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A chemostat is a fixed volume bioreactor in which micro-organisms are grown in a continuously renewed liquid medium. We propose a stochastic model for the evolution of the concentrations in the single species and single substrate case. It is obtained as a diffusion approximation of a pure jump Markov process, whose increments are comparable in mean with the deterministic model. A specific time scale, related to the noise intensity, is considered for each source of variation. The geometric structure of the problem, usable by identification procedures, is preserved both in the drift and diffusion term. We study the properties of this model by numerical experiments.

INTRODUCTION 1.THE CHEMOSTAT

The chemostat (chemical environment is static) is a laboratory device used to study the growth of micro-organisms like yeast or bacteria. It consists in a growth chamber populated with one or more species in a liquid medium of fixed volume that is continuously renewed, see Figure 1. The inflow contains the nutrient used by the bacteria to grow and reproduce while the outflow removes both the biomass and the substrate at the same rate, so that the volume 1 is kept unchanged. This leads naturaly to a chemical equilibrium of the culture parameter (substrate concentration, pH, ....). When steady state is established, the biomass removed is exactly balanced by the increase of biomass due to the growth of micro-organisms. We consider here a single species B which uses the substrate S as its nutrient to grow and reproduce. The experimental conditions are determined by the substrate concentration in the influent S in and by the dilution rate D = Q V , where Q is the constant pump rate and V is the constant volume. The special case of washout occurs when the dilution rate is so fast that the increase of biomass within the growth chamber is not sufficient to balance the output, so that all micro-organisms are eventually removed from the chemostat. The quantities of interest chosen to characterize the system will be the concentrations of the substrate and of the biomass at each time. This state can only vary through the effect of the two mechanic actions (inflow and outflow) and one biological transformation (increase of biomass by the consumption of substrate). The system is classically described by a system of differential equations based on a massbalance principle, see [START_REF] Smith | The Theory of the Chemostat: Dynamics of Microbial Competition[END_REF]. We denote by b t and s t the respective concentrations of the biomass and of the substrate. Writing the balance for each quantity

yields the system of ODE ḃt = µ(s t ) b t -D b t (1) ṡt = -k µ(s t ) b t + D S in -D s t , (2) 
where µ(s t ) is the (bounded) specific growth rate of the species with limiting factor S and k is a stoichiometric coefficient. In equation ( 1), the first (resp. last) term accounts for the increase of biomass due to growth (resp. biomass outflow). Similarly in equation (2) the first (resp. two last) term accounts for the quantity of substrate consumed by the microorganisms (resp. substrate inflow and outflow). Numerous models have been proposed for the specific growth rate, among which the Monod model (uninhibited growth) and the Haldane model (inhibited growth) are the most commonly used. They read respectively

µ(s) = µ max s K S + s and µ(s) = μ s K S + s + s 2 K i
where µ max , K s and K i are unkown parameters, that can be either measured experimentally or estimated by identification procedures, see [START_REF] Bastin | On-line estimation and adaptive control of bioreactors[END_REF].

To emphasize the geometric structure of the system, we write system (1) and (2) under the vector form   ḃt ṡt

  = r(b t , s t )   1 -k   + D   0 S in   -D   b t s t   . (3) 
with reaction kinetics r(s t , b t ) = µ(s t ) b t , that exhibits the three vector fields corresponding to the three sources of variations, namely biological transformation, nutrient input and biomass and nutrient output.

To conclude this introduction, we notice that this deterministic description is based on the hypothesis that there is no stochastic fluctuation, or at least that it can be neglected.

PURE JUMP MARKOV MODEL

Although the deterministic approach is widespread, there is a need to take into account the stochastic fluctuations inescapable when living organisms are involved. Moreover, a stochastic model is required in order to exploit the information contained in the demographic noise for parameter estimation purpose. Beside, it is questionable whether a continuously varying concentration is still appropriate as far as washout is concerned. Indeed, the population of micro-organism in the apparatus could become so small that its concentration would no longer be considered to be varying continuously. Various attempts to introduce a noise component in system (3) have been proposed, see e.g. [START_REF] Stephanopoulos | A stochastic analysis of the growth of competing microbial populations in a continuous biochemical reactor[END_REF] or [START_REF] Imhof | Exclusion and persistence in deterministic and stochastic chemostat models[END_REF]. This can be done by adding a diffusion coefficient to (3),

or by adding a noise term to its discretized version. However, the geometric structure of the problem should be preserved by the perturbed system. Moreover, we should have in mind the discrete nature of the real state. For theses reasons, we propose to modelize the phenomenon by a pure jump Markov process with three types of transitions associated with the three sources of variation. In addition, we require that mass balance on which (3) is based should be satisfied in mean. [START_REF] Campillo | Stochastic modeling of the chemostat[END_REF] considered a similar approach to investigate the relation between models at different scales.

DYNAMIC DESCRIPTION

We introduce the pure jump Markov process (B t , S t ) t≥0 whose dynamics is described by

P[(B t+h , S t+h ) = (b ′ , s ′ ) | (B t , S t ) = (b, s)] =                            h K b r(b, s) + o(h) if (b ′ , s ′ ) = (b, s) + 1 K b (1, -k) h K in D + o(h) if (b ′ , s ′ ) = (b, s) + 1 K in (0, S in ) h K out D + o(h) if (b ′ , s ′ ) = (b, s) + 1 K out (-b, -s) 1 -h [K b r(b, s) + D (K in + K out )] + o(h) if (b ′ , s ′ ) = (b, s) 0 otherwise
where K b , K in and K out are scaling constants. These parameters control both the rate and the size of the jumps in such a way that the instantaneous mean equals the right hand side of (3). The process evolves only by jumps when an event E ∆ occurs, for ∆ ∈ {b, in, out}, corresponding respectively to the biological transformation, the inflow and the outflow. The rates λ ∆ (b, s) and the sizes y ∆ (b, s) of the jumps from a state (b, s) are summarized in table 1.

E ∆ E b E in E out λ ∆ (b, s) K b r(b, s) K in D K out D y ∆ (b, s) 1 K b   1 -k   1 K in   0 S in   1 K out   -b -s   Table 1:
Rates and jumps of the three type of events in vector form.

We also set to 0 the rates leading to a non admissible transition, that is a state outside the positive orthant.

We now give a description more suitable for comparison with deterministic model (3).

SEMIMARTINGALE REPRESENTATION

The infinitesimal generator of the process described above reads

Af (b, s) = ∆∈{b,in,out} λ ∆ (b, s) [f ((b, s) + y ∆ (b, s)) -f (b, s)] , (4) 
for any f in its domain. For such an f , we have a semimartingale representation thanks to the Dynkin's formula

f (B t , S t ) = f (B 0 , S 0 ) + t 0 Af (B s , S s ) ds + M f t
where M f t is a martingale. This formula remains valid for a wider class of functions, even unbounded, provided some integrability condition holds, see e.g. [START_REF] Hamza | Conditions for integrability of markov chains[END_REF] or Theorem 1.19 of [START_REF] Klebaner | Introduction to Stochastic Calculus with Applications[END_REF]. Since the specific growth rate is bounded, there ex-

ists C > 0 such that ∆∈{b,in,out} λ ∆ (b, s) |y ∆ (b, s)| ≤ C (1 + |(b, s)|) .
By Theorem 1.19 of [START_REF] Klebaner | Introduction to Stochastic Calculus with Applications[END_REF] applied to the components of the identity function, we get the semimartingale representation for the process itself

B t = B 0 + t 0 [r(B s , S s ) -D B s ] ds + M B t S t = S 0 + t 0 [-k r(B s , S s ) + D S in -D S s ] ds + M S t which is the integral form of the SDE   dB t dS t   =   r(B t , S t )   1 -k   + D   0 S in   -D   B t S t     dt +   dM B t dM S t   .
(5)

We see that the dynamics of our process is now written as the sum of the drift appearing in (3) and of a martingale term carrying the stochastic perturbation. In particular, we can account for the additional information contained in the quadratic variation of this martingale in order to estimate the unkown parameters of the model.

DIFFUSION APPROXIMATION

When all the scaling parameters K b , K in and K out are large, the process evolves by small but frequent jumps. In that case a diffusion approximation can be considered, see [START_REF] Ethier | Markov Processes -Characterization and Convergence[END_REF] or [START_REF] Wilkinson | Stochastic Modelling for Systems Biology[END_REF]. Replacing the increments of f in (4) by a Taylor's expansion and dropping the terms of order greater than two gives, for x = (b, s)

Ãf (x) := ∆∈{b,in,out} λ ∆ (x) ∇f (x) * • y ∆ (x) + 1 2 y * ∆ (x) • H f (x) • y ∆ (x) = ∇f (x) * • ∆∈{b,in,out} λ ∆ (x) y ∆ (x) + 1 2 ∆∈{b,in,out} λ ∆ (x) y * ∆ (x) • H f (x) • y ∆ (x)
where H f (x) denotes the Hessian matrix of f . Ã is the generator of a diffusion process Xt = ( Bt , St ) which is solution of the SDE:

d Xt = ∆∈{b,in,out} λ ∆ ( Xt ) y ∆ ( Xt ) dt + ∆∈{b,in,out} λ ∆ ( Xt ) y ∆ ( Xt ) dW ∆ t
with independent standard brownian motions W b , W in and W out . Expanding the sums yields the vector form

  d Bt d St   =   r( Bt , St )   1 -k   + D   0 S in   -D   Bt St     dt + r( Bt , St ) K b   1 -k   dW b t + D K in   0 S in   dW in t + D K out   Bt St   dW out t . (6) 
This last form is much comparable with (3). The trajectories are continuous (almost surely)

and the drift term is the same. Moreover the geometric structure is preserved by the diffusion term. Indeed, the stochastic perturbation in the diffusion term appears as a sum of three independent gaussian noises, each one acting along a vector field corresponding to a source of variation. It should be noted that this diffusion model should be used away from the axis.

In particular, studying extinction time would not make sense, see [START_REF] Pollett | Diffusion approximations for ecological models[END_REF]. We see that the scaling parameters K ∆ can be reinterpreted as noise intensity on the sources. Notice also that the K ∆ could be of different magnitude order. Eventually, the diffusion coefficient vanishes as the scaling parameters tend to infinity, so that the deterministic model can be viewed as the small noise limit of the diffusion model ( 6). Since the drift term in nonlinear, the deterministic model ( 3) is not the mean of the diffusion model ( 6). Of course, it is possible to rewrite (6) as an SDE driven by a single two-dimensional brownian motion.

However this would break the geometric understanding of the dynamics given by (6).

SIMULATION ALGORITHMS

The pure jump model is classically simulated with the stochastic simulation (Gillespie) algorithm, see Gillepsie (1977), described below:

1. Initialization: let (b, s) ← (b 0 , s 0 ) and t ← 0 2. while t < T max

• compute global rate: λ(b, s) = ∆∈{b,in,out} λ ∆ (b, s)

• compute next time event (exponential): t ← t + E(λ(b, s))

• jump: (b, s) ← (b, s) + y ∆ (b, s) , where y ∆ is chosen with probability λ ∆ λ (b, s).

For large scaling parameters, all rates may be so fast that the procedure described above becomes unnecessarily slow. A number of variants have been proposed to speed up the procedure (review in [START_REF] Wilkinson | Stochastic Modelling for Systems Biology[END_REF]), mostly based on the approximation (B t+h , S t+h ) ≃ (B t , S t ) + ∆∈{b,in,out}

N ∆ y ∆ (B t , S t )
where N ∆ denotes the number of event E ∆ that have occured within [t, t + h[. We introduce

Assumption (i):

The step size h is supposed to be small enough so that the rates λ ∆ do not vary significantly in the interval.

In that case, N ∆ are Poisson variables of respective parameters λ ∆ (B t , S t ) h. This leads to the Poisson timestep method, described by the algorithm:

1. Initialization: let (b, s) ← (b 0 , s 0 ) and t ← 0 2. while t < T max

• For ∆ ∈ {b, in, out}, draw N ∆ ∼ P(λ ∆ (b, s) h)

• Commit events: (b, s) ← (b, s) + ∆∈{b,in,out} N ∆ y ∆ (b, s)

• Increment time: t ← t + h

The timestep can also be adaptive, as in the tau-leap method, see Gillsepie (2001).

Still following [START_REF] Gillespie | The chemical langevin equation[END_REF], we note that the diffusion process introduced above via a

Taylor expansion, appears also as a numerical approximation of the jump process. Indeed, consider now

Assumption (ii):

The timestep h is sufficiently large so that many events have occured within [t; t + h[.

We can then use the normal approximation of the Poisson law, to get

P(λ ∆ (b, s) h) ≃ λ ∆ (b, s) h + λ ∆ (b, s) √ h N ∆ (0, 1) k µ max K S D S in K b K in K out
10 3 h -1 6 g/l 0.12 h -1 0.5 g/l 10 7 10 5 10 5 λ ∆ (b, s) y ∆ (b, s)

+ √ h ∆∈{b,in,out} λ ∆ (b, s)N ∆ (0, 1) y ∆ (b, s)
which is nothing else but a Euler discretization scheme applied to the SDE (6). As a result, numerical solutions of ( Bt , St ) obtained by such a scheme will have approximately same behaviour as (B t , S t ) sampled with time step h. However, the choice of the time step remains problematic since it has to meet the two antagonist requirements (i) and (ii).

The numerical simulations presented below use a Monod model for the growth rate.

Table 2 shows the values of the parameters. We use the Euler-Maruyama scheme to simulate the solutions of the SDE involved, see [START_REF] Kloeden | Numerical Solution of Stochastic Differential Equations[END_REF]. Fig. 2 and Fig. 3 show that for sufficiently large K ∆ , the jump process and its diffusion approximation are very similar.

Fig. 4 illustrates the impact of the demographic noise on the equilibrium. It is hoped that statistical procedures can make use of the information contained in the variability.

CONCLUSION

In this paper we have presented a way to account for stochastic fluctuations in a simple chemostat, while preserving the geometric structure. Randomness is first considered 
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 1 Figure 1: Operating principle of a chemostat: the growth chamber is provided with a sterile liquid medium with a constant substrate concentration. The biomass is partly evacuated with the outflow
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 234 Figure 2: Evolution of the biomass concentration for the deterministic model b t , the diffusionapproximation Bt and the jump process B t .
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 2 Parameter values and (B t+h , S t+h ) ≃ (B t , S t ) + h

	∆∈{b,in,out}