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We study the initial trace problem for positive solutions of semilinear heat equations with strong absorption. We show that in general this initial trace is an outer regular Borel measure. We emphasize in particular the case where u satisfies (E) ∂tu -∆u + t α |u| q-1 u = 0, with q > 1 and α > -1 and prove that in the subcritical case 1 < q < qα,N := 1 + 2(1 + α)/N the initial trace establishes a one to one correspondence between the set of outer regular Borel in measures R N and the set of positive solutions of (E) in R N × R+.

Introduction

In this paper we study the initial trace problem for positive solutions of

∂ t u -∆u + g(x, t, u) = 0 dans Q Ω T := Ω × (0, T ) (1.1)
where Ω is an open domain in R N , g ∈ C(Ω × R + × R) such that g(x, t, .) is nondecreasing ∀(x, t) ∈ Ω × R and rg(x, t, r) ≥ 0 for all (x, t, r) ∈ Ω × R + × R. Our first result establishes the existence of an initial trace.

Theorem A Assume g satisfies the above conditions and that equation (1.1) possesses a barrier at any z ∈ Ω. If u ∈ C 1 (Q Ω T ) is a positive solution of (1.1), it admits an initial trace which belongs to the class of outer regular positive Borel measure in Ω.

The barrier assumption will be made precise later on in full generality. It is fulfilled if g(x, t, r) = h(x)t α |r| q-1 r with α > -1, q > 1 and h ∈ L ∞ loc (Ω) satisfies inf ess h > 0 for any compact subset K ⊂ Ω, or if g satisfies the Keller-Osserman condition, that is g(x, t, r) ≥ h(r) ≥ 0 where h is nondecreasing and there exists a such that (1.

2)

The initial trace of positive solutions of (1.1) exists in the following sense: there exists a relatively closed set S ⊂ Ω and a positive Radon measure µ on R := Ω \ S with the following properties: (i) for any x 0 ∈ S and any ǫ > 0 lim t→0 Bǫ(x0)∩Ω u(x, t)dx = ∞, (1.3)

(ii) for any ζ ∈ C c (R) lim t→0 Ω u(x, t)ζ(x)dx = Ω ζdµ.
(1.4)

The couple (S, µ) is unique and characterizes a unique positive outer regular Borel measure ν on Ω.

A similar notion of boundary trace has been introduced by Marcus and Véron [START_REF] Marcus | The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption[END_REF] in the study of positive solutions of -∆u + g(x, u) = 0 in Ω. (1.5) This notion in itself has turned out to be a very usefull tool for classifying the positive solutions of (1.5).

In the second part we concentrate on the particular case of equation

∂ t u -∆u + t α |u| q-1 u = 0 dans Q Ω T (1.6)
where T > 0, α > -1 and q > 1. Among the most useful tools, we point out the description of positive solutions with an isolated singularity at (a, 0) for a ∈ Ω, whenever they exist: they are solutions u of (1.6) in Q Ω T , which belong to C 2,1 Q Ω T ∩ C (Ω × [0, T )\{(a, 0)}) and satisfy u(x, 0) = 0 in Ω\{a}.

(1.7)

When α = 0, Brezis and Friedman prove in [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF] that if B 2R (a) ⊂ Ω, then any such solution satisfies u(x, t) ≤ C (N, q, R)

|x -a| 2 + t 1 q-1 ∀(x, t) ∈ B R (a)\{0} × [0, T ].
(1.8)

They also prove that if 1 < q < q N := 1 + 2 N and k > 0 there exist singular solutions with initial data u(., 0) = kδ a , unique if u vanishes on ∂Ω × [0, T ]. In this range of exponents, Brezis, Peletier, Terman obtain in [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF] the existence and uniqueness of a very singular solution of (1.6), always with α = 0: it is a positive solution in

Q ∞ := Q R N ∞ under the form v 0 (x, t) = t -1/(q-1) V 0 x √ t ,
where V 0 > 0 is C 2 and satisfies

-∆V 0 -1 2 η.∇V 0 -1 q-1 V 0 + V q 0 = 0 in R N lim |η|→∞ |η| 2 q-1 V 0 (η) = 0.
(1.9)

Actually, Kamin and Peletier show that v 0 is the limit of the solutions u k of (1.6) in Q ∞ which satisfy u(., 0) = kδ 0 . The very singular singular solution plays a fundamental role in Marcus and Véron's description [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] of the initial trace of positive solutions of (1.6) with α = 0. In [START_REF] Marcus | Initial trace of positive solutions to semilinear parabolic inequalities[END_REF], Marcus et Véron study this equation when α ≥ 0 and 1 < q < q α,N = 1 + 2(1+α) N . They obtain the existence of a self-similar solution of (1.6) in Q ∞ under the form

v α (x, t) = t -1+α q-1 V α x √ t ,
which satisfies lim t→0 v α (x, t) = 0 ∀x = 0 and lim

t→0 Bǫ v α (x, t)dx = ∞ ∀ǫ > 0.
The function V α is nonnegative and verifies

-∆V α - 1 2 η.∇V α - 1 + α q -1 V α + V q α = 0 in R N . (1.10) Furthermore V α (η) = C|η| 2(1+α) q-1 -N e -|η| 2 4 
(1 + o(1)) as |η| → ∞.

(1.11)

If 1 < q < q α,N , they show that for every k > 0 there exists a unique solution u kδa of (1.6) in Q ∞ with initial data kδ a . Furthermore lim k→∞ u kδa = v α . Actually the limitation α ≥ 0 can be relaxed to α > -1 has we will see it later on. Furthermore Q ∞ can be replaced by Q Ω ∞ provided ∂Ω is compact and smooth enough and u kδa vanishes on ∂Ω × [0, ∞).

In this article we extend Brezis-Friedman removability result to equation (1.6). We also extend Oswald's classification of positive isolated singularities [START_REF] Oswald | Isolated positive singularities for a nonlinear heat equation[END_REF]. The starting point of our study is the following extension of estimate (1.8) valid for any α > -1 and q > 1.

u(x, t) ≤ C (N, q, α, R)

|x -a| 2 + t 1+α q-1 ∀(x, t) ∈ B R \{a} × [0, T ].
(1.12)

The obstacle for obtaining such an estimate arises when α > 0 and the absorption term t α u q is degenerate near t = 0. We overcome this difficulty by a delicate construction of 1-dim self-similar supersolutions. Thanks to this estimate, we obtain that the following classification result holds.

Theorem B Assume 1 < q < q α,N and u ∈ C 1 (Q Ω T ) ∩ C(Ω × [0, T ]\{(a, 0))}) is a solution of (1.6) which vanishes on Ω \ {a} at t = 0. Then (i) either there exists k ≥ 0 such that u(., 0) = kδ a and u(x, t) ∼ kE(xa, t) as (x, t) → (a, 0), (1.13) where E(x, t) = (4πt) -N 2 e -|x| 2 4t , (ii) or u(x, t) ∼ v α (xa, t) as (x, t) → (a, 0). (1.14) In the supercritical case the following removability statement holds.

Theorem C Assume q ≥ q α,N and u ∈ C 1 (Q Ω T ) ∩ C(Ω × [0, T ]\{(a, 0))}
) is a solution of (1.6) which vanishes on Ω \ {a} at t = 0. Then u can be extended by continuity as a function in C(Ω × [0, T ]).

We prove that equation (1.6) admits a barrier at any z ∈ Ω. More precisely we construct a positive solution w BR of (1.6) in Q BR ∞ which tends to 0 locally uniformly in B R when t → 0 and which blows-up uniformly on ∂B R × [τ, ∞), for any τ > 0. Applying Theorem A, we infer that any positive solution admits an initial trace which is an outer regular Borel measure ν ≈ (S, µ). Using sharp parabolic Harnack inequality and a concentration principle, we prove the following result which is the key-stone for analyzing the behaviour of u on the set S.

Theorem D Assume 1 < q < q α,N and u ∈ C 2,1 (Q Ω T )
is a positive solution of (1.6) with initial trace (S, µ). Then for any a ∈ S there holds

u(x, t) ≥ u ∞,a (x, t) ∀(x, t) ∈ Q Ω T (1.15)
where u ∞,a = lim k→∞ u kδa , u kδa being the solution of (1.6) in Q Ω T with initial trace kδ a and which vanishes on ∂Ω × [0, T ].

It is important to notice that the behaviour of u ∞,a near (a, 0) is given by (1.14) and (1.11). Using (1.15), (1.12) and sharp asymptotics of the function V α , we are able to prove the following result which extends Theorem A. Theorem E Assume 1 < q < q α,N and Ω ⊂ R N is open with a C 2 compact boundary, eventually empty. Then for any couple (S, µ) where S ⊂ Ω is relatively closed and µ ∈ M + (Ω \ S), there exists a maximal positive solution u and a minimal positive solution u of (1.6), which belong to C 2,1 (Q Ω T ) ∩ C(Ω × (0, T ]), satisfy (1.3) and (1.4) and vanish on

∂Ω × (0, T ]. If inf{|z -z ′ | : z ∈ S, z ′ ∈ Ω c } > 0 and µ is bounded in a neighborhood of ∂Ω, then u = u.

Initial trace

In this section Ω ⊂ R N is an open domain, Q Ω T = Ω × (0, T ), ∂ ℓ Q Ω T = Ω × {0} ∪ ∂Ω × [0, T ) and g ∈ C(Ω × R + × R). If u is defined in Ω × R + , we denote by g • u the function (x, t) → g(x, t, u(x, t)). We say that g belongs to H (resp H 0 ) if g(x, t, r) ≥ 0 ∀(x, t, r) ∈ Ω × R + × R + (resp. g ∈ H and r → g(x, t, r) is nondecreasing ). (2.1)
We denote by M(Ω) the set of Radon measures in Ω, and by

M b (Ω) (resp. M b,ρ (Ω)) the subset of Radon measures such that Ω d |µ| < ∞ resp. Ω ρd |µ| < ∞ ,
where ρ(x) := dist (x, ∂Ω). Their positive cones are respectively M + (Ω), M b + (Ω) and M b,ρ + (Ω).

Definition 2.1 Let S be a relatively closed subset of Ω and µ a Radon measure on R := Ω \ S. We say that a nonnegative function u ∈ C(Q Ω T ) admits the couple (S, µ) for initial trace if

lim t→0 R u(x, t)ζ(x)dx = R ζdµ ∀ζ ∈ C c (R),
and

lim t→0 U u(x, t)dx = ∞ ∀U ⊂ Ω, U open, U ∩ S = ∅
The set S is the set of singular initial points of u and its complement R the set of regular initial points. We write tr Ω (u) = (S, µ).

Let μ be the extension of µ as a locally bounded Borel measure. To the couple (S, μ) we can associate a unique outer regular Borel measure ν defined by

ν(E) = ∞ ∀E ⊂ Ω : E Borel, E ∩ S = ∅ μ(E) ∀E ⊂ Ω : E Borel, E ⊂ R. (2.2) Lemma 2.1 Assume Ω is a bounded open domain with a C 2 boundary, T > 0, g ∈ H, and let u ∈ C(Ω × (0, T ]) be a positive solution of ∂ t u -∆u + g •u = 0 in Q Ω T . (2.3) 
If g •u ∈ L 1 ρ (Q Ω T ), then u ∈ L ∞ 0, T, L 1 ρ (Ω) and there exists µ ∈ M ρ + (Ω) such that lim t→0 Ω u(x, t)ζ(x)dx = Ω ζdµ ∀ζ ∈ C c (Ω).
(2.4)

Proof. If φ 1 > 0 is the first eigenfunction of -∆ in W 1,2 0 (Ω) and λ 1 is the corresponding eigenvalue, we have

d dt Ω uφ 1 dx + λ 1 Ω uφ 1 dx + Ω g •u φ 1 dx + ∂Ω u ∂φ 1 ∂ν dS = 0,
where ν is the normal vector. Set X = Ω uφ 1 dx, then by Hopf Lemma,

X ′ + λ 1 X + Ω g •u φ 1 dx ≥ 0 which yields to d dt e λ1t X + e λ1t Ω g •u φ 1 dx ≥ 0. For s ∈ (t, T ) d dt e λ1t X - T t e λ1s Ω g •u φ 1 dxds ≥ 0,
which means that the mapping

t → e λ1t X - T t e λ1s Ω g •u φ 1 dxds is nondecreasing. Therefore e λ1t X - T t e λ1s Ω g •u φ 1 dxds ≤ e λ1T X.
and finally

X ≤ e λ1(T -t) X + e -λ1t T t e λ1s Ω g •u φ 1 dxds.
Since ρ -1 φ 1 is positively bounded from above and from below, u ∈ L ∞ 0, T, L 1 ρ (Ω) and there exists a sequence {t n } decreasing to 0 and a measure µ

∈ M ρ + (Ω) such that lim tn→0 Ω u(x, t n )ζdx = Ω ζdµ ∀ζ ∈ C c (Ω). If ζ ∈ C 2 c (Ω) there holds Ω u(x, t n )ζdx = T tn Ω (g •u ζ -u∆ζ) dxdt + Ω u(x, T )ζdx, thus Ω ζdµ = Q Ω T (g •u ζ -u∆ζ) dxdt + Ω u(x, T )ζdx.
This implies that µ is uniquely determined and u(., t) converges to µ in the weak sense of measures.

Corollary 2.1 Assume Ω is an open domain, g ∈ H and u ∈ C 2,1 (Q Ω T )
is a positive solution of (2.4). Suppose that for any z ∈ Ω there exists an open neighborhood U ⊂ Ω such that

T 0 U g •udxdt < ∞.
Then u(x, t) ∈ L ∞ 0, T, L 1 loc (Ω) and there exists a positive Radon measure µ on U such that

lim t→0 R u(x, t)f (x)dx = R f dµ ∀f ∈ C c (R).
Proof. We apply the previous lemma in replacing U by a ball B ǫ (z) and conclude by a partition of unity.

The following class of nonlinearity has been introduced by Marcus and Véron [START_REF] Marcus | The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption[END_REF] in order to study the boundary trace of solutions of elliptic equations.

Definition 2.2 A function g ∈ H is a coercive nonlinearity in Q Ω

T if, for every subdomain Ω ′ of Ω and every ǫ ∈ (0, T ), the set of positive solutions of (1.1) 

in Q Ω ′ ǫ,T := Ω ′ × (ǫ, T ) is uniformly bounded in compact subsets of Q Ω ′ ǫ,T .
Definition 2.3 Let z ∈ Ω. We say that equation (1.1) possesses a strong barrier at z if there exists a number r 0 ∈ (0, ρ(z)) such that, for every r ∈ (0, r 0 ), there exists a positive supersolution w = w r,z of (1.1) in B r (z) × (0, T ) such that

w ∈ C (B r (z) × [0, T )) , lim |x-z|→r w(x, t) = ∞ locally uniformly if t ∈ (0, T ). (2.5) Lemma 2.1 Assume g ∈ H is a coercive nonlinearity in Q Ω T , then the set of solutions of (1.1) in Q Ω
T is uniformly bounded from above in every compact subset of Q Ω T . Furthermore, if g ∈ H 0 , A ⊂ Ω is open and (1.1) possesses a strong barrier at every point of z ∈ A, then the set of solutions u of (1.1) such that u ∈ C (A × [0, T )) and u(x, 0) = 0 on A is uniformly bounded from above in every compact subset of A × [0, T ).

Proof. Let K be a compact subset of Q Ω T and let Ω ′ be a smooth, bounded domain of Ω and ǫ > 0 such that

K ⊂ Q Ω ′ ǫ,T Let U = U Q Ω ′ ∞ be the minimal large solution of (1.1) in Q Ω ′
T , i.e. the limit, when k → ∞, of solutions with Cauchy-Dirichlet data k on

∂ ℓ Q Ω ′ ǫ,T := Ω ′ × {ǫ} ∪ ∂Ω ′ × [ǫ, T ). By the maximum principle, if u ∈ C(Q Ω T ) is a solution of (1.1), then u ≤ U in Ω ′ .
For the second statement, let K be a compact subset of A. For any z ∈ K there exists r z > 0 such that for any r ∈ (0, r z ) there exists a positive supersolution of (1.1) in Q Br(z) T which satisfies (2.5). Since K is compact, there exist z 1 , ..., z p such that K ⊂ ∪ p j=1 B rz j /2 (z j ). For any j ∈ {1, ..., p} we denote by w j the supersolution in Q B 2rz j /3 (zj)

T

. By comparison principle, there holds u(x, t) ≤ sup{w j (x, t) : (x, t) ∈ B rz j /2 (z j ) × (0, T )} := M j ,

for (x, t) ∈ Q B rz j /2 (zj )

T

. Therefore u ≤ M = max j=1,...,p M j in K × (0, T ).

Lemma 2.2 Let g ∈ H and u ∈ C 2,1 (Q Ω T ) be a positive solution of (1.1) and suppose z ∈ Ω is such that

T 0 Bǫ(z)∩Ω g •udxdt = ∞ ∀ǫ > 0. (2.7)
Suppose that at least one of the following sets (i) or (ii) of conditions holds: (i) There exists an open neighborhood

U ′ ⊂ Ω of z such that u ∈ L 1 (U ′ × (0, T )).
(ii) The following hold: 1-g ∈ H 0 , 2-(1.1) possesses a strong barrier at z. Then,

lim t→0 Bǫ(z)∩Ω u(x, t)dx = ∞ ∀ǫ > 0. (2.8)
Proof. Assume that Ω is bounded. First consider the case when condition (i). holds. Let φ ∈ C 2,1 (U ′ × [0, T )) with compact support in U ′ × [0, T ) and such that φ(x, 0) = 1 in a neighborhood of z.

Then T t U ′ (u(-φ t -∆φ) + g •u φ) dxdt = U ′ u(t)φdx - U ′ u(T )φdx.
(2.9)

By assumption

T t U ′
u(φ t + ∆φ)dxdt is bounded. We let t tend to 0, the result follows from (2.7).

Next we assume that condition (ii) holds, u / ∈ L 1 (U ′ × (0, T )) for any neighborhood U ′ of z and that the conclusion is not valid. Thus there exist r * > 0, such that B r * (z) ⊂ U z and a sequence {t n } decreasing to 0 such that

B r * (z) u(x, t n )dx ≤ M for some M > 0. Furthermore g is coercive in B r * (z) × (0, T ). Let {h n,k } ⊂ C ∞ (Q Ω
T ) an increasing sequence with respect to k and n of nonnegative functions such that h n,k = 0 on

B r * (z) × {0}, 0 ≤ h n,k ≤ k and h n,k = k on (t n , T ) × ∂B r * (z). Let w h n,k be the solution of (1.1) in B r * (z) × (0, T ) such that w h n,k = h n,k on ∂ ℓ Q B r * (z) T
. By the maximum principle and condition (ii)-1, the sequence {w h n,k } is monotone increasing with respect to k and n. Condition (ii)-2 implies that, for every r < r * and β < T , the sequence is bounded in B r (z) × [0, β], and since u is locally bounded in

Q Ω T there exists k = k(n) such that k ≥ u on (t n , T ) × ∂B r (z) and k(n) → ∞ when n → ∞. Then w = lim n→∞ w h n,k is a solution of (1.1)
which blows up on ∂B r * (z) × (0, T ) and vanishes on B r * (z) × {0}. Let v n be the solution of the heat equation in B r * (z) × (t n , T ) such that v n (., t n ) = u(., t n ) in B r * (z) and v n = 0 on ∂B r * (z) × (t n , T ). Then w h n,k(n) + v n is a supersolution of (1.1) in B r * (z) × (t n , T ) which

dominates u on ∂ ℓ Q B r * (z)
tn,T . By the maximum principle,

u ≤ w h n,k(n) + v n in Q B r * (z)
tn,T . And we have in particular

Br(z) u(x, t)dx ≤ Br (z) w h n,k(n) + v n (x, t)dx ≤ M + Br (z) w(x, t)dx ∀t ∈ (t n , T ).
Since it holds for any n, it implies u ∈ L 1 (Q

Br (z) T
), which leads to a contradiction.

Example 1. If g(x, t, r) = b(x, t)h(r) where b is a Borel function defined in Q Ω T which satisfies inf ess {b(x)x ∈ K} = b K > 0, h is continuous, nondecreasing and h(0) ≥ 0, then u t -∆u + h(u) = 0 (2.10)
possesses a strong barrier at any z ∈ Ω if and only if h satisfies the Keller-Osserman condition, that is there exists some a ≥ 0 such that

∞ a ds H(s) < ∞ where H(s) = s 0 h(τ )dτ. (2.11)
The supersolution can be chosen to be the maximal solution φ r of the elliptic equation

-∆φ + b Br (z) h(φ) = 0 in B r (z).
(2.12)

If we assume moreover that h is super-additive, i.e. h(a + b) ≥ h(a) + h(b) for all a, b ≥ 0, then there holds

∞ a ds h(s) < ∞, (2.13) 
and any solution u of (2.10) is dominated in Q

Br(z) T by φ r (x) + ψ(t) where ψ is defined by inversion from ∞ ψ(t) ds h(s) = b Br(z) t ∀t > 0. Example 2. If g(x, t, r) = a(x)b(t)h(r) where a ∈ C(Ω), b ∈ C((0, T )), a, b > 0, then g is a
coercive nonlinearity if h is super-additive and satisfies the Keller-Osserman condition. This is not sufficient for the existence of a barrier as it is shown in [START_REF] Marcus | Initial trace of positive solutions to semilinear parabolic inequalities[END_REF] with h(r) = r q (q > 1) a ≡ 1 and b(t) = e -1 t .

Proposition 2.2 Let g ∈ H 0 such that at any z ∈ Ω there exists a strong barrier. We assume also

g(x, t, a) + g(x, t, b) ≤ g(x, t, a + b) ∀(x, t, a, b) ∈ Q Ω T × R + × R + . (2.14) 
Let {u n } be a sequence of positive solutions of (1.1) which converges to u locally uniformly in

Q Ω T . Denote by tr Ω (u n ) = (S n , µ n ) and tr Ω (u) = (S, µ) their respective initial trace. If A ⊂ ∩ n R n is open and if µ n (A n ) remains bounded independently of n ∈ N, then A ⊂ R := Ω \ S.
Proof. Let z ∈ A and r ∈ (0, ρ(z)) such that for any r ∈ (0, r] there exists a positive supersolution w r,z satisfying (2.5) and B r (z) ⊂ A. For any n ∈ N and τ ∈ (0, T ), we denote by u τ,χ B r (z) µn the solution of

∂ t u -∆u + g • u = 0 in B r (z) × (τ, T ) u(., τ ) = χ B r (z) u n (., τ ) in B r (z) u = 0 in ∂B r(z) × (τ, T ).
(2.15)

By the maximum principle u τ,χ B r (z) µn ≤ u n in B r (z) × (τ, T ), and g • u τ,χ B r (z) µn ≤ g • u n Furthermore, if ζ ∈ C 1,1;1 (Q B r (z) T
) vanishes on ∂B r(z) × [0, T ) and for t = T , there holds

Br (z)×(τ,T ) -u τ,χ B r (z) µn (∂ t ζ + ∆ζ) + ζg • u τ,χ B r (z) µn dxdt = Br(z) u n (x, τ )ζ(x, τ )dx.
(2.16) Since u τ,χ B r (z) µn and g • u τ,χ B r (z) µn are bounded independently of τ , standard regularity theory for parabolic equations implies that they converge a.e. in B r (z)

× (0, T ) when τ → 0 to u χ B r (z) µn and g • u χ B r (z) µn . Furthermore lim τ →0 Br (z) u n (x, τ )ζ(x, τ )dx = Br(z) ζ(x, 0)dµ n (x).
Using the dominated convergence theorem, it follows from (2.15) that

Q B r (z) T -u χ B r (z) µn (∂ t ζ + ∆ζ) + ζg • u χ B r (z) µn dxdt = Br(z)
ζ(x, 0)dµ n (x), (2.17) and u χ B r (z) µn is the (unique) solution of

∂ t u -∆u + g • u = 0 in Q Br(z) T u(., 0) = χ B r (z) µ n in B r(z) u = 0 in ∂B r(z) × (0, T ).
(2.18) Furthermore, if η is the solution of the backward problem

∂ t η + ∆η = -1 in Q Br(z) T η(., T ) = 0 in B r (z) η = 0 in ∂B r(z) × (0, T ), (2.19) 
there holds

Q B r (z) T u χ B r (z) µn + ηg • u χ B r (z) µn dxdt = Br(z) η(x, 0)dµ n (x) ≤ M, (2.20) 
for some M > 0 independent of n.

Next we set Z τ,n := u τ χ B r (z) µn +w r,z . It is a supersolution of (2.10) in (τ, T ) × B r (z) which is infinite on ∂B r(z) × [τ, T ) and dominates u n in B r (z) at t = τ . Thus Z τ,n ≥ u n in (τ, T ) × B r (z).
Letting τ → 0 we finally obtain

u χ B r (z) µn (x, t) ≤ u n (x, t) ≤ u χ B r (z) µn (x, t) + w r,z (x, t) ∀(x, t) ∈ Q Br (z) T . (2.21) 
For any r < r and T ′ < T , there exists δ, σ > 0 such that η(x, t) ≥ δ and w r,z (x, t) ≤ σ for all (x, t) ∈ Q

Br(z) T ′
. It follows from (2.20), (2.21) and Fatou's lemma that u and g • u are integrable in L 1 (Q

Br (z) T ′
). By Lemma 2.1, B r ′ (z) ⊂ R. Since it holds for any z ∈ A, the result is proved.

Construction of a barrier

In the next results we construct the barrier function Lemma 3.1 Assume α > -1 and q > 1, then there exists a unique positive function

W α ∈ C 2 ([0, ∞)) satisfying W ′′ + r 2 W ′ + 1 + α q -1 W -W q = 0 in (0, ∞) lim r→0 W (r) = ∞ lim r→∞ r 2 q-1 W (r) = 0. (3.1)
Furthermore W α is decreasing and

W α (r) = Cr 2(1+α) q-1 -1 e -r 2 4 (1 + •(1)) as r → ∞. (3.2)
Proof. Consider the functional

J(φ) := 1 2 ∞ 0 φ ′2 - 1 + α q -1 φ 2 + 2 q + 1 |φ| q+1 e r 2 
4 dr (3.3) defined over the convex set

H k := {φ ∈ W 1 2 (0, ∞; e r 2 4 dr) ∩ L q+1 (0, ∞; e r 2 4 dr) : φ(0) = k}. Note that if φ ∈ H k , e r 2 4 φ 2 (r) = ∞ r (e s 2 4 φ 2 (s)) ′ ds = 2 ∞ r e s 2 4 φφ ′ (s)ds + 1 2 ∞ r se s 2 4 φ 2 (s)ds.
In this set J admits a positive minimizer w k which is the unique solution of

w ′′ + r 2 w + 1 + α q -1 w ′ -w q = 0 in (0, ∞) w(0) = k. (3.4)
Furthermore, w k = lim n→∞ w k,n where w k,n is the unique positive solution of

w ′′ + r 2 w ′ + 1 + α q -1 w -w q = 0 in (0, n) w(0) = k w(n) = 0. (3.5) 
and, by the maximum principle, (k, n) → w k,n is increasing. If we consider the linear equation

z ′′ + r 2 z ′ + 1 + α q -1 z = 0 in (0, ∞), (3.6) 
it admits two linearly independent positive solutions z 1 and z 2 with the following asymptotic behaviour as

r → ∞ z 1 (r) = r -2(1+α) q-1 (1 + •(1)) (3.7) and z 2 (r) = r 2(1+α) q-1 -1 e -r 2 4 (1 + •(1)) (3.8) 
(see [START_REF] Marcus | Semilinear parabolic equations with measure boundary data and isolated singularities[END_REF]Appendix]. Since any solution of 3.4, and 3.5 as well, satisfies an a priori estimate of Keller-Osserman type (see [START_REF] Véron | Singularities of some quasilinear equations[END_REF])

w(r) ≤ Cr -2 q-1 for 0 < r < 1, (3.9) 
there holds

w k,n ≤ Cz 2 (r) for k ≥ r ≥ 1.
Letting n and k go to infinity successively, it follows that W α = lim k,n→∞ w k,n exists. It is a positive solution of problem (3.1) and it satisfies

W α (r) ≤ C r -2 q-1 + z 2 (r) for r > 0.
The singular behaviour at r = 0 is standard (see e.g. [START_REF] Véron | Singularities of some quasilinear equations[END_REF]) and yields to

W α (r) = 2(q + 1) (q -1) 2 r -2 q-1 (1 + •(1)) as r → 0. (3.10)
Thus uniqueness follows by the maximum principle and estimates (3.3) is obtained via standard linearization, using the upper estimate at infinity.

In the sequel we set

w α (s, t) = t -1+α q-1 W α s √ t ∀s > 0, t > 0. (3.11)
Proposition 3.2 Assume α > -1 and q > 1. Then for any R > 0, there exists

C = C(q, α, R) > 0 such that any solution u of (1.6) in Q BR ∞ which vanishes on B R × {0}satisfies u(x, t) ≤ 2N t -1+α q-1 W α R-|x| √ t ∀(x, t) ∈ Q BR ∞ . (3.12) 
Proof. For m > 0, set

S m = {x = (x 1 , ..., x N ) : |x j | < m, ∀j = 1, ..., N }. For R ′ < R wR ′ (x, t) = t -1+α q-1 N j=1 W α R ′ -xj √ t + W α R ′ +xj √ t ∀(x, t) ∈ Q S R ′ ∞ . (3.13) 
Then wR ′ is a supersolution of (1.6) in

Q S R ′ ∞ which is infinite on ∂S R ′ ×(0, ∞), thus u ≤ wR ′ . Letting R ′ → R yields to u ≤ wR in Q SR ∞ .
Since the equation is invariant by rotation, for any x ∈ B R , there is a rotation R such that R(x) has only a positive x 1 -coordinate. Thus

u(x, t) ≤ wR (|x| , t) ≤ t -1+α q-1 W α R-x1 √ t + (2N -1)W α R √ t ≤ 2N t -1+α q-1 W α R-x1 √ t , (3.14) 
which is (3.12) since x 1 = |x|.

Proposition 3.3 Assume α > -1, q > 1 and R > 0.
Then there exists a unique positive solution

w BR of (1.6) in Q BR ∞ , continuous in B R × [0, ∞), which vanishes on B R × {0} and satisfies lim |x|→R w BR (x, t) = ∞, locally uniformly in (0, ∞). In particular t -1+α q-1 W α R-|x| √ t ≤ w BR (x, t) ≤ 2N t -1+α q-1 W α R-|x| √ t ∀(x, t) ∈ Q BR ∞ . (3.15)
Proof. For k > 0, let w k BR be the solution of

∂ t u -∆u + t α u q = 0 in Q BR ∞ u = k in ∂ ℓ Q BR ∞ u(., 0) = 0 in B R .
(3. 16)

By (3.12), w k BR (x, t) ≤ 2N t -1+α q-1 W α R-|x| √ t
. There there exists w BR = lim k→∞ w k BR and w BR is a solution of (1.6) in Q BR ∞ which vanishes on B R ×{0} and is infinite on ∂B R ×(0, ∞). Consider the similarity transformation T m which leaves equation (1.6) invariant

T m [u](x, t) = m 1+α q-1 u( √ mx, mt) ∀m > 0, then T m [w k BR ] = w m 1+α q-1 k B R √ m which implies T m [w BR ] = w B R √ m ∀m > 0. If u ∈ C(B R × [0, ∞)) is any positive solution of problem ∂ t u -∆u + t α u q = 0 in Q BR ∞ lim |x|→R u(x, t) = ∞ locally uniformly on (0, ∞) u(., 0) = 0 in B R , (3.17) 
then for any m > 1 and ǫ > 0, there exists

τ ǫ > 0 such that u(x, t) ≤ ǫ in B R √ m for 0 ≤ t ≤ τ ǫ . Therefore, for any T > 0, u ≤ ǫ + w B R √ m on ∂ ℓ Q B R √ m T ∪ B R √ m × {0} Since ǫ + w B R √ m is a supersolution u ≤ ǫ + w B R √ m in Q B R √ m T . Letting ǫ → 0, m → 1 and
T → ∞ yields to u ≤ w BR . In the same way, with 0 < m < 1, we obtain u ≥ w BR .

The next estimate is an immediate consequence of Proposition 3.2.

Proposition 3.4 Assume α > -1, q > 1 and K ⊂ Ω is compact. Let u be any solution u of (1.6) in Q Ω ∞ which vanishes on Ω \ {K} × {0} and on ∂Ω × [0, ∞), then u(x, t) ≤ 2N t -1+α q-1 W α dist (x,K) √ t . (3.18)

Upper estimates

We start with the following upper estimate already obtained by Shishkov and Véron [START_REF] Shishkov | The balance between diffusion and absorption in semilinear parabolic equations[END_REF] in the case α ≥ 0.

Proposition 4.1 Let q > 1 and α > -1. If u is a solution of (1.6) vanishing on ∂Ω×[0, T ), there holds

u(x, t) ≤ c α t -α+1 q-1 for all (x, t) ∈ Q Ω T , (4.1 
)

with c α = α+1 q-1 1 q-1 .
Proof. Let φ(t) = c α t -α+1 q-1 be the maximal solution of

φ ′ + t α φ q = 0 φ(0) = ∞. with c α = α+1 q-1 1 q-1 .
Case α ≥ 0. For τ > 0, we denote by Φ 1,τ the solution of

-∆Φ 1,τ + τ α Φ q 1,τ = 0 in B 1 lim |x|→1 Φ 1,τ (x) = ∞, (4.2) 
and for

R > 0 Φ R,τ (x) = R -2 q-1 Φ 1,τ x R .
Note that Φ R,τ (x) is the solution of the problem (4.2) in the ball B R . The function Φ R,τ tends to 0 uniformly on every compact set of

R N when R → ∞. Set ṽ(x, t) = φ (t -τ ) + Φ R,τ (x) , thus ṽ is a supersolution of (1.6) in B R × [τ, T ) which is infinite on ∂B R × [τ, T ) ∪ B R × {0}.
Then u(x, t) ≤ ṽ(x, t). Letting R → ∞ and τ → 0, we obtain

u(x, t) ≤ c α t -α+1 q-1 for all (x, t) ∈ Q T .
Case -1 < α < 0. Let τ > 0 and φ τ (t) = c α t α+1τ α+1 -1 q-1 be the solution of

φ ′ τ + t α φ q τ = 0 on (τ, ∞) φ τ (τ ) = ∞ If Φ 1,T is the solution of (4.2) with τ = T , we set Φ R,T (x) = R -2 q-1 Φ 1,T x R .
Clearly Φ R,T tends to 0 uniformly on every compact of

R N when R → ∞. Set v(x, t) = φ τ (t) + Φ R,T (x),
v is a supersolution of (1.6) in B R × (τ, T ), thus u(x, t) ≤ v(x, t), as in the first case. Letting R → ∞ and τ → 0, we obtain the desired estimate.

Combining Proposition 3.2 and Proposition 4.1 we obtain,

Corollary 4.2 Assume q > 1, α > -1 and K ⊂ Ω is compact. If u ∈ C 2,1 (Q Ω T ) ∩ C(Q Ω T \ K × {0}) is a solution of (1.6) which vanishes on ∂Ω × [0, T ) ∪ {(Ω \ K) × {0}}, there holds u(x, t) ≤ min 2N W α dist (x, K) √ t , c α t -α+1 q-1 for all (x, t) ∈ Q Ω T . (4.3) 
In the particular case where K = {O}, (4.3) yields to

u(x, t) ≤ min 2N W α |x| √ t , c α t -α+1 q-1 ≤ c 1 |x| 2 + t 1+α q-1 for all (x, t) ∈ Q Ω T , (4.4) 
for some c 1 = c 1 (α, q) > 0.

Remark. If Ω is replaced by R N , the previous estimates (4.1), (4.3) and (4.4) remain valid. Furthermore, K needs only to be closed.

Isolated singularities

In this section we present the results of classification of isolated singularities of positive solutions of (1.6), always in the range q > 1 and α > -1. Since some proofs are somewhat similar to the ones of [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF] for the removability of isolated singularities, or [START_REF] Marcus | Semilinear parabolic equations with measure boundary data and isolated singularities[END_REF] for the classification of positive isolated boundary singularities of solutions of

∂ t u -∆u + |u| q-1 u = 0 in Q Ω T , (5.1) 
we will essentially indicate their main ideas. If we look for solution of (1.6) in

Q T := Q R N T under the form u(x, t) = t γ V x √ t it is immediate that γ = -1+α q-1 and V is a solution of -∆V - η 2 .∇V - 1 + α q -1 V + V q = 0 in R N . (5.2)
It is proved by Escobedo and Kavian [START_REF] Escobedo | Variational problems related to self-similar solutions of the heat equation[END_REF] that if 1+α q-1 > N 2 , or equivalently if

1 < q < q c,α := 1 + 2(1 + α) N , (5.3) 
there exists a positive solution of (5.2) which minimizes of the functional

ω → J(ω) := 1 2 R N |∇ω| 2 - 1 + α q -1 ω 2 + 2 q + 1 |ω| q+1 e |η| 2 4 dη, (5.4 
)

over the space W 1,2 (R N ; Qdη) where Q(η) = e |η| 2 
4 . The minimizer V α is unique, radial and satisfies (5.2). Furthermore, by adapting the results of [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF] , it is easy to show that V α is the unique positive C 2 function which satisfies (5.2) and lim |η|→∞ |η|

2(1+α) q-1 V (η) = 0, (5.5) 
and that there holds (see [8, Th 2.1])

V α (η) = C |η| 2 1+α
q-1 -N e -|η| 2 4 (1 + •(1)) as |η| → ∞.

(5.6)

The function

v α (x, t) = t -1+α q-1 V α x √ t (5.7) is a positive solution of (1.6) in Q ∞ , continuous in Q ∞ \ {(0, 0)}; it vanishes on R N × {0} \ {(0, 0)} and satisfies lim t→0 Bǫ v α (x, t)dx = ∞ ∀ǫ > 0. (5.8)
It is called the very singular solution of (1.6).

When R N is replaced by a a proper open domain Ω with a compact C 2 boundary there exists no self-similar solution to (1.6). For any k > 0 and a ∈ Ω there exists a unique solution u := u kδa to the initial value problem

∂ t u -∆u + t α u q = 0 in Q Ω ∞ u = 0 on ∂Ω × [0, ∞) u(., 0) = kδ a in Ω.
(5.9)

(see e.g. [START_REF] Marcus | Initial trace of positive solutions to semilinear parabolic inequalities[END_REF]). The function u belongs to

L q (Q Ω T ; t α dxdt) ∩ L 1 (Q Ω T )
, T > 0 arbitrary, and satisfies

Q Ω T (-u (∂ t ζ + ∆ζ) + t α u q ζ) dxdt = kζ(a) (5.10) 
for all ζ ∈ C 1,1;1 (Q Ω T ) which vanishes on ∂Ω × [0, T ] and on Ω × {T }. It is unique in the class of of weak solutions, i.e. the functions belonging to L q (Q Ω T ; t α dxdt) ∩ L 1 (Q Ω T ) and satisfying the above identity. When k → ∞, u kδa ↑ u ∞δa , where u ∞δa := u ∞,a is a solution of (1.6) in Q Ω ∞ which vanishes on ∂Ω × [0, ∞) and on Ω × {0} \ {(a, 0)} and satisfies (5.8). Finally, if

E(x, t) = (4πt) -N 2 e -|x| 2 4t
denotes the heat kernel in R N ,

u kδa ∼ kE(x -a, t) when (x, t) → (a, 0) (5.11)
and u ∞,a ∼ v α (xa, t) when (x, t) → (a, 0).

(5.12)

The following classification of isolated singularities holds.

Theorem 5.1 Assume α > -1, 1 < q < q c,α and a ∈ Ω. If u ∈ Q Ω T \ {(a, 0)} is a positive solution of (1.6) which vanishes on Ω × {0} \ {(a, 0)}, then (i) either there exists k ≥ 0 such that u(x, t) ∼ kE(x -a, t)
when (x, t) → (a, 0), (5.13) and u is a solution of

∂ t u -∆u + t α u q = 0 in Q Ω T u(., 0) = kδ a in Ω, (5.14) 
(ii) or u(x, t) ∼ v α (xa, t) when (x, t) → (a, 0), (5.15) and u satisfies (5.8).

Proof. The initial trace tr Ω (u) is a Borel measure concentrated at a and either it is of the form ({∅}, kδ a ) for some k ≥ 0 or of the form ({a}, 0). In the first case t α u q ∈ L 1 (Q

Br (a) T ) for any 0 < r < ρ(a). For t > 0 we set m r (t) = max{u(x, τ ) : (x, τ ) ∈ ∂ ℓ Q Br (a) t }, e r (t) = max{E(x, τ ) : (x, τ ) ∈ ∂ ℓ Q Br(a) t
}. We denote by Θ r the solution of

∂ τ Θ r -∆Θ r = 0 in Q Br(a) ∞ Θ r (x, 0) = 0 in B r (a) Θ r (x, t) = 1 in ∂ ℓ Q Br(a) ∞ and Ψ(x, t) = t 0 Br(a)
E(xy, ts)s α u q (y, s)dyds.

Then

kE(x -a, t) -Ψ(x, t) -e r (t)Θ r (x, t) ≤ u(x, t) ≤ kE(x -a, t) + m r (t)Θ r (x, t). (5.16) 
Using the explicit expression of the Cauchy-Dirichlet heat kernel in B r , one can easily check that lim t→0 Θ r (x, t) = 0, uniformly on compact subsets of B r (a). Furthermore Ψ(x, t) ≤ 2 q-1 t 0 Br (a)

E(xy, ts)s α (k q E q (ya, s) + m q r (s)Θ q r (y, s)) dyds

≤ 2 q-1 k q t 0 Br(a)
E(xy, ts)s α E q (ya, s)dyds + o(1),

(5.17) since the second term in the integral is bounded. Furthermore the first term of the righthand side of (5.17) converges to 0 in L 1 (B r (a)) when t → 0. Since y → E q (y -a, s) is radially decreasing with respect to a, it implies that t 0 Br (a)

E(xy, ts)s α E q (ya, s)dyds is maximal at x = 0 and therefore Ψ(x, t) → 0, uniformly in B r (a). It follows from (5.16) that

|u(x, t) -kE(x -a, t)| → 0 when t → 0, (5.18) 
uniformly on compact subsets of B r (a), for any r < ρ(a).

Next we assume that tr Ω (u) = ({a}, 0), and without loss of generality, we can suppose that a = 0 and set B r = B r (0). Then

u ∞,0 -m r (t)Θ r (x, t) ≤ u(x, t) ∀(x, t) ∈ Q Br ∞ , (5.19) 
where u ∞,0 = lim k→∞ u kδ0 , and u kδ0 is the solution of (1.6) in Q ∞ with initial data kδ 0 . Although estimate (5.19) is proved in Theorem 6.2, in next section, its proof does not require any element of the proof of the present theorem. Moreover, for any 0 < ǫ < r,

u(x, t) ≤ V ǫ + m r (t)Θ r (x, t) ∀(x, t) ∈ Q Br ∞ , (5.20) 
where V ǫ is the limit, when ℓ → ∞ of the solutions V ℓ,ǫ of (1.6) in Q ∞ which has initial data mχ B ǫ . Consider the similarity transformation

T m [φ](x, t) = m -1+α q-1 φ( x √ m , t m ) (m > 0) which leaves (1.6) and Q ∞ invariant, then, by uniqueness T m [u k,0 ] = u m N 2 - 1+α q-1 k,0 (5.21) 
and

T m [V ℓ,ǫ ] = V m N 2 - 1+α q-1 ℓ, √ mǫ . (5.22)
Letting k, ℓ → ∞ and ǫ → 0, we obtain that, for any m > 0,

T m [u ∞,0 ] = u ∞,0 (5.23) 
and

T m [V 0 ] = V 0 . (5.24)
Therefore u ∞,0 and V 0 are positive self-similar solutions of (1.6) in Q ∞ with initial trace ({0}, 0). Then they coincide with the function v α defined in (5.7). The result follows from this equality since (5.19), jointly with (5.20), implies

v α (x, t) -m r (t)Θ r (x, t) ≤ u(x, t) ≤ v α (x, t) + m r (t)Θ r (x, t) ∀(x, t) ∈ Q Br ∞ . (5.25) 
If q ≥ q c,α there holds the following result which extends Brezis and Friedman's classical one.

Theorem 5.2 Assume α > -1, q ≥ q c,α and a ∈ Ω. If u ∈ Q Ω T \ {(a, 0)} is a positive solution of (1.6) which vanishes on Ω× {0} \ {(a, 0)}, then it can be extended as a continuous function ũ which vanishes on Ω × {0}.

Proof. Up to modifying a few parameters the proof is similar to Brezis-Friedman's construction. The first step is to prove that u ∈ L q (Q BR T ) for some R > 0. This is done by using (4.4) and the same test function used in [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF]. As a consequence we obtain that u satisfies

lim t→0 Ω u(x, t)ζ(x)dx = 0 ∀ζ ∈ C ∞ 0 (Ω).
Finally the extension of u by zero at t = 0 satisfies the equation in Ω × [0, T ).

Remark. We recall that E(x, t) = (4πt) -N 2 e -|x| 2 4t . Then if 1 ≤ r < q c,α , there holds

QT E r (x, t)t α dxdt < ∞, (5.26) while if r ≥ q c,α QT E r (x, t)t α dxdt = ∞.
(5.27)

The trace theorem

In all this section we assume that Ω ⊂ R N is an open domain with a compact C 2 boundary, α > -1 and 1 < q < q c,α , and let u ∈ C(Ω × (0, T ]) be a positive solution of (1.6) in Q Ω T which vanishes on ∂Ω × (0, T ]. By Section 2 u possesses an initial trace tr Ω (u) = (S, µ) where S is a relatively closed subset of Ω and µ is a Radon measure on R := Ω \ S. To this couple we can associate a unique outer regular Borel measure ν defined by (Ω) the subset of B reg (Ω) for which S is a compact subset of Ω. Thus u is a solution of the following problem, The first step in the characterization of the singular set is the following delicate lower estimate. Theorem 6.2 Let u ∈ U S,µ (Ω) and a ∈ S, then u(x, t) ≥ u ∞,a (x, t).

ν(E) = µ(E) if E ⊂ R ∞ if E ∩ S = ∅ (6.
∂ t u -∆u + t α u q = 0 in Q Ω T u ≥ 0, u = 0 on ∂Ω × [0, T ) tr Ω (u) = ν ≈ (S, µ) ∈ B reg (Ω).
(6.3) Furthermore, if S has a nonempty interior A, there holds

lim t→0 t 1+α q-1 u(x, t) = c α , (6.4) 
uniformly on compact subsets of A.

We first give a proof of (6.3) in the case where either -1 < α ≤ 0, or α > 0 and 1 < q < q c,0 . Proposition 6.3 Assume either -1 < α ≤ 0 and 1 < q < q c,α , or α > 0 and 1 < q < q c,0 , then inequality (6.3) holds.

Proof. For any ǫ > 0, there holds lim t→0 Bǫ(a) u(x, t)dx = ∞.

(6.5)

If k > 0 is fixed, and {t n } is a sequence decreasing to 0. There exists t n1 such that

B 2 -1 (a) u(x, t n1 )dx > k,
and there exists m = m 1 (k) such that

B 2 -1 (a) m 1 (k) ∧ u(x, t n1 )dx = k,
where A ∧ B = inf{A, B}. Assume we have constructed t nj < t nj-1 and m j (k) > 0 such that

B 2 -j (a) m j (k) ∧ u(x, t nj )dx = k.
Since (6.5) holds with ǫ = 2 -j-1 , there exists t nj+1 < t nj such that

B 2 -j-1 (a) u(x, t nj )dx > k.
and thus m j+1 (k) > 0 such that

B 2 -j-1 (a) m j+1 (k) ∧ u(x, t nj+1 )dx = k.
Next we denote by u j the solution of

∂ t u -∆u + t α u q = 0 in Ω × (t nj , T ) u = 0 on ∂Ω × [t nj , T ) u(., t nj ) = m j+1 (k) ∧ u(., t nj+1 ) in Ω. (6.6)
By the maximum principle u j ≤ u in Ω× [t nj , T ), or equivalently u j (x, t+ t nj ) ≤ u(x, t+ t nj ) in Q Ω T -tn j . Clearly u j,0 := u(., t nj ) ⇀ kδ a as j → ∞ in the weak sense of measures. In order to prove that u j converges to u kδa we notice that

u j (x, t + t nj ) ≤ E * u j,0 (x, t) in Q Ω ∞ . If -1 < α ≤ 0 and r ∈ (1, q c,α ) Q Ω T u r j (x, t + t nj )(t + t nj ) α dxdt ≤ QT (E * u j,0 ) r (x, t)(t + t nj ) α dxdt ≤ u j,0 r L 1 QT E r (x, t)t α dxdt,
using Young's inequality and (5.26). If α ≥ 0 and r ∈ (1, q c,0 )

Q Ω T u r j (x, t + t nj )(t + t nj ) α dxdt ≤ 2 α T α QT (E * u j,0 ) r (x, t)dxdt ≤ 2 α T α u j,0 r L 1 QT E r (x, t)dxdt.
Furthermore, for s ∈ (1, q c,0 )

Q Ω T u s j (x, t + t nj )dxdt ≤ QT (E * u j,0 ) s (x, t)dxdt ≤ v j,0 s L 1 QT E s (x, t)dxdt.
Thus the sets of functions {u q j (., .+t nj )(.+t nj ) α } and {u j (., .+t nj )} are uniformly integrable in L 1 (Q Ω T ). Since u j satisfies

Q Ω T -u j (x, t + t nj ) (∂ t ζ + ∆ζ) + (t + t nj ) α u q j (x, t + t nj )ζ dxdt = Ω u j,0 ζdx (6.7) for any test function ζ ∈ C 1,1;1 (Q Ω T ) vanishing on ∂Ω × [0, T ] ∪ Ω × {T } and converges a.e. in Q Ω
T to some u * when j → ∞, it follows by Vitali's theorem that

Q Ω T (-v (∂ t ζ + ∆ζ) + t α v q ζ) dxdt = kζ(a) (6.8)
thus u * = u kδa by uniqueness, which implies the claim since u ≥ u * .

When α > 0 and q c,0 ≤ q < q c,α , this argument cannot work since the sequence u j,0 could concentrate too quickly with respect to t to a Dirac mass and isolated singularities are removable for solutions of ∂ t u -∆u + cu q = 0.

We develop below a proof valid for any α > -1 and 1 < q < q c,α , which is based upon the parabolic Harnack inequality and shows that such a fast concentration never occurs.

Lemma 6.4 Assume α > -1 and 1 < q < q c,α . Let {(x n , t n )} ⊂ Q Ω T be a sequence converging to (a, 0) and ℓ > 0. Put V n = B ℓ √ tn (x n ) and suppose that there exist nonnegative functions

h n ∈ L ∞ (R N ) with support in V n such that 0 ≤ h n ≤ c 1 t -N 2 n and h n ⇀ kδ 0 .
(6.9)

Then the solutions u n of

∂ t u -∆u + t α u q = 0 in Ω × (t n , T ) u = 0 on ∂Ω × [t n , T ) u(., t n ) = h n
in Ω, (6.10)

satisfy u n → u kδa when n → ∞.
Proof. The estimate h n ≤ ct

-N 2 
n χ Vn can be written under the form

h n (x) ≤ c 2 E(x -x n , t n )χ Vn where c 2 = (4π) N 2 e ℓ 4 c 1 .
By the maximum principle

u n (x, t) ≤ c 2 E(x -x n , t) in Ω × (t n , ∞).
By (5.26), (5.27), the sequences {E q (.-x n , .)t α } and {E(.-x n , .)} are uniformly integrable in Q Ω T , therefore, if we extend u n by zero in Q Ω tn and denote by ũn the extended function defined in Q Ω T , we infer that the sequences {t α ũq n } and {ũ n } are uniformly integrable in Q Ω T . Using standard regularity estimates there exists a function u * defined in Q Ω T and a subsequence u nj such that ũnj → u * locally uniformly in Q Ω T . It follows by uniform integrability and Vitali's convergence theorem that

ũnj → u * in L q (Q Ω T ; t α dxdt) ∩ L 1 (Q Ω T ). Let ζ ∈ C 1,1;1 (Q Ω T ) vanishing on ∂Ω × [0, T ] ∪ Ω × {T }, then Q Ω T -ũ nj (∂ t ζ + ∆ζ) + t α ũq nj ζ dxdt = Ω ζ(., t nj )h n dx.
Using the previous convergence results and the assumption (6.9), we derive

Q Ω T (-u * (∂ t ζ + ∆ζ) + t α u * q ζ) dxdt = kζ(a).
Thus u * = u kδa and ũn → u kδa locally uniformly in Q Ω T .

Lemma 6.5 Let u be a positive solution of (1.6) in

Q Ω T vanishing on ∂Ω × [0, T ). Then for any Ω ′ ⊂ Ω ⊂ Ω there exists a constant C = C(N, q, α, Ω ′ ) > 0 such that u(y, s) ≤ u(x, t)e C |x-y| 2 t-s + t s +1 ∀(x, t), (y, s) ∈ Q Ω ′ T , s < t. (6.11) 
Proof. By (4.1), V (x, t) := t α u q-1 ≤ c q-1 α t -1 . If we write (1.6) under the form

∂ t u -∆u + V (x, t)u = 0 in Q Ω T (6.12)
it follows (6.11) from parabolic Harnack inequality (see e.g. [START_REF] Gkikas | Initial value problems for diffusion equations with singular potential[END_REF]Lemma 3.16] although the result is much older).

If G ⊂ R N is a bounded open subset, we denote by φ G is the first eigenfunction of -∆ in W 1,2 0 (G) normalized by sup φ G = 1 with corresponding eigenvalue λ G . Lemma 6.6 Let G ⊂ R N be a bounded open subset with a smooth boundary ω ∈ C 1 (Q G T ), ω ≥ 0, such that T 0 ω(., t) L ∞ (G) dt < ∞. (6.13) If v ∈ C 2;1 (G × (0, T ]) is a positive solution of ∂ t v -∆v + ωv = 0 in Q G T , (6.14 
)

then vφ G ∈ L 1 (Q G T ), ωvφ 3 G ∈ L 1 (Q G T ) and there exists µ ∈ M + (G) such that lim t→0 G v(x, t)ζ(x)dx = G ζdµ ∀ζ ∈ C c (G). (6.15) Proof. Set γ(t) = ω(., t) L ∞ (G) . Denote X(t) = G v(x, t)φ G (x)dx.
Then, from (6.14),

X ′ + λ G X + γ(t)X ≥ 0
This implies that the function t → e tλG+ t 0 γ(s)ds X(t)

(which exists thanks to (6.13)) is nondecreasing. Therefore there exists X(0) = lim t→0 X(t)

and vφ G ∈ L 1 (Q G T ). Furthermore, if we set Y (t) = G v(x, t)φ 3 G (x)dx d dt (e 3tλG X(t)) + e 3tλ1 Ω (ωφ 3 G -6φ G |∇φ G | 2 )vdx = 0. Since ∇φ G is bounded and vφ G ∈ L 1 (Q G T ), it implies e 3tλG Y (T ) + T 0 e 3tλG Ω ω(x, t)v(x, t)φ 2 G dxdt = Y (0) + 6 T 0 e 3tλG Ω φ G |∇φ G | 2 )vdxdt, which implies that ωvφ 3 G ∈ L 1 (Q G T )
. The argument given in the proof of Lemma 2.1 shows that v admits an initial trace which belongs to M + (G).

Proof of Theorem 6.2. We define the parabolic distance in R N × R by

d P ((x, t), (y, s)) = |x -y| 2 + |t -s|.
Step 1. We first prove that if u satisfies lim sup

dP ((x,t))(a,0))→0 t N 2 u(x, t) < ∞, (6.16) 
then a ∈ R(u). If (6.16) holds there exists ǫ, c > 0 such that

u(x, t) ≤ ct -N 2 ∀(x, t) s.t. |x -a| 2 + t ≤ ǫ. If we set ω(x, t) = t α u q-1 (x, t), then ω(x, t) ≤ c q-1 t -( N (q-1) 2 -α) ∀(x, t) ∈ B ǫ √ 2 (a) × (0, ǫ 2 2 ]. 
Since q < q c,α , then N (q-1)

2

)α < 1; thus the assumptions of Lemma 6.6 are fulfilled and there exists a positive Radon measure

µ in B ǫ √ 2 (a) such that Ω u(x, t)ζ(x)dx → Ω ζdµ when t → 0, ∀ζ ∈ C ∞ c (B ǫ √ 2 (a)). Furthermore t α u q ∈ L 1 (B ǫ √ 3 (a) × (0, T ))
, which is the claim.

Step 2. Since a ∈ S(u), there holds lim sup

dP ((x,t))(a,0))→0 t N 2 u(x, t) = ∞. (6.17) 
Then there exists a sequence {(x n , s n )} converging to (a, 0) such that

u(x n , t n ) ≥ nt -N 2 n . (6.18) 
We apply Lemma 6.5 with

s = s n , t = 2s n := t n , y = x n |x -x n | ≤ √ s n . Then u(x, t n ) ≥ Cnt -N 2 n ∀x ∈ V n := B √ tn 2 (x n ).
This implies

Vn u(x, t n )dx ≥ C N n.
For k < n fixed, we denote by v := v n,k the solution of

∂ t v -∆v + t α v q = 0 in Ω × (t n , ∞) v = 0 in ∂Ω × (t n , ∞) v(., t n ) = Ckt -N 2 n χ Vn in Ω. (6.19) By the maximum principle u ≥ v n,k in Ω × (t n , ∞). Furthermore Vn v(., t n )dx = C N k.
Thus v(., t n ) ⇀ C N kδ a in the weak sense of measures. It follows from Lemma 6.4 that v n,k → u CN kδa locally uniformly in

Q Ω T . Therefore u ≥ u CN kδa in Q Ω T .
Since k is arbitrary, we obtain (6.3).

Step 3. Formula (6.4) holds. Denote by S m (a) = {x ∈ R N :

|x j | < m}. If S R (a) ⊂ S, the function (x, t) → c α (t -τ ) -1+α q-1 + w BR (x -a, t -τ ) is a supersolution of (1.6) in S R (a)×(τ, ∞) which is infinite on S R (a)×{τ }∪∂S R (a)×[τ, ∞) by Proposition 3.3, while u is finite, thus it dominates u in S R (a) × (τ, ∞). Letting τ → 0 yields to u(x, t) ≤ c α t -1+α q-1 + w BR (x -a, t) ∀(x, t) ∈ Q SR(a) T . (6.20) 
Conversely, the function

(x, t) → u(x, t -τ ) + w BR (x -a, t -τ ) is a supersolution in S R (a) × (τ, ∞) which dominates c α t -1+α q-1 on S R (a) × {τ } ∪ ∂S R (a) × [τ, ∞),
thus as above, we obtain (6.20). Since lim t→0 w BR (xa, t) = 0 uniformly on B R ′ (a) for any R ′ < R, we derive (6.4).

There holds, by Theorem 6.2,

u σ,δ (x, t) ≥ u ∞,a,σ ≥ ũ∞,a (x, t) ∀(x, t) ∈ Q Ωσ ∞ .
Letting successively δ → 0 and σ → 0 yields to u S,0 ≥ ũ∞,a = u ∞,a in Q Ωσ ∞ . Therefore any a ∈ S is a singular initial point of u S,0 . Since S ∪ R = Ω, it follows that tr Ω (u) = (S, 0). Since u σ,δ satisfies (4.1) and ∂Ω σ has bounded curvature, independent of σ, there holds classicaly

|∇u σ,δ (x, t)| ≤ ct -q+α q-1 ∀(x, t) ∈ ∂Ω σ × (0, ∞). (6.24) 
If z ∈ ∂Ω and then by the mean value theorem there exists θ ∈ (0, 1) such that,

0 ≤ u σ,δ (z, t) = u σ,δ (z + σn z , t) -σ∇u σ,δ (z + θσn z , t).n z ≤ cσt -q+α q-1 .
This implies that u S,0 vanishes on ∂Ω σ × (0, ∞).

Let u be any positive solution of (1.6) in Q Ω ∞ , vanishing on ∂Ω × (0, ∞), with initial trace (S, 0). For 0 < δ < σ fixed and for R, ǫ > 0, there exists τ ǫ > 0 such that, for any τ ∈ (0, τ ǫ ],

u(x, τ ) ≤ ǫ ∀x ∈ B R ∩ Ω \ S σ .
This is due to the fact that u(x, τ ) → 0 when τ → 0, uniformly on compact subset of B R ∩ R. Assume that Ω is unbounded (the case where Ω is bounded is simpler since it does not require to introduce the barrier w BR ) and let R > 0 large enough so Ω c ⊂ B R . By (

3) there exists 0 < τ 1 ≤ τ 0 such that for any τ ∈ (0, τ 1 ],

u(x, τ ) ≤ w BR (x, τ ) + u σ,δ (x, τ ) ∀x ∈ B R ∩ Ω ∩ S σ . Furthermore u(x, t) < w BR (x, t) for all t > 0 and x ∈ ∂B R ∩ Ω. Since ǫ + w BR + u σ,δ is a supersolution for (1.6) in B R ∩ Ω × (0, ∞), it follows that u(x, t) ≤ ǫ + w BR (x, t) + u σ,δ (x, t) ∀(x, t) ∈ B R ∩ Ω × (0, ∞).
Letting successively δ → 0, σ → 0, R → ∞ (here we use the fact that w BR (x, t) → 0 when R → ∞ by Proposition 3.4) and ǫ → 0 yields to u ≤ u S,0 .

Step 2: Existence of a minimal solution. The set U S,0 (Ω) is not empty since it contains u S,0 and we may define ũS,0 = sup{u ∞,a : a ∈ S}, (

and ûS,0 = inf{u : u ∈ U S,0 (Ω)}. (

The functions ũS,0 and ûS,0 are respectively positive sub and supersolutions of (1.6) in Q Ω ∞ . They are bounded from above by u S,0 and from below by u ∞,a for any a ∈ S. Since u ∞,a ≤ u for any a ∈ S and u ∈ U S,0 (Ω), it follows that ũS,0 ≤ ûS,0 . Therefore there exists a solution u S,0 of (1.6) in Q Ω ∞ which satisfies and ũS,0 ≤ u S,0 ≤ ûS,0 . (6.27)

This implies that u S,0 has initial trace (S, 0), it vanishes on ∂Ω × (0, ∞) and it is therefore the minimal element of U S,0 (Ω).

Remark. If dist (S, Ω c ) > 0, it is not needed to replace Ω by a larger set Ω σ in order to construct the maximal solution. The construction of u S,0 can be done in replacing u n,σ,δ by the solution u = u n,σ of

∂ t u -∆u + t α u q = 0 in Q Ω ∞ u = 0 in ∂Ω × (0, ∞) u(., 0) = nχ S δ
in Ω, (6.28) with δ < δ 0 := dist (S, Ω c ).

The next result is an extension of Proposition 2.2.

Proposition 6.8 Assume α > -1 and 1 < q < q c,α . Let {u n } be a sequence of positive solutions of (1.6) which converges to u locally uniformly in Q Ω T , and denote by (S n , µ n ) and (S, µ) the respective initial trace of u n and u. If A is an open subset of ∩ n R n and µ n (A) remains bounded independently of n ∈ N (where R n = Ω \ S n and R = Ω \ S), then A ⊂ R and χ A µ n ⇀ χ A µ in the weak sense of measures. Conversely, if A ⊂ R , then for any compact K ⊂ A, there exist C K > 0 and n K ∈ N such that µ n (K) ≤ C K for any n ≥ n K .

Proof. Clearly (2.14) holds. We keep the notations of the proof of Proposition 2.2 where the first statement has been proved in assuming B r (z) ⊂ A. Since µ n (A) remains bounded, there exists a subsequence {n j } and a positive measure µ ′ on A such that µ nj ⇀ µ ′ in the weak sense of measures in A. Then u χ B r (z) µn j converges locally uniformly in Q

Br(z) ∞ to the solution u χ B r (z) µ ′ of ∂ t u -∆u + t α u q = 0 in Q Br(z) ∞ u = 0 in ∂B r(z) × (0, ∞) u(., 0) = χ B r (z) µ ′ in B r (z).
(6.29) Since q < q c,α , the convergence of u χ B r (z) µn j and t α u q χ B r (z) µn j respectively to u χ B r (z) µn j and t α u q χ B r (z) µ ′ holds in L 1 (Q

Br(z) T
) for any T > 0. Relation (2.21) reads

u χ B r (z) µn (x, t) ≤ u n (x, t) ≤ u χ B r (z) µn (x, t) + w Br (z) (x, t) in Q Br(z) ∞ . (6.30) 
(see Proposition 3.3). Then u nj and t α u q nj converge to u and t α u q respectively, in L 1 (Q

Br (z) T
) for any r < r. From (2.17), we derive

Q Br (z) ∞ (-u(ζ t + ∆ζ) + ζt α u q ) dxdt = Br (z) ζ(x, 0)dµ ′ (x), (6.31) for any ζ ∈ C 1,1;1 c (Q Br (z) ∞
) which vanishes for t large enough. This implies that µ ′ is the initial trace of u in B r (z), i.e. χ Br (z) µ ′ = χ Br (z) µ and χ Br (z) µ n ⇀ χ Br (z) µ. Using a partition of unity, we conclude that χ A µ n ⇀ χ A µ.

Conversely, we assume that there exist a compact set K ⊂ A and a subsequence µ nj such that µ nj (K) → ∞. Thus, using the diagonal process, there exist z ∈ K and another subsequence that we still denote µ nj such that

lim nj →∞ µ nj (B ǫ (z)) = ∞ ∀ǫ > 0.
Therefore, we can construct a subsequence {n j ℓ } ⊂ {n j } such that

µ nj ℓ (B 2 -n j ℓ (z)) = m nj ℓ → ∞ when n j ℓ → ∞. Since the solution u χ B 2 -n j ℓ (z) µn j ℓ of ∂ t u -∆u + t α u q = 0 in Q Br(z) ∞ u = 0 in ∂B r(z) × (0, ∞) u(., 0) = χ B 2 -n j ℓ (z) µ nj ℓ in B r(z).
(6.32) converges to u Br(z) ∞δz which is the limit of the solution u kδz of (6.32) with initial data u(., 0) = kδ z , and is dominated by

u nj ℓ in Q Br(z) T we conclude that u ≥ u Br (z) ∞δz in Q Br(z) T
, which implies that z ∈ S, contradiction. Proposition 6.9 Assume u 1 and u 2 are two positive solutions of (1.6) in Q Ω ∞ with initial trace (S, µ). Then for any a ∈ R and R > 0 such that B R (a) ⊂ R, there holds

|u 1 (x, t) -u 2 (x, t)| ≤ w BR (x -a, t) ∀(x, t) ∈ Q BR(a) ∞ (6.33)
In particular lim t→0 |u 1 (x, t)u 2 (x, t)| = 0 uniformly on any compact subset of R.

Proof. Since u and u ′ are solution of (1.6) and B R (a) ∈ R, for any i = 1, 2, R ′ < R and T > 0, This implies that u i has a Sobolev trace on ∂ ℓ Q B ′ R (a) T which belongs to L 1 and they are the limit, when k → ∞ of the solutions u i,k of

Q B ′ R (a) T t α u q i (x, t)dxdt + Q B ′ R (a) T u i (x, t)dxdt < ∞,
∂ t u -∆u + t α |u| q-1 u = 0 in Q B ′ R (a) ∞ u = min{k, u i ⌊ Q B ′ R (a) ∞ } in ∂ ℓ Q B ′ R (a) ∞ u(., 0) = µ in B ′ R (a). (6.34) Since u 2,k + w B ′ R (. -a) is a supersolution u 1,k ≤ u 2,k + w B ′ R (. -a) =⇒ |u 1,k -u 2,k | ≤ w B ′ R (. -a) in Q B ′ R (a) ∞ .
Letting k → ∞, R ′ to R, we derive (6.33). The second statement is a consequence of the fact that lim t→0 w BR (.a) = 0, uniformly on B ′ R by Proposition 3.3. Remark. The previous estimate does not use the fact that ∂Ω is smooth and bounded. If the u i belong to U S,µ (Ω), estimate (6.33) can be improved since the u i vanish on ∂ ℓ Q BR(a) ∞ , and we obtain,

|u 1 (x, t) -u 2 (x, t)| ≤ min w BR (x -a, t), c α t -1+α q-1 ∀(x, t) ∈ Q BR(a) ∞ .
(6.35) Proposition 6.10 Assume Ω ⊆ R N is either R N or an open domain with a C 2 compact boundary, α > -1 and 1 < q < q c,α . Then for any measure µ in Ω such that µ⌊ ΩR ∈ M b,ρ + (Ω R ) where Ω R = Ω ∩ B R , there exists a unique solution u µ to

∂ t u -∆u + t α |u| q-1 u = 0 in Q Ω ∞ u = 0 in ∂ ℓ Q Ω ∞ u(., 0) = µ in Ω, (6.36) 
and the mapping µ → u µ is increasing. Furthermore, if {µ n } is a sequence of positive measures such that

µ n ⌊ ΩR ∈ M b,ρ + (Ω R ) which converges weakly to µ⌊ ΩR ∈ M b,ρ + (Ω R ), then {u µn } → u µ locally uniformly in Q Ω ∞ .
Proof. We recall that u is a solution of (6.36

) if u ∈ L 1 loc (Q Ω ∞ ), |u| q ∈ L 1 loc (Q Ω ∞ ; t α ρdxdt) satisfies Q Ω ∞ -u(∂ t ζ + ∆ζ) + t α |u| q-1 uζ dxdt = Ω ζ(., 0)dµ (6.37) for any test function ζ ∈ C 2,1;1 0 (Q Ω ∞ ).
When Ω is bounded, existence, uniqueness and stability are proved in [START_REF] Marcus | Initial trace of positive solutions to semilinear parabolic inequalities[END_REF]. Thus we assume that Ω is unbounded and we assume R ≥ R 0 such that Ω c ⊂ B R0 . There exists a unique solution u R of

∂ t u -∆u + t α |u| q-1 u = 0 in Q ΩR ∞ u = 0 in ∂ ℓ Q ΩR ∞ u(., 0) = µ⌊ ΩR in Ω R . (6.38) 
The function u R is nonnegative, R → u R is increasing. For R > R 1 , u R admits a Sobolev trace f R1 on ∂B R1 × (0, T ) which is an integrable function, and u R is the unique solution of

∂ t u -∆u + t α |u| q-1 u = 0 in Q ΩR 1 ∞ u = 0 in ∂Ω × (0, ∞) u = f R1 in ∂B R1 × (0, ∞) u(., 0) = µ⌊ ΩR 1 in Ω R1 . (6.39) Furthermore, u R ⌊ Q Ω R 1 ∞ = lim m→∞ v m
, where v m is the unique solution of (6.36) where the boundary data on

∂B R1 × (0, ∞) is replaced by f R1,m = f R1 ∧ m (m ∈ N * ). Let v R1 be the unique solution of ∂ t u -∆u + t α |u| q-1 u = 0 in Q ΩR 1 ∞ u = 0 in ∂Ω × (0, ∞) u = 0 in ∂B R1 × (0, ∞) u(., 0) = µ⌊ ΩR 1 in Ω R1 , (6.40) If w BR 1 is the barrier function in Q ΩR 1 ∞
which has been constructed in Proposition 3.3,

v R1 + w BR 1 is a supersolution for problem (6.39). Since it is larger than v m in Q ΩR 1 ∞ for any m > 0, there holds u R ≤ v R1 + w BR 1 , for any R > R 1 . Then u R ↑ u µ which is a solution of 1.6 in Q ΩR ∞ . By Proposition 3.4, w BR 1 remains uniformly bounded in Q Ω R ′ ∞ for any R 0 < R ′ < R 1 . Therefore u µ shares the same property. If ζ ∈ C 1,1;1 c (Q Ω ∞ ) vanishes on Q ∂Ω ∞ ) and for |x| > R ′ > R 0 , there holds for R > R ′ > R 0 and T > 0, Q Ω ∞ (-u R (x, t)(∂ t ζ + ∆ζ) + ζt α u q R ) dxdt = Ω ζ(x, 0)dµ(x) - Ω ζ(x, T )u R (x, T )dx (6.
41) If we let R → ∞ we deduce by the monotone convergence theorem that u µ is a weak solution of (6.36). This proves existence.

For uniqueness, we consider u µ and u ′ µ two solutions of (6.36). By the same argument as in the existence part, for any R > 0, u µ is smaller than the supersolution u

′ µ + w BR 1 in Q ΩR ∞ . Since lim R→∞ w BR = 0 by Proposition 3.4 we obtain u µ ≤ u ′ µ . Similarly u ′ µ ≤ u µ .
Uniqueness implies the monotonicity of the mapping µ → u µ .

For proving the stability, assume {µ n ⌊ ΩR } converges to µ⌊ ΩR in the weak sense of measures in M b,ρ + (Ω R ) for any R > R 0 . Then the sequence of solutions v n,R of

∂ t u -∆u + t α |u| q-1 u = 0 in Q ΩR ∞ u = 0 in ∂Ω × (0, ∞) u = 0 in ∂B R × (0, ∞) u(., 0) = µ n ⌊ ΩR in Ω R , (6.42) 
converges to the solution v R of (6.40

) with R 1 = R. In particular v n,R → v R and t α v q n,R → t α v q R in L 1 (Q ΩR T ) and by standard regularity result the convergence of v n,R towards v R holds uniformly on Ω R × [ǫ, T ] for any 0 < ǫ < T . Furthermore u µn ≤ v n,R + W BR in Q ΩR ∞ .
This jointly with standard local regularity results for heat equation, implies that {u µn } remains uniformly bounded and hence relatively compact for the topology of uniform convergence on any compact set of Ω × [ǫ, ∞). Thus there exist a subsequence {u µn k } and a function u * ∈ C ( Q Ω ∞ ) such that u µn k → u * locally uniformly in Ω×(0, ∞). Since t α u q µn ≤ t α v q n,R +t α W q BR , there also holds by the dominated convergence theorem If τ > 0 we denote by u τ,δ,µ the solution of

t α u q µn k → t α u * q in L 1 loc (Ω × [0, ∞)). Henceforth letting n k → ∞ in the expression Q Ω ∞ -u µn k (x, t)(∂ t ζ + ∆ζ) + ζt α u q µn k dxdt = Ω ζ(x, 0)dµ n k (x) - Ω ζ(x, T )u n k (x, T )dx, (6.43) where ζ ∈ C 1,1;1 c (Q Ω ∞ ), we conclude that u * = u µ and that u µn → u µ . Proposition 6.11 Assume F is a non-empty relatively closed subset of Ω, R = Ω \ F and µ ∈ M + (R). If we set ∂ µ F = {z ∈ F : µ(R ∩ B r (z)) = ∞, ∀r > 0}, (6.44) then ∂ µ F is relatively closed in Ω. If R µ = Ω \ ∂ µ F , it contains R and if µ * is the measure defined in R µ by µ on R and 0 in R µ ∩ R c ,
∂ t u -∆u + t α u q = 0 in Q Ω ∞ u ≥ 0 in Q Ω ∞ u(x, t) = 0 in ∂ ℓ Q Ω ∞ u(., 0) = µ δ + χ S δ u S,0 (., τ ) in Ω, (6.60) 
Using estimate (6.3) and Proposition 6.9 is is easy to prove that u τ,δ,µ ≤ u for any u ∈ U S,0 (Ω). Furthermore max{u µ δ , u χ S δ u S,0 (.,τ ) } ≤ u τ,δ,µ ≤ u µ δ + u S,0 (., . + τ ), since have u χ S δ u S,0 (.,τ ) ≤ u S,0 (., τ ) ≤ u χ S δ u S,0 (.,τ ) + C δ 2 τ 1+α q-1 -1 2 e -δ 2 4τ by (5.6) with N = 1. Set c(δ, τ ) = C δ 2 τ 1+α q-1 -1 2 e -δ 2 4τ , then max{u µ δ , u χ S δ u S,0 (.,τ ) } ≥ max{u µ δ , u S,0 (., τ )c(δ, τ )} ≥ max{u µ δ , u S,0 (., τ )}c(δ, τ ).

Therefore, if u τn,δ,µ → u 0,δ,µ locally uniformly in Q Ω ∞ , then u 0,δ,µ is a solution of (1.6) in Q Ω ∞ which satisfies max{u µ δ , u S,0 } ≤ u δ,0,µ ≤ u µ δ + u S,0 , (6.61) and is smaller than any u ∈ U S,0 (Ω). There exists δ n → 0 such that u 0,δn,µ → u 0,0,µ . Then max{u µ * , u S,0 } ≤ u 0,0,µ ≤ u µ * + u S,0 , (6.62) and u 0,0,µ is an element of U S,0 (Ω) smaller than any u ∈ U S,0 (Ω). Thus u 0,0,µ = u S,µ and lim δ→0 lim τ →0 u τ,δ,µ = u S,µ . (6.63)

Step 3: Proof of (6.54). We assume inf{|zz ′ | : z ∈ S, z ′ ∈ Ω c } = δ 0 > 0, so that we can take σ = 0 in the construction of u S,µ . Put τ = ( cα n )

q-1 1+α and Z n,δ,µ = u n,δ,µu n,δ,0 , Z τ,δ,µ = u τ,δ,µu τ,δ,0 and W n,δ,µ = Z n,δ,µ -Z τ,δ,µ . (6.64)

Then w = W n,δ,µ satisfies ∂ t w -∆w + t α u q n,δ,µu q n,δ,0u q τ,δ,µ + u q τ,δ,0 (6.65) in Q Ω ∞ and we can write u q n,δ,µu q n,δ,0u q τ,δ,µ + u q τ,δ,0 = (u q n,δ,µu q τ,δ,µ ) -(u q n,δ,0u q τ,δ,0 ) = d µ (u n,δ,µu τ,δ,µ )d 0 (u n,δ,0u τ,δ,0 ) (6.66) where If we let successively n → ∞ (and therefore τ → 0) and δ → 0, we obtain (6.54).

Remark. We do not know if (6.54) holds if we do not assume inf{|zz ′ | : z ∈ S, z ′ ∈ Ω c } = δ 0 > 0. However, if for θ > 0 we set S θ = S ∩ {x ∈ Ω : dist (x, Ω c ) ≥ θ}, then we have u S θ ,µu S θ ,µ ≤ u S θ ,0u S θ ,0 . (6.70) Furthermore all the four above functions increases when θ decreases to 0. If we set (i) lim θ→0 u S θ ,µ = u S,µ (ii) lim θ→0 u S θ ,0 = u S,0 (iii) lim θ→0 u S θ ,µ = u S,µ (iv) lim θ→0 u S θ ,0 = u S,0 , (6.71) then we infer that u S,µu S,µ ≤ u S,0u S,0 . (6.72)

Our final result is the following existence and uniqueness theorem the proof is close to the one of [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF]Th 3.5], therefore we present only the main ideas and the needed changes. Theorem 6.15 Assume Ω ⊆ R N is either R N or an open domain with a C 2 compact boundary, α > -1 and 1 < q < q c,α . Then for any ν ≈ (S, µ) ∈ B reg (Ω) such that ρµ is bounded in any neighborhood of ∂Ω and inf{|zz ′ | : z ∈ S, z ′ ∈ Ω c } > 0, the set U S,µ (Ω) contains one and only one element.

Proof. We assume that S = {∅} otherwhile uniqueness is already known. Thanks to (6.54) it is enough to prove that u S,0 = u S,0 .

Case 1: Ω = R N . For σ > 0 and a ∈ S set P σ (a) = {(x, t) ∈ Q ∞ : |x -a| ≤ σ √ t} and P σ = ∪ a ∈ P σ (a). Because of (4.1), (5.6), (6.3) and (5.12), for any σ > 0, there exists C σ > 1 such that u S,0 (x, t) ≤ C σ u S,0 (x, t) ∀(x, t) ∈ P σ . (6.73)

Fix σ > 0. If y ∈ R N \ S, we set r(y) = dist (y, S). Using Proposition 3.2 and estimate (3.12), we obtain that u S,0 (x, t) ≤ 2N t -1+α q-1 W α r(y) -|x -y| √ t ∀(x, t) ∈ Q Then u 1 + u 2 is a supersolution of (1.6) in Q τ,∞ . Therefore (u 1 + u 2 )(x, τ ) ≥ u S,0 (x, τ ) ∀x ∈ R N =⇒ (u 1 + u 2 )(x, t) ≥ u S,0 (x, t) ∀(x, t) ∈ Q τ,∞ . (6.79)

Since C σ u S,0 is a supersolution of (1.6) which is larger than u 1 at t = τ , then u 1 ≤ C σ u S,0 in Q τ,∞ . Next the function (x, t) → w(x, t) := u S,0 (x, t + (C 3 -1)τ ) satisfies ∂ t w -∆w + h(t, τ )t α w q = 0 in Q τ,∞ w(., τ ) = u S,0 (., C 3 τ ) in R N

(6. 2 ) 6 . 1

 261 Definition We denote by U S,µ (Ω) the set of solutions of problem (6.2).

  u i (x, t)ζ(x)dx = BR(a) ζ(x)dµ(x) ∀ζ ∈ C c (B R (a)).

  then there exist a minimal positive solution We denote here Ω σ = {x ∈ R N : dist (x, Ω) < σ}, S δ = {x ∈ R N : dist (x, S) < δ} and R δ = Ω ∩ S c δ and µ δ = χ R δ µ. The same arguments of monotonicity as in Proposition 6.7 and Proposition 6.11 show that lim σ→0 lim δ→0 lim n→∞ = u n,σ,δ,µ = u S,µ . (6.59)

  ,µu q τ,δ,µ u n,δ,µu τ,δ,µ if u n,δ,µ = u τ,δ,µ0 if u n,δ,µ = u τ,δ,µ(6.67)and d 0 is defined accordingly. Since u n,δ,µ ≥ max{u τ,δ,µ , u n,δ,0 } and u τ,δ,0 ≤ min{u τ,δ,µ , u n,δ,0 }, there holds d µ ≥ d 0 ≥ by convexity. Using the fact that u n,δ,0u τ,δ,0 ≥ 0 is infers thatd µ (u n,δ,µu τ,δ,µ )d 0 (u n,δ,0u τ,δ,0 ) ≥ d µ (u n,δ,µu τ,δ,µu n,δ,0 + u τ,δ,0 )Finally (6.65) becomes∂ t w -∆w + t α d µ w ≤ 0 in Q Ω ∞ . (6.68)Furthermore, in the sense of measures,w(., 0) = µ δ + nχ S δnχ S δ -(µ δ + χ S δ u S,0 (., τ )) + χ S δ u S,0 (., τ ) = 0. Because w = 0 in ∂ ℓ Q Ω ∞ itfollows w ≤ 0 by the maximum principe. Therefore Z n,δ,µ ≤ Z τ,δ,µ =⇒ u n,δ,µu τ,δ,µ ≤ u n,δ,0u τ,δ,0 . (6.69)

B

  r(y) (y) ∞ .(6.74)If we take x = y in the above estimate, we derive from (3.3), u S,0 (y, t) ≤ C 1 rz ∈ S ∩ ∂B r(y) (y), we have also from (6.3) and (5.6) u S,0 (y, t) ≥ C 2 rthere exists C 3 > 1 such that u S,0 (y, t) ≤ u S,0 (y, C 3 t). (6.77)For τ > 0, we denote by u 1,τ and u 2,τ the solutions of(1.6) in Q τ,∞ := R N × (τ, ∞) with respective initial data u 1 (x, τ ) = C σ u S,0 (x, τ )χ Pσ (x, τ ) u 2 (x, τ ) = u S,0 (x, C 3 τ )(1χ Pσ (x, τ )). (6.78) 

  1) for any Borel subset E of Ω. Conversely, to any outer Borel measure ν on Ω we can associate the regular set R ⊂ Ω which is the set of points y ∈ Ω which possess an open neighborhood O y such that ν(O y ) < ∞. Clearly R is open and the restriction of ν to R is a positive Radon measure. The set S = Ω \ R is relatively closed and it is the singular part of ν. It has the property that ν(E) = ∞ for any Borel set E such that E ∩ S = ∅. We shall denote by B reg (Ω) the set of outer regular Borel measures in Ω and by B reg c

 Proposition 6.7For any relatively closed S ∈ Ω, the set U S,0 (Ω) is not empty and it admits a minimal element u S,0 and a maximal element u S,0 .

Proof. Step 1: Existence of a maximal solution. The maximal solution is constructed by thickening Ω and S in defining for 0 < σ

If z ∈ ∂Ω, we denote by n z the outward unit normal vector to Ω at z. Since ∂Ω is compact and C 2 , there exists σ 0 > 0 such that for any (z, σ) ∈ ∂Ω × [0σ 0 ], the mapping Π : (z, σ) → z + σn z is a C 2 diffeomorphism from ∂Ω × [0, σ 0 ] to Θ ′ σ0 := Ω σ0 \ Ω. The mapping Π defines the flow coordinates near ∂Ω.

If 0 < δ < σ, there exists a unique solution u = u n,σ,δ of

in Ω σ .

(6.21)

Notice that S δ is closed in Ω σ and inf{|zz ′ | : z ∈ S δ , z ′ ∈ Ω c δ } = δσ. Existence is standard as well as uniqueness in the case where Ω is bounded. If Ω c is bounded the proof goes as in the uniqueness proof in Proposition 6.10. When n → ∞, {u n,σ,δ } ↑ u σ,δ which is a solution of (1.6) in Q Ωσ ∞ . Since u n,σ,δ satisfies (4.1), for any r, τ > 0 and any a ∈ ∂Ω σ , u n,σ,δ remains uniformly continuous with respect to n in

. This implies that u n,σ,δ remains uniformly continuous with respect to n in B r ′ (a) × [0, T ) for any 0 < r ′ < r and T > 0. Since u n,σ,δ (x, t) → 0 in B r ′ (a), u σ,δ inherits the same property. Consequently u σ,δ has initial trace (S δ , 0) in Ω σ . By the maximum principle the mapping (n, δ) → u n,σ,δ is increasing with respect to n and decreasing with respect to δ. Furthermore, if 0 < δ ′ < σ ′ < σ and 0 < δ < σ, there holds

Then u S,0 is a solution of (1.6) in Q Ω ∞ . Since lim t→0 u σ,δ (x, t) = 0 uniformly on any compact subset K ⊂ R = Ω \ S, u S,0 has initial trace 0 on R. If a ∈ S, we denote by ũ∞,a the function defined in

Then ũ∞,a is a subsolution of (1.6) in Q Ωσ ∞ which is smaller than u ∞,a,σ which is the limit, when k → ∞ of the solution u kδa,σ of

(6.23) u µ * and a maximal solution u µ * of (1.6) vanishing on ∂Ω × (0, ∞) satisfying tr Ω (u) = (∂ µ F, µ * ). Furthermore u µ * and u µ * are respectively the minimal and the maximal element of U ∂µF,µ * (Ω).

Proof. The set ∂ µ F is the blow-up set of the measure µ. It is clearly a relatively closed subset of Ω included into R \ R.

Step 1: Existence of a minimal solution. For δ > 0, we denote (

We define the Radon measure µ δ on Ω by

Then µ δ is a positive Radon measure in Ω and by Proposition 6.10 problem (6.36) with initial data µ δ admits a unique positive solution u µ δ . Furthermore the mapping δ → u µ δ is nonincreasing, and we set u µ * = lim δ→0 u µ δ . Then u µ * is a positive solution of (1.6) in Q Ω ∞ which vanishes on ∂Ω × (0, ∞) and has initial trace (S ′ , µ ′ ). If a ∈ R µ , there exists R > 0 such that B R (a) ⊂ R µ and δ a > 0 such that B R (a) ⊂ R µ δ for 0 < δ < δ a , that we assume below. By the maximum principle there holds

where v µ δ is the solution of

in B R (a).

Letting δ → 0, then µ δ χ BR(a) ↑ µ * χ BR(a) , which yields to

By a partition of unity, it implies that for any

By Proposition 6.8, for any r ′ < r 0 there exists

and both are bounded Radon measures. Since

Next, applying the comparison principle in Ω R × [τ * , ∞) between the solution u µ δ and the supersolution u + ǫ + w BR , we conclude that (6.46

Step 2: Existence of a maximal solution. Let δ > 0 and u ∈ U ∂µF,µ * (Ω). By Proposition 6.9, for any R > 0 and ǫ > 0 there exists τ ǫ such that

and by (4.1), u(x, t) ≤ c α t -1+α q-1 . Let τ ∈ (0, τ ǫ ] and w δ,τ be the solution of (6.36) in Q ΩR ∞ with initial data µ replaced by

By (6.47), (6.48) and the maximum principle,

Let u (∂µF ) δ be the maximal element of U (∂µF ) δ ,0 (Ω), which exists by Proposition 6.7. Then, by (4.3), for any δ ′ > δ, there exists τ δ ′ ∈ (0, τ ǫ ] such that for any τ ∈ (0, τ δ ′ ] max{u µ * (., .+τ ), u (∂µF ) δ (., .+τ )} ≤ w δ,τ ≤ u µ * (., .+τ )+u (∂µF ) δ ′ (., .+τ ) in Q ΩR ∞ . (6.50)

Up to a sequence {τ n } converging to 0, {w δ,τn } converges, locally uniformly in

We can replace δ ′ by δ in this inequality, this proves that w δ vanishes on

Letting successively R → ∞ and ǫ → 0 we deduce that w δ is larger that any u ∈ U ∂µF,µ * (Ω) in Q ΩR ∞ . Since h δ,τ decreases with δ, w δ shares this property and the limit, denoted by u µ * is a solution of (1.6) in Q Ω ∞ which vanishes on ∂ ℓ Q ΩR ∞ which is large than u, thus it is the maximal element of U ∂µF,µ * (Ω). Proposition 6.12 Under the assumptions of P roposition 6.11, we set F δ := {x ∈ Ω : dist (x, F ) ≤ δ} and R δ := Ω \ F δ ⊂ R. If we define the measure μδ in Ω by

Proof. There holds μδ ≤ µ δ which implies

Then there exists a minimal solution π + (v) larger than v (resp. a maximal solution π -(v) smaller than v and vanishing on ∂ℓQ Ω ∞ ).

Proof. Assume v is a subsolution. Let τ > 0 and let u τ be the solution of

in Ω.

(6.53)

Existence and uniqueness follows from Proposition 6.10. Furthermore u τ ≥ v in Ω × (τ, ∞). This implies that for 0 < τ < τ ′ , u τ ≥ u τ ′ . Since u τ (x, t) ≤ c α (tτ ) -1+α q-1 , there exists π + (v) = lim τ →0 u τ , and π + (v) is a positive solution of (1.6) in Q Ω ∞ and is larger than v. If u is any positive solution of (1.6) in Q Ω ∞ , vanishing on ∂ℓQ Ω ∞ and larger than v, for any τ > 0 it is larger than u(., τ ), thus it is larger than u τ on Ω × (τ, ∞). Therefore u ≥ π + (v).

Assume now that u is a supersolution. We define u τ by (6.53). Then u τ ≤ v and u τ ≤ u τ ′ for 0 < τ < τ ′ . Then π -(v) = lim τ →0 u τ , and π -(v) is a positive solution of (1.6) in Q Ω ∞ and is smaller than v, and thus vanishing on ∂ℓQ Ω ∞ . Similarly as above π -(v) is larger than any positive solution smaller than v. Theorem 6.14 Assume Ω ⊆ R N is either R N or an open domain with a C 2 compact boundary, α > -1 and 1 < q < q c,α . Then for any ν ≈ (S, µ) ∈ B reg (Ω) there exist a maximal positive solution u S,µ and a minimal positive solution u S,µ of (

Proof.

Step 1: Construction of the maximal and minimal solutions. The functions u µ * , u S,0 , u µ * and u S,0 have been defined in Proposition 6.11 and Proposition 6.7. Since sup{u µ * , u S,0 } is a subsolution of (1.6) which is smaller than the supersolution u µ * + u S,0 we set

Then u S,µ and u S,µ are solutions which satisfy

Therefore u S,µ and u S,µ vanish on ∂ ℓ Q Ω ∞ , they have initial trace µ on R and are larger than any u ∞,a for a ∈ S (notice that ∂ µ S ⊂ S). This implies that u S,µ and u S,µ belong to U S,µ (Ω).

Let u ∈ U S,µ (Ω). Then for σ > δ > 0 and ǫ, R > 0, there exists τ 1 > 0 such that

There exists τ 2 ∈ (0, τ 1 ] such that

Letting successively R → ∞, ǫ → 0, δ → 0 and σ → 0 we obtain u ≤ u S,0 + u µ * , and therefore u ≤ π + (u S,0 + u µ * ) = u S,µ . Next, we also have u ≥ ũS,0 := sup{u ∞,a : a ∈ S} =⇒ u ≥ u S,0 = π + (ũ S,0 ), by (6.25). With the notations of Proposition 6.12 with F = S, for any R > 0, δ > 0 and ǫ > 0, there exists τ ǫ such that

because the support of μδ is included in Ω \ S δ . Therefore this last inequality holds in Q ΩR ∞ and consequently sup{u μδ , u S,0 } ≤ u + ǫ + w BR in Q ΩR ∞ , and we can let R → ∞ and ǫ → 0 to obtain sup{u μδ , u S,0 } ≤ u in Q Ω ∞ . Letting δ → 0 and using Proposition 6.12 we get sup{u µ * , u S,0 } ≤ u S,µ ≤ u.

Step 2: Alternative construction. For 0 < δ < σ and n ∈ N * we denote by u n,σ,δ,µ the solution of

This implies that C

1/(q-1) 4

w is a supersolution of (1.6) in Q τ,∞ which is larger than u 2 for t = τ . Thus it dominates u 2 in Q τ,∞ . Combining the above estimates on u 1 and u 2 with (6.79), we derive that for any τ > 0, there holds

where

, C σ . Letting τ → 0 we finally obtain the key estimate with

Then end of the proof is the same as in [7, Th 3.5], but we recall it for the sake of completeness: If u S,0 = u S,0 , then strict inequality holds. For 0 < β < C -1 the function ũ = u S,0α(u S,0u S,0 ) is a supersolution of (1.6) in Q ∞ (this due to the convexity of r → r q ) which satisfies βu S,0 ≤ ũ < u S,0 . For 0 < γ < β, the function γu S,0 is a subsolution smaller than ũ. Then there exists a solution u ′ of (1.6) in Q ∞ which satisfies γu S,0 ≤ u ′ ≤ ũ < u S,0 . (

This implies that tr R N (u ′ ) = (S, 0), which contradicts the minimality of u S,0 .

Case 2: ∂Ω is nonempty and compact. Again the proof is similar to the one of [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF]Th 3.5]. We denote by u Ω S,0 and u Ω S,0 the minimal and the maximal solutions of (1.6) in Q Ω ∞ with initial trace (S, 0) and we assume that dist (S, Ω c ) = δ > 0. We also set u R N S,0 = u S,0 and u R N S,0 = u S,0 . Clearly u Ω S,0 ≤ u S,0 in Q Ω ∞ . Furthermore, if we denote by k(t) the maximum of u S,0 (x, t) for x ∈ ∂Ω, then lim t→0 k(t) = 0 (this is due to the fact that dist (S, Ω c ) > 0). Clearly, the construction of the minimal solutions shows that u S,0 (x, t) ≤ u Ω S,0 (x, t) + k(t) in Q Ω ∞ . Therefore u Ω S,0 (x, t) ≤ u Ω S,0 (x, t) + k(t) ∀(x, t) ∈ Q Ω ∞ . (6.83)

If we fix τ > 0, t → u Ω S,0 (x, t) + k(t) is a supersolution of (1.6) in Q Ω ∞ which is larger that u Ω S,0 (x, t) at t = τ . This implies u Ω S,0 (x, t) ≤ u Ω S,0 (x, t) + k(τ ) ∀(x, t) ∈ Q Ω τ,∞ . (6.84)

If we let τ → 0, we deduce that u Ω S,0 = u Ω S,0 .