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Abstract

The paper contrasts Choquet
integral-based aggregation method
with a rank-ordering approach based
on the specification of constraints
induced by generic principles (or by
examples of ranking of particular
vectors of attribute values). The
latter approach does not use any
aggregation operation for evaluating
the vectors. It is based on the
minimal specificity principle (which
amounts to demote vectors as much
as they violate constraints) in order
to get a complete preorder on the
vectors. This approach is compared
on an illustrative example to a
Choquet integral-based method.
We point out the specificity of
constraints expressing relative
importance that underly Choquet
integral.

1 Introduction

The comparison of items described in terms of
attribute values is a problem that takes place
in different contexts. It may correspond to
a decision problem where one has to choose
the best alternative among several potentially
possible choices, on the basis of a multiple cri-
teria evaluation. In database querying, one
may not only want to retrieve all the tuples
that satisfy a collection of specified require-
ments, but also to rank-order them, partially
or completely, in order to provide the user first

with the best answers.
In the fuzzy set approach, different aggre-
gation schemes have been advocated includ-
ing ordered weighted averages [12] and more
generally Choquet integrals [5], or Sugeno in-
tegrals [1], which can be seen as a qualita-
tive counterpart of Choquet integrals, both of
them enabling the possibility to weight the
requirements not only individually, but also
in subgroups. This enables us to take into
account some synergy between the require-
ments. In a similar spirit Fagin and Wimmers
[2] have advocated the use of another general
weighted aggregation mode. However, their
framework requires a numerical scaling, as for
Choquet integrals, while weighted min aggre-
gations, which are particular cases of Sugeno
integrals only require an ordinal, linearly or-
dered evaluation scale.
All these approaches are based on the (of-
ten implicit) hypothesis of the commensurate-
ness of the evaluation scales of the differ-
ent attributes involved in a query. Another
approach that does not use any aggregation
scheme (even on qualitative scales having a
finite number of levels, since the internal oper-
ations [9, 3] that can be defined on such scales
have a limited discriminating power) has been
recently proposed in an artificial intelligence
perspective [4] after having been initially sug-
gested in soft constraint satisfaction problems
[10].

The problem that we face thus amounts to
compare tuples represented by vectors of qual-
itative criteria evaluations without aggregat-
ing them. Apart from the Pareto partial pre-
order that should constrain any complete pre-



order between vectors of attribute values, one
may have some generic rules that further con-
strain these complete preorders. For instance,
one may state that some criterion is more im-
portant than, or equally important as, other
criteria (maybe in a limited context). One
may also have at our disposal some examples
of preferences between fully specified alterna-
tives. The problem is then to complete the
Pareto partial preorder in agreement with the
constraints in a way that is as little arbitrary
as possible.

The paper is organized as follows. Section 2
first gives necessary notation and definitions
before it introduces the problem. Section 3
provides a short background on a general fam-
ily of aggregation functions that can be de-
fined under the form of a Choquet integral,
which will be used in the paper as a compar-
ison landmark. Section 4 describes the pro-
posed approach that uses a minimal commit-
ment principle for building a complete pre-
order in agreement with the constraints. This
principle expresses that an alternative is good
as much as there is no other alternative that
is considered to be better. Section 5 applies
this approach to constraints that directly mir-
ror the way the comparative importance of
criteria is stated when using a Choquet inte-
gral aggregation. This enables a comparison
between the two approaches. Lastly we con-
clude in section 6.

2 Problem description

It is assumed that objects to be rank-ordered
are vectors of satisfaction levels belonging to
a linearly ordered scale S = {s1, · · · , sh} with
s1 < · · · < sh, each vector component refer-
ring to a particular criterion. Thus, it is sup-
posed that there exists a unique scale S on
which all the criteria can be estimated (com-
mensurateness hypothesis). Let U = Sn be
the set of all possible vectors u = a1 · · · an,
called also vectors of attribute values, such
that aj ∈ S for all j = 1, · · · , n. Preferences
are expressed through comparisons of such
vectors ui = (ai

1, · · · , ai
n) (written ai

1 · · · a
i
n for

short), with ai
j ∈ S, under the form of con-

straints
a1 · · · an ≻ a′1 · · · a

′
n

expressing that u = a1 · · · an is preferred to
(or is more satisfactory than) u′ = a′1 · · · a

′
n.

� is a preorder on U if and only if it is reflexive
and transitive relation. u ≻ u′ means that
u � u′ holds but not u′ � u. u ≈ u′ means
that both u � u′ and u′ � u hold, i.e. u and
u′ are equally preferred, and u ∼ u′ means
that neither u � u′ nor u′ � u hold, i.e. u

and u′ are incomparable. � is complete if and
only if all pairs of vectors are comparable, i.e.
∀u, u′ ∈ U , either u � u′ or u′ � u holds.
Otherwise � is called partial. A preorder �
extends a preorder �′ iff ∀u, u′ ∈ U , (if u �′ u′

then u � u′).
The set of best (or undominated) vectors of
Σ ⊆ U w.r.t. � is defined by max(Σ,�) =
{u|u ∈ Σ, ∄u′ ∈ Σ s.t. u′ ≻ u}. Similarly the
set of worst vectors of Σ w.r.t. � is defined by
min(Σ,�) = {u|u ∈ Σ, ∄u′ ∈ Σ s.t. u ≻ u′}.

Definition 1 A sequence of sets of vectors of
the form (E1, · · · , En) is an ordered partition
of U iff (i) ∀i = 1, · · · , n, Ei 6= ∅, (ii) E1 ∪
· · · ∪En = U , (iii) ∀i, j, Ei ∩Ej = ∅ for i 6= j.

An ordered partition of U is associated with a
complete preorder � if and only if (∀u, u′ ∈ U
with u ∈ Ei and u′ ∈ Ej we have i ≤ j iff
u � u′). Complete preorders can be compared
on the basis of specificity principles [11].

Definition 2 (Specificity-based principles)
Let � and �′ be two complete preorders
on U represented by (E1, · · · , En) and
(E′

1, · · · , E′
n′) resp. We say that � is less

specific than �′, written as �⊑�′, iff ∀u ∈ U ,
if u ∈ Ei and u ∈ E′

j then i ≤ j. � belongs
to the set of the least (resp. most) specific
preorders among a set of preorders O if there
is no �′ in O such that �′

⊏�, i.e., �′⊑�
holds but �⊑�′ (resp. �⊏�′) does not.

Some components may remain unspecified
when comparing vectors. They are replaced
by a variable xj if the jth component is free
to take any value in the scale. This allows to
express generic preferences as for e.g. Pareto
ordering, i.e. ∀xi∀x′

i,
x1 · · · xn ≻ x′

1 · · · x
′
n if ∀i, xi ≥ x′

i and ∃k, xk > x′
k.



In any case, we only consider preorders
that extend Pareto ordering. Besides other
generic constraints of particular interest in-
clude those pertaining to the expression of the
relative importance of criteria. The greater
importance of criterion j w.r.t. criterion
k can be expressed under different forms.
One way to state it is by exchanging xj

and xk and writing x1 · · · xj · · · xk · · · xn ≻
x1 · · · xk · · · xj · · · xn when xj > xk.

One may think of other ways of expressing
that j is more important than k. For instance,
one may restrict the above preferences to ex-
treme values of S for the xi’s such that i 6= j

and i 6= k, since weights of importance in con-
junctive aggregation can be obtained in this
way for a large family of operators (e.g., [1]).
A more drastic way for expressing relative im-
portance would be to use a lexicographic or-
dering of the vector evaluations based on a
linear order of the levels of importance for the
criteria. In this case, the problem of ordering
the vectors would be immediately solved.
Note that the first above view of relative im-
portance, which is used in the following, is
a ceteris paribus preference [7] of subvector
(xj , xk) w.r.t. (xk, xj) for xj > xk, where the
first (resp. second) component refers to crite-
rion j (resp. k), all other vector components
being equal.

Another way to relate criteria is to express an
equal importance between them. Equal im-
portance can be expressed by stating that any
two vectors where xj and xk are exchanged,
and otherwise identical, have the same levels
of satisfaction. Formally, we write:
x1 · · · xj · · · xk · · · xn ≈ x1 · · · xk · · · xj · · · xn.

In addition to generic constraints we may also
have particular examples of preferences be-
tween some specific vectors.

Given a set of constraints (generic constraints
and examples) C of the form {ui ≻ ui′ |i =
1, · · · ,m}, where ui and ui′ are instantiated
on S, our aim is to aggregate these constraints
and compute a complete preorder � over U
that satisfies all constraints of C. Such a
preorder should not add any additional con-
straint. One may wonder why we look for a
complete preorder from the set C of partially

specified preferences. This is a debatable
question and the answer depends on queries
we intend to perform. Firstly, incomparabil-
ity is not always appropriate. For example if
C describes preferences over cars then we may
allow that two cars be incomparable, but if C
describes preferences over students’ grades, as
it is the case in our running examples later in
the paper, then we would like to have a com-
plete preorder over students in case of a com-
petitive examination. Secondly, sometimes we
do not need to compare pairs of vectors but to
determine the best ones, then those that are
immediately less preferred, and so on. Note
that some preorders, such as those induced
by the minimum aggregation operator, are ex-
cluded as soon as Pareto constraints are con-
sidered.

It is worth noticing that transitivity is re-
quired between vectors only and not between
generic constraints. More precisely if it holds
that u ≻ u′ and u′ ≻ u′′ w.r.t. some generic
constraints then we have necessarily u ≻ u′′.
However if we have two generic constraints
X ≻ Y and Y ≻ Z, where X,Y and Z are
three criteria, representing that X (resp. Y )
is more important than Y (resp. Z) then we
do not have necessarily X ≻ Z.

Example 1 Let X,Y and Z be evaluated on
a scale {a, b, c} s.t. a > b > c. X ≻ Y and
Y ≻ Z are relative importance constraints de-
fined by xyz ≻ yxz for x > y and xyz ≻ xzy

for y > z respectively. Let us now check
whether we have X ≻ Z i.e. xyz ≻ zyx

for x > z. We have abc ≻ cba obtained by
transitivity from abc ≻ bac (w.r.t. X ≻ Y ),
bac ≻ bca (w.r.t. Y ≻ Z) and bca ≻ cba

(w.r.t. X ≻ Y ). However acb is not preferred
to bca since we cannot reach bca from acb by
transitivity using the generic constraints.

Indeed generic constraints require to express
explicitly each constraint we would like to
have, for e.g. X ≻ Z in the above example.

3 Numerical aggregation approach

Aggregation of object attribute values in the
presence of interaction between criteria is es-



sential in many decision making problems.
For this purpose, several multicriteria aggre-
gation approaches have been proposed in lit-
erature [5, 6, 1]. In this section we focus on
discrete Choquet integral [5, 6].

3.1 Discrete Choquet integral

Choquet integrals [5, 6] are very popular ag-
gregation operators as they allow to model in-
teractions between criteria and thus to rep-
resent preferences that cannot be captured
by a simple weighted arithmetic mean. Us-
ing a particular measure, they aggregate val-
ued attributes describing vectors into a unique
value. A Choquet integral is based on a fuzzy
measure defined by

Definition 3 Let A be the set of attributes
and I(A) be the set of all possible subsets of
A. A fuzzy measure is a function µ from I(A)
to [0, 1] such that: (i) ∀X,Y ∈ I(A) if X ⊆ Y

then µ(X) ≤ µ(Y ), (ii) µ(∅) = 0 and (iii)
µ(A) = 1.

A discrete Choquet integral w.r.t. a fuzzy
measure µ is defined as follows:

Definition 4 Let µ be a fuzzy measure on
A = {a1, · · · , an}. The discrete Choquet inte-
gral w.r.t. µ is defined by

Chµ(a1 · · · an) =
∑

i=1,··· ,n(a(i) − a(i−1)) · µA(i)
,

where a(i) indicates that the indices have been
permuted so that 0 ≤ a(1) ≤ · · · ≤ a(n), and
A(i) = {a(i), · · · , a(n)} with a(0) = 0.

Example 2 (borrowed from [5, 6, 8])
Let A,B and C be three students evalu-
ated w.r.t. three subjects: mathematics
(M), physics (P) and literature (L). Students’
grades are summarized in Table 1. Using

student M P L

A 18 16 10
B 10 12 18
C 14 15 15

Table 1: Students’ grades.

Choquet integral with a fuzzy measure µ, the
global grade for each student is computed as
follows:

• student A: Chµ(A) = Chµ(18, 16, 10) =
10·µMPL+(16−10)·µPM +(18−16)·µM ,

• student B: Chµ(B) = Chµ(10, 12, 18) =
10 ·µMPL +(12−10) ·µPL +(18−12) ·µL,

• student C: Chµ(C) = Chµ(14, 15, 15) =
14 · µMPL + (15 − 14) · µPL,

where µX , µXY and µXY Z with X,Y,Z ∈
{M,P,L} denote the values of the fuzzy mea-
sure µ for the corresponding set of subjects.
The school gives the same importance to
mathematics and physics and is more scien-
tifically than literary oriented. Moreover the
school wants to favor well equilibrated stu-
dents without weak grades so we should have:
C preferred to A and A preferred to B, i.e.
C ≻ A ≻ B 1. As indicated before, the fuzzy
measure µ models interaction between sub-
jects. Since mathematics and physics have the
same importance and they are more important
than literature we have µM = µP , µM > µL

and µP > µL. Moreover since both math-
ematics and physics are scientific subjects,
and thus considered close, while literature is
not then the interaction between mathemat-
ics (resp. physics) and literature is higher
than the interaction between mathematics and
physics. Then µML = µPL > µPM . Therefore
we have the following set of constraints on µ:
M = {µM = µP , µM > µL, µP > µL, µML =
µPL, µML > µPM , µPL > µPM}.
In addition to this set we consider the con-
straints Chµ(C) > Chµ(A) and Chµ(A) >

Chµ(B) corresponding to the order between
the students A, B and C.
Table 2 gives an example of µ given in [8].

Using discrete Choquet integral w.r.t. µ

µM µP µL µPM µML µPL µMPL

0.45 0.45 0.3 0.5 0.9 0.9 1

Table 2: Fuzzy measure.

given in Table 2 we get Chµ(A) = 13.9,
Chµ(B) = 13.6 and Chµ(C) = 14.9. Thus
C is preferred to A and A is preferred to B.

1It has been shown in [8] that there is no weighted
arithmetic mean that gives this order over A, B and
C.



3.2 Discussion of Choquet integral

We have seen that the main component in
Choquet integral is the fuzzy measure µ. Also
the computation of µ is based on the set M
together with the ordering on A, B and C.
This makes Choquet integral very sensitive to
the constraints from which it is computed as
it is shown in the following example.

Example 3 Let us consider another student
D having 15 in physics, 15 is mathematics
and 12 in literature. Using discrete Choquet
integral w.r.t. µ given in Table 2 we get
Chµ(D) = 13.5. Then we have the follow-
ing ordering C ≻ A ≻ B ≻ D. Let us now
use another fuzzy measure µ′ which is equal to
µ except for µPL and µML. Instead we have
µ′

PL = µ′
ML = 0.8. We can check that µ′

satisfies the set of constraints on µ. Using
discrete Choquet integral w.r.t. µ′ we have
C ≻ A ≻ D ≻ B. So we still have C ≻ A ≻ B

but the ordering over B and D is reversed.

Indeed the way µ is computed requires to
compute a new fuzzy measure each time an
example or a constraint between criteria is
added. In section 4 we present a purely qual-
itative approach to rank-order the vectors on
the basis of generic constraints and examples
without resorting to a numerical aggregation.

4 A qualitative ranking approach

An elementary preference has generally the
following form:

u ≻ u′, with u, u′ ∈ U . (1)

For e.g. given three criteria X, Y and Z, a
relative importance constraint of X over Y is
written as:

xyz0 ≻ yxz0 for x > y,∀z0.

A set of constraints of the form (1) can be
written in a compact form as a set of the fol-
lowing constraints:

if u ∈ min(U1,�) and u′ ∈ max(U2,�) then u ≻ u′,

(2)
where U1 and U2 are subsets of U .
For the sake of readability, we denote con-
straints of the form (2) as C(U1,U2).

We may also have equality constraints i.e.

u ≈ u′, with u, u′ ∈ U . (3)

For e.g. given criteria X, Y , and Z; X and Y

having the same importance is written by
xyz0 ≈ yxz0,∀z0.

In our framework, constraints are gathered in
two sets C and EQ where C = {C(U i,U j)}2

and EQ = {uk ≈ ul}.

A set of constraints C∪EQ generates a partial
preorder on the set of object attribute values
provided that the set of constraints is consis-
tent. In the rest of this paper we suppose that
C ∪ EQ is consistent.

Example 4 Let us consider two subjects
“mathematics” and “literature” that are
evaluated on “a” for good, “b” for medium
and “c” for bad with a > b > c. Thus a
student having “ac” is good in mathematics
and bad in literature. Pareto ordering forces
to have xy ≻ x′y′ as soon as x > x′ and
y ≥ y′ or x ≥ x′ and y > y′ for x, y, x′, y′

ranging in {a, b, c}. Pareto principle gen-
erates the following set of constraints C =
{C({aa}, {ab, ba, ca}), C({aa, ab}, {ac, bb, bc,

cb, cc}), C({ac, ba}, {bc, cc}), C({bb}, {cb, cc,
bc}), C({ba}, {ca, bb, cb}), C({bc, cb, ca}, {cc}),
C({ca}, {cb})}. The partial preorder �p as-
sociated to C is depicted in Figure 1.a.

Figure 1: Partial preorders �p and �′
p associ-

ated to C and C ∪ C′ respectively.

2Constraints of the form (1) are a special case of
constraints of the form (2).



Since our aim is to associate a complete pre-
order to C we need to use a completion prin-
ciple in order to extend the partial preorder
�p associated to C. We distinguish two com-
pletion principles [11]:

• minimal specificity princi-
ple: it first computes the
best/undominated vectors w.r.t. �p.
Let E1 be this set. After that we select
the set of immediately preferred vectors,
i.e. those that are only dominated by
vectors in E1, and so on. Indeed, the
complete preorder that extends �p fol-
lowing the minimal specificity principle
is �= (E1, E2, · · · , En).
In Example 4 we have E1 = {aa},
E2 = {ab, ba}, E3 = {ac, ca, bb},
E4 = {bc, cb} and E5 = {cc}. So �=
({aa}, {ab, ba}, {ac, ca, bb}, {bc, cb}, {cc}).

• maximal specificity principle: it first
computes the least preferred vectors i.e.
those that do not dominate any other
tuple. Let E′

1 be this set. After that
we compute vectors that are immediately
more preferred. These vectors are those
that only dominate vectors in E′

1. Indeed
the complete preorder that extends �p

following the maximal specificity princi-
ple is �′= (E′

m, · · · , E′
1).

In Example 4 we have E′
1 = {cc},

E′
2 = {bc, cb}, E′

3 = {ca, ac, bb},
E′

4 = {ab, ba} and E′
5 = {aa}.

Then �′= (E′
5, E

′
4, E

′
3, E

′
2, E

′
1) =

({aa}, {ab, ba}, {ca, ac, bb}, {bc, cb}, {cc}).

The two preorders � and �′ obtained in Ex-
ample 4 following minimal and maximal speci-
ficity principles respectively are the same but
this is not always the case as it will be shown
in the next example which extends Example
4 with relative importance constraints:

Example 5 (Example 4 continued)
Suppose that mathematics is more important
than literature. This is translated by the
following relative importance constraint:
xy ≻ yx for x > y. The instantiation of this
constraint provides a new set of constraints:
C′ = {ab ≻ ba, ac ≻ ca, bc ≻ cb}.

The partial preorder associated to C ∪ C′

is depicted in Figure 1.b. Following the
minimal specificity principle we have �=
({aa}, {ab}, {ba, ac}, {ca, bb}, {bc}, {cb}, {cc}).
Now following the maximal speci-
ficity principle we have �′=
({aa}, {ab}, {ba}, {ac, bb}, {bc, ca}, {cb}, {cc}).

The minimal specificity principle amounts to
put a vector all the higher in the ranking as it
is dominated by less vectors according to the
constraints. The maximal specificity princi-
ple would rather amount to put a vector all
the lower in the ranking as it is dominated by
more vectors according to the constraints. In
the following, we will use minimal specificity
principle. Algorithm 1 gives a formal ap-
proach to compute a complete preorder which
extends a partial preorder following this prin-
ciple.
Let C = {C(U i,U j)} and EQ = {uk ≈ ul}.
¿From C we define the following set LC =
{(U i,U j)|C(U i,U j) ∈ C}.

Algorithm 1: Completion following the minimal
specificity principle.

Data: A set of generic constraints and examples C ∪
EQ.

Result: A complete preorder satisfying C ∪ EQ.

begin
r = 0
while U 6= ∅ do

- r ← r+1, Er = {u|∀(U i,Uj) ∈ LC, u 6∈ Uj},
α = true
while α = true do

α = false
for uk ≈ ul in EQ s.t. uk 6∈ Er or
ul 6∈ Er do α = true, Er = Er\{u

k, ul}

if Er = ∅ then Stop (inconsistent con-
straints)
- U = U\Er

- Replace each (U i,Uj) in LC by (U i\Er,U
j)

- From LC remove (U i,Uj) with empty U i

- From EQ remove uk ≈ ul s.t. uk ∈ Er.

return (E1, · · · , Er)

end

5 Comparison with Choquet

integral

In contrast to Choquet integral which is sen-
sitive to the numerical values of criteria and
coefficient of fuzzy measure whose adjustment



is not obvious, our approach relies on quali-
tative values of criteria. This qualitative as-
pect makes that the approach is general, i.e.
independent of the values of criteria, which
provides more robust results compared with
Choquet integral. In fact constraints over co-
efficients of Choquet integral’s fuzzy measure
as well as ranking over specific vectors can be
encoded in our framework by means of generic
constraints and examples respectively. Ap-
plying the minimal specificity algorithm com-
putes a complete preorder on U that satisfies
all generic constraints and examples.

Let us consider again Example 2 and show
how it can be encoded in our framework.
First, we use a qualitative scale S =
{a, b, c, d, e, f} (with a > b > c > d > e > f)
to encode students’ grades 18, 16, 15, 14, 12
and 10 respectively given in Table 1. Let
x, y, z be students’ grades in mathematics,
physics and literature respectively so x, y, z ∈
{a, b, c, d, e, f}. Then we encode the con-
straints on µ namely µM > µL, µP > µL,
µML > µPM , µPL > µPM and µP = µM by
means of generic constraints.

i) M is more important than L: At first sight
we may encode this constraint by

xyz ≻ zyx for x > z,∀y. (4)

However this encoding, apparently natu-
ral, is incorrect since it doesn’t recover
the ranking on U induced by Choquet
integral. Let us consider the following
vectors dfe, efd, ead and dae. Follow-
ing equation (4) we have dfe ≻ efd

and dae ≻ ead. However following Cho-
quet integral we have Chµ(dfe) = 12.7,
Chµ(efd) = 12.4, Chµ(dae) = 14.8 and
Chµ(ead) = 15.6. So we have well dfe

preferred to efd but dae is not preferred
to ead. This means that constraint (4) is
too weak to encode µM > µL. The reason
is that the constraint µM > µL is more
requirying than what it appears. Thus y

should be constrained rather than free to
take any value in S. Let mpl and m′p′l′

two vectors. Note that Chµ(mpl) >

Chµ(m′p′l′) reduces into µM > µL when

Chµ(mpl) = p + (l − p) · µML + (m − l) ·
µM > Chµ(m′p′l′) = p′+(m′−p′)·µML+
(l′ − m′) · µL. This supposes p ≤ l < m

and p′ ≤ m′ < l′. We put p = p′ = y,
l = m′ = z, m = l′ = x. Thus µM > µL

is encoded in our framework by

xyz ≻ zyx for x > z ≥ y. (5)

ii) P is more important than L: The same
reasoning can be made for µP > µL. It
is encoded by

xyz ≻ xzy for y > z ≥ x. (6)

iii) The interaction between M and L is
higher than the interaction between P

and M : The inequality µML > µPM

is equivalent to the following inequal-
ity between the two Choquet integrals
Chµ(mpl) = p + (l − p) · µML + (m −
l) · µM > Chµ(m′p′l′) = l′ + (p′ − l′) ·
µPM + (m′ − p′) · µM . This supposes
p < l ≤ m and l′ < p′ ≤ m′. Letting
p = l′ = y, l = p′ = z and m = m′ = x,
then µML > µPM is encoded by

xyz ≻ xzy for x ≥ z > y. (7)

iv) The interaction between P and L is
higher than the interaction between P

and M : Similarily µPL > µPM is en-
coded by

xyz ≻ zyx for y ≥ z > x. (8)

v) M and P have the same importance:

xyz ≈ yxz for all x, y, z. (9)

vi) As previously said, we suppose that
Pareto oredering holds. Namely

xyz ≻ x′y′z′ (10)

for x ≥ x′, y ≥ y′, z ≥ z′ and x >

x′ or y > y′ or z > z′.

vii) Lastly C preferred to A and A preferred
to B is encoded by

dcc ≻ abf ≻ fea (11)



In sum we have the following set of generic
constraints and examples:

C =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

xyz ≻ zyx for x > z ≥ y
xyz ≻ xzy for y > z ≥ x
xyz ≻ xzy for x ≥ z > y
xyz ≻ zyx for y ≥ z > x
xyz ≈ yxz for all x, y, z
xyz ≻ x′y′z′ for x ≥ x′, y ≥ y′, z ≥ z′

x > x′ or y > y′ or z > z′

dcc ≻ abf ≻ fea

Applying Algorithm 1 on C returns
a complete preorder with 26 strata �=
(E1, · · · , E26) with E1 = {aaa}, E2 =
{baa, aba}, E3 = {caa, aca, aab}, · · · , E26 =
{fff}. The vectors dcc, abf and fea be-
long to E12, E13 and E15 respectively. Us-
ing Choquet integral we get 77 different lev-
els: Chµ(aaa) = 18, Chµ(aba) = Chµ(baa) =
17.8, Chµ(aca) = Chµ(caa) = Chµ(fea) =
13.6, · · · , Chµ(fff) = 10. Thus our approach
gives a more compact preorder.

6 Conclusion

A qualitative method has been proposed for
building a complete preorder that agrees with
a set of constraints in a qualitative way. The
approach is fairly general, and agrees with the
way humans state their preferences in a gran-
ular manner, either in terms of generic rules
or by means of examples.
Besides, a comparative discussion on an ex-
ample suggests that the proposed approach
may be more robust, more flexible, and is
more transparent to the user (who can con-
trol precisely what is expressed by means of
the constraints) than an aggregation-based
method, which moreover requires the use of a
numerical scale in order to have a sufficiently
discriminative scale.
The use of Choquet integral is based on a
strong hypothesis that the ranking on specific
objective attribute values (dcc ≻ abf ≻ fea

in our example) does not contradict generic
constraints otherwise there is no fuzzy mea-
sure that satisfies a set of contradictory con-
straints on µ. Our Algo. 1 is also based on
this hypothesis. However a ranking on spe-
cific objective attribute values may be added
for two reasons: (i) it may give an additional
preference which is not stated by generic con-
straints, as it is the case with Choquet integral

and well treated by Algo. 1, or (ii) to express
an exception of generic constraints. The han-
dling of contradictory examples together with
generic constraints has been outlined in [4].
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