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Extending the Knowledge Compilation Map:
Closure Principles

Hélène Fargier1 and Pierre Marquis2

Abstract.

We extend the knowledge compilation map introduced by Dar-
wiche and Marquis with new propositional fragments obtained
by applying closure principles to several fragments studied
so far. We investigate two closure principles: disjunction and
implicit forgetting (i.e., existential quantification). Each intro-
duced fragment is evaluated w.r.t. several criteria, including the
complexity of basic queries and transformations, and its spatial
efficiency is also analyzed.

1 INTRODUCTION

This paper is concerned with knowledge compilation (KC). The key
idea underlying KC is to pre-process parts of the available data (i.e.,
turning them into a compiled form) for improving the efficiency of
some computational tasks (see among others [2, 1, 10, 4]). A research
line in KC [7, 3] addresses the following important issue: How to
choose a target language for knowledge compilation? In [3], the au-
thors argue that the choice of a target language for a compilation
purpose in the propositional case must be based both on the set of
queries and transformations which can be achieved in polynomial
time when the data to be exploited are represented in the language,
as well as the spatial efficiency of the language (i.e., its ability to
represent data using little space). Thus, the KC map reported in [3] is
an evaluation of dozen of significant propositional languages (called
propositional fragments) w.r.t. several dimensions: the spatial effi-
ciency (i.e., succinctness) of the fragment and the class of queries
and transformations it supports in polynomial time.

The basic queries considered in [3] include tests for consis-
tency, validity, implicates (clausal entailment), implicants, equiva-
lence, sentential entailment, counting and enumerating theory mod-
els (CO, VA, CE, EQ, SE, IM, CT, ME). The basic transformations
are conditioning (CD), (possibly bounded) closures under the con-
nectives ∧, ∨, and ¬ ( ∧ C, ∧BC, ∨C, ∨BC, ¬C) and (possibly
bounded) forgetting which can be viewed as a closure operation un-
der existential quantification (FO, SFO).

The KC map reported in [3] has already been extended to new
propositional languages, queries and transformations in [12, 5, 11].
In this paper, we extend the KC map with new propositional frag-
ments obtained by applying closure principles to several fragments
studied so far. Intuitively, a closure principle is a way to define a new
propositional fragment from a previous one. In this paper, we in-
vestigate in detail two disjunctive closure principles, disjunction (∨)
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and implicit forgetting (∃), and their combinations. Roughly speak-
ing, the disjunction principle when applied to a fragment C leads
to a fragment C[∨] which allows disjunctions of formulas from C,
while implicit forgetting applied to a fragment C leads to a fragment
C[∃] which allows existentially quantified formulas from C. Obvi-
ously enough, whatever C, C[∨] satisfies polytime closure under ∨
(∨C) and C[∃] satisfies polytime forgetting (FO). Applying any/both
of those two principles may lead to new fragments, which can prove
strictly more succinct than the underlying fragment C; interestingly,
this gain in efficiency does not lead to a complexity shift w.r.t. the
main queries and transformations; indeed, among other things, our
results show that whenever C satisfies CO (resp. CD), then C[∨] and
C[∃] satisfy CO (resp. CD).

The remainder of this paper is organized as follows. In Section
2, we define the language of quantified propositional DAGs. In Sec-
tion 3, we extend the usual notions of queries, transformations and
succinctness to this language. In Section 4, we introduce the general
principle of closure by a connective or a quantification before fo-
cusing on the disjunctive closures of the fragments considered in [3]
and studying their attractivity for KC, thus extending the KC map.
In Section 5, we discuss the results. Finally, Section 6 concludes the
paper.

2 A GLIMPSE AT QUANTIFIED PDAGS

All the propositional fragments we consider in this paper are subsets
of the following language of quantified propositional DAGs QPDAG:

Definition 1 (quantified PDAGs) Let PS be a denumerable set of
propositional variables (also called atoms).

• QPDAG is the set of all finite, single-rooted DAGs α (called for-
mulas) where each leaf node is labeled by a literal over PS or one
of the two Boolean constants � or ⊥, and each internal node is
labeled by ∧ or ∨ and has arbitrarily many children or is labeled
by ¬, ∃x or ∀x (where x ∈ PS) and has just one child.

• QpPDAG is the subset of all proper formulas of QPDAG, where a
formula α is proper iff for every literal l = x or l = ¬x labelling
a leaf of α, at most one path from the root of α to this leaf contains
quantifications of the form ∃x or ∀x, and if such a path exists, it
is the unique path from the root of α to the leaf.

Restricting the language QPDAG to proper formulas α ensures that
every occurrence of a variable x corresponding to a literal at a leaf
of α depends on at most one quantification on x, and is either free
or bound. As a consequence (among others), conditioning a proper
formula can be achieved as usual (without requiring any duplication
of nodes).
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PDAG [12] is the subset of QpPDAG obtained by removing the
possibility to have internal nodes labeled by ∃ or ∀; PDAG-NNF [3]
(resp. ∃PDAG-NNF, resp. ∀PDAG-NNF) is the subset of QpPDAG
obtained by removing the possibility to have internal nodes labeled
by ¬, ∃ or ∀ (resp. ¬, ∀, resp. ¬, ∃). Distinguished formulas from
QPDAG are the literals over PS; if V is any subset of PS, LV de-
notes the set of all literals built over V , i.e., {x,¬x | x ∈ V }. If
a literal l of LPS is an atom x from PS, it is said to be a positive
literal; otherwise it has the form ¬x with x ∈ PS and it is said to be
a negative literal. If l is a literal built up from the atom x, we have
var(l) = x. A clause (resp. a term) is a (finite) disjunction (resp.
conjunction) of literals or the constant ⊥ (resp. �). The size |α| of
any QPDAG formula α is the number of nodes plus the number of
arcs in α. The set V ar(α) of free variables of a QpPDAG formula α
is defined in the standard way.

Let I be an interpretation over PS (i.e., a total function from PS
to BOOL = {0, 1}). The semantics of a QPDAG formula α in I is
the truth value from BOOL defined inductively in the standard way;
the notions of model, logical consequence (|=) and logical equiva-
lence (≡) are also as usual.

Finally, if α ∈ QPDAG and X = {x1, . . . , xn} ⊆ PS, then
∃X.α (resp. ∀X.α) is a short for ∃x1.(∃x2.(...∃xn.α)...) (resp.
∀x1.(∀x2.(...∀xn.α)...)) (this notation is well-founded since what-
ever the chosen ordering on X , the resulting formulas are logically
equivalent).

3 QUERIES, TRANSFORMATIONS, AND
SUCCINCTNESS

The following queries CO, VA, CE, EQ, SE, IM, CT, ME for
PDAG-NNF formulas have been considered in [3]; their importance
is discussed in depth in [3], so we refrain from recalling it here; we
extend them to QpPDAG formulas and add to them the MC query
(model checking), which is trivial for PDAG formulas (every formula
from PDAG satisfies MC), but not for QpPDAG formulas.

Definition 2 (queries) Let C denote any subset of QpPDAG.

• C satisfies CO (resp. VA) iff there exists a polytime algorithm that
maps every formula α from C to 1 if α is consistent (resp. valid),
and to 0 otherwise.

• C satisfies MC iff there exists a polytime algorithm that maps ev-
ery formula α from C and every interpretation I over V ar(α) to
1 if I is a model of α, and to 0 otherwise.

• C satisfies CE iff there exists a polytime algorithm that maps every
formula α from C and every clause γ to 1 if α |= γ holds, and to
0 otherwise.

• C satisfies EQ (resp. SE) iff there exists a polytime algorithm that
maps every pair of formulas α, β from C to 1 if α ≡ β (resp.
α |= β) holds, and to 0 otherwise.

• C satisfies IM iff there exists a polytime algorithm that maps every
formula α from C and every term γ to 1 if γ |= α holds, and to 0
otherwise.

• C satisfies CT iff there exists a polytime algorithm that maps ev-
ery formula α from C to a nonnegative integer that represents the
number of models of α over V ar(α) (in binary notation).

• C satisfies ME iff there exists a polynomial p(., .) and an algo-
rithm that outputs all models of an arbitrary formula α from C in
time p(n, m), where n is the size of α and m is the number of its
models (over V ar(α)).

The following transformations for PDAG-NNF formulas have been
considered in [3]; again, we extend them to QpPDAG formulas:

Definition 3 (transformations) Let C denote any subset of
QpPDAG.

• C satisfies CD iff there exists a polytime algorithm that maps every
formula α from C and every consistent term γ to a formula from
C that is logically equivalent to the conditioning α | γ of α on
γ, i.e., the formula obtained by replacing each free occurrence of
variable x of α by � (resp. ⊥) if x (resp. ¬x) is a positive (resp.
negative) literal of γ.

• C satisfies FO iff there exists a polytime algorithm that maps every
formula α from C and every subset X of variables from PS to a
formula from C equivalent to ∃X.α. If the property holds for each
singleton X, we say that C satisfies SFO.

• C satisfies ∧C (resp. ∨C) iff there exists a polytime algorithm that
maps every finite set of formulas α1, . . . , αn from C to a formula
of C that is logically equivalent to α1 ∧ . . .∧αn (resp. α1 ∨ . . .∨
αn).

• C satisfies ∧BC (resp. ∨BC) iff there exists a polytime algorithm
that maps every pair of formulas α and β from C to a formula of
C that is logically equivalent to α ∧ β (resp. α ∨ β).

• C satisfies ¬C iff there exists a polytime algorithm that maps every
formula α from C to a formula of C logically equivalent to ¬α.

Finally, the following notion of succinctness (modeled as a pre-
order over propositional fragments) has been considered in [3]; we
also extend it to QPDAG formulas:

Definition 4 (succinctness) Let C1 and C2 be two subsets of
QPDAG. C1 is at least as succinct as C2, denoted C1 ≤s C2, iff there
exists a polynomial p such that for every formula α ∈ C2, there exists
an equivalent formula β ∈ C1 where |β| ≤ p(|α|).

∼s is the symmetric part of ≤s defined by C1 ∼s C2 iff C1 ≤s C2

and C2 ≤s C1. <s is the asymmetric part of ≤s defined by C1 <s C2

iff C1 ≤s C2 and C2 
≤s C1.

4 EXTENDING THE KC MAP BY
DISJUNCTIVE CLOSURES

4.1 Closure Principles

Intuitively, a closure principle is a way to define a new propositional
fragment starting from a previous one, through the application of
“operators” (i.e., connectives or quantifications):3

Definition 5 (closures) Let C be a subset of QPDAG and � be any
finite subset of {∨,∧,¬, ∃, ∀}. C[�] is the subset of QPDAG induc-
tively defined as follows:4

• if α ∈ C, then α ∈ C[�],
• if δ ∈ � ∩ {∨,∧}, and αi ∈ C[�] with i ∈ 1 . . . n and n > 0,

then δ(α1, . . . , αn) ∈ C[�],
• if ¬ ∈ � and α ∈ C[�], then ¬α ∈ C[�],
• if δ ∈ � ∩ {∀, ∃}, α ∈ C[�], and x ∈ PS then δx.α ∈ C[�].

Observe that if C ⊆ QpPDAG then C[�] ⊆ QpPDAG: closure does
not question properness. We also have the following easy proposi-
tion, which makes precise the interplay between elements of � in
the general case:

3 Other closure principles could have been defined in a similar way, would
the underlying propositional language contain other connectives.

4 In order to alleviate the notations, when � = {δ1, . . . , δn}, we shall write
C[δ1, . . . , δn] instead of C[{δ1, . . . , δn}].
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Proposition 1 For every subset C of QPDAG and every finite subsets
�1, �2 of {∨,∧,¬, ∃, ∀}, we have:

• C[∅] = C.
• If �1 ⊆ �2 then C[�1] ⊆ C[�2].
• (C[�1])[�2] ⊆ C[�1 ∪�2].
• If �1 ⊆ �2 or �2 ⊆ �1 then (C[�1])[�2] = C[�1 ∪�2].

Before focusing on some specific “operators”, we add to succinct-
ness the following notions of polynomial translation and polynomial
equivalence, which prove helpful in the following evaluations:

Definition 6 (polynomial translation) Let C1 and C2 be two sub-
sets of QPDAG. C1 is said to be polynomially translatable into C2,
noted C1 ≥P C2, iff there exists a polytime algorithm f such that for
every α ∈ C1, we have f(α) ∈ C2 and f(α) ≡ α.

Like ≥s, ≥P is a preorder (i.e., a reflexive and transitive relation)
over the power set of QPDAG. It refines the spatial efficiency pre-
order ≥s over QPDAG in the sense that for any two subsets C1 and
C2 of QPDAG, if C1 ≥P C2, then C1 ≥s C2 (but the converse does
not hold in general). Thus, if C1 is polynomially translatable into C2,
we have that C2 is at least as succinct as C1. Furthermore, whenever
C1 is polynomially translatable into C2, every query which is sup-
ported in polynomial time in C2 also is supported in polynomial time
in C1; and conversely, every query which is not supported in polyno-
mial time in C1 unless the polynomial hierarchy collapses cannot be
supported in polynomial time in C2, unless the polynomial hierarchy
collapses.

The corresponding indifference relation ∼P given by C1 ∼P C2

iff C1 ≥P C2 and C2 ≥P C1, is an equivalence relation; when
C1 ∼P C2, C1 and C2 are said to be polynomially equivalent. Ob-
viously enough, polynomially equivalent fragments are equally effi-
cient (and succinct) and possess the same set of tractable queries and
transformations.

Before presenting some useful polynomial equivalences, we first
need to introduce the notion of stability under uniform renaming.
It characterizes the subsets C of QpPDAG for which, intuitively, the
choice of variables names does not really matter; technically it allows
to rename (bound) variables in a formula α of C without leaving the
fragment.

Definition 7 (stability under uniform renaming) Let C be any
subset of QpPDAG. C is stable under uniform renaming iff for ev-
ery α ∈ C, there exists arbitrarily many distinct bijections r from
V ar(α) to subsets V of fresh variables from PS (i.e., not occurring
in α) such that the formula r(α) obtained by replacing in α (in a
uniform way) every free occurrence of x ∈ V ar(α) by r(x) belongs
to C as well.

We are now ready to present more specific results:

Proposition 2 Let C be any subset of QpPDAG, s.t. C is stable under
uniform renaming. We have:

• (C[∃])[∨] ∼P (C[∨])[∃] ∼P C[∨, ∃].
• (C[∀])[∧] ∼P (C[∧])[∀] ∼P C[∧, ∀].

It is important to note that such polynomial equivalences, showing
in some sense that the “sequential” closure of a propositional frag-
ment stable under uniform renaming by a set of “operators” among
{∨, ∃} (resp. among {∧, ∀}) is equivalent to its “parallel” closure,
cannot be systematically guaranteed for any choices of fragments

and “operators”. For instance, if C is the set LPS ∪ {�,⊥}, then
(C[∨])[∧] is the set of all CNF formulas, (C[∧])[∨] is the set of all
DNF formulas, and C[∨,∧] is the set of all PDAG-NNF formulas.
From the succinctness results reported in [3], it is easy to conclude
that those three fragments are not pairwise polynomially equivalent.
Similarly, if C is the set of all clauses over PS, then (C[∧])[∃] and
C[∧, ∃] are polynomially equivalent to CNF[∃], but (C[∃])[∧] is poly-
nomially equivalent to CNF, which is not polynomially equivalent to
CNF[∃] (this follows from the forthcoming Proposition 8).

4.2 Disjunctive Closures

In the rest of this paper, we will focus on the two disjunctive closure
principles [∨] (closure by disjunction), [∃] (closure by forgetting),
and their combinations. At the start, this choice was motivated by
the fact that any closure C[∃] obviously satisfies forgetting, which is
an important transformation for a number of applications, including
planning, diagnosis, reasoning about action and change, reasoning
under inconsistency (see e.g. [2, 8, 9] for details), while any closure
C[∨] clearly preserves the crucial query CO and transformation CD.

Our purpose is now to locate on the KC map all languages ob-
tained by applying the disjunctive closure principles to the eight
languages PDAG-NNF, DNNF, CNF, OBDD< DNF, PI, IP, MODS
considered (among others) in [3]; all those languages are subsets of
PDAG:

• PDAG-NNF is the subset of PDAG consisting of negation normal
form formulas.

• DNNF is the subset of PDAG-NNF consisting of decomposable
negation normal form formulas.

• CNF is the subset of PDAG-NNF consisting of conjunctive normal
form formulas.

• OBDD< is the subset of DNNF consisting of ordered binary deci-
sion diagrams. < is a strict and complete ordering over PS and
we assume the ordered set (PS, <) of order type η (the order type
of the set of rational numbers with its familiar ordering).5

• DNF is the subset of DNNF consisting of disjunctive normal form
formulas.

• PI is the subset of CNF consisting of all prime implicates (or
Blake) formulas.

• IP is the subset of DNF consisting of all prime implicants formu-
las.

• MODS is the subset of DNF consisting of disjunctions α of canon-
ical terms over V ar(α).6

For space reasons, we cannot provide formal definitions of those
languages here (they can be found e.g. in [3, 12]).

It is easy to prove that the eight languages PDAG-NNF, DNNF,
CNF, OBDD< DNF, PI, IP, MODS are stable under uniform renam-
ing. Hence, thanks to Propositions 1 and 2, it is enough to consider
the three fragments C[∃], C[∨], and C[∨, ∃] for C being any on the
eight above languages. Applying the three disjunctive closure prin-
ciples [∨], [∃], and [∨, ∃] to the eight languages leads to consider
twenty-four fragments. The following result shows that many frag-
ments do not need to be considered separately, because they are poly-
nomially equivalent.

5 This technical, yet harmless, condition ensures that OBDD< is stable under
uniform renaming, which cannot be guaranteed in the general case for this
fragment (due to the constraint of compatibility with < imposed to every
variable path from the root of any OBDD< formula to any of its leaves).

6 If α is a MODS formula and x ∈ V ar(α) then every term of α contains a
literal l s.t. var(l) = x.
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Proposition 3

• CNF[∃] ∼P CNF[∨, ∃]
∼P PDAG-NNF[∃] ∼P PDAG-NNF[∨, ∃].

• PDAG-NNF ∼P PDAG-NNF[∨].
• DNNF ∼P DNNF[∨] ∼P DNNF[∃] ∼P DNNF[∨, ∃].
• OBDD<[∃] ∼P OBDD<[∨, ∃].
• PI[∨] ∼P PI[∨, ∃].
• PI ∼P PI[∃].
• DNF∼P DNF[∨]∼P DNF[∃]∼P DNF[∨, ∃]∼P IP[∨]∼P IP[∃]

∼P IP[∨, ∃] ∼P MODS[∨] ∼P MODS[∨, ∃].
• MODS ∼P MODS[∃].

In the light of Proposition 3, it is thus enough to consider the
five remaining languages, only, i.e., CNF[∃], CNF[∨], OBDD<[∃],
OBDD<[∨], and PI[∨]; “remaining” means here not identified as
polynomially equivalent to one of the languages already located
within the KC map in [3].

4.3 Queries and Transformations

Let us present first the general results we obtained about tractable
queries and transformations:

Proposition 4 Let C be any subset of QpPDAG.

• If C satisfies CO (resp. CD) then C[∨], C[∃] and C[∨, ∃] satisfy
CO (resp. CD).

• If C satisfies CO and CD then C satisfies CE and ME.
• If C satisfies CO and CD then C, C[∨], C[∃] and C[∨, ∃] satisfy

MC.
• C[∨] and C[∨, ∃] satisfy ∨C (hence ∨BC) and C[∃] and C[∨, ∃]

satisfy FO (hence SFO).
• If C satisfies ∧C (resp. ∧BC, ∨C, ∨BC) and is stable under uni-

form renaming, then C[∃] satisfies ∧C (resp. ∧BC, ∨C, ∨BC).

We have also derived some more specific results, about the five
remaining languages:

Proposition 5 The results in Table 1 hold.

CO VA CE IM EQ SE CT ME MC
CNF[∃] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
CNF[∨] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ √

OBDD<[∃]
√ ◦ √ ◦ ◦ ◦ ◦ √ √

OBDD<[∨]
√ ◦ √ ◦ ◦ ◦ ◦ √ √

PI[∨]
√ ◦ √ ◦ ◦ ◦ ◦ √ √

Table 1. Subsets of the ∃PDAG-NNF language and their corresponding
polytime queries.

√
means “satisfies” and ◦ means “does not satisfy unless

P = NP.”

This proposition shows in particular that OBDD<[∃], OBDD<[∨],
PI[∨] satisfy the same tractable queries (among those considered
here); such queries include all the tractable queries offered by
CNF[∨]; CNF[∃] offers no tractable query.

As to transformations, we have obtained the following results:

Proposition 6 The results in Table 2 hold.

CD FO SFO ∧C ∧BC ∨C ∨BC ¬C

CNF[∃]
√ √ √ √ √ √ √ ◦∗

CNF[∨]
√ • √

?
√ √ √

?
OBDD<[∃]

√ √ √ ◦ √ √ √ ◦
OBDD<[∨]

√
?

√ ◦ √ √ √ ◦
PI[∨]

√ √ √ ◦ ?
√ √ ◦

Table 2. Subsets of the ∃PDAG-NNF language and their corresponding
polytime transformations.

√
means “satisfies,” • means “does not satisfy,” ◦

means “does not satisfy unless P=NP.” and ◦∗ means “does not satisfy
unless the polynomial hierarchy collapses.”

This proposition shows in particular that OBDD<[∃] satisfies at
least all the transformations offered by OBDD<[∨] and PI[∨];
CNF[∨] does not satisfy FO; CNF[∃] satisfies all transformations but
¬C.

Propositions 5 and 6 also show that preservation results by dis-
junctive closures (as the ones reported in Proposition 4 and related
to CO, CD, ∧C, ∧BC, ∨C, ∨BC) do not hold for VA, IM, EQ,
SE, CT, or ¬C: moving from a fragment C to one of its disjunctive
closures C[∨], C[∃], or C[∨, ∃] may easily lead to give up VA, IM,
EQ, SE, CT and ¬C (just take C = OBDD<).

4.4 Succinctness

For space reasons, we split our succinctness results into two propo-
sitions (and two tables). In the first table, we compare w.r.t. spatial
efficiency ≤s the five remaining fragments we have considered.

Proposition 7 The results in Table 3 hold.

CNF[∃] CNF[∨] OBDD<[∃] OBDD<[∨] PI[∨]

CNF[∃] ∼s ≤s ≤s ≤s ≤s

CNF[∨] �≤s ∼s �≤s �≤s ≤s

OBDD<[∃] �≤∗
s �≤∗

s ∼s ≤s ?
OBDD<[∨] �≤∗

s �≤∗
s ? ∼s ?

PI[∨] �≤s �≤∗
s �≤s �≤s ∼s

Table 3. Succinctness of target compilation languages. ∗ means that the
result holds unless the polynomial hierarchy collapses.

In the second table, we compare w.r.t. ≤s the five remaining frag-
ments with the eight fragments PDAG-NNF, DNNF, CNF, OBDD<

DNF, PI, IP, MODS:

Proposition 8 The results in Table 4 hold.

CNF[∃] CNF[∨] OBDD<[∃] OBDD<[∨] PI[∨]

PDAG-NNF ?, ≥s ≤s, �≥s ≤s, �≥∗
s ≤s, �≥∗

s ≤s, �≥s

CNF �≤s, ≥s �≤s, ≥s �≤s, �≥∗
s �≤s, �≥∗

s �≤s, �≥∗
s

DNNF �≤∗
s , ≥s �≤∗

s , �≥s ≤s, ? ≤s, ? ?, �≥∗
s

DNF �≤s, ≥s �≤s, ≥s �≤s, ≥s �≤s, ≥s �≤s, ≥s

OBDD< �≤s, ≥s �≤s, �≥s �≤s, ≥s �≤s, ≥s �≤s, �≥s

PI �≤s, ≥s �≤s, ≥s �≤s, ? �≤s, ? �≤s, ≥s

IP �≤s, ≥s �≤s, ≥s �≤s, ≥s �≤s, ≥s �≤s, ≥s

MODS �≤s, ≥s �≤s, ≥s �≤s, ≥s �≤s, ≥s �≤s, ≥s

Table 4. Succinctness of target compilation languages. ∗ means that the
result holds unless the polynomial hierarchy collapses.
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5 DISCUSSION

In the previous sections, we have listed a number of general results
(linking propositional fragments to their disjunctive closures) and
specific results (i.e., pertaining to some specific fragments).

As to general results, Proposition 4 shows in particular that, under
the stability under uniform renaming requirement (which is not very
demanding), whenever a QpPDAG fragment C satisfies CO and CD,
the associated fragment C[∨, ∃] satisfies CO, CD, CE, ME, MC, ∨C
and FO. Thus C[∨, ∃] gives ∨C and FO “for free”; indeed, from the
obvious inclusion C ⊆ C[∨, ∃], it turns out that C[∨, ∃] is at least as
succinct as C. Furthermore, Proposition 4 shows that, under the same
stability condition, closure by forgetting preserves CO, CD, ∧C,
∧BC, ∨C, and ∨BC; thus moving from C to its closure by forget-
ting C[∃] may lead to improve the spatial efficiency (and, for sure, not
to decrease it!), without a complexity shift w.r.t. any of these queries
and transformations; thus, for instance, OBDD<[∃] (resp. CNF[∃]) is
stricly more succinct than OBDD<(resp. CNF).

As to specific results, our results show PI[∨] as a fragment chal-
lenging PI, when VA, IM, EQ, SE are not required by the applica-
tion under consideration. Indeed, like PI, its closure PI[∨] satisfies
CO, CE, and ME; besides, PI[∨] offers more tractable transforma-
tions than PI and is strictly more succinct than it.

Our results also show OBDD<[∃] (which is polynomially equiva-
lent to OBDD<[∨, ∃]) as an interesting alternative to DNNF for ap-
plications where ∧BC is required (DNNF does not satisfy ∧BC).
While we ignore whether DNNF is strictly more succinct than
OBDD<[∃] or not, we know that OBDD<[∃] is strictly more succinct
than OBDD< and DNF. Furthermore, we know that OBDD<[∃] satis-
fies the same polytime queries as DNNF or DNF, and the same poly-
time transformations as DNF, and strictly more than DNNF.

Thus, OBDD<[∃] can prove useful for applications where CO,
CE, ME, MC, CD, FO, ∧BC, ∨C are enough. As a matter of
example, consider a preference-based search problem (e.g. the con-
figuration of a “simple product” like a travel) where the input data
is given by some hard constraints (the feasible travels), plus some
soft constraints encoding the current choices of the user. Notice
that since several variables can be involved in the soft constraints,
complex choices can be represented (for instance α = (loc1 ⇔
(acc1 ∨ acc2 ∨ acc3)) ∧ (¬loc2 ∨ acc4) ∧ (¬acc3 ∨ ¬acc4) ex-
pressing the user’s choices as to the possible locations and the types
of accommodations); this is a great advantage over current systems
which restrict the representation of user’s choices to literals. If the
conjunction of the constraints is inconsistent, the soft constraints
have to be relaxed. A way to perform this relaxation is to weaken
the soft constraints by forgetting some variables in them (see [9]).
Thus, ∃acc3.α ≡ ((¬loc1 ∨acc1 ∨acc2 ∨acc4)∧ (¬acc1 ∨ loc1)∧
(¬acc2 ∨ loc1)∧ (¬loc2 ∨ acc4)) is the relaxation of α obtained by
removing whatever was imposed on the accomodation acc3. Such
a relaxation can prove sufficient to lead to a solution. In the light
of our results, each step of such an interactive process (which con-
sists of consistency checks, followed by relaxation steps until con-
sistency is reached, and finally the generation of some solutions) can
be achieved in polynomial time, provided that the hard constraints
and the soft constraints have been first compiled into OBDD< for-
mulas; the approach is as follows: (1) conjoin the hard and the soft
constraints, which can be done in polynomial time since OBDD<[∃]
satisfies ∧BC, (2) determine in polynomial time whether the result
is consistent or not (OBDD<[∃] satisfies CO), (3) if this is the case
generate in polynomial time one or several solutions (OBDD<[∃] sat-
isfies ME) else forget in polynomial time some variables in the soft

constraints (OBDD<[∃] satisfies FO) and resume from (1).

6 CONCLUSION

In this paper, we have extended the KC map with new propositional
fragments obtained by applying disjunctive closure principles to sev-
eral fragments studied so far. We have investigated two closure prin-
ciples, disjunction and implicit forgetting (i.e., existential quantifica-
tion), and their combinations.

This paper calls for a number of perspectives. One of them con-
sists in removing the question marks which remain in the previous
tables. Another issue for further research concerns the principle of
closure by disjunction: notwithstanding the fact that it “commutes”
with forgetting, it has its own interest since it allows to render com-
plete every incomplete propositional fragments containing the set of
all terms over PS.7 Accordingly, another perspective consists in ex-
tending further the KC map by applying the disjunctive closures at
work here to other propositional languages (e.g. the set of all Horn
CNF formulas), and evaluating the resulting fragments. [6] is a first
step in this direction.
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