = 1. (2)

We are looking for travelling waves solutions supported by the integro-differential equation (1),
that is a speed c∗ ∈ R and a smooth U such that

−U ′′ − c∗U ′ = U(U − θ)(1− φ ∗ U) in R, (3)

supplemented with the boundary conditions

lim inf
x→−∞

U(x) > θ, lim
x→+∞

U(x) = 0. (4)

In this work we construct such a travelling wave solution, and show that the behavior on the left is
improved to limx→−∞ U(x) = 1 for focusing kernels. Our results also apply readily to the nonlocal
ignition case (see below).
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Equation (1) is a nonlocal version of the well known reaction-diffusion equation

∂tu = ∂xxu+ f(u) in (0,∞)× R, (5)

with the bistable nonlinearity f(s) := s(s − θ)(1 − s). Homogeneous reaction diffusion equations
have been extensively studied in the literature (see [14], [3, 4], [10], [6], [18] among others) and
are known to support the existence of monotone travelling fronts for three classes of nonlinearity:
bistable, ignition and monostable. Moreover, for bistable and ignition nonlinearities, there exists
a unique front speed c∗ whereas, for monostable nonlinearities, there exists a critical speed c∗

such that all speeds c ≥ c∗ are admissible. In this local context, many techniques based on the
comparison principle — such as some monotone iterative schemes or the sliding method [7]— can
be used to get a priori bounds, existence and monotonicity properties of the fronts.

Recently, much attention was devoted to the introduction of a nonlocal effect into the nonlinear
reaction term. From the mathematical point of view, the analysis is quite involved since integro-
differential equations with a nonlocal competition term generally do not satisfy the comparison
principle. In [5], Berestycki, Nadin, Perthame and Ryzhik have considered the following non-local
version of the Fisher-KPP equation

∂tu = ∂xxu+ u(1− φ ∗ u) in (0,∞)× R. (6)

They prove that equation (6) admits a critical speed c∗ so that, for all c ≥ c∗, there exists a
travelling wave (c, U) solution of

{

−U ′′ − cU ′ = U(1− φ ∗ U) in R.

lim infx→−∞ U(x) > 0, limx→+∞ U(x) = 0.

In favorable situations, namely when the steady state u ≡ 1 remains linearly stable, they further
obtain limx→−∞ U(x) = 1. Nevertheless, the positive steady state u ≡ 1 may present, for some
kernels, a Turing instability (see e.g. [11], [5], [1]). In such situations, it was proved in [9] and
in [1] that the waves with large speeds actually connect the two unstable states 0 and 1. Notice
that the former work considers kernels with exponential decay and uses monotonicity arguments
inspired by [13], whereas the latter uses more direct arguments which allow kernels with algebraic
decay. Concerning this issue of the behavior of the wave on the left, we also refer the reader to
[17], [16]. In a related framework, the authors of the present work have constructed curved fronts
for nonlocal reaction diffusion equations [2] of the form

∂tu(t, x, y) =∆xxu(t, x, y) + ∂yyu(t, x, y)+

u(t, x, y)

(

r(v −Bx.e)−
∫

R

k(y −Bx.e, y′ −Bx.e)u(t, x, y′) dy′
)

for t > 0, x ∈ R
d (spatial variable), y ∈ R (phenotypical trait). In population dynamics, such

equations serve as prototypes of models for structured populations evolving in a environmental
cline.

In view of the existence of fronts for both the nonlocal Fisher-KPP equation (6) and the local
bistable equation (5), it is then expected that the nonlocal bistable equation (1) supports the
existence of travelling waves. In this work, we shall construct such a solution. It is worth being
mentioned that, among other things, nonlinearities such as u(φ ∗ u− θ)(1− u) are treated in [19].
Notice that our equation does not fall into [19, equation (1.6)] since g(u, v) = u(1−u)(1− v) does
not satisfy [19, hypothesis (H1)], which actually provides the stability of both u ≡ 0 and ≡ 1.

Let us now state our main result on the existence of a travelling wave solution.

Theorem 1.1 (A bistable travelling wave) There exist a speed c∗ ∈ R and a positive profile
U ∈ C2(R) solution of

−U ′′ − c∗U ′ = U(U − θ)(1− φ ∗ U) on R, (7)

2



such that, for some ε > 0,

U(x) ≥ θ + ε for all x ∈ (−∞,−1/ε), (8)

U is decreasing on [x̄,+∞) for some x̄ > 0, and

lim
x→+∞

U(x) = 0. (9)

Now, if the kernel tends to the Dirac mass, we expect the above travelling wave to be a
perturbation of the underlying wave for the local case, namely (c∗0, U0) the unique solution of

{

U0
′′ + c∗0U0

′ + U0(U0 − θ)(1 − U0) = 0,

limx→−∞ U0(x) = 1, U0(0) = θ, limx→+∞ U0(x) = 0,
(10)

and so to satisfy limx→−∞ U(x) = 1. Our next result states such a behavior assuming c∗0 6= 0,
which is equivalent to θ 6= 1

2 . To make this perturbation analysis precise, we take σ > 0 as a
focusing parameter, define

φσ(x) :=
1

σ
φ
(x

σ

)

, (11)

and are interested in the asymptotics σ → 0.

Proposition 1.2 (Focusing kernels) Denote by (c∗σ, Uσ) the travelling wave associated with the
kernel φσ, as constructed in Theorem 1.1.

(i) Assume
∫

R
|z|φ(z) dz <∞. Then c∗σ → c∗0, as σ → 0.

(ii) Assume θ 6= 1
2 and

∫

R
z2φ(z) dz <∞. Then there is σ0 > 0 such that, for all 0 < σ < σ0,

lim
x→−∞

Uσ(x) = 1.

Remark 1.3 (Ignition case) While proving the above results for the bistable case, it will become
clear that the same (with the additional information c∗ > 0) holds for the ignition case, that is

−U ′′ − c∗U ′ =

{

0 where U < θ

(U − θ)(1− φ ∗ U) where U ≥ θ,

for which proofs are simpler. This will be clarified in Section 6.

Let us comment on the main result, Theorem 1.1. Due to the lack of comparison principle, the
construction of a travelling wave solution is based on a topological degree argument, a method
introduced initially in [6]. After establishing a series of a priori estimates, it enables to construct a
solution in a bounded box. Then we let the size of the box tend to infinity to construct a solution
on the whole line. In contrast with [5] and because of the intermediate equilibrium u ≡ θ, it is
far from clear that the constructed wave is non trivial — or, equivalently, that it “visits” both
(0, θ) and (θ, 1). Such an additional difficulty also arises in the construction of bistable waves in
cylinders [8], where the authors use energy arguments to exclude the possibility of triviality. This
seems not to be applicable to our nonlocal case. Our arguments are rather direct and are based on
the sharp property of Proposition 3.1 and the construction of bump-like sub-solutions in Lemma
3.2.

The organization of the paper is as follows. In Section 2, we construct a solution u on a
bounded interval thanks to a Leray-Schauder topological degree argument. In Section 3, we show
that, when we let the bounded interval tend to the whole line, the limit profile U is non trivial.
The behaviors (8) and (9) are then proved in Section 4. We investigate the case of the focusing
kernels, that is Proposition 1.2, in Section 5. Last, in Section 6 we indicate how to handle the
ignition case.
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2 Construction of a solution u in a box

Notice that the methods used in this section are inspired by [5].

For a > 0 and 0 ≤ τ ≤ 1, we consider the problem of finding a speed c = caτ ∈ R and a profile
u = uaτ : [−a, a]→ R such that

Pτ (a)







−u′′ − cu′ = τ1{u≥0}u(u− θ)(1 − φ ∗ ū) in (−a, a)

u(−a) = 1, u(0) = θ, u(a) = 0,

where ū denotes the extension of u equal to 1 on (−∞,−a) and 0 on (a,∞) (in the sequel, for
ease of notation, we always write u in place of ū). This realizes a homotopy from a local problem
(τ = 0) to our nonlocal problem (τ = 1) in the box (−a, a). We shall construct a solution to P1(a)
by using a Leray-Schauder topological degree argument.

If (c, u) is a solution achieving a negative minimum at xm then xm ∈ (−a, a) and −u′′−cu′ = 0
on a neighborhood of xm. The maximum principle thus implies u ≡ u(xm), which cannot be.
Therefore any solution of Pτ (a) satisfies u ≥ 0 and, by the strong maximum principle,

u > 0 and − u′′ − cu′ = τu(u− θ)(1 − φ ∗ u) in (−a, a). (12)

2.1 A priori bounds of solutions in the box

The following lemma provides a priori bounds for u.

Lemma 2.1 (A priori bounds for u) There exist M > 1 (depending only on the kernel φ) and
a0 > 0 such that, for all a ≥ a0 and all 0 ≤ τ ≤ 1, any solution (c, u) of Pτ (a) satisfies

0 ≤ u(x) ≤M, ∀x ∈ [−a, a].

Proof. If τ = 0 we directly get 0 ≤ u ≤ 1 for the local problem. Now, for 0 < τ ≤ 1, assume
M := maxx∈[−a,a] u(x) > 1 (otherwise there is nothing to prove). In view of the boundary
conditions, there is a xm ∈ (−a, a) such that M = u(xm). Evaluating (12) at xm we see that
φ ∗ u(xm) ≤ 1.

Now since u ≥ 0, we also have

−u′′ − cu′ = τu(u− θ)(1 − φ ∗ u) ≤ u2 + θu(φ ∗ u) ≤ (1 + θ)M2 ≤ 2M2. (13)

Let us first assume that c < 0. For x ∈ [−a, xm] it follows from (13) that

∫ xm

x

(

u′(z)e−|c|z
)′
dz ≥ −

∫ xm

x

2M2e−|c|z dz.

Using u′(xm) = 0, isolating u′(x) and integrating again from x to xm, we discover

∫ xm

x

u′(z) dz ≤ −2M2

|c|

∫ xm

x

(e−|c|(xm−z) − 1) dz.

Using u(xm) =M and isolating u(x), we get after elementary computations

u(x) ≥M
[

1− 2M(x− xm)2B(|c|(xm − x))
]

,

where B(y) := e−y+y−1
y2 . Observe that B(y) ≤ 1

2 for y > 0 so that

u(x) ≥M(1−M(x− xm)2), ∀x ∈ [−a, xm], (14)

and in particular, for x = −a,
1 ≥M(1−M(a+ xm)2). (15)
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Now we define

x0 :=
1

2
√
M
. (16)

If xm ∈ (−a,−a+ x0], then (15) shows that M ≤
(

1−Mx0
2
)−1

= 4
3 . If xm ∈ [−a+ x0, a), then

1 ≥ φ ∗ u(xm) ≥
∫ x0

0

φ(z)u(xm − z) dz ≥M
∫ x0

0

φ(z)(1−Mz2) dz,

where we have used (14). From the definition of x0 we deduce that

1 ≥ 3

4
M

∫ 1/2
√
M

0

φ(z) dz ≥ 3

4
M

(

∫ 1/2
√
M

0

(φ(0)− ‖φ′‖L∞(−1,1)z) dz

)

,

so that

M ≤
(

8

3

1 + 3
32‖φ′‖L∞(−1,1)

φ(0)

)2

. (17)

This concludes the proof in the case c < 0. The case c > 0 can be treated in a similar way by
working on [xm, a] rather than on [−a, xm].

Last if c = 0, by integrating twice the inequality −u′′ ≤ 2M2 on [x, xm] we directly obtain (14)
and we can repeat the above arguments. This completes the proof of the lemma. �

We now provide a priori bounds for the speed c.

Lemma 2.2 (A priori upper bound for c) There exists a0 > 0 such that, for all a ≥ a0 and
all 0 ≤ τ ≤ 1, any solution (c, u) of Pτ (a) satisfies c ≤ 2

√
2M =: cmax, where M is the upper

bound for u defined in Lemma 2.1.

Proof. Since −u′′ − cu′ ≤ u2 + θu(φ ∗ u) ≤ (1 + θ)Mu ≤ 2Mu, we can reproduce the proof of [5,
Lemma 3.2] with µ← 2M . �

We now provide a priori bounds for the speed c. We will prove two separate estimates.

Lemma 2.3 (A priori lower bound for c, uniform w.r.t. τ) For any a > 0, there exists
c̃min(a) > 0 such that, for all 0 ≤ τ ≤ 1, any solution (c, u) of Pτ (a) satisfies c ≥ −c̃min(a).

Proof. Let a > 0 be given. We consider a solution (c, u) of Pτ (a). It satisfies:

−u′′ − cu′ + (M2 + 1)u ≥ 0,

as well as u(−a) = 1 and u(a) = 0. Since M2+1 ≥ 0, the comparison principle applies and u ≥ v,
where v is the solution of −v′′− cv′+(M2+1)v = 0 such that v(−a) = 1 and v(a) = 0. Explicitly
computing v, we get

v(0) =
1− e(λ+−λ−)a

e−λ+a − e(λ+−2λ−)a
, λ± :=

−c±
√

c2 + 4(M2 + 1)

2
.

We see that v(0) → 1 as c → −∞. It follows that, for any a > 0, there exists c̃min(a) > 0 such
that c ≤ −c̃min(a) implies θ < v(0) ≤ u(0), so that u cannot solve Pτ (a). Hence, all solutions
(c, u) of Pτ (a) with 0 ≤ τ ≤ 1 are such that c ≥ −c̃min(a). �

Lemma 2.4 (A priori lower bound for c for τ = 1, uniform w.r.t. a) There exist cmin >
0 and a0 > 0 such that, for all a ≥ a0, any solution (c, u) of P1(a) satisfies c ≥ −cmin.
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Proof. We assume that c ≤ −1 (otherwise there is nothing to prove), and define M > 0 and
a0 > 0 as in Lemma 2.1.

The first step of the proof is to find uniform bounds on u′, following ideas from [5, Lemma
3.3]. We first notice that (ecxu′(x))′ = ecx (u′′(x) + cu′(x)), and an integration of this expression
provides for x > y:

ecxu′(x)− ecyu′(y) =
∫ x

y

eczu(z)(u(z)− θ)(1 − φ ∗ u(z)) dz.

Thank to Lemma 2.1, we have |u(u− θ)(1 − φ ∗ u)| ≤M(M + θ)(1 +M) =: Q, so that

u′(y)e|c|(x−y) − Q

|c|e
|c|(x−y) ≤ u′(x) ≤ u′(y)e|c|(x−y) +

Q

|c|e
|c|(x−y), ∀x, y ∈ [−a, a], x > y, (18)

u′(y) ≤ 2Q

|c| , ∀y ∈ (−a, a), (19)

where we have chosen x = a, and used the fact that u′(a) ≤ 0 to obtain this last estimate.
Next, define

K0 := 2 max
c≤−1

1

|c| ln
(

Mc2

Q
+ 1

)

.

We claim that, for all c ≤ −1, all a ≥ a0,

−2Q

|c| ≤ u
′(x), ∀x ∈ (−a, a−K0]. (20)

Indeed, assume by contradiction that there are some c ≤ −1, a ≥ a0, y ∈ (−a, a−K0] such that
u′(y) < − 2Q

|c| . From (18) we deduce that u′(x) ≤ − Q
|c|e

|c|(x−y) for x > y. Integrating this from y

to a and using u(a) = 0 we see that

M ≥ u(y) ≥ Q

c2
(e|c|(a−y) − 1) ≥ Q

c2
(e|c|K0 − 1),

which contradicts the definition of K0. This proves (20).
Next, since φ ∈ L1(R), there exists R > 0 such that M

∫

[−R,R]c
φ ≤ 1−θ

8 . Thanks to the

conditions u(−a) = 1 and u(0) = θ in P1(a), we can define x0 < 0 as the largest negative real such
that u(x0) = θ+ 1−θ

2 . We can use (20) to estimate u(x) from below for x ∈ [x0−R, x0+2R]∩[−a, a]:

u(x) ≥ θ + 1− θ
2
− 2Q

|c| 2R ≥ θ +
1− θ
4

, (21)

as soon as c ≤ − 16QR
1−θ . Similarly, using (19),

u(y) ≤ θ + 1− θ
2

+
2Q

|c| 2R ≤ θ +
3(1− θ)

4
, (22)

as soon as c ≤ − 16QR
1−θ . In particular (21) and (22) imply that [x0 −R, x0 + 2R] ⊂ (−a, 0) if −c is

large enough. We then estimate φ ∗ u(x) for x ∈ [x0, x0 +R]:

φ ∗ u(x) ≤
∫

[−R,R]

φ(y)u(x − y) dy +
∫

[−R,R]c
φ(y)u(x− y) dy

≤ max
[x0−R,x0+2R]

u+M

∫

[−R,R]c
φ

≤ θ +
1− θ
2

+
2Q

|c| 2R+
1− θ
8

≤ 1− 1− θ
8

, (23)
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as soon as c ≤ − 16QR
1−θ .

If u is not non-increasing on [x0, x0 + R], the definition of x0 implies the existence of a local
minimum x̄ ∈ (x0, x0 + R). An evaluation (12) in x̄ then shows that 1 ≤ φ ∗ u(x̄), which is only
possible if −c is not too large, thanks to (23).

If on the contrary, u is non-increasing on [x0, x0 +R] and c ≤ 0, then, for [x0, x0 +R],

u′′(x) ≤ u′′(x) + cu′(x) = −u(x)(u(x)− θ)(1 − φ ∗ u(x)) ≤ −θ (1− θ)
2

32
.

It follows that u′(x0)− u′(x0 +R) ≥ θ(1−θ)2

32 R, which, combined to (20) and (19) implies

c ≥ − 128QR

θ(1− θ)2 ,

so that in any case, cmin := − 128QR
θ(1−θ)2 is an explicit lower bound for c. �

2.2 Construction of a solution in the box

Equipped with the above a priori estimates, we now use a Leray-Schauder topological degree
argument (see e.g. [6], [5] or [2] for related arguments) to construct a solution (c, u) to P1(a).

Proposition 2.5 (A solution in the box) There exist K > 0 and a0 > 0 such that, for all
a ≥ a0, Problem P1(a) admits a solution (c, u), that is















−u′′ − cu′ = u(u− θ)(1 − φ ∗ u) in (−a, a)
u(−a) = 1, u(0) = θ, u(a) = 0,

u > 0 in (−a, a),

which is such that
‖u‖C2(−a,a) ≤ K, −cmin ≤ c ≤ cmax.

Proof. For a given nonnegative function v defined on (−a, a) and satisfying the Dirichlet boundary
conditions as requested in Pτ (a) — that is v(−a) = 1 and v(a) = 0— consider the family 0 ≤ τ ≤ 1
of linear problems

P c
τ (a)

{

−u′′ − cu′ = τv(v − θ)(1 − φ ∗ v) in (−a, a)
u(−a) = 1, u(a) = 0.

(24)

Denote by Kτ the mapping of the Banach space X := R × C1,α(Q) — equipped with the norm
‖(c, v)‖X := max (|c|, ‖v‖C1,α)— onto itself defined by

Kτ : (c, v) 7→ (θ − v(0) + c, ucτ := the solution of P c
τ (a)) .

Constructing a solution (c, u) of P1(a) is equivalent to showing that the kernel of Id − K1 is
nontrivial. The operator Kτ is compact and depends continuously on the parameter 0 ≤ τ ≤ 1.
Thus the Leray-Schauder topological argument can be applied. Define the open set

S := {(c, v) : −c̃min(a)− 1 < c < cmax + 1, v > 0, ‖v‖C1,α < M + 1} ⊂ X.

It follows from the a priori estimates Lemma 2.1, Lemma 2.2 and Lemma 2.3, that there exists
a0 > 0 such that, for any a ≥ a0, any 0 ≤ τ ≤ 1, the operator Id − Kτ cannot vanish on
the boundary ∂S. By the homotopy invariance of the degree we thus have deg(Id − K1, S, 0) =
deg(Id−K0, S, 0).

To conclude, observe that we can compute

uc0(x) =
e−cx − e−ca

eca − e−ca
if c 6= 0, uc0(x) = −

1

2a
x+

1

2
if c = 0, (25)
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and that uc0(0) is decreasing with respect to c (in particular there is a unique c0 such that uc00 (0) =
θ). Hence by using two additional homotopies (see [5] or [2] for details) we can compute deg(Id−
K0, S, 0) = −1 so that deg(Id−K1, S, 0) = −1 and there is a (c, u) ∈ S solution of P1(a). Finally,
Lemma 2.4 provides a lower bound c ≥ −cmin, uniform in a ≥ a0. This concludes the proof of the
proposition. �

A solution on R. Equipped with the solution (c, u) of P1(a) of Proposition 2.5, we now let
a → +∞. This enables to construct — passing to a subsequence an → +∞— a speed −cmin ≤
c∗ ≤ cmax and a function U : R→ (0,M) in C2

b (R) such that

−U ′′ − c∗U ′ = U(U − θ)(1 − φ ∗ U) on R, (26)

U(0) = θ. (27)

In contrast with the nonlocal Fisher-KPP equation considered in [5] we need additional argu-
ments to show that the constructed U is non trivial, i.e. that U “visits” both (0, θ) and (θ, 1).
This is the purpose of the next section.

3 Non triviality of U the solution on R

In this section, we provide additional a priori estimates on the solution u in the box (−a, a), which
in turn will imply the non triviality of the solution U on R.

First, using the homotopy of the previous section, we show that the solution in the box cannot
attain θ elsewhere that at x = 0.

Proposition 3.1 (θ is attained only at x = 0) For all a ≥ a0, the solution (c, u) of Proposi-
tion 2.5 satisfies

u(x) = θ if and only if x = 0.

Proof. From Proposition 2.5, we know that there is a solution (cτ , uτ ) of

{

−u′′τ − cτu′τ = τuτ (uτ − θ)(1− φ ∗ uτ ) in (−a, a)
uτ (−a) = 1, uτ (0) = θ, uτ (a) = 0,

(28)

and that (cτ , uτ ) depends continuously upon 0 ≤ τ ≤ 1. For τ = 0, in view of (25), the solution
u0 satisfies u0(x) = θ if and only if x = 0. We can therefore define

τ∗ := sup {0 ≤ τ ≤ 1, ∀σ ∈ [0, τ ], uσ(x) = θ iff x = 0} .

Assume by contradiction that there is a x∗ 6= 0 such that uτ∗(x∗) = θ. Without loss of
generality, we can assume x∗ < 0 and uτ∗ > θ on (x∗, 0). By the definition of τ∗ as a supremum,
one must have uτ∗ ≥ θ on (−a, 0), which in turn enforces u′τ∗(x∗) = 0. Hence v := uτ∗ − θ is
positive on (x∗, 0), zero at x∗ and satisfies the linear elliptic equation

−v′′ − cτ∗v′ = [τ∗uτ∗(1− φ ∗ uτ∗)] v on (x∗, 0).

It then follows — see e.g. [12, Lemma 3.4]— that v′(x∗) > 0, which is a contradiction. Hence uτ∗

attains θ only at x = 0. To conclude let us prove that τ∗ = 1.
Assume by contradiction that 0 ≤ τ∗ < 1. By the definition of τ∗, there exists a sequence

(τn, xn) such that τn ↓ τ∗, xn 6= 0, and uτn(xn) = 0. Up to an extraction, the sequence xn
converges to a limit x∗, which implies, thanks to the continuity of (τ, x) 7→ uτ (x) with respect to
τ and x, that uτ∗(x∗) = 0. As seen above one must have x∗ = 0, and then xn → 0. Then, for
some −1 ≤ Cn ≤ 1, we have 0 = uτn(xn) = uτn(0) + u′τn(0)xn + Cn‖uτn‖C1,α |xn|1+α, that is

|u′τn(0)| ≤ |Cn| ‖uτn‖C1,α |xn|α ≤ C|xn|α →n→∞ 0.
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The continuity of (u′τ ) with respect to τ then implies that u′τ∗(0) = 0. Since uτ∗ > θ on (−a, 0)
we derive a contradiction as above. As a result τ∗ = 1 and the proposition is proved. �

We now construct a subsolution of a linear equation, having the form of a bump, that will be
very useful in the following.

Lemma 3.2 (A bump as a sub-solution) For any κ > 0, there exists A > 0 such that for all
c > −2√κ, there exist 0 < x̃ < A, X > x̃ and ψ : [0, X ] → [0, 1], satisfying ψ(0) = 0, ψ(x̃) = 1
and

−ψ′′ − cψ′ ≤ κψ in (0, X). (29)

Proof. If −2√κ < c < 2
√
κ, we define ψ(x) := e−

c
2
x sin

(√
4κ−c2

2 x
)

which solves −ψ′′−cψ′ = κψ.

Also on [0, 2π/
√
4κ− c2] we have ψ(0) = ψ(2π/

√
4κ− c2) = 0, ψ ≥ 0 and maximal at point

x̃ = x̃(c) =















2√
4κ−c2

tan−1
(√

4κ−c2

c

)

if 0 < c < 2
√
κ

π√
4κ

if c = 0

2√
4κ−c2

(

tan−1
(√

4κ−c2

c

)

+ π
)

if − 2
√
κ < c < 0.

x̃(c) is then uniformly bounded for c ∈ (−2√κ, 2√κ), so that the renormalized function ψ/ψ(x̃)
is as requested.

If c ≥ 2
√
κ, we define ψ(x) := e

−
√

κ
2

x sin
(√

κ
2 x
)

and x̃ = π/
√
4κ, so that ψ increases on [0, x̃]

and starts to decreases after x̃. On [0, x̃], we have tan
(√

κ
2 x
)

≤ 1 so that

−ψ′′(x)− cψ′(x)− κψ(x) =
√
κe

−
√

κ
2

x cos

(√
κ

2
x

)((√
κ

2
− c

2

)

+
( c

2
−
√
κ
)

tan

(√
κ

2
x

))

≤
√
κ

2
e

−
√

κ
2

x cos

(√
κ

2
x

)

(
√
κ− c+ c− 2

√
κ)

≤ 0.

Observe that −ψ′′(x̃) − cψ′(x̃) − κψ(x̃) ≤ −κe−π/4 cos(π/4)
2 < 0, so that there is X > x̃ such that

−ψ′′ − cψ′ − κψ ≤ 0 on [0, X ]. Hence ψ/ψ(x̃) is as requested. �

We will also use the elementary following lemma.

Lemma 3.3 (An auxiliary solution) Let ρ > 0 and b > 0 be given. Then, for all c ∈ R, there
is a decreasing function χ = χc : R→ R such that χ(0) = 1, χ(b) = 0 and

−χ′′ − cχ′ = −ρχ in R. (30)

Proof. One solves the linear ODE and sees that the function

χ(x) :=

(

1− 1

1− e−
√

c2+4ρ b

)

e
−c+

√
c2+4ρ
2

x +
1

1− e−
√

c2+4ρ b
e

−c−
√

c2+4ρ
2

x

is as requested. �

We now show that u can be uniformly (with respect to a) bounded away from θ far on the
right or the left, depending on the sign of the speed c.

Proposition 3.4 (Moving away from θ) There exist ε > 0 and a0 > 0 such that, for all a ≥
a0, any solution (c, u) of















−u′′ − cu′ = u(u− θ)(1 − φ ∗ u) in (−a, a)
u(−a) = 1, u(0) = θ, u(a) = 0,

u(x) = θ if and only if x = 0,

(31)

satisfies, if we define κ := θ(1 − θ)/8 > 0,
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(i) c > −2√κ =⇒ u ≤ θ/2 on [1/ε, a]

(ii) c < 2
√
κ =⇒ u ≥ θ + ε on [−a,−1/ε].

Proof. For κ = θ(1− θ)/8, let ψ be the bump of Lemma 3.2.

Assume c > −2√κ and let us prove (i). Since φ ∈ L1, there exists R > 0 such that
∫∞
R
φ ≤ 1−θ

2M ,
where M is the L∞ bound we have on u. We turn upside down the bump and make it slide from
the right towards the left until touching the solution u. Precisely one can define

α0 := min

{

α ≥ 0 : ∀x− α ∈ [0, X ], u(x) < θ − θ

2
ψ(x − α)

}

∈ [0, a).

We aim at proving that α0 ≤ R uniformly with respect to large a. Assume by contradiction that
α0 > R. The function v := u− θ+ θ

2ψ(· −α0) has a zero maximum at some point x0. Notice that
since ψ(x̃) = maxψ, the definition of α0 implies that x0 − α0 ∈ (0, x̃], so that ψ is a subsolution
of (29) around x0 − α0. Thus 0 ≥ v′′(x0) + cv′(x0) implies

0 ≥ (u′′ + cu′)(x0) +
θ

2
(ψ′′ + cψ′)(x0 − α0)

≥ −u(x0)(u(x0)− θ)(1 − φ ∗ u(x0))−
κθ

2
ψ(x0 − α0)

≥ (θ − u(x0)) [u(x0)(1− φ ∗ u(x0))− κ] . (32)

Now, since α0 ≥ R, we have x0 ≥ R and we can estimate the nonlocal term by

φ ∗ u(x0) ≤
∫ 0

−∞
φ(x0 − y)u(y) dy +

∫ ∞

0

φ(x0 − y)u(y) dy

≤ M

∫ ∞

R

φ+ θ

∫

R

φ ≤ 1 + θ

2
. (33)

Since θ
2 ≤ u(x0) < θ, it follows from (32) that 0 ≥ θ

2
1−θ
2 − κ, which contradicts the definition of

κ. As a result α0 ≤ R, which means that the minimum θ/2 of the reversed bump can slide to the
left at least until R+ x̃. In other words we have u ≤ θ/2 on [R+ x̃, a] which concludes the proof
of (i).

Assume c < 2
√
κ and let us prove (ii). Since φ ∈ L1, we can choose R > 0 such that

∫

[−R,R]c
φ ≤ 1−θ

4M , where M is the L∞ bound we have on u. Before using the bump we need a

preliminary result via the function χ of Lemma 3.3.
For ρ := 2M and b := 2R+1 define χ as in Lemma 3.3. Provided that a > 2b, Proposition 3.1

shows that, for λ > 0 small enough, θ + λχ(·+ a) < u on [−a,−a+ b]. We can therefore define

λ0 := max {λ > 0 : ∀x ∈ [−a,−a+ b], θ + λχ(x+ a) < u(x)} ∈ (0, 1− θ].

The function v := u−θ−λ0χ(·+a) thus has a zero minimum at a point x0. Assume by contradiction
that λ0 < 1 − θ, which in turn implies x0 6= −a. Also Proposition 3.1 implies u(b) > θ so that
x0 6= −a+ b. Thus 0 ≤ v′′(x0) + cv′(x0) so that

0 ≤ (u′′ + cu′)(x0)− λ0 (χ′′ + cχ′)(x0 + a)

= −u(x0)(θ − u(x0))(1 − φ ∗ u(x0))− λ0 ρχ(x0 + a)

= (u(x0)− θ) [u(x0)(1 − φ ∗ u(x0))− ρ]
≤ (u(x0)− θ)(M − ρ) < 0,

which is absurd. Hence λ0 = 1− θ and thus

u(x) ≥ θ + (1− θ)χ(x + a), ∀x ∈ [−a,−a+ b] = [−a,−a+ 2R+ 1]. (34)
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Let us now define, for ε > 0 to be selected,

α0 := max {α ≤ 0 : ∀α− x ∈ [0, X ], u(x) > θ + εψ(α− x)} ∈ (−a, 0].

The estimate (34) shows that it is enough to choose ε < (1− θ)min[−a,−a+2R] χ(·+ a) to get the
lower bound α0 ≥ −a+ 2R. We aim at proving that α0 ≥ −2R uniformly with respect to large
a. Assume by contradiction that α0 < −2R. The function v := u − θ − εψ(α0 − ·) has a zero
minimum at some point x0. Notice that since ψ(x̃) = maxψ, the definition of α0 implies that
α0 − x0 ∈ (0, x̃], so that ψ is a subsolution of (29) around α0 − x0. Thus, we have

0 ≤ (u′′ + cu′)(x0)− ε(ψ′′ + cψ′)(α0 − x0)
≤ −u(x0)(u(x0)− θ)(1− φ ∗ u(x0)) + εκψ(α0 − x0)
≤ (u(x0)− θ) [κ− u(x0)(1 − φ ∗ u(x0))] . (35)

Now observe that −a+2R ≤ α0 < −2R implies −a+2R ≤ x0 ≤ −2R, so that [x0 −R, x0 +R] ⊂
[−a + R,−R]. Therefore the Harnack inequality applied to u − θ provides a constant C > 0,
independent of a, such that

0 < u(x)− θ ≤ C(u(x0)− θ), ∀x ∈ [x0 −R, x0 +R].

This allows to estimate the nonlocal term by

φ ∗ u(x0) ≤
∫

[−R,R]

φ(y)u(x0 − y) dy +
∫

[−R,R]c
φ(y)u(x0 − y) dy

≤ θ + C(u(x0)− θ) +
1− θ
4
≤ 1 + θ

2
, (36)

provided that u(x0) ≤ θ + 1−θ
4C , which is satisfied if we choose ε > 0 small enough (we recall that

u(x0) ≤ θ + ε‖ψ‖∞ = θ + ε). It follows that κ − u(x0)(1 − φ ∗ u(x0)) ≤ − θ(1−θ)
4 < 0, which

contradicts (35). As a result α0 ≥ −2R, which concludes the proof. �

Non triviality of U . Let us recall that (c∗, U) is constructed as the limit of (ca, ua) as a→∞.
By extraction if necessary we can assume that the (ca, ua)’ satisfy either (i) or (ii) of Proposition
3.4, and so does (c∗, U). As a result, the constructed wave (c∗, U) is non trivial.

4 Behaviors of U in ±∞
We now prove the behavior (8) as x → −∞, the limit (9) as x → ∞, and that the constructed
front is decreasing for x > 0 large enough. This will complete the proof of Theorem 1.1.

Proposition 4.1 (Behaviors of U at infinity) Let (c∗, U) be the solution of (7) constructed
in the end of Section 2. Then, for some ε > 0,

U(x) ≥ θ + ε for all x ∈ (−∞,−1/ε),

and
lim

x→+∞
U(x) = 0.

Moreover, there exists x̄ > 0 such that U is decreasing on [x̄,∞).

Proof. Step 1: We show that U > θ on (−∞, 0), and U < θ on (0,∞).
Thanks to Lemma 3.1, for any a > 0, the solution (c, u) in the box of Proposition 2.5 satisfies

u ≥ θ on [−a, 0], and u ≤ θ on [0, a]. Since (c∗, U) is, on any compact interval, the uniform limit
of such solutions, it satisfies U ≥ θ on (−∞, 0] and U ≤ θ on [0,∞). Thus, any x 6= 0 such that
U(x) = θ is a local extremum and U ′(x) = 0; this is impossible, since U is a solution of (7) and
U 6≡ θ thanks to Section 3.
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Step 2: We show that there exists ε > 0 such that |U − θ| ≥ ε on [−1/ε, 1/ε]c.
Consider first the case where c∗ ≥ 0. Since U is a limit of solutions of Proposition 2.5, the

Proposition 3.4 shows that there exists ε > 0 such that U ≤ θ/2 on (1/ε,∞). To investigate the
left side, as in the proof of Proposition 3.4 (ii), we choose R > 0 such that

∫

[−R,R]c
φ ≤ 1−θ

4M , where

M is the L∞ bound we have on U . By the Harnack inequality applied to U −θ, there exists C > 0
such that, for all x0 ≤ −2R,

0 < U(x) − θ ≤ C(U(x0)− θ), ∀x ∈ [x0 −R, x0 +R]. (37)

Let us now define, for η ≥ 0,

ψη(x) := θ + γ(1− η(−2R− x)), γ := min

(

γ1 :=
1

2
(U(−2R)− θ), γ2 :=

1− θ
4C

)

> 0.

Since ψη ≤ U on (−∞,−2R] for η > 0 large enough, we can define

η0 := min {η ≥ 0 : ∀x ≤ −2R, ψη(x) ≤ U(x)} .

Let us assume by contradiction that η0 > 0. The function U − ψη0
then attains a zero minimum

at a point x0 < −2R (notice that γ ≤ γ1 prevents x0 = −2R). Hence

0 ≥ −(U − ψη0
)′′(x0)− c∗(U − ψη0

)′(x0)

≥ c∗ψ′
η0
(x0) + U(x0)(U(x0)− θ)(1 − φ ∗ U(x0))

≥ c∗γη0 + U(x0)(U(x0)− θ)
1 − θ
2

> 0,

where we have used the estimate (36) for U (notice that this is possible since we have the two
ingredients (37) and U(x0) = ψη0

(x0) ≤ θ + 1−θ
4C ). This is a contradiction which proves that

η0 = 0, and then U ≥ θ + γ on (−∞,−2R). This concludes the case c∗ ≥ 0.

Consider next the case where c∗ ≤ 0. Since U is a limit of solutions of Proposition 2.5, the
Proposition 3.4 shows that there exists ε > 0 such that U ≥ θ + ε on (−∞, 1/ε). To investigate
the right side, as in the proof of Proposition 3.4 (i), we choose R > 0 such that

∫∞
R φ ≤ 1−θ

2M , were
M is the L∞ bound we have on U . We define

ψη(x) := θ + γ(−1 + η(x− 2R)), γ :=
1

2
(θ − U(2R)) > 0,

which satisfies ψη ≥ U on [2R,∞) for η > 0 large enough. We can then define

η0 := min {η ≥ 0 : ∀x ≥ 2R, ψη(x) ≥ U(x)} .

Let us assume by contradiction that η0 > 0. The function U − ψη0
then attains a zero maximum

at a point x0 > 2R, and therefore

0 ≤ −(U − ψη0
)′′(x0)− c∗(U − ψη0

)′(x0)

≤ c∗ψ′
η0
(x0) + U(x0)(U(x0)− θ)(1 − φ ∗ U(x0))

< c∗γη0 + U(x0)(U(x0)− θ)
1 − θ
2

< 0,

where we have used the estimate (33) for U . This is a contradiction which proves that η0 = 0,
and then U ≤ θ − γ on (2R,∞). This concludes the case c∗ ≤ 0.

Step 3: We show that U decreases to 0 on some interval (x̄,∞).
Choose R > 0 large enough so that

∫∞
R
φ ≤ 1−θ

2M . Assume by contradiction that U admits a
local maximum at some point xm ≥ R. Since U(xm) < θ, by evaluating the equation (7) we see
that 1 ≤ φ ∗ U(xm). But on the other hand

φ ∗ U(xm) ≤
∫ 0

−∞
φ(xm − y)u(y) dy +

∫ ∞

0

φ(xm − y)u(y) dy ≤M
∫ ∞

R

φ+ θ ≤ 1 + θ

2
< 1,
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which is a contradiction. Hence U cannot attain a maximum on (R,∞), which in turn implies that
there is x̄ > 0 such that U is monotonic (increasing or decreasing) on [x̄,∞). Hence, as x → ∞,
U(x)→ l and, by Step 2, 0 ≤ l ≤ θ − ε.

We define next vn(x) := U(x+ n), which solves

−vn′′ − c∗vn′ = vn(vn − θ)(1 − φ ∗ vn) on R.

Since the L∞ norm of the right hand side member is uniformly bounded with respect to n, the
interior elliptic estimates imply that, for all R > 0, all 1 < p <∞, the sequence (vn) is bounded in

W 2,p([−R,R]). From Sobolev embedding theorem, one can extract vϕ(n) → v strongly in C1,β
loc (R)

and weakly in W 2,p
loc (R). Since vn(x) = U(x + n) → l we have v ≡ l and v′ ≡ 0. Combining this

with the fact that v solves

−v′′ − c∗v′ = v(v − θ)(1− φ ∗ v) on R,

we have l(l− θ)(1 − l) = 0, which implies l = 0 and the decrease of U on [x̄,∞). �

5 Focusing kernels

In this section we consider (c∗σ, Uσ) the constructed waves for the focusing kernels

φσ(x) =
1

σ
φ
(x

σ

)

, σ > 0.

We prove Proposition 1.2. Item (i) consists in a perturbation analysis, and item (ii) will follow
from the L2 analysis performed in [1].

Proof of (i). Assume m1 :=
∫

R
|z|φ(z) dz <∞. We have

−Uσ
′′ − c∗σUσ

′ = Uσ(Uσ − θ)(1− φσ ∗ Uσ) on R, (38)

and 0 ≤ Uσ ≤ Mσ, cmin,σ ≤ c∗σ ≤ cmax,σ, with Mσ, cmin,σ, cmax,σ depending a priori on σ > 0.
The following lemma improves the bounds for the travelling waves: as σ → 0 solutions (c∗σ, Uσ)
are uniformly bounded.

Lemma 5.1 (Uniform bounds for (c∗σ, Uσ)) Let σ0 > 0 be arbitrary. Then there is M > 0,
cmin ∈ R, cmax ∈ R such that, for all σ ∈ (0, σ0),

0 ≤ Uσ ≤M, and cmin ≤ c∗σ ≤ cmax.

Proof. It is sufficient to work on the solutions (cσ, uσ) in the box. DefineMσ := maxx∈[−a,a] uσ(x).
A first lecture of Lemma 2.1 yields the rough bound (17) with the kernel φσ in place of φ. Since
‖φ′σ‖L∞(−1,1) ≤ 1

σ2 ‖φ′‖L∞(R) and φσ(0) =
1
σφ(0), we infer from (17) that there is a constant b > 0,

such that Mσ ≤ b2/σ2. Equipped with this rough bound, we go back to the proof of Lemma 2.1
but rather than (16) we select the improvement

x0 :=
1

2b
σ.

Hence, going further into the proof, we discover

1 ≥ 3

4
Mσ

∫ σ
2b

0

φσ =
3

4
Mσ

∫ 1
2b

0

φ,

so that Mσ ≤M := 4
3

(

∫ 1
2b

0
φ
)−1

, that is a uniform bound M for Mσ as σ → 0.

In view of Lemma 2.2 and of the proof of Lemma 2.4, the uniform bound M yields uniform
bounds cmax and cmin for the speed cσ. The lemma is proved. �
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Hence, the coefficients and the right hand side member of the elliptic equation (38) are uni-
formly bounded w.r.t. σ ∈ (0, σ0). Therefore Schauder’s elliptic estimates — see [15, (1.11)] for
instance— imply that, ‖Uσ‖C2,β ≤ C0 with C0 > 0 not depending on σ. It follows that

|Uσ − φσ ∗ Uσ|(x) ≤
∫

R

φσ(x− y)|Uσ(x)− Uσ(y)| dy ≤ ‖Uσ
′‖∞

∫

R

φσ(x− y)|x− y| dy ≤ C0m1σ.

Hence writing 1− φσ ∗ Uσ = 1− Uσ + Uσ − φσ ∗ Uσ in (38), we get, for some C > 0,

f+
σ (Uσ) ≥ −Uσ

′′ − c∗σUσ
′ ≥ f−

σ (Uσ) on R,

where
f±
σ (s) := s(s− θ)(1 − s)± Cσ.

Hence, by the comparison principle, ψ+
σ (x, t) ≥ Uσ(x − c∗σt) ≥ ψ−

σ (x, t), with ψ±
σ the solutions of

the Cauchy parabolic problems

{

∂tψ = ∂xxψ + f±
σ (ψ) in (0,∞)× R,

ψ(x, 0) = Uσ(x) in R.

Observe that, for σ > 0 small enough, the functions f±
σ are still of the bistable type with three

zeros α±
σ = O(σ), β±

σ = θ + O(σ), γ±σ = 1 + O(σ). It is therefore well-known [10, Theorem 3.1]
that, for a given small σ > 0, the solutions ψ±

σ approach U±
σ (x− c±σ t− x±0 ), for two given x±0 ∈ R,

uniformly in x as t→∞. Here (c±σ , U
±
σ ) denotes the bistable wave

{

U±
σ

′′
+ c±σ U

±
σ

′
+ f±

σ (U±
σ ) = 0,

limx→−∞U±
σ (x) = γ±σ , U±

σ (0) = β±
σ , limx→+∞ U±

σ (x) = α±
σ .

This enforces
c+σ ≥ c∗σ ≥ c−σ .

Since, as σ → 0, c±σ converge to c∗0 the speed of the wave (10), this concludes the proof of (i).

Proof of (ii). Assume θ 6= 1
2 , which in turn implies c∗0 6= 0, and m2 :=

∫

R
z2φ(z) dz <∞. Observe

that
∫

R
z2φσ(z) dz = σ2m2 so that, in virtue of [1, Lemma 5], to get limx→−∞ Uσ(x) = 1 it is

enough to have
σ
√
m2Mσ

2 < |c∗σ|, (39)

which is clear, for small enough σ > 0, since Mσ ≤M , and |c∗σ| → |c∗0| 6= 0. �

6 The ignition case

Here we explain briefly how to use similar arguments to handle the case of the ignition case.

The typical local ignition case is given by −U ′′ − c∗U ′ = 1{U≥θ}(U − θ)(1 − U), and the
corresponding nonlocal problem we consider is written as

−U ′′ − c∗U ′ =

{

0 where U < θ

(U − θ)(1− φ ∗ U) where U ≥ θ.
(40)

Then, one can construct a solution (c, u) = (ca, ua) in a bounded box [−a, a] exactly as in Section
2, and thus a solution (c∗, U) of (40) as a limit of solutions (c, u). One can also readily get
Proposition 3.1, which in turn implies that the solution u solves −u′′− cu′ = 0 on (0, a), u(0) = θ,
u(a) = 0 and therefore becomes explicit on this interval:

u(x) =
−θ

eca − 1
+

θe−cx

1− e−ca
, for 0 ≤ x ≤ a. (41)
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Assume by contradiction that c∗ ≤ 0. Then Proposition 3.4 (ii), which also directly applies to
the ignition case, implies that there exists ε > 0 such that, for a > 0 large enough, u ≥ θ + ε on
(−∞,−1/ε), which in turn implies the non triviality of U . If c∗ < 0 then, as a→∞,

u′(0) =
−cθ

1− e−ca
→ 0,

since c→ c∗ < 0. Hence U ′(0) = 0 and then U ≡ θ, a contradiction. If c∗ = 0 then U is a bounded
solution of −U ′′ = 0 on (0,∞) such that U(0) = θ, that is U ≡ θ, a contradiction. As a result
c∗ > 0. Letting a→∞ in (41) yields

U(x) = θe−c∗x, for all x ≥ 0.

To conclude, the behavior (8) as x→ −∞ is proved as in Proposition 4.1.
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