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ABSTRACT

A chemostat is a fixed volume bioreactor in which micro–organisms are grown in a con-

tinuously renewed liquid medium. We propose a stochastic model for the evolution of the

concentrations in the single species and single substrate case. It is obtained as a diffusion ap-

proximation of a pure jump Markov process, whose increments are comparable in mean with

the deterministic model. A specific time scale, related to the noise intensity, is considered

for each source of variation. The geometric structure of the problem, usable by identification

procedures, is preserved both in the drift and diffusion term. We study the properties of this

model by numerical experiments.

1. INTRODUCTION

1.1. THE CHEMOSTAT

The chemostat (chemical environment is static) is a laboratory device used to study the

growth of micro–organisms like yeast or bacteria. It consists in a growth chamber populated

with one or more species in a liquid medium of fixed volume that is continuously renewed, see

Figure 1. The inflow contains the nutrient used by the bacteria to grow and reproduce while

the outflow removes both the biomass and the substrate at the same rate, so that the volume
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is kept unchanged. This leads naturaly to a chemical equilibrium of the culture parameter

(substrate concentration, pH, ....). When steady state is established, the biomass removed

is exactly balanced by the increase of biomass due to the growth of micro–organisms. We

consider here a single species B which uses the substrate S as its nutrient to grow and

reproduce. The experimental conditions are determined by the substrate concentration in

the influent Sin and by the dilution rate D = Q

V
, where Q is the constant pump rate and V is

the constant volume. The special case of washout occurs when the dilution rate is so fast that

the increase of biomass within the growth chamber is not sufficient to balance the output,

so that all micro–organisms are eventually removed from the chemostat. The quantities of

interest chosen to characterize the system will be the concentrations of the substrate and of

the biomass at each time. This state can only vary through the effect of the two mechanic

actions (inflow and outflow) and one biological transformation (increase of biomass by the

consumption of substrate).

biomass
nutrient

nutrient inflow nutrient and biomass outflow

nutrient consumption
+

biomass increase

Figure 1: Operating principle of a chemostat: the growth chamber is provided with a sterile

liquid medium with a constant substrate concentration. The biomass is partly evacuated

with the outflow

1.2. DETERMINISTIC MODEL

The system is classically described by a system of differential equations based on a mass–

balance principle, see Smith and Waltman (1995). We denote by bt and st the respective

concentrations of the biomass and of the substrate. Writing the balance for each quantity
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yields the system of ODE

ḃt = µ(st) bt −D bt (1)

ṡt = −k µ(st) bt +DSin −D st , (2)

where µ(st) is the (bounded) specific growth rate of the species with limiting factor S and

k is a stoichiometric coefficient. In equation (1), the first (resp. last) term accounts for the

increase of biomass due to growth (resp. biomass outflow). Similarly in equation (2) the

first (resp. two last) term accounts for the quantity of substrate consumed by the micro–

organisms (resp. substrate inflow and outflow). Numerous models have been proposed for the

specific growth rate, among which the Monod model (uninhibited growth) and the Haldane

model (inhibited growth) are the most commonly used. They read respectively

µ(s) = µmax

s

KS + s
and µ(s) = µ̄

s

KS + s+ s2

Ki

where µmax, Ks and Ki are unkown parameters, that can be either measured experimentally

or estimated by identification procedures, see Bastin and Dochain (1990).

To emphasize the geometric structure of the system, we write system (1) and (2) under

the vector form




ḃt

ṡt



 = r(bt, st)





1

−k



+D





0

Sin



−D





bt

st



 . (3)

with reaction kinetics r(st, bt) = µ(st) bt, that exhibits the three vector fields corresponding to

the three sources of variations, namely biological transformation, nutrient input and biomass

and nutrient output.

To conclude this introduction, we notice that this deterministic description is based on

the hypothesis that there is no stochastic fluctuation, or at least that it can be neglected.

2. PURE JUMP MARKOV MODEL

Although the deterministic approach is widespread, there is a need to take into account

the stochastic fluctuations inescapable when living organisms are involved. Moreover, a

stochastic model is required in order to exploit the information contained in the demographic
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noise for parameter estimation purpose. Beside, it is questionable whether a continuously

varying concentration is still appropriate as far as washout is concerned. Indeed, the pop-

ulation of micro–organism in the apparatus could become so small that its concentration

would no longer be considered to be varying continuously. Various attempts to introduce a

noise component in system (3) have been proposed, see e.g. Stephanopoulos et al. (1979)

or Imhof and Walcher (2005). This can be done by adding a diffusion coefficient to (3),

or by adding a noise term to its discretized version. However, the geometric structure of

the problem should be preserved by the perturbed system. Moreover, we should have in

mind the discrete nature of the real state. For theses reasons, we propose to modelize the

phenomenon by a pure jump Markov process with three types of transitions associated with

the three sources of variation. In addition, we require that mass balance on which (3) is

based should be satisfied in mean. Campillo et al. (2011) considered a similar approach to

investigate the relation between models at different scales.

2.1. DYNAMIC DESCRIPTION

We introduce the pure jump Markov process (Bt, St)t≥0 whose dynamics is described by

P[(Bt+h, St+h) = (b′, s′) | (Bt, St) = (b, s)] =






















































hKb r(b, s) + o(h) if (b′, s′) = (b, s) +
1

Kb
(1,−k)

hK in D + o(h) if (b′, s′) = (b, s) +
1

K in
(0, Sin)

hKout D + o(h) if (b′, s′) = (b, s) +
1

Kout
(−b,−s)

1− h [Kb r(b, s) +D (K in +Kout)] + o(h) if (b′, s′) = (b, s)

0 otherwise

where Kb, K in and Kout are scaling constants. These parameters control both the rate and

the size of the jumps in such a way that the instantaneous mean equals the right hand side

of (3). The process evolves only by jumps when an event E∆ occurs, for ∆ ∈ {b, in, out},
corresponding respectively to the biological transformation, the inflow and the outflow. The

rates λ∆(b, s) and the sizes y∆(b, s) of the jumps from a state (b, s) are summarized in table 1.
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E∆ Eb Ein Eout

λ∆(b, s) Kb r(b, s) K inD KoutD

y∆(b, s)
1

Kb





1

−k





1

K in





0

Sin





1

Kout





−b
−s





Table 1: Rates and jumps of the three type of events in vector form.

We also set to 0 the rates leading to a non admissible transition, that is a state outside the

positive orthant.

We now give a description more suitable for comparison with deterministic model (3).

2.2. SEMIMARTINGALE REPRESENTATION

The infinitesimal generator of the process described above reads

Af(b, s) =
∑

∆∈{b,in,out}

λ∆(b, s) [f((b, s) + y∆(b, s))− f(b, s)] , (4)

for any f in its domain. For such an f , we have a semimartingale representation thanks to

the Dynkin’s formula

f(Bt, St) = f(B0, S0) +

∫ t

0

Af(Bs, Ss) ds+M
f
t

where M f
t is a martingale. This formula remains valid for a wider class of functions, even un-

bounded, provided some integrability condition holds, see e.g. Hamza and Klebaner (1995)

or Theorem 1.19 of Klebaner (1998). Since the specific growth rate is bounded, there ex-

ists C > 0 such that

∑

∆∈{b,in,out}

λ∆(b, s) |y∆(b, s)| ≤ C (1 + |(b, s)|) .

By Theorem 1.19 of Klebaner (1998) applied to the components of the identity function, we
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get the semimartingale representation for the process itself

Bt = B0 +

∫ t

0

[r(Bs, Ss)−DBs] ds+MB
t

St = S0 +

∫ t

0

[−k r(Bs, Ss) +DSin −DSs] ds+MS
t

which is the integral form of the SDE





dBt

dSt



 =



r(Bt, St)





1

−k



+D





0

Sin



−D





Bt

St







 dt+





dMB
t

dMS
t



 . (5)

We see that the dynamics of our process is now written as the sum of the drift appearing

in (3) and of a martingale term carrying the stochastic perturbation. In particular, we can

account for the additional information contained in the quadratic variation of this martingale

in order to estimate the unkown parameters of the model.

3. DIFFUSION APPROXIMATION

When all the scaling parameters Kb, K in and Kout are large, the process evolves by small

but frequent jumps. In that case a diffusion approximation can be considered, see Ethier

and Kurtz (1986) or Wilkinson (2006). Replacing the increments of f in (4) by a Taylor’s

expansion and dropping the terms of order greater than two gives, for x = (b, s)

Ãf(x) :=
∑

∆∈{b,in,out}

λ∆(x)

[

∇f(x)∗ · y∆(x) +
1

2
y∗∆(x) ·Hf (x) · y∆(x)

]

= ∇f(x)∗ ·
∑

∆∈{b,in,out}

λ∆(x) y∆(x) +
1

2

∑

∆∈{b,in,out}

λ∆(x) y
∗
∆(x) ·Hf (x) · y∆(x)

where Hf (x) denotes the Hessian matrix of f . Ã is the generator of a diffusion process

X̃t = (B̃t, S̃t) which is solution of the SDE:

dX̃t =
∑

∆∈{b,in,out}

λ∆(X̃t) y∆(X̃t) dt+
∑

∆∈{b,in,out}

√

λ∆(X̃t) y∆(X̃t) dW
∆
t

with independent standard brownian motions W b, W in and W out. Expanding the sums
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yields the vector form





dB̃t

dS̃t



 =



r(B̃t, S̃t)





1

−k



+D





0

Sin



−D





B̃t

S̃t







 dt

+

√

r(B̃t, S̃t)

Kb





1

−k



 dW b
t +

√

D

K in





0

Sin



 dW in
t +

√

D

Kout





B̃t

S̃t



 dW out
t . (6)

This last form is much comparable with (3). The trajectories are continuous (almost surely)

and the drift term is the same. Moreover the geometric structure is preserved by the diffusion

term. Indeed, the stochastic perturbation in the diffusion term appears as a sum of three

independent gaussian noises, each one acting along a vector field corresponding to a source

of variation. It should be noted that this diffusion model should be used away from the axis.

In particular, studying extinction time would not make sense, see Pollett (2001). We see that

the scaling parameters K∆ can be reinterpreted as noise intensity on the sources. Notice

also that the K∆ could be of different magnitude order. Eventually, the diffusion coefficient

vanishes as the scaling parameters tend to infinity, so that the deterministic model can be

viewed as the small noise limit of the diffusion model (6). Since the drift term in nonlinear,

the deterministic model (3) is not the mean of the diffusion model (6). Of course, it is

possible to rewrite (6) as an SDE driven by a single two–dimensional brownian motion.

However this would break the geometric understanding of the dynamics given by (6).

4. SIMULATION ALGORITHMS

The pure jump model is classically simulated with the stochastic simulation (Gillespie)

algorithm, see Gillepsie (1977), described below:

1. Initialization: let (b, s)← (b0, s0) and t← 0

2. while t < Tmax

• compute global rate: λ(b, s) =
∑

∆∈{b,in,out} λ∆(b, s)

• compute next time event (exponential): t← t+ E(λ(b, s))
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• jump: (b, s)← (b, s) + y∆(b, s) , where y∆ is chosen with probability λ∆

λ
(b, s).

For large scaling parameters, all rates may be so fast that the procedure described above

becomes unnecessarily slow. A number of variants have been proposed to speed up the

procedure (review in Wilkinson (2006)), mostly based on the approximation

(Bt+h, St+h) ≃ (Bt, St) +
∑

∆∈{b,in,out}

N∆ y∆(Bt, St)

where N∆ denotes the number of event E∆ that have occured within [t, t+h[. We introduce

Assumption (i): The step size h is supposed to be small enough so that the rates λ∆ do

not vary significantly in the interval.

In that case, N∆ are Poisson variables of respective parameters λ∆(Bt, St)h. This leads to

the Poisson timestep method, described by the algorithm:

1. Initialization: let (b, s)← (b0, s0) and t← 0

2. while t < Tmax

• For ∆ ∈ {b, in, out}, draw N∆ ∼ P(λ∆(b, s)h)

• Commit events: (b, s)← (b, s) +
∑

∆∈{b,in,out} N∆ y∆(b, s)

• Increment time: t← t+ h

The timestep can also be adaptive, as in the tau–leap method, see Gillsepie (2001).

Still following Gillespie (2000), we note that the diffusion process introduced above via a

Taylor expansion, appears also as a numerical approximation of the jump process. Indeed,

consider now

Assumption (ii): The timestep h is sufficiently large so that many events have occured

within [t; t+ h[.

We can then use the normal approximation of the Poisson law, to get

P(λ∆(b, s)h) ≃ λ∆(b, s)h+
√

λ∆(b, s)
√
hN∆(0, 1)
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k µmax KS D Sin Kb K in Kout

10 3 h−1 6 g/l 0.12 h−1 0.5 g/l 107 105 105

Table 2: Parameter values

and

(Bt+h, St+h) ≃ (Bt, St) + h
∑

∆∈{b,in,out}

λ∆(b, s) y∆(b, s)

+
√
h

∑

∆∈{b,in,out}

√

λ∆(b, s)N∆(0, 1) y∆(b, s)

which is nothing else but a Euler discretization scheme applied to the SDE (6). As a result,

numerical solutions of (B̃t, S̃t) obtained by such a scheme will have approximately same

behaviour as (Bt, St) sampled with time step h. However, the choice of the time step remains

problematic since it has to meet the two antagonist requirements (i) and (ii).

The numerical simulations presented below use a Monod model for the growth rate.

Table 2 shows the values of the parameters. We use the Euler–Maruyama scheme to simulate

the solutions of the SDE involved, see Kloeden and Platen (1992). Fig. 2 and Fig. 3 show

that for sufficiently large K∆, the jump process and its diffusion approximation are very

similar.

Fig. 4 illustrates the impact of the demographic noise on the equilibrium. It is hoped

that statistical procedures can make use of the information contained in the variability.

5. CONCLUSION

In this paper we have presented a way to account for stochastic fluctuations in a sim-

ple chemostat, while preserving the geometric structure. Randomness is first considered

through a pure jump Markov process whose infinitesimal increments agree with the classical

deterministic model. A different time scale is possible for the different types of events. Us-

ing integrability conditions, we obtained the stochastic differential equation satisfied by this

process.
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Even if the fundamental structure of the system is discrete, it is reasonable to describe

it by a process with continuous trajectories. We therefore introduced the diffusion approx-

imation of the jump process, still preserving the geometry. The constants corresponding to

the specific time scales can then be interpreted as the intensities of the independent noises

affecting each source of variation. Numerical experiments showed that the approximation is

safe provided that the system is far from washout. It is expected that the geometry of the

process will lead to efficient statistical procedures.
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Figure 2: Evolution of the biomass concentration for the deterministic model bt, the diffusion–

approximation B̃t and the jump process Bt.
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Figure 3: Evolution of the substrate concentration for the deterministic model st, the

diffusion–approximation S̃t and the jump process St.
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Figure 4: Particle cloud of 300 Monte Carlo runs of the diffusion–approximation (B̃t, S̃t) at

different time.
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